CS 267: Automated Verification

Lectures 17: Software Verification and
Logic & Application to Access Control
Verification

Instructor: Tevfik Bultan

Software engineering is 57 years old!

In 1968 a seminal NATO
Conference was held in Germany

Margaret Hamilton
|} Lead Software
/B Developer for
& NASA moon
‘ mission

Purpose: to look for a
solution to software crisis

—50 top computer scientists,
programmers and industry
leaders got together to look
for a solution to the difficulties

in building large software
systems

—Considered to be the birth of
“software engineering’ as a
research area

Software’s chronic crisis

« A quarter century later (1994) an article in Scientific American:

Software's Chronic Crisis

TRENDS IN COMPUTING by W. Wayt Gibbs, staff writer.
Copyright Scientific American; September 1994; Page 86
Despite 50 years of progress, the software industry remains
years-perhaps decades-short of the mature engineering
discipline needed to meet the demands of an information-age
society

Software’s chronic crisis

* Another quarter century later:

*

s 0 893m
70 wntlll 7 Suporedn
2 N 9.3 KPCC,

« This is a photo of the navigation system of my car

— It crashes and reboots while | am driving!

Disastrous consequences: Security

Newsweek
e Facebook e October 4, 2021

data leak 1.5 Billion Facebook Users' Personal Information
Allegedly Posted for Sale

e Microsoft software B[ETIBUSINESS. August 24, 2021

misconfiguration . Data leak exposes tens of millions of private records from
Microsoft corporations and government agencies

e SolarWinds hack
colarwinds ETIBUSINESS. December 19, 2020

Massive SolarWinds hack has big businesses on high alert

“Software is eating the world!” Marc Andreessen

« Commerce, entertainment, social interaction

amazon com il facebook [@)rsagan YouTTDD
P INTuitr &b -
PayPal WhatsApp

« We will rely on software more in the future

O amazon alexa "N Teladoc. @
WAYMO HEALTH Watson
Health

* Apps + cloud is a formula for technological disruption

L
’ amazon) Google Cloud x;%’
webservices™ Windows Azure

Software is eating the world!

« So, software engineering,

a systematic, disciplined, quantifiable approach to the production
and maintenance of software,

is very important!

This is my main research area so | am a little biased

Disastrous consequences: Safety

e Boeing 737 MAX accidents
189 people lost their lives

May 29, 2019, CBS News:

“‘Boeing admits it was a mistake in the software for a warning light,
called an angle-of-attack disagree alert, that could have notified pilots
and maintenance that there was a problem.”

Boeing CEO Dennis Muilenburg:
“The implementation of that software, we did not do it correctly.”

Dependability Problem & Formal Methods

Software’ Chronic Crisis:

Software systems frequently fail dependability and security
requirements

Formal Methods:

Mathematical approaches that support rigorous specification,
design, development and verification of software systems

Use formal methods techniques to improve software
dependability and security

A Formal Methods Approach: Symbolic Analysis

Symbolic Analysis has two main ingredients

1. Automation
Automate bug & vulnerability detection

1. Logic solvers

Use automated tools that check satisfiability of logic formulas
to automate bug & vulnerability detection

10

Software—Logic connection

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM Computation

By A. M. TurixG.

[Received 28 May, 1936.—Read 12 November, 1936.]

> Logic
712

« Turing machine model, the most widely used theoretical model for
computation, was motivated by a logic problem:

— Is there an algorithm that takes as input a statement of a first-
order logic and determines if it is provable using axioms and
rules of inference?

€

11

Software—Logic connection
Robert W. Floyd ASSIGNING MEANINGS TO PROGRAMS:!
Proceedings of Symposium on Applied Mathematics, Vol. 19, 1967, pp. 19-32

‘ START >

S—0
———————— neJtAi=1AS=0

— .
7 i—-1

________ neJtAi€dtAiSn+IAS= 1L g
J=1

(x) ”
———n€JYAi=n+1AS= > aj; ie, S=2 aj
im i
n i-1

________ nedJtAi€edtAisnAS=Yaq
Jj=1

i
________ neJTAIEJTAIisAAS= 2 g
j=1

l—i+1 i-1
———————— nEJTAIEd A2sisn+1IAS=2g;
j=1

FiGURE 1. Flowchart of program to compute S = Y= a; (n 2 0)

Computation

Logic

12

Automating software-logic connection

« Symbolic execution

Symbolic Execution : .

and Program Testing Automatically extracting

James C. King logical meanings of programs
IBM Thomas J. Watson Research Center

Communications July 1976

of Volume 19

the ACM Number 7

 Model checking

Automatic Verification Of Finite State Concurrent Systems Using
Temporal Logic Specifications: A Practical Approach*

EM. Clarke

comesienielon tnierslo Automatically analyzing
University of Texas, Austin ! 1
ol logical properties of programs

Harvard University

POPL '83 Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages

Pages 117-126 13

Automated logic reasoning is difficult in general

« Automated logic reasoning is difficult!

r
The Complexity of Theorem-Proving Procedures REDUCIBILITY AMONG GOMBINATORLAL FROBLEMS
Stephen A. Cook

University of Toronto

Richard M. Karp

£ Californt kel
STOC '71 Proceedings of the third annual ACM symposium on Theory of Hnlyersiity of Calltornla uk Serkeley

computing

Complexity of Computer Computations, 1972

* and, for some cases impossible!

On formally undecidable propositions of Principia
Mathematica and related systems I

Kurt Godel
1931

14

Automated logic reasoning with heuristics

« Give up efficiency for all cases, use heuristics

A Machine Program for
Theorem-Proving'

Martin Davis, George Logemann, and
Donald Loveland

Institute of Mathematical Sciences, New York University

Communications of the ACM, July 1962

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering

UC Berkeley MIT Princeton University
moskewcz@alumni.princeton.edu cmadigan@mit.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu

Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001
This expanded version appeared in Comm. of the ACM, August 1992

The Omega Test: a fast and practical integer

programming algorithm for dependence analysis

William Pugh

15

Combining logic solvers

« Satisfiability-Modula-Theories (SMT) solvers
Simplification by Cooperating Decision
Procedures

GREG NELSON and DEREK C. OPPEN
Stanford University

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979, Pages 245-257.

Z3: An Efficient SMT Solver

Leonardo de Moura and Nikolaj Bjgrner

TACAS 2008, LNCS 4963, pp. 337—340, 2008.

16

So, now, we have a hammer!

Automated Logic Solvers

17

Unfortunately, life is complicated!

\

N3
o

Software
dependability
problem

v

N

Automated logic
solver

18

Symbolic Analysis with Logic Reduction

— X

Software Logic Logic
dependability Reduction problem

problem

Automated
logic solver

19

A Severe Security Problem: Access Control

14 million Verizon subscribers' details
leak from crappily configured AWS S3

data store
US telco giant insists only infosec bods saw the info
By lain Thomson in San Francisco 12 Jul 2017 at 19:34 12() SHARE Y

Updated Another day, another leaky Amazon S3 bucket. This time, one
that exposed account records for roughly 14 million Verizon customers to
anyone online curious enough to find it.

20

Access Control

® Everything is on the cloud now!

® Cloud service providers let users
secure systems + data with
access control policies

® Policies specify
O Who?
O Which actions?
O On which resources?
O Under which conditions?

0

L
iriramazon

uF webservices
/ Microsoft
Azure

a

Google Cloud

0

21

Access Control Data Breaches

A Technical Analysis of the Capital One
Hack

7224 Cloudsploit [Follow
R I v@Oo

\

User must manually write policies

e Easy to write incorrect/overly permissive POlIGIES s e o ey miscontsuraton

leading to the loss of sensitive personal information made the headlines this
past week. This particular incident came with a bit more information from
. the indictment of the accused party, allowing us to piece together the
. L e a d S to u n I n te n d e d a Cce S S to S e C u re d ata revealed data and take an educated guess as to what may have transpired

leading up to the loss of over 100 million credit card applications and 100
thousand social security numbers.

Capital One hacked, over 100

million customers affected

SIGK IN SUBSCRIBE

Greg Kumparak . (|

Everything We Know About the Capital One Hacking
Case So Far

A new indictment against alleged Capital One hacker Paige Thompson includes a few fresh details about the case.

22

Securing the Cloud

Unintended Insecure Cloud Data Breach
Data Access

Technical Analysis of the Capital One
c]

_ ,’ N
LEramazon

NP webservices

/ Microsoft D

Azure

Google Cloud

How to reduce unintended data access?

23

Access Control Policies

Modern software services run on compute clouds
— Sensitive user information is stored in the cloud

In order to protect data privacy, it is crucial to provide mechanisms
that protect user data

Access control languages allow developers to write access control
policies

— Access control policies specify rules for authorized access
while denying unauthorized access to data

Bugs in access control policies can have disastrous consequences

24

Access control correctness

« About 10 years ago in VLab we developed a technique for
checking correctness of access control policies

* Question 1: How should we specify correctness of a policy?
+ Idea 1: Differential analysis

— To check a complicated access control policy, compare it to a
simple policy

— For example you may want to check that the complex policy is
at least as restrictive as some default simple policy

25

Access control checking

* Question 2: Given two policies P1 and P2:
— How can we check if P1 is at least as strong as P2

« ldea 2: Convert differential policy check to checking satisfiability of
a Boolean logic formula

26

Logic encoding

 How can we check if P1 is at least as strong as P2?

— Accesspq: Automatically extracted formula that characterizes all
cases where P1 gives access to data

— Accessp,: Automatically extracted formula that characterizes all
cases where P2 gives access to data

Construct another formula: Differencep,;_p, = Accessps A 77 AcCesSp,

|s Differencep, _p, satisfiable?
 |f NO: P1is at least as strong as P2
« |If YES: there is a case were P1 gives access to data
while P2 does not o

Analyzing Access Control Policies

"Statement": [{
"Effect":

"Allow",

"Principal": :>
sy Translator Solver

"Action":
"s3:GetObject",

"Resource":
"bucket-name/*"

}]

SAT/SMT

Goal: automatically reason about semantics of access control policies
e Key idea: translate policies and properties to logic formula

e Generated formula is satisfiable if and only if property is violated

28

Permissiveness Analysis

Need to figure out if a policy is more permissive than another
e Did a policy modification change permissiveness?

e Is a complex policy specification more permissive than a simply
policy specifying basic common sense rules?

Necessitates the need for comparing permissiveness of policies

29

How to Compare Permissiveness

For policies P, and P:

e Two satisfiability checks: P, A 7P, and P, A P,

'

P, A -P, UNSAT

~N

P, A -P, UNSAT

BOTH UNSAT

BOTH SAT

—
—

—
—

P; NOT more permissive than P,

P, NOT more permissive than P;

P1=P2

P, , P, incomparable

30

Binary results are not enough

Policy 1

"Statement": [{
"Effect":
"Allow",
"Principal":
"Bob”,
"Action":
"s3:GetObject”,
"Resource": [
"firewall/logl. txt”

1}]

Policy 2

"Statement": [{
"Effect":
"Allow",
"Principal":
"Bob”,
"Action":
"s3:GetObject”,
"Resource": [
"firewall/logl. txt”,
"firewall/log2.txt”

1}]

Policy 3

"Statement": [{
"Effect":
"Allow",
"Principal":
"Bob”,
"Action":
"s3:GetObject”,
"Resource": [
"firewall/logl. txt”,
"firewall/log2.txt”,
"firewall/*.txt”

1}]

Cannot determine how much more permissive policies are

Necessitates need for quantitative analysis techniques

31

QUACKY: QUantitative ACcess Konftrol policy analYzer
[ICSE 22, ASE 22]

SAT/SMT

"Statement": [{
"Effect":
"Allow",
"Principal":

action”s > Quacky

"s3:GetObject",
"Resource":
"bucket-name/*"

}]

% Solver

i Model
Counter

e Permissiveness is quantified using a model counting constraint
solver

Quacky translates policies into SMT encoding

o Can quantify relative permissiveness between policies 32

Symbolic Access Control Policy Analysis

Differential Logic Boolean
Access Reduction Logic
Control Policy Formula

Analysis

SAT Solver

33

Access control checking in real world

We implemented our access control policy checker for an access
control language called XACML using a Boolean SAT solver, and
published a paper

My student looked for real-world access control policies to extend
his research, but was not able to find any

— Companies were not willing to share their policies with us due
to IP concerns

Eventually my student gave up and changed his dissertation topic

10 years later, our access control verification approach was
adopted by Amazon at large scale!

34

Zelkova: Access control at Amazon

AWS Security Blog

How AWS uses automated reasoning to help you
achieve security at scale

by Andrew Gacek | on 20 JUN 2018 | in Security, Identity, & Compliance | Permalink | @ Comments | # Share

NEWS ANALYSIS

What are Amazon Zelkova and Tiras? AWS
looks to reduce S3 configuration errors

Amazon’s latest tools help identify where data might be left exposed in your AWS S3 cloud
environments.

35

Other applications of Symbolic Analysis at VLab

Access
control

Data
models

Input
validation

B — N
B — N

_,

SAT or
SMT solvers

SAT or SMT
solvers

String
constraint
solver

36

A New Hammer

N\

Model Counting Constraint
Solver

37

Automate Based model Counter
(ABC): Model counting constraint solver

INPUT

formula:

P —

-

-

Automata-based
model counting
constraint solver
(ABC)

~

OUTPUT

counting
function:

—> f¢@ < bound: k

J

1

of solutions for ¢
within bound k

38

Quantitative Symbolic Analysis

Quantitative
Access
Control
Analysis

Quantitative
Information
Flow
Analysis

= — N
= — N

Logic
Reduction

Model
counting
constraint
solver

Model
counting
constraint
solver

39

QUACKY: QUantitative ACcess Konftrol policy analYzer
[ICSE 22, ASE 22]

SAT/SMT

"Statement": [{
"Effect":
"Allow",
"Principal":

action”s > Quacky

"s3:GetObject",
"Resource":
"bucket-name/*"

}]

% Solver

i Model
Counter

e Permissiveness is quantified using a model counting constraint
solver

Quacky translates policies into SMT encoding

o Can quantify relative permissiveness between policies 40

Quantitative Policy Analysis

Goal: Perform quantitative analysis of policies

e Need to count the number of requests (permissions) allowed

For policy P let m be a request allowed by P. Then:

Allow(P) = {m : m & [P]}

Allow(P) = set of requests allowed by P

|Allow(P)| = number of requests allowed by P

41

How to Compare Permissiveness

Recall two satisfiability checks: P; A 7P, and P, A 7P,

#requests allowed by P, NOT

I
[| Pi AP, |] — allowed by P,

[| P, A =P, |] — #requests allowed by P, NOT
allowed by P,

42

Binary results are not enough. Revisited

Policy 1

"Statement": [{
"Effect":
"Allow",
"Principal":
"Bob”,
"Action":
"s3:GetObject”,
"Resource": [
"firewall/logl. txt”

1}]

For bound = 15:

Policy 2

"Statement": [{
"Effect":
"Allow",
"Principal":
"Bob”,
"Action":
"s3:GetObject”,
"Resource": [
"firewall/logl. txt”,
"firewall/log2.txt”

1}]

Policy 3

"Statement": [{
"Effect":
"Allow",
"Principal":
"Bob”,
"Action":
"s3:GetObject”,
"Resource": [
"firewall/logl. txt”,
"firewall/log2.txt”,
"firewall/*.txt”

1}]

= Policy 2 allows 1 more request than Policy 1

= Policy 3 allows 65792 more requests than Policy 1

43

Quacky Architecture (Online)

Frontend

Backend

Model Counter or SMT Solver

AWS Policy Visitor

Azure Role Definition &
Assignment Visitor

GCP Role & Bindings
Visitor

Policy

”|Sanitizer

Policy Model Visitor

S-expression Builder

T

T

Online Resource Type

Online Action Encoder

Constraint Builder

)

1

Action Encoding

//\

Resource Type & Action(s)
Map

/\

ABC

Z3

44

Frontend: Generating a Policy Model

e Policy to policy model instance

O

Each language has its own
visitor

Policy model instance is a
tree

e Supports AWS, Azure, GCP

{

"Version": "2012-10-17",

"Statement": [
{
"Effect": "Allow",
v (11}

'Principal":
"Action": "s3:GetObject",
"Resource": "bucket-name/*"}]}

Access Control Policy

Frontend

AWS Policy Visitor

Azure Role Definition &
Assignment Visitor

GCP Role & Bindings

Visitor

Policy

Sanitizer

(((((((((

Statement
Principal Effect Action | | Resource Condition | | Princij ipal Effect Action | | Resource
Policy Model

Backend: From policy model to formula

Policy model to SMT
formula(s)
O Type constraints
O Action encoding

Backend
Policy Model Visitor <€<—» S-expression Builder
Online Action Encoder € Online Resource Type

Constraint Builder

1

1

Action Encoding

J\

Resource Type & Action(s)
Map

_/\

46

Quacky Architecture (Offline)

Offline Resource Type Constraint Generator

Cloud Platform Docs
Scraper

Resource Type to
Action(s) Mapper

Resource Type &
Action(s) Map

v

Action Encoder

Action Encoding

These are called only once, before Quacky is run

~N b

Experimental Evaluation

e 43 real-world AWS policies from forums

©)

©)

546 synthetic AWS policies via mutations

©)

©)

Focus on popular services

Find simple and complex policies

Expand the dataset

Mimic real-world scenarios

2} / Questions / IAM: CLI: How to get c...
IAM: CLI: How to get contents of a policy?

A. Policy: AmazonS3ReadOnlyAccess
0 B. Arn: arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

» C. Console view:
{
"Version": "2012-10-17",
"Statement": [

48

Relative Permissiveness
EC2 Mutants IAM Mutants

@® Less permissive @ More permissive
@ Incomparable

@© Equivalent

No timeout after 10 minutes

S3 Mutants

49

Experiments - Benchmarking

Average analysis time (s) per AWS service Average analysis time (s) per AWS service

B NoType B Type
B without Transformation [l With Transformation 12

10

150 8
6

4

2

0

EC2 IAM S3

100

Average permissiveness (log) by AWS service

5 M NoType [Type
2500
2000
1500
1000
500

EC2 1AM s3 0

EC2 IAM S3

Effectiveness of

: : Impact of type constraints
constraint transformation

50

Repairing overly permissive policies

We can determine if a policy is overly permissive

Can we repair it so that itis NOT overly permissive?

{
"Version": "2012-10-17",

"Statement'g
7\ "
14
2 " " 0
g3 :GetObject", [

"Resource": "bucket-
name/*"}]}

Repairing overly permissive policies [ISSTA 23]

Given

1. Policy

2. Permissiveness bound

3. Set of must-allow requests
Repair the policy so that it

1. Meets permissiveness bound

2. Allows must-allow requests

"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject”
"Resource": "*”

}]

(s3:GetObject, log/ud4012
(s3:GetObject, log/u00000
(s3:GetObject, log/ul2345
(s3:GetObject, log/u91232

~— ~— ~— ~—

"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject”
"Resource": "log/u?????”

}]

52

Initial Policy, Permissiveness Bound, Must-Allow Request

Repairing a Policy

Goal Validation
e Meet permissiveness bound?

e Allows Must-Allow Requests? o
Refine

o . . Policy
Permissiveness Localization

e Where in the policy are the most
permissive elements?

Permissiveness Refinement

e Refine most permissive element

Set

Goals met
Goal Output
Validation Policy
SMT
Solver (Z3)
Goals NOT
met
Permissiveness
Localization
SMT Model
Counter (ABC)
Permissiveness
Refinement

53

Evaluation

Implemented policy repair algorithm into QUACKY tool
Evaluated policy repair algorithm on benchmark of 43 policies

e \arying permissiveness bounds

Can we repair overly permissive policies?

When is request enumeration required?

54

Effectiveness of Repair

m Repaired without enumeration = Repaired with enumeration

50

40
Policies 30
Repaired

20

10

50 60 70

90

Permissiveness Bound

55

Where is the time spent?

1000 W abc calls m z3 calls
2000
750
k.3 1500
[0}
E 500 »
[T 1000
._9 O
2 250 * 500
0 0
30 40 50 60 70 80 90 30 40 50 60 70 80 90
Permissiveness Bound Permissiveness Bound

Both time and #calls increase as bound
decreases 56

What is the secret sauce”?

Automated bug and vulnerability detection is hard

e ltis hard because software systems are too complex

e In order to make automated bug and vulnerability detection feasible

O we need to focus our attention

What is the secret sauce”?

e We focus our attention by
O Abstraction
m Hide details that do not involve the things we are checking
O Modularity
m \We focus on one part of the system at a time
O Separation of concerns

m We focus on one property at a time

e It turns out these are also the main principles of software design

Separation of concerns

o First, we need to identify our concerns

O What should we be concerned with if we want to eliminate the
bugs and vulnerabilities in applications

e For example, one concern:
O Access control

m Many applications unintentionally disclose users’ data

What is the secret sauce”?

Three step process

1.Using modularity, separation of concerns and abstraction
principles, generate a model of the software for analysis

O For example: Extract the access control policy from the software
system

2. Translate analysis questions about the extracted model to a logic
query

O For example: Convert the question about relative strengths of
two access control policies to satisfiability of a logic formula

3.Use a logic solver to answer the query

Concluding thoughts

Software dependability is a crucial problem for future of the human
civilization!

Using automated techniques that rely on automated logic solvers
we can find and remove security vulnerabilities in software systems
before they are deployed

In order to develop feasible and scalable techniques we need to
exploit the structure of the software and the principles of
modularity, abstraction and separation of concerns

Coda: Elephant in the Room

“Me Chlne
-

Learnlng

62

Type of Human Intelligence

« According to Nobel laureate Daniel Kahneman human intelligence
has two separate components:

— System 1: fast, instinctive and emotional
You use System 1
when you answer the question 2+2=7?

— System 2: slower, more deliberative and more logical
You use System 2
when you answer the question 17*24=7

63

Types of Artificial Intelligence

« Artificial intelligence has also two types
— Type 1: Techniques based on machine learning

— Type 2: Techniques that are based on automated logic
reasoning

* | believe that the future of computing will heavily depend on both
types of artificial intelligence

- Type 2 techniques are especially necessary for providing
guarantees

64

Coda to concluding thoughts

* | believe that we will need both
— Type 1 Artificial Intelligence (Machine Learning) and
— Type 2 Atrtificial Intelligence (Automated Logic Reasoning)
for achieving software dependability

65

