
CS 267: Automated Verification

Lectures 17: Software Verification and
Logic & Application to Access Control
Verification

Instructor: Tevfik Bultan
1

Software engineering is 57 years old!

Purpose: to look for a
solution to software crisis

–50 top computer scientists,
programmers and industry
leaders got together to look
for a solution to the difficulties
in building large software
systems

–Considered to be the birth of
“software engineering” as a
research area

• In 1968 a seminal NATO
Conference was held in Germany

2

Margaret Hamilton
Lead Software
Developer for
NASA moon
mission

Software’s chronic crisis
• A quarter century later (1994) an article in Scientific American:

3

Software’s chronic crisis
• Another quarter century later:

• This is a photo of the navigation system of my car

– It crashes and reboots while I am driving!

4

Disastrous consequences: Security

● Facebook
data leak

● Microsoft software
misconfiguration

● SolarWinds hack

5

October 4, 2021

August 24, 2021

December 19, 2020

“Software is eating the world!” Marc Andreessen
• Commerce, entertainment, social interaction

• We will rely on software more in the future

• Apps + cloud is a formula for technological disruption

6

Software is eating the world!

• So, software engineering,

a systematic, disciplined, quantifiable approach to the production
and maintenance of software,

is very important!

This is my main research area so I am a little biased
7

Disastrous consequences: Safety

● Boeing 737 MAX accidents
189 people lost their lives

May 29, 2019, CBS News:
“Boeing admits it was a mistake in the software for a warning light,
called an angle-of-attack disagree alert, that could have notified pilots
and maintenance that there was a problem.”

Boeing CEO Dennis Muilenburg:
“The implementation of that software, we did not do it correctly.”

8

Dependability Problem & Formal Methods

Software’ Chronic Crisis:
Software systems frequently fail dependability and security
requirements

Formal Methods:
Mathematical approaches that support rigorous specification,
design, development and verification of software systems

Use formal methods techniques to improve software
dependability and security

9

A Formal Methods Approach: Symbolic Analysis

Symbolic Analysis has two main ingredients

1. Automation
Automate bug & vulnerability detection

1. Logic solvers
Use automated tools that check satisfiability of logic formulas
to automate bug & vulnerability detection

10

Software⎯Logic connection

• Turing machine model, the most widely used theoretical model for
computation, was motivated by a logic problem:

– Is there an algorithm that takes as input a statement of a first-
order logic and determines if it is provable using axioms and
rules of inference?

Computation

Logic

11

Software⎯Logic connection

Proceedings of Symposium on Applied Mathematics, Vol. 19, 1967, pp. 19–32

Computation

Logic

12

Automating software-logic connection
• Symbolic execution

• Model checking

POPL '83 Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages
Pages 117-126

Automatically extracting
logical meanings of programs

Automatically analyzing
logical properties of programs

13

Automated logic reasoning is difficult in general
• Automated logic reasoning is difficult!

• and, for some cases impossible!

STOC '71 Proceedings of the third annual ACM symposium on Theory of
computing Complexity of Computer Computations,1972

14

Automated logic reasoning with heuristics
• Give up efficiency for all cases, use heuristics

Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001

Communications of the ACM, July 1962

15

Combining logic solvers
• Satisfiability-Modula-Theories (SMT) solvers

16

So, now, we have a hammer!

Automated Logic Solvers

17

Unfortunately, life is complicated!

Automated logic
solver

Software
dependability
problem 18

Symbolic Analysis with Logic Reduction

Software
dependability
problem

Logic
Reduction

Logic
problem

Automated
logic solver

19

A Severe Security Problem: Access Control

20

●Everything is on the cloud now!
●Cloud service providers let users

secure systems + data with
access control policies

●Policies specify
○ Who?
○ Which actions?
○ On which resources?
○ Under which conditions?

21

Access Control

Access Control Data Breaches

User must manually write policies

● Easy to write incorrect/overly permissive policies

● Leads to unintended access to secure data

22

23

Securing the Cloud

Unintended
Data Access

Insecure Cloud Data Breach

How to reduce unintended data access?

Access Control Policies
• Modern software services run on compute clouds

– Sensitive user information is stored in the cloud
• In order to protect data privacy, it is crucial to provide mechanisms

that protect user data
• Access control languages allow developers to write access control

policies
– Access control policies specify rules for authorized access

while denying unauthorized access to data
• Bugs in access control policies can have disastrous consequences

24

Access control correctness
• About 10 years ago in VLab we developed a technique for

checking correctness of access control policies

• Question 1: How should we specify correctness of a policy?
• Idea 1: Differential analysis

– To check a complicated access control policy, compare it to a
simple policy

– For example you may want to check that the complex policy is
at least as restrictive as some default simple policy

25

Access control checking
• Question 2: Given two policies P1 and P2:

– How can we check if P1 is at least as strong as P2

• Idea 2: Convert differential policy check to checking satisfiability of
a Boolean logic formula

26

Logic encoding
• How can we check if P1 is at least as strong as P2?

– AccessP1: Automatically extracted formula that characterizes all
cases where P1 gives access to data

– AccessP2: Automatically extracted formula that characterizes all
cases where P2 gives access to data

Construct another formula: DifferenceP1 – P2 = AccessP1 ∧ ¬ AccessP2

Is DifferenceP1 – P2 satisfiable?
• If NO: P1 is at least as strong as P2
• If YES: there is a case were P1 gives access to data

while P2 does not 27

Analyzing Access Control Policies

Goal: automatically reason about semantics of access control policies

● Key idea: translate policies and properties to logic formula

● Generated formula is satisfiable if and only if property is violated

"Statement": [{
"Effect":
"Allow",

"Principal":
"*",

"Action":
"s3:GetObject",

"Resource":
"bucket-name/*"

}]

Translator
SAT/SMT
Solver

28

Permissiveness Analysis

Need to figure out if a policy is more permissive than another

● Did a policy modification change permissiveness?

● Is a complex policy specification more permissive than a simply
policy specifying basic common sense rules?

Necessitates the need for comparing permissiveness of policies

29

How to Compare Permissiveness

For policies P1 and P2:

● Two satisfiability checks: P1 ∧ ¬P2 and P2 ∧ ¬P1

30

P1 ∧ ¬P2 UNSAT

P2 ∧ ¬P1 UNSAT

BOTH UNSAT

BOTH SAT

"Statement": [{
"Effect":
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”

]}]

Binary results are not enough

Cannot determine how much more permissive policies are
Necessitates need for quantitative analysis techniques

"Statement": [{
"Effect":
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”

]}]

Policy 1

31

"Statement": [{
"Effect":
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”,
"firewall/*.txt”

]}]

Policy 2 Policy 3

Quacky

SAT/SMT
Solver

Model
Counter

Quacky translates policies into SMT encoding
● Permissiveness is quantified using a model counting constraint

solver

● Can quantify relative permissiveness between policies 32

QUACKY: QUantitative ACcess Kontrol policy analYzer
[ICSE 22, ASE 22]

"Statement": [{
"Effect":
"Allow",

"Principal":
"*",

"Action":
"s3:GetObject",

"Resource":
"bucket-name/*"

}]

Symbolic Access Control Policy Analysis

Differential
Access
Control Policy
Analysis

Logic
Reduction

Boolean
Logic
Formula

SAT Solver

33

Access control checking in real world
• We implemented our access control policy checker for an access

control language called XACML using a Boolean SAT solver, and
published a paper

• My student looked for real-world access control policies to extend
his research, but was not able to find any

– Companies were not willing to share their policies with us due
to IP concerns

• Eventually my student gave up and changed his dissertation topic
• 10 years later, our access control verification approach was

adopted by Amazon at large scale!

34

Zelkova: Access control at Amazon

35

Other applications of Symbolic Analysis at VLab

String
constraint
solver

Input
validation

SAT or
SMT solvers

Access
control

Data
models

SAT or SMT
solvers

36

A New Hammer

Model Counting Constraint
Solver

37

Automate Based model Counter
(ABC): Model counting constraint solver

38

Automata-based
model counting

constraint solver
(ABC)

INPUT

formula:

!

Quantitative Symbolic Analysis

39

Quantitative
Access
Control
Analysis

Model
counting
constraint
solver

Quantitative
Information
Flow
Analysis

Logic
Reduction

Model
counting
constraint
solver

Quacky

SAT/SMT
Solver

Model
Counter

Quacky translates policies into SMT encoding
● Permissiveness is quantified using a model counting constraint

solver

● Can quantify relative permissiveness between policies 40

QUACKY: QUantitative ACcess Kontrol policy analYzer
[ICSE 22, ASE 22]

"Statement": [{
"Effect":
"Allow",

"Principal":
"*",

"Action":
"s3:GetObject",

"Resource":
"bucket-name/*"

}]

Quantitative Policy Analysis

Goal: Perform quantitative analysis of policies

● Need to count the number of requests (permissions) allowed

For policy P let m be a request allowed by P. Then:

Allow(P) = set of requests allowed by P

|Allow(P)| = number of requests allowed by P

41

How to Compare Permissiveness

Recall two satisfiability checks: P1 ∧ ¬P2 and P2 ∧ ¬P1

#requests allowed by P1 NOT
allowed by P2

#requests allowed by P2 NOT
allowed by P1

42

| P1 ∧ ¬P2 |

| P2 ∧ ¬P1 |

"Statement": [{
"Effect":
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”

]}]

"Statement": [{
"Effect":
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”

]}]

Policy 1

43

"Statement": [{
"Effect":
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”,
"firewall/*.txt”

]}]

Policy 2 Policy 3

Binary results are not enough. Revisited

For bound = 15:
▪ Policy 2 allows 1 more request than Policy 1
▪ Policy 3 allows 65792 more requests than Policy 1

Quacky Architecture (Online)

44

Frontend: Generating a Policy Model

● Policy to policy model instance
○ Each language has its own

visitor
○ Policy model instance is a

tree
● Supports AWS, Azure, GCP

policies{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "bucket-name/*"}]}

Access Control Policy Policy Model 45

Backend: From policy model to formula

● Policy model to SMT
formula(s)
○ Type constraints
○ Action encoding

46

Quacky 47

These are called only once, before Quacky is run

4
7

Quacky Architecture (Offline)

Experimental Evaluation

48

● 43 real-world AWS policies from forums

○ Focus on popular services

○ Find simple and complex policies

● 546 synthetic AWS policies via mutations
○ Expand the dataset

○ Mimic real-world scenarios

49

EC2 Mutants IAM Mutants S3 Mutants

Relative Permissiveness

No timeout after 10 minutes

Experiments - Benchmarking

Effectiveness of
constraint transformation Impact of type constraints

50

Repairing overly permissive policies

We can determine if a policy is overly permissive

Can we repair it so that it is NOT overly permissive?

51

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "bucket-

name/*"}]}

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "bucket-

name/*"}]}

Repairing overly permissive policies [ISSTA 23]

Given

1. Policy

2. Permissiveness bound

3. Set of must-allow requests

52

Repair the policy so that it

1. Meets permissiveness bound

2. Allows must-allow requests

(s3:GetObject, log/u44012)
(s3:GetObject, log/u00000)
(s3:GetObject, log/u12345)
(s3:GetObject, log/u91232)

"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject”
"Resource": "*”

}]

"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject”
"Resource": "log/u?????”

}]

Repairing a Policy

Goal Validation

● Meet permissiveness bound?

● Allows Must-Allow Requests?

Permissiveness Localization

● Where in the policy are the most
permissive elements?

Permissiveness Refinement

● Refine most permissive element 53

Goal
Validation

Permissiveness
Localization

Permissiveness
Refinement

Goals met

Goals NOT
met

Output
Policy

Refined
Policy

Initial Policy, Permissiveness Bound, Must-Allow Request
Set

SMT
Solver (Z3)

SMT Model
Counter (ABC)

Evaluation

54

Implemented policy repair algorithm into QUACKY tool

Evaluated policy repair algorithm on benchmark of 43 policies

● Varying permissiveness bounds

Can we repair overly permissive policies?

When is request enumeration required?

Effectiveness of Repair

55

Policies
Repaired

Where is the time spent?

Both time and #calls increase as bound
decreases 56

What is the secret sauce?

Automated bug and vulnerability detection is hard

● It is hard because software systems are too complex

● In order to make automated bug and vulnerability detection feasible

○ we need to focus our attention

What is the secret sauce?

● We focus our attention by

○ Abstraction

■ Hide details that do not involve the things we are checking

○ Modularity

■ We focus on one part of the system at a time

○ Separation of concerns

■ We focus on one property at a time

● It turns out these are also the main principles of software design

Separation of concerns

● First, we need to identify our concerns

○ What should we be concerned with if we want to eliminate the
bugs and vulnerabilities in applications

● For example, one concern:

○ Access control

■ Many applications unintentionally disclose users’ data

What is the secret sauce?

Three step process
1.Using modularity, separation of concerns and abstraction
principles, generate a model of the software for analysis

○ For example: Extract the access control policy from the software
system

2.Translate analysis questions about the extracted model to a logic
query

○ For example: Convert the question about relative strengths of
two access control policies to satisfiability of a logic formula

3.Use a logic solver to answer the query

Concluding thoughts

● Software dependability is a crucial problem for future of the human
civilization!

● Using automated techniques that rely on automated logic solvers
we can find and remove security vulnerabilities in software systems
before they are deployed

● In order to develop feasible and scalable techniques we need to
exploit the structure of the software and the principles of
modularity, abstraction and separation of concerns

Coda: Elephant in the Room

Machine
Learning

62

Type of Human Intelligence

• According to Nobel laureate Daniel Kahneman human intelligence
has two separate components:

– System 1: fast, instinctive and emotional

You use System 1

when you answer the question 2+2=?

– System 2: slower, more deliberative and more logical

You use System 2

when you answer the question 17*24=?

63

Types of Artificial Intelligence
• Artificial intelligence has also two types

– Type 1: Techniques based on machine learning
– Type 2: Techniques that are based on automated logic

reasoning

• I believe that the future of computing will heavily depend on both
types of artificial intelligence

• Type 2 techniques are especially necessary for providing
guarantees

64

Coda to concluding thoughts

• I believe that we will need both
– Type 1 Artificial Intelligence (Machine Learning) and
– Type 2 Artificial Intelligence (Automated Logic Reasoning)
for achieving software dependability

65

