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Instructor: Tevfik Bultan
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Software engineering is 57 years old!

Purpose: to look for a 
solution to software crisis

–50 top computer scientists, 
programmers and industry 
leaders got together to look 
for a solution to the difficulties 
in building large software 
systems 

–Considered to be the birth of 
“software engineering” as a 
research area

• In 1968 a seminal NATO 
Conference was held in Germany
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Software’s chronic crisis
• A quarter century later (1994) an article in Scientific American:
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Software’s chronic crisis
• Another quarter century later:

• This is a photo of the navigation system of my car

– It crashes and reboots while I am driving!
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Disastrous consequences: Security

● Facebook 
data leak

● Microsoft software 
misconfiguration

● SolarWinds hack
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“Software is eating the world!” Marc Andreessen
• Commerce, entertainment, social interaction

• We will rely on software more in the future

• Apps + cloud is a formula for technological disruption
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Software is eating the world!

• So, software engineering, 

a systematic, disciplined, quantifiable approach to the production 
and maintenance of software,

is very important!

This is my main research area so I am a little biased
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Disastrous consequences: Safety

● Boeing 737 MAX accidents
189 people lost their lives

May 29, 2019, CBS News:
“Boeing admits it was a mistake in the software for a warning light, 
called an angle-of-attack disagree alert, that could have notified pilots 
and maintenance that there was a problem.”

Boeing CEO Dennis Muilenburg: 
“The implementation of that software, we did not do it correctly.”
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Dependability Problem & Formal Methods

Software’ Chronic Crisis:
Software systems frequently fail dependability and security 
requirements

Formal Methods:
Mathematical approaches that support rigorous specification, 
design, development and verification of software systems

Use formal methods techniques to improve software 
dependability and security
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A Formal Methods Approach: Symbolic Analysis

Symbolic Analysis has two main ingredients

1. Automation
Automate bug & vulnerability detection

1. Logic solvers
Use automated tools that check satisfiability of logic formulas 
to automate bug & vulnerability detection
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Software⎯Logic connection

• Turing machine model, the most widely used theoretical model for 
computation, was motivated by a logic problem:

– Is there an algorithm that takes as input a statement of a first-
order logic and determines if it is provable using axioms and 
rules of inference?

Computation

Logic
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Software⎯Logic connection

Proceedings of Symposium on Applied Mathematics, Vol. 19, 1967, pp. 19–32

Computation

Logic
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Automating software-logic connection
• Symbolic execution

• Model checking

POPL '83 Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on 
Principles of programming languages
Pages 117-126

Automatically extracting 
logical meanings of programs

Automatically analyzing
logical properties of programs
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Automated logic reasoning is difficult in general
• Automated logic reasoning is difficult!

• and, for some cases impossible!

STOC '71 Proceedings of the third annual ACM symposium on Theory of 
computing Complexity of Computer Computations,1972
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Automated logic reasoning with heuristics 
• Give up efficiency for all cases, use heuristics

Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001

Communications of the ACM, July 1962
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Combining logic solvers
• Satisfiability-Modula-Theories (SMT) solvers
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So, now, we have a hammer!

Automated Logic Solvers
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Unfortunately, life is complicated!

Automated logic 
solver

Software
dependability
problem 18



Symbolic Analysis with Logic Reduction

Software
dependability
problem

Logic
Reduction

Logic
problem

Automated 
logic solver
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A Severe Security Problem: Access Control
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●Everything is on the cloud now!
●Cloud service providers let users 

secure systems + data with 
access control policies

●Policies specify
○ Who?
○ Which actions?
○ On which resources?
○ Under which conditions?
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Access Control



Access Control Data Breaches

User must manually write policies

● Easy to write incorrect/overly permissive policies

● Leads to unintended access to secure data
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Securing the Cloud

Unintended 
Data Access

Insecure Cloud Data Breach

How to reduce unintended data access?



Access Control Policies
• Modern software services run on compute clouds

– Sensitive user information is stored in the cloud
• In order to protect data privacy, it is crucial to provide mechanisms 

that protect user data
• Access control languages allow developers to write access control 

policies
– Access control policies specify rules for authorized access 

while denying unauthorized access to data
• Bugs in access control policies can have disastrous consequences
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Access control correctness
• About 10 years ago in VLab we developed a technique for 

checking correctness of access control policies

• Question 1: How should we specify correctness of a policy?
• Idea 1: Differential analysis

– To check a complicated access control policy, compare it to a 
simple policy

– For example you may want to check that the complex policy is 
at least as restrictive as some default simple policy
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Access control checking
• Question 2: Given two policies P1 and P2:

– How can we check if P1 is at least as strong as P2

• Idea 2: Convert differential policy check to checking satisfiability of 
a Boolean logic formula
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Logic encoding
• How can we check if P1 is at least as strong as P2?

– AccessP1: Automatically extracted formula that characterizes all 
cases where P1 gives access to data

– AccessP2: Automatically extracted formula that characterizes all 
cases where P2 gives access to data

Construct another formula:   DifferenceP1 – P2 = AccessP1 ∧ ¬ AccessP2

Is DifferenceP1 – P2 satisfiable?
• If NO: P1 is at least as strong as P2
• If YES: there is a case were P1 gives access to data 

while P2 does not 27



Analyzing Access Control Policies

Goal: automatically reason about semantics of access control policies

● Key idea: translate policies and properties to logic formula

● Generated formula is satisfiable  if and only if property is violated

"Statement": [{
"Effect": 
"Allow",

"Principal": 
"*",

"Action": 
"s3:GetObject",

"Resource": 
"bucket-name/*"

}]

Translator
SAT/SMT
Solver
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Permissiveness Analysis

Need to figure out if a policy is more permissive than another

● Did a policy modification change permissiveness?

● Is a complex policy specification more permissive than a simply 
policy specifying basic common sense rules?

Necessitates the need for comparing permissiveness of policies
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How to Compare Permissiveness

For policies P1 and P2:

● Two satisfiability checks: P1 ∧ ¬P2 and P2 ∧ ¬P1
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P1 ∧ ¬P2 UNSAT

P2 ∧ ¬P1 UNSAT

BOTH UNSAT

BOTH SAT



"Statement": [{
"Effect": 
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”

]}]

Binary results are not enough

Cannot determine how much more permissive policies are
Necessitates need for quantitative analysis techniques

"Statement": [{
"Effect": 
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”

]}]

Policy 1
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"Statement": [{
"Effect": 
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”,
"firewall/*.txt”

]}]

Policy 2 Policy 3



Quacky

SAT/SMT
Solver

Model 
Counter

Quacky translates policies into SMT encoding
● Permissiveness is quantified using a model counting constraint 

solver

● Can quantify relative permissiveness between policies 32

QUACKY: QUantitative ACcess Kontrol policy analYzer
[ICSE 22, ASE 22]

"Statement": [{
"Effect": 
"Allow",

"Principal": 
"*",

"Action": 
"s3:GetObject",

"Resource": 
"bucket-name/*"

}]



Symbolic Access Control Policy Analysis

Differential 
Access 
Control Policy
Analysis 

Logic 
Reduction

Boolean 
Logic 
Formula

SAT Solver
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Access control checking in real world
• We implemented our access control policy checker for an access 

control language called XACML using a Boolean SAT solver, and 
published a paper

• My student looked for real-world access control policies to extend 
his research, but was not able to find any

– Companies were not willing to share their policies with us due 
to IP concerns

• Eventually my student gave up and changed his dissertation topic
• 10 years later, our access control verification approach was 

adopted by Amazon at large scale!
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Zelkova: Access control at Amazon 
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Other applications of Symbolic Analysis at VLab

String 
constraint
solver

Input
validation

SAT or
SMT solvers

Access
control

Data
models

SAT or SMT
solvers
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A New Hammer

Model Counting Constraint 
Solver
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Automate Based model Counter 
(ABC): Model counting constraint solver
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Automata-based 
model counting 

constraint solver
(ABC)

INPUT

formula:

!



Quantitative Symbolic Analysis
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Quantitative
Access
Control
Analysis

Model 
counting 
constraint
solver

Quantitative
Information
Flow
Analysis

Logic
Reduction

Model 
counting 
constraint
solver



Quacky

SAT/SMT
Solver

Model 
Counter

Quacky translates policies into SMT encoding
● Permissiveness is quantified using a model counting constraint 

solver

● Can quantify relative permissiveness between policies 40

QUACKY: QUantitative ACcess Kontrol policy analYzer
[ICSE 22, ASE 22]

"Statement": [{
"Effect": 
"Allow",

"Principal": 
"*",

"Action": 
"s3:GetObject",

"Resource": 
"bucket-name/*"

}]



Quantitative Policy Analysis

Goal: Perform quantitative analysis of policies

● Need to count the number of requests (permissions) allowed

For policy P let m be a request allowed by P. Then:

Allow(P) = set of requests allowed by P

|Allow(P)| = number of requests allowed by P
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How to Compare Permissiveness

Recall two satisfiability checks:  P1 ∧ ¬P2 and P2 ∧ ¬P1

#requests allowed by P1 NOT 
allowed by P2

#requests allowed by P2 NOT 
allowed by P1
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| P1 ∧ ¬P2 |

| P2 ∧ ¬P1 |



"Statement": [{
"Effect": 
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”

]}]

"Statement": [{
"Effect": 
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”

]}]

Policy 1
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"Statement": [{
"Effect": 
"Allow",

"Principal":
"Bob”,

"Action":
"s3:GetObject”,

"Resource": [
"firewall/log1.txt”,
"firewall/log2.txt”,
"firewall/*.txt”

]}]

Policy 2 Policy 3

Binary results are not enough. Revisited

For bound = 15:
▪ Policy 2 allows 1 more request than Policy 1
▪ Policy 3 allows 65792 more requests than Policy 1



Quacky Architecture (Online) 
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Frontend: Generating a Policy Model

● Policy to policy model instance
○ Each language has its own 

visitor
○ Policy model instance is a 

tree
● Supports AWS, Azure, GCP 

policies{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "bucket-name/*"}]}

Access Control Policy Policy Model 45



Backend: From policy model to formula

● Policy model to SMT 
formula(s)
○ Type constraints
○ Action encoding
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Quacky 47

These are called only once, before Quacky is run

4
7

Quacky Architecture (Offline)



Experimental Evaluation
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● 43 real-world AWS policies from forums

○ Focus on popular services

○ Find simple and complex policies

● 546 synthetic AWS policies via mutations
○ Expand the dataset

○ Mimic real-world scenarios
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EC2 Mutants IAM Mutants S3 Mutants

Relative Permissiveness

No timeout after 10 minutes



Experiments - Benchmarking

Effectiveness of 
constraint transformation Impact of type constraints
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Repairing overly permissive policies

We can determine if a policy is overly permissive

Can we repair it so that it is NOT overly permissive?
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{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "bucket-

name/*"}]}

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "bucket-

name/*"}]}



Repairing overly permissive policies [ISSTA 23]

Given 

1. Policy

2. Permissiveness bound

3. Set of must-allow requests
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Repair the policy so that it

1. Meets permissiveness bound

2. Allows must-allow requests

(s3:GetObject, log/u44012)
(s3:GetObject, log/u00000)
(s3:GetObject, log/u12345)
(s3:GetObject, log/u91232)

"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject”
"Resource": "*”

}]

"Statement": [{
"Effect": "Allow",
"Action": "s3:GetObject”
"Resource": "log/u?????”

}]



Repairing a Policy

Goal Validation

● Meet permissiveness bound?

● Allows Must-Allow Requests?

Permissiveness Localization

● Where in the policy are the most 
permissive elements?

Permissiveness Refinement

● Refine most permissive element 53

Goal 
Validation

Permissiveness 
Localization

Permissiveness 
Refinement

Goals met

Goals NOT 
met

Output 
Policy

Refined 
Policy

Initial Policy, Permissiveness Bound, Must-Allow Request 
Set

SMT 
Solver (Z3)

SMT Model 
Counter (ABC)



Evaluation
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Implemented policy repair algorithm into QUACKY tool

Evaluated policy repair algorithm on benchmark of 43 policies

● Varying permissiveness bounds 

Can we repair overly permissive policies?

When is request enumeration required?



Effectiveness of Repair
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# Policies 
Repaired



Where is the time spent?

Both time and #calls increase as bound 
decreases 56



What is the secret sauce?

Automated bug and vulnerability detection is hard

● It is hard because software systems are too complex

● In order to make automated bug and vulnerability detection feasible

○ we need to focus our attention



What is the secret sauce?

● We focus our attention by

○ Abstraction

■ Hide details that do not involve the things we are checking

○ Modularity

■ We focus on one part of the system at a time

○ Separation of concerns

■ We focus on one property at a time

● It turns out these are also the main principles of software design



Separation of concerns 

● First, we need to identify our concerns

○ What should we be concerned with if we want to eliminate the 
bugs and vulnerabilities in applications

● For example, one concern:

○ Access control

■ Many applications unintentionally disclose users’ data



What is the secret sauce?

Three step process
1.Using modularity, separation of concerns and abstraction
principles, generate a model of the software for analysis

○ For example: Extract the access control policy from the software 
system

2.Translate analysis questions about the extracted model to a logic 
query

○ For example: Convert the question about relative strengths of 
two access control policies to satisfiability of a logic formula

3.Use a logic solver to answer the query



Concluding thoughts

● Software dependability is a crucial problem for future of the human 
civilization! 

● Using automated techniques that rely on automated logic solvers 
we can find and remove security vulnerabilities in software systems 
before they are deployed

● In order to develop feasible and scalable techniques we need to 
exploit the structure of the software and the principles of 
modularity, abstraction and separation of concerns



Coda: Elephant in the Room

Machine
Learning
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Type of Human Intelligence

• According to Nobel laureate Daniel Kahneman human intelligence 
has two separate components:

– System 1: fast, instinctive and emotional

You use System 1 

when you answer the question 2+2=?

– System 2: slower, more deliberative and more logical

You use System 2

when you answer the question 17*24=?
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Types of Artificial Intelligence
• Artificial intelligence has also two types

– Type 1: Techniques based on machine learning
– Type 2: Techniques that are based on automated logic 

reasoning

• I believe that the future of computing will heavily depend on both
types of artificial intelligence

• Type 2 techniques are especially necessary for providing 
guarantees 
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Coda to concluding thoughts

• I believe that we will need both 
– Type 1 Artificial Intelligence (Machine Learning) and
– Type 2 Artificial Intelligence (Automated Logic Reasoning) 
for achieving software dependability
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