
CS 267: Automated Verification

Lecture 3: Fixpoints and Temporal Properties

Instructor: Tevfik Bultan



What is a Fixpoint (aka, Fixed Point)

Given a function
F : D® D

x Î D is a fixpoint of F if and only if F (x) = x



Temporal Properties º Fixpoints 
[Emerson and Clarke 80]

Here are some interesting CTL equivalences:

AG p = p Ù AX AG p
EG p = p Ù EX EG p

AF p = p Ú AX AF p
EF p = p Ú EX EF p

p AU q = q Ú (p Ù AX (p AU q))
p EU q = q Ú (p Ù EX (p EU q))

Note that we wrote the CTL temporal operators in terms of 
themselves and EX and AX operators



Functionals

• Given a transition system T=(S, I, R), we will define 
functions from sets of states to sets of states 
– F : 2S ® 2S

• For example, one such function is the EX operator (which 
computes the precondition of a set of states)
– EX : 2S ® 2S

which can be defined as:
EX(p) = { s | (s,s’) Î R and s’ Î p }

Abuse of notation: I am using p to denote the set of states 
which satisfy the property p (i.e., the truth set of p) 



Functionals

• Now, we can think of all temporal operators also as 

functions from sets of states to sets of states.

• For example:

AX p = ¬EX(¬p)

or if we use the set notation

AX p = (S - EX(S - p)) 

Abuse of notation: I will use the set 

and logic notations interchangeably. 

Logic Set
p Ù q       p Ç q

p Ú q p È q 

¬p S – p

False Æ
True S



Lattices

The set of states of the transition system forms a lattice:
• lattice 2S

• partial order Í
• bottom element Æ (alternative notation: ^) 
• top element S  (alternative notation: T)
• Least upper bound (lub) È

(aka join) operator
• Greatest lower bound (glb) Ç

(aka meet) operator



Lattices

In general, a lattice is a partially ordered set with a least upper 
bound operation and a greatest lower bound operation.

• Least upper bound a È b is the smallest element where     
a Í a È b and b Í a È b  

• Greatest lower bound a Ç b is the biggest element where 
a Ç b Í a and a Ç b Í b 

A partial order is a 
• reflexive (for all x, x Í x),
• transitive (for all x, y, z, x Í y Ù y Í z Þ x Í z), and 
• antisymmetric (for all x, y, x Í y Ù y Í x Þ x = y)
relation.



Complete Lattices

2S forms a lattice with the partial order defined as the subset-
or-equal relation and the least upper bound operation 
defined as the set union and the greatest lower bound 
operation defined as the set intersection.

In fact, (2S, Í, Æ, S, È, Ç) is a complete lattice since for each 
set of elements from this lattice there is a least upper bound 
and a greatest lower bound.

Also, note that the top and bottom elements can be defined 
as:

^ = Æ = Ç { y | y Î 2S }  
T  = S = È { y | y Î 2S }
This definition is valid for any complete lattice.



An Example Lattice

{Æ, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}}
partial order: Í (subset relation)
bottom element: Æ = ^ top element: {0,1,2} = T
lub: È (union) glb: Ç (intersection) 

{0,1,2}  =  T  (top element)

Æ =  ^ (bottom element)

{0} 

{0,1} {1,2} {0,2} 

{2} {1} 

The Hasse diagram for the example 
lattice (shows the transitive reduction of 
the corresponding partial order relation)



Temporal Properties º Fixpoints

Based on the equivalence

EF p = p Ú EX EF p

we observe that EF p is a fixpoint of the following function:

F y = p Ú EX y        (we can also write it as λ y . p Ú EX y )  

F (EF p) = EF p      

In fact, EF p is the least fixpoint of F, which is written as:

EF p = µ y . F y  = µ y . p Ú EX y   (µ means least fixpoint)



EF p = µ y . p Ú EX y   

• To prove 

EF p = µ y . p Ú EX y 

we need to show

• µ y . p Ú EX y Í EF p

and

• EF p Í µ y . p Ú EX y 



EF p = µ y . p Ú EX y   

– First we have the equivalence EF p = p Ú EX EF p

• Why? Because according to the semantics of EF, EF p 
holds in a state either if p holds in that state, or if that 
state has a next state in which EF p holds.

• From this equivalence we know that EF p is a fixpoint of 
the function λ y . p Ú EX y and since the least fixpoint is 
the smallest fixpoint we have: 
µ y . p Ú EX y Í EF p



EF p = µ y . p Ú EX y   

• Next we need to prove that EF p Í µ y . p Ú EX y to 
complete the proof.
• Suppose z is a fixpoint of λ y . p Ú EX y, then we know that
z = p Ú EX z which means that EX z Í z and this means that 
no path starting from a state that is outside of z can reach a 
state in z.
Since we also have p Í z, any path that can reach p must 
start with a state in z.
Hence, we can conclude that EF p Í z.
Since we showed that EF p is contained in any fixpoint of the 
function λ y . p Ú EX y, we get
EF p Í µ y . p Ú EX y 
which completes the proof.



Temporal Properties º Fixpoints

Based on the equivalence 

EG p = p Ù EX EG p

we observe that EG p is a fixpoint of the following function:

F y = p Ù EX y       (we can also write it as λ y . p Ù EX y ) 

F (EG p) = EG p

In fact, EG p is the greatest fixpoint of F, which is written as:

EG p = n y . F y = n y . p Ù EX y (n means greatest fixpoint)



EG p = n y . p Ù EX y

• Let’s prove this too.

• First we have the equivalence EG p = p Ù EX EG p
• Why? Because according to the semantics of EG, EG p 

holds in a state if and only if p holds in that state and if 
that state has a next state in which EG p holds.

• From this equivalence we know that EG p is a fixpoint of 
the function λ y . p Ù EX y and since the greatest fixpoint 
is the biggest fixpoint we have: 
EG p Í n y . p Ù EX y



EG p = n y . p Ù EX y

• Next we need to prove that n y . p Ù EX y Í EG p to 
complete the proof.
• Suppose z is a fixpoint of λ y . p Ù EX y, then we know that
z = p Ù EX z which means that z Í p and z Í EX z. Hence, p 
holds in every state in z and every state in z has a next state 
that is also in z. Therefore from any state that is in z, we can 
build a path that starts at that state and on all states on that 
path p holds. This means that every state in z satisfy EG p, 
i.e., z Í EG p.
Since we showed that any fixpoint of λ y . p Ù EX y is 
contained in EG p, we get
n y . p Ù EX y Í EG p  
which completes the proof.



Fixpoint Characterizations

Fixpoint Characterization Equivalences

AG p = n y . p Ù AX y AG p = p Ù AX AG p
EG p = n y . p Ù EX y EG p = p Ù EX EG p

AF p = µ y . p Ú AX y AF p = p Ú AX AF p
EF p = µ y . p Ú EX y EF p = p Ú EX EF p

p AU q = µ y . q Ú (p Ù AX (y))     p AU q=q Ú (p Ù AX (p AU q))
p EU q = µ y . q Ú (p Ù EX (y))     p EU q = q Ú (p Ù EX (p EU q))

All of these fixpoint characterizations can be proved based on 
the semantics of the temporal operators (like we did for EF p 
and EG p).



Monotonicity

• Function F is monotonic if and only if, for any x and y,
x Í y Þ F x Í F y

Note that, all the functions we used for representing temporal 
operators are monotonic:

λ  y . p Ù AX y
λ  y . p Ù EX y
λ  y . p Ú AX y
λ  y . p Ú EX y
λ  y . q Ú (p Ù AX (y))
λ  y . q Ú (p Ù EX (y)) 
For all these functions, if you give a bigger y as input you will 

get a bigger result as output



Monotonicity

• One can define non-monotonic functions:
For example: λ  y . p Ù EX ¬ y
This function is not monotonic. If you give a bigger y as input 

you will get a smaller result.

• For the functions that are non-monotonic the fixpoint 
computation techniques we are going to discuss will not 
work. For such functions a fixpoint may not even exist.

• The functions we defined for temporal operators are all 
monotonic because there is no negation in front of the input 
variable y. In general, if you have an even number of 
negations in front of the input variable y, then you will get a 
monotonic function.



Least Fixpoint

Given a monotonic function F, its least fixpoint exists, and it is 
the greatest lower bound (glb) of all the reductive elements:

µ y . F y = Ç { y | F y Í y } 



µ y . F y = Ç { y | F y Í y } 

• Let’s prove this property.
• Let us define z as z = Ç { y | F y Í y }
We will first show that z is a fixpoint of F and then we will 

show that it is the least fixpoint which will complete the 
proof.

• Based on the definition of z, we know that:
for any y, F y Í y, we have z Í y.

Since F is monotonic, z Í y Þ F z Í F y.
But since F y Í y, then F z Í y.
I.e., for all y, F y Í y, we have F z Í y.
This implies that, F z Í Ç { y | F y Í y },
and based on the definition of z, we get F z Í z      



µ y . F y = Ç { y | F y Í y } 

• Since F is monotonic and since F z Í z, we have 
F (F z) Í F z which means that F z Î { y | F y Í y }.
Then by definition of z we get, z Í F z

• Since we showed that F z Í z  and z Í F z, we conclude 
that F z = z, i.e., z is a fixpoint of the function F.

• For any fixpoint of F we have F y = y which implies F y Í y
So any fixpoint of F is a member of the set { y | F y Í y } and 
z is smaller than any member of the set { y | F y Í y } since it 
is the greatest lower bound of all the elements in that set. 
Hence, z is the least fixpoint of F.



Computing the Least Fixpoint

The least fixpoint µ y . F y is the limit of the following 
sequence (assuming F is È-continuous):

Æ, F Æ, F2 Æ, F3 Æ, ...

F is È-continuous if and only if
p1 Í p2 Í p3 Í …   implies that F (Èi pi) = Èi F (pi)  

If S is finite, then we can compute the least fixpoint using the 
sequence Æ, F Æ, F2 Æ, F3 Æ, ... This sequence is 
guaranteed to converge if S is finite and it will converge to 
the least fixpoint.



Computing the Least Fixpoint 

Given a monotonic and union continuous function F
µ y . F y = Èi F i (Æ) 

We can prove this as follows:
• First, we can show that for all i, F i (Æ) Í µ y . F y using 

induction
for i=0, we have F 0 (Æ) = Æ Í µ y . F y
Assuming  F i (Æ) Í µ y . F y 
and applying the function F to both sides and using 
monotonicity of F we get: F (F i (Æ)) Í F (µ y . F y) 
and since µ y . F y is a fixpoint of F we get:
F i+1 (Æ) Í µ y . F y 
which completes the induction.



Computing the Least Fixpoint 

• So, we showed that for all i, F i (Æ) Í µ y . F y 

• If we take the least upper bound of all the elements in the 
sequence F i (Æ) we get Èi F i (Æ) and using above result, 
we have:

Èi F i (Æ) Í µ y . F y

• Now, using union-continuity we can conclude that
F (Èi F i (Æ))  = Èi F (F i (Æ)) = Èi F i+1 (Æ) 
= Æ Èi F i+1 (Æ) = Èi F i (Æ) 

• So, we showed that Èi F i (Æ) is a fixpoint of F  and Èi F i

(Æ) Í µ y . F y, then we conclude that µ y . F y = Èi F i (Æ) 



Computing the Least Fixpoint 

• So, we showed that 

Èi F i (Æ) is a fixpoint of F  

and 

Èi F i (Æ) Í µ y . F y

then we conclude that 

µ y . F y = Èi F i (Æ) 



Computing the Least Fixpoint

If there exists a j, where F j (Æ) = F j+1 (Æ), then  
µ y . F y = F j (Æ) 

• We have proved earlier that for all i, F i (Æ) Í µ y . F y 

• If F j (Æ) = F j+1 (Æ), then F j (Æ) is a fixpoint of F and since 
we know that F j (Æ) Í µ y . F y then we conclude that

µ y . F y = F j (Æ) 



EF Fixpoint Computation

EF p = µ y . p Ú EX y is the limit of the sequence:

Æ, pÚEX Æ, pÚEX(pÚEX Æ) , pÚEX(pÚEX(pÚ EX Æ)) , ...

which is equivalent to

Æ, p, p Ú EX p , p Ú EX (p Ú EX (p) ) , ...



EF Fixpoint Computation

s2s1 s4s3
p

p

Start
Æ

1st iteration
pÚEX Æ = {s1,s4} È EX(Æ)= {s1,s4} È Æ ={s1,s4}

2nd iteration
pÚEX(pÚEX Æ) = {s1,s4} È EX({s1,s4})= {s1,s4} È{s3}={s1,s3,s4}

3rd iteration
pÚEX(pÚEX(pÚ EX Æ)) = {s1,s4} È EX({s1,s3,s4})= {s1,s4} È{s2,s3,s4}={s1,s2,s3,s4}

4th iteration
pÚEX(pÚEX(pÚEX(pÚ EX Æ))) = {s1,s4} È EX({s1,s2,s3,s4})= {s1,s4} È {s1,s2,s3,s4} 
= {s1,s2,s3,s4}



EF Fixpoint Computation

•  •  •p

EF(p) º states that can reach p  º p  È EX(p) È EX(EX(p)) È ...

EF(p)



Greatest Fixpoint

Given a monotonic function F, its greatest fixpoint exists and it 
is the least upper bound (lub) of all the extensive elements:

n y. F y = È { y | y Í F y }  

This can be proved using a proof similar to the one we used 
for the dual result on least fixpoints



Computing the Greatest Fixpoint

The greatest fixpoint n y . F y is the limit of the following 
sequence (assuming F is Ç-continuous):

S, F S, F2 S, F3 S, ...

F is Ç-continuous if and only if
For any sequence p1, p2, p3 …   if pi+1 Í pi for all i, then 

F (Çi pi) = Çi F (pi)  

If S is finite, then we can compute the greatest fixpoint using 
the sequence S, F S, F2 S, F3 S, …This sequence is 
guaranteed to converge if S is finite and it will converge to 
the greatest fixpoint.



Computing the Greatest Fixpoint 

Given a monotonic and intersection continuous function F
n y. F y = ÇI F i (S) 

If there exists a j, where F j (S) = F j+1 (S), then  
n y. F y  = F j (S) 

Again, these can be proved using proofs similar to the ones 
we used for the dual results for the least fixpoint.



EG Fixpoint Computation

Similarly, EG p = n y . p Ù EX y is the limit of the sequence:

S, pÙEX S, pÙEX(p Ù EX S) , pÙEX(p Ù EX (p Ù EX S)) , ...

which is equivalent to

S, p, p Ù EX p , p Ù EX (p Ù EX (p) ) , ...



EG Fixpoint Computation

s2s1 s4s3

p p

p

Start
S = {s1,s2,s3,s4}

1st iteration
pÙEX S = {s1,s3,s4}ÇEX({s1,s2,s3,s4})= {s1,s3,s4}Ç{s1,s2,s3,s4}={s1,s3,s4}

2nd iteration
pÙEX(pÙEX S) = {s1,s3,s4}ÇEX({s1,s3,s4})= {s1,s3,s4}Ç{s2,s3,s4}={s3,s4}

3rd iteration
pÙEX(pÙEX(pÙEX S)) = {s1,s3,s4}ÇEX({s3,s4})= {s1,s3,s4}Ç{s2,s3,s4}={s3,s4}



EG Fixpoint Computation

•  •  • EG(p)

EG(p) º states that can avoid reaching ¬p º p Ç EX(p) Ç EX(EX(p)) Ç ...


