
CS 267: Automated Verification

Lecture 6: Binary Decision Diagrams

Instructor: Tevfik Bultan

Binary Decision Diagrams (BDDs)
[Bryant 86]

• Reduced Ordered Binary Decision Diagrams (BDDs)
– An efficient data structure for representing Boolean

functions (or truth sets of Boolean formulas) and
manipulating them

• BDDs are a canonical representation for Boolean functions
– given two Boolean logic formulas F and G, if F and G are

equivalent (i.e. if their truth sets are the same), then their
BDD representations will be the same

BDDs for Symbolic Model Checking

• BDD data structure can be used to implement the symbolic
model checking algorithm we discussed earlier

• BDDs support all the operations we need for symbolic
model checking
– take conjunction of two BDDs
– take disjunction of two BDDs
– test equivalence of two BDDs
– test subsumption between two BDDs
– negate a BDD
– test if a BDD satisfiable
– test if a BDD is a tautology
– existential variable elimination

Binary Decision Trees

Given a variable order, in each level of the tree, branch on the
value of the variable in that level.

• Examples for boolean formulas on two variables
Variable order: x, y

F

F

F

T

T

T

x

y y

T

F T

T

x Ú y

F

F

F

T

T

F

x

y y

F

F T

T

x Ù y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

Reduced and Ordered Binary Decision Diagrams

• We are interested in Reduced and Ordered Binary
Decision Diagrams

• Reduced:
– Merge all identical sub-trees in the binary decision tree

(converts it to a directed-acyclic graph)
– Remove redundant tests (if the false and true branches

for a node go to the same place, remove that node)

• Ordered
– We pick a fix order for the Boolean variables:

x0 < x1< x2 < …
– The nodes in the BDD are listed based on this ordering

BDDs

• Repeatedly apply the following transformations to a binary
decision tree:

1. Remove duplicate terminals

2. Remove duplicate non-terminals

3. Remove redundant tests

• These transformations transform the tree to a directed
acyclic graph

Binary Decision Trees vs. BDDs

F

F

F

T

T

T

x

y y

T

F T

T

x Ú y

F

F

F

T

T

F

x

y y

F

F T

T

x Ù y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

F

F

F

T

T

T

x

y

F

F

F

T

T

T

x

y
F

F T

T

x F

Good News About BDDs

• Given BDDs for two boolean logic formulas F and G

– The BDDs for F Ù G and F Ú G are of size |F| ´ |G| (and
can be computed in that time)

– The BDD for ¬F is of size |F| (and can be computed in
that time)

– F º? G can be checked in linear time

– Satisfiability of F can be checked in constant time
• No, this does not mean that you can solve SAT in

constant time

Bad News About BDDs

• The size of a BDD can be exponential in the number of
boolean variables

• The sizes of the BDDs are very sensitive to the variable
ordering. Bad variable ordering can cause exponential
increase in the size of the BDD

• There are functions which have BDDs that are exponential
for any variable ordering (for example binary multiplication)

• Pre condition (EX) computation requires a sequence of
existential variable eliminations
– A sequence of existential variable eliminations can

cause an exponential blow-up in the size of the BDD

BDDs are Sensitive to Variable Ordering
Identity relation for two variables: (x’« x) Ù (y' « y)

T

F

F

F
T

F

y

y’

F

F

T

T

x

x’ x’

y’

T

TT
F

Variable order: x, x’, y, y'

For n variables, 3n+2 nodes

F

F

T

F T

T

x’

y’

F

F

T

T

x

y y

y’

T

T

F

F

Variable order: x, y, x’, y'

For n variables, 3´ 2n – 1 nodes

x’ x’x’

FT

F
F

T
T

BDDs from Another Perspective

• Any Boolean formula f on variables x1, x2, …, xn can be
written as (called Shannon expansion):

f = xi Ù f [True/xi] Ú ¬ xi Ù f [False/xi] (this is an if-then-else)

• BDDs use this idea

F

F

F

T

T

T

x

y

x Ù y

y º x Ù y [True/x]

This node corresponds to
the formula y, which comes
from the Shannon expansion:

False º x Ù y [False/x]

This node corresponds to
the formula False, which
comes from the Shannon
expansion:

How to Implement BDDs?

• First, let’s pick a data structure for a BDD node:

type vertex = record
low, high: vertex;
index: 1 .. n+1;
val: {0, 1, X};
id: integer;

end;

High is the true branch,
Low is the false branch

Index from the variable
ordering, each index value
corresponds to one variable

0 corresponds to false,
1 corresponds to true,
X corresponds to no value

This field will be used to
generate a unique id for
each unique function

n is the number of
Boolean variables

• A BDD is a rooted directed graph with vertex set V
containing two types of vertices
– nonterminal vertices:

index Î {1, 2, .., n}
low(v) and high(v) are in V
val(v) is X

– terminal vertices:
index(v) = n+1
val(v) is 0 or 1
low(v) and high(v) are null

How to Implement a BDD?

BDD Reduce algorithm

• Start from the terminal nodes and go towards to root
1. Remove duplicate terminals: If two terminal vertices

have the same value, remove one of them redirect all
the incoming arcs to the other one

2. Remove duplicate non-terminals: If two nonterminal
vertives, v and u have the same index and v.low=u.low
and v.high=u.high then eliminate one of them and
redirect all incoming arcs to the other one

3. Remove redundant tests: If a nonterminal vertex v has
v.low=v.high then remove v and redirect all incoming
arcs to low(v)

Reduce Algorithm
function Reduce(v: vertex): vertex;

var subgraph: array[1 .. |G|] of vertex;
var vlist: array[1 .. n+1] of list of vertex;

begin
Put each vertex u reachable from v on list vlist[u.index]
nextid := 0;

for i := n+1 downto 1 do
begin

Q := empty set;

for each u in vlist[i] do
if u.index = n+1
then add <key,u> to Q where key=(u.value) {terminal}
else if u.low.id=u.high.id

then u.id := u.low.id; {redundant vertex}
else add <key,u> to Q where key =(u.low.id,u.high.id);

Reduce Algorithm Continued
Sort elements of Q by keys;

oldkey := (-1,-1); {unmatchable key}
for each <key,u> in Q removed in order do

if key = oldkey
then u.id := nextid; {matches existing vertex}
else begin {unique vertex}

nextid :=nextid+1;
u.id:=nextid;
subgraph[nextid]:=u;
u.low := subgraph[u.low.id];
u.high := subgraph[u.high.id];
oldkey := key;

end;
end; {end of the outmost for loop}
return(subgraph[v.id]);

end;

Reduce Algorithm

• Reduce algorithm can be done in linear time
– There is a linear time lexicographic sorting method

based on bucket sorting for sorting the vertices
according to their keys

– Assuming a linear time sorting routine, processing at
each level requires time proportional to the number of
vertices at that level, and each level is processed once,
resulting in linear time complexity

Apply Algorithm

• We can use the Shannon expansion to recursively compute
any binary Boolean operation

• Given BDDs for f and g and binary operation op

f op g = xi Ù (f [T/xi] op g [T/xi]) Ú ¬ xi Ù (f [F/xi] op g [F/xi])

• So the idea is to start at the root of f and g and recursively
call true and false branches
– Key idea: Use memoization!

Apply Algorithm
var T: array[1 .. |G1|, 1 .. |G2|] of vertex; {init. to null}
function Apply(v1, v2: vertex; <op> operator): vertex;
begin

u := T[v1.id, v2.id];
if u != null then return(u); {already computed}
u := new vertex; T[v1.id, v2.id] := u;
u.value := v1.value <op> v2.value;
if u.value != X
then u.index := n+1; u.low :=null; u.high :=null; {terminal}
else begin {nonterminal}

u.index := Min(v1.index, v2.index);
if v1.index = u.index
then vlow1 := v1.low; vhigh1 := v1.high;
else vlow1 := v1; vhigh1 := v1;
if v2.index = u.index
then vlow2 := v2.low; vhigh2 :=v2.high;
else vlow2 := v2; vhigh2 := v2;
u.low := Apply(vlow1, vlow2);
u.high := Apply(vhigh1, vhigh2);

end;
return(u);

end;

Apply Algorithm

• Given two input BDDs f and g the size of the resulting BDD
for f <op> g is |f|´|g| and it can be computed in that time

• The important point is to use memoization so that for any
pair of vertices (one from each input BDD) the computation
is done exactly once

• Since there are at most |f|´|g| pairs the complexity is |f|´|g|
– We do constant amount of work for each pair of nodes

