CS 267: Automated Verification

Lecture 7: SMV Symbolic Model Checker, Partitioned Transition Systems, Counter-example Generation in Symbolic Model Checking

Instructor: Tevfik Bultan

SMV [McMillan 93]

- BDD-based symbolic model checker
- Finite state
- Temporal logic: CTL
- Focus: hardware verification
 - Later applied to software specifications, protocols, etc.
- SMV has its own input specification language
 - concurrency: synchronous, asynchronous
 - shared variables
 - boolean and enumerated variables
 - bounded integer variables (binary encoding)
 - SMV is not efficient for integers, but that can be fixed
 - fixed size arrays

SMV Language

- An SMV specification consists of a set of modules (one of them must be called main)
- Modules can have access to shared variables
- Modules can be composed asynchronously using the process keyword
- Module behaviors can be specified using the ASSIGN statement which assigns values to next state variables in parallel
- Module behaviors can also be specified using the TRANS statements which allow specification of the transition relation as a logic formula where next state values are identified using the next keyword

Two concurrently executing processes are trying to enter a critical section without violating mutual exclusion

```
Process 1:
while (true) {
   out: a := true; turn := true;
   wait: await (b = false or turn = false);
   cs: a := false;
Process 2:
while (true) {
   out: b := true; turn := false;
   wait: await (a = false or turn);
   cs: b := false;
}
```

```
MODULE process1(a,b,turn)
VAR
  pc: {out, wait, cs};
ASSIGN
  init(pc) := out;
  next(pc) :=
    case
      pc=out : wait;
      pc=wait & (!b | !turn) : cs;
      pc=cs : out;
      1 : pc;
    esac;
  next(turn) :=
    case
      pc=out : 1;
      1 : turn;
    esac;
  next(a) :=
    case
      pc=out : 1;
      pc=cs : 0;
      1 : a;
    esac;
  next(b) := b;
FATRNESS
  running
```

```
MODULE process2(a,b,turn)
VAR
  pc: {out, wait, cs};
ASSIGN
  init(pc) := out;
  next(pc) :=
    case
      pc=out : wait;
      pc=wait & (!a | turn) : cs;
      pc=cs : out;
      1 : pc;
    esac;
  next(turn) :=
    case
      pc=out : 0;
      1 : turn;
    esac;
  next(b) :=
    case
      pc=out : 1;
      pc=cs:0;
      1 : b;
    esac;
  next(a) := a;
FAIRNESS
  running
```

```
MODULE main
VAR
a : boolean;
b : boolean;
turn : boolean;
p1 : process process1(a,b,turn);
p2 : process process2(a,b,turn);
SPEC
AG(!(p1.pc=cs & p2.pc=cs))
-- AG(p1.pc=wait -> AF(p1.pc=cs)) & AG(p2.pc=wait -> AF(p2.pc=cs))
```

Here is the output when I run SMV on this example to check the mutual exclusion property

```
% smv mutex.smv
-- specification AG (!(pl.pc = cs & p2.pc = cs)) is true
resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 692
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6
```

The output for the starvation freedom property:

% smv mutex.smv -- specification AG (pl.pc = wait -> AF pl.pc = cs) & AG ... is true resources used: user time: 0 s, system time: 0 s BDD nodes allocated: 1251 Bytes allocated: 1245184 BDD nodes representing transition relation: 143 + 6

Let's insert an error

change pc=wait & (!b | !turn) : cs; to pc=wait & (!b | turn) : cs;

```
% smv mutex.smv
-- specification AG (!(p1.pc = cs & p2.pc = cs)) is false
-- as demonstrated by the following execution sequence
state 1.1:
a = 0
b = 0
turn = 0
p1.pc = out
p2.pc = out
[stuttering]
state 1.2:
[executing process p2]
state 1.3:
b = 1
p2.pc = wait
[executing process p2]
state 1.4:
p2.pc = cs
[executing process p1]
state 1.5:
a = 1
                              resources used:
turn = 1
                             user time: 0.01 s, system time: 0 s
p1.pc = wait
                             BDD nodes allocated: 1878
[executing process p1]
                             Bytes allocated: 1245184
                             BDD nodes representing transition relation: 143 + 6
state 1.6:
p1.pc = cs
[stuttering]
```

Symbolic Model Checking with BDDs

- As we discussed earlier BDDs are used as a data structure for encoding trust sets of Boolean logic formulas in symbolic model checking
- One can use BDD-based symbolic model checking for any finite state system using a Boolean encoding of the state space and the transition relation
- Why are we using symbolic model checking?
 - We hope that the symbolic representations will be more compact than the explicit state representation on the average
 - In the worst case we may not gain anything

Symbolic Model Checking with BDDs

- Possible problems
 - The BDD for the transition relation could be huge
 - Remember that the BDD could be exponential in the number of disjuncts and conjuncts
 - Since we are using a Boolean encoding there could be a large number of conjuncts and disjuncts
 - The EX computation could result in exponential blow-up
 - Exponential in the number of existentially quantified variables

Partitioned Transition Systems

- If the BDD for the transition relation R is too big, we can try to partition it and represent it with multiple BDDs
- We need to be able to do the EX computation on this partitioned transition system

Disjunctive Partitioning

• Disjunctive partitioning: $R \equiv R_1 \lor R_2 \lor \ldots \lor R_k$

We can distribute the EX computation since *existential quantification distributes over disjunction*

We compute the EX for each R_i separately and then take the disjunction of all the results

Disjunctive Partitioning

• Remember EX, let's assume that EX also takes the transition relation as input:

$$EX(p, R) = \{ s \mid (s,s') \in R \text{ and } s' \in p \}$$

which in symbolic model checking becomes:

 $\mathsf{EX}(\mathsf{p},\,\mathsf{R})\equiv\,\exists\mathsf{V'}\;\;\mathsf{R}\wedge\mathsf{p}[\mathsf{V'}\;\;/\;\mathsf{V}]$

If we can write R as
$$R \equiv R_1 \lor R_2 \lor \ldots \lor R_k$$
 then

$$EX(p, R) \equiv \exists V' R \land p[V' / V]$$

$$\equiv \exists V' (R_1 \lor R_2 \lor \ldots \lor R_k) \land p[V' / V] \lor \ldots \lor R_k \land p[V' / V]$$

$$\equiv \exists V' (R_1 \land p[V' / V] \lor R_2 \land p[V' / V] \lor \ldots \lor R_k \land p[V' / V])$$

$$\equiv (\exists V' R_1 \land p[V' / V]) \lor (\exists V' R_2 \land p[V' / V]) \lor \ldots \lor (\exists V' R_k \land p[V' / V])$$

$$\equiv EX(p, R_1) \lor EX(p, R_2) \lor \ldots \lor EX(p, R_k)$$

Disjunctive Partitioning

The purpose of disjunctive partitioning is the following:

• If we can write R as

$$R \equiv R_1 \lor R_2 \lor \ldots \lor R_k$$

then we can use $R_1 \dots R_k$ instead of R during the EX computation and we never have to construct the BDD for R

- We can use R_is to compute the EX(p, R) as EX(p, R) = EX(p, R_1) \lor EX(p, R_2) \lor ... \lor EX(p, R_k)
- If R is much bigger than all the R_is, then disjunctive partitioning can improve the model checking performance

Recall this Extremely Simple Example

```
Variables: x, y: boolean
Set of states:
S = \{(F,F), (F,T), (T,F), (T,T)\}
S \equiv True
```


Initial condition:

 $I \equiv \neg x \land \neg y$

Transition relation (negates one variable at a time): $R \equiv x' = \neg x \land y' = y \lor x' = x \land y' = \neg y$ (= means \leftrightarrow)

A possible disjunctive partitioning: $R \equiv R_1 \lor R_2$ $R_1 \equiv x' = \neg x \land y' = y$ $R_2 \equiv x' = x \land y' = \neg y$

An Extremely Simple Example

Given $p \equiv x \land y$, compute EX(p)

 $EX(p, R) \equiv \exists V' R \land p[V' / V]$ = $EX(p, R_1) \lor EX(p, R_2)$

$$\begin{aligned} \mathsf{EX}(\mathsf{p},\,\mathsf{R}_1) &\equiv \left(\exists \mathsf{V}' \,\,\mathsf{R}_1 \wedge \mathsf{x}' \wedge \mathsf{y}' \,\right) &\equiv \left(\exists \mathsf{V}' \,\,\mathsf{x}' = \neg \mathsf{x} \wedge \mathsf{y}' = \mathsf{y} \wedge \mathsf{x}' \wedge \mathsf{y}' \,\right) \\ &\equiv \left(\exists \mathsf{V}' \,\,\neg \mathsf{x} \wedge \mathsf{y} \wedge \mathsf{x}' \wedge \mathsf{y}' \,\right) \equiv \neg \mathsf{x} \wedge \mathsf{y} \end{aligned}$$

$$EX(p, R_2) \equiv (\exists V' R_2 \land x' \land y') \equiv (\exists V' x' = x \land y' = \neg y \land x' \land y')$$
$$\equiv (\exists V' x \land \neg y \land x' \land y') \equiv x \land \neg y$$

 $EX(x \land y) \equiv EX(p, R_1) \lor EX(p, R_2) \equiv \neg x \land y \lor x \land \neg y$ In other words $EX(\{(T,T)\}) \equiv \{(F,T), (T,F)\}$

Conjunctive Partitioning

• Conjunctive partitioning: $R \equiv R_1 \land R_2 \land \dots \land R_k$

Unfortunately EX computation does not distribute over the conjunction partitioning in general since *existential quantification does NOT distribute over conjunction*

- However if each R_i is expressed on a separate set of next state variables (i.e., if a next state variable appears in R_i then it should not appear in any other conjunct)
 - Then we can distribute the existential quantification over each R_i

Conjunctive Partitioning

 If we can write R as R = R₁ ∧ R₂ ∧ ... ∧ R_k where R_i is a formula only on variables V_i and V_i' and i ≠ j ⇒ V_i' ∩ V_j' = Ø which means that a primed variable does not appear in

more than one R_i

 Then, we can do the existential quantification separately for each R_i as follows:

$$\begin{split} & \mathsf{EX}(\mathsf{p},\,\mathsf{R}) \equiv \, \exists \mathsf{V}' \,\,\mathsf{R} \wedge \mathsf{p}[\mathsf{V}' \,/ \,\mathsf{V}] \\ & \equiv \, \exists \mathsf{V}' \,\,\mathsf{p}[\mathsf{V}' \,/ \,\mathsf{V}] \wedge (\mathsf{R}_1 \wedge \mathsf{R}_2 \wedge \, \dots \wedge \mathsf{R}_k) \\ & \equiv \, (\exists \mathsf{V}_k' \,\, \dots \,(\exists \mathsf{V}_2' \,(\exists \mathsf{V}_1' \,\,\mathsf{p}[\mathsf{V}' \,/ \,\mathsf{V}] \wedge \mathsf{R}_1) \,\,\wedge \mathsf{R}_2 \,) \wedge \,\, \dots \,\wedge \mathsf{R}_k) \end{split}$$

An Even Simpler Example

```
Variables: x, y: boolean
Set of states:
S = \{(F,F), (F,T), (T,F), (T,T)\}
S \equiv True
```


Initial condition:

 $I \equiv \neg \ x \land \neg \ y$

Transition relation (negates one variable at a time): $R \equiv x' = \neg x \land y' = \neg y$ (= means \leftrightarrow)

A possible conjunctive partitioning: $R \equiv R_1 \land R_2$ $R_1 \equiv x' = \neg x$ $R_2 \equiv y' = \neg y$

An Even Simpler Example

Given $p \equiv x \land y$, compute EX(p)

$$EX(p, R) \equiv \exists V' R \land p[V' / V]$$

$$\equiv \exists V_2' (\exists V_1' p[V' / V] \land R_1) \land R_2$$

$$\equiv \exists V_2' (\exists V_1' x' \land y' \land R_1) \land R_2$$

$$\equiv \exists y' (\exists x' x' \land y' \land x' = \neg x) \land y' = \neg y$$

$$\equiv \exists y' (\exists x' x' \land y' \land \neg x) \land y' = \neg y$$

$$\equiv \exists y' y' \land \neg x \land y' = \neg y$$

$$\equiv \exists y' y' \land \neg x \land \neg y$$

$$\equiv \neg x \land \neg y$$

 $\begin{array}{l} \mathsf{EX}(x \land y) \ \equiv \neg x \land \neg y \\ \text{In other words } \mathsf{EX}(\{(\mathsf{T},\mathsf{T})\}) \equiv \{(\mathsf{F},\mathsf{F})\} \end{array}$

Partitioned Transition Systems

- Using partitioned transition systems we can reduce the size of memory required for representing R and the size of the memory required to do model checking with R
- Note that, for either type of partitioning
 - disjunctive $R \equiv R_1 \lor R_2 \lor \ldots \lor R_k$
 - or conjunctive $R \equiv R_1 \wedge R_2 \wedge \ \dots \wedge R_k$

size of R can be exponential in k

 So by keeping R in partitioned form we can avoid constructing the BDD for R which can be exponentially bigger than each R_i

Other Improvements for BDDs

- Variable ordering is important
 - For example for representing linear arithmetic constraints such as x = y + z where x, y, and z are integer variables represented in binary,
 - If the variable ordering is: all the bits for x, all the bits for y and all the bits for z, then the size of the BDD is exponential in the number of bits
 - In fact this is the ordering used in SMV which makes SMV very inefficient for verification of specifications that contain arithmetic constraints
 - If the binary variables for x, y, and z are interleaved, the size of the BDD is linear in the number of bits
 - So, for specific classes of systems there may be good variable orderings

Other Improvements to BDDs

- There are also dynamic variable ordering heuristics which try to change the ordering of the BDD on the fly and reduce the size of the BDD
- There are also variants of BDDs such as multi-terminal decision diagrams, where the leaf nodes have more than two distinct values.
 - Useful for domains with more than two values
 - Can be translated to BDDs

Counter-Example Generation

- Remember: Given a transition system T= (S, I, R) and a CTL property p T |= p iff for all initial state s ∈ I, s |= p
- Verification vs. Falsification
 - Verification:
 - Show: initial states \subseteq truth set of *p*
 - Falsification:
 - Find: a state \in initial states \cap truth set of $\neg p$
 - Generate a counter-example starting from that state
- The ability to find counter-examples is one of the biggest strengths of the model checkers

An Example

- If we wish to check the property AG(p)
- We can use the equivalence: $AG(p) \equiv \neg EF(\neg p)$
- If we can find an initial state which satisfies $EF(\neg p)$, then we know that the transition system T, does not satisfy the property AG(p)

Another Example

- If we wish to check the property AF(p)
- We can use the equivalence: $AF(p) \equiv \neg EG(\neg p)$
- If we can find an initial state which satisfies EG($\neg p$), then we know that the transition system T, does not satisfy the property AF(p)

General Idea

- We can define two temporal logics using subsets of CTL operators
 - ACTL: CTL formulas which only use the temporal operators AX, AG, AF and AU and all the negations appear only in atomic properties (there are no negations outside of temporal operators)
 - ECTL: CTL formulas which only use the temporal operators EX, EG, EF and EU and all the negations appear only in atomic properties
- Given an ACTL property its negation is an ECTL property

Counter-Example Generation

 $-\neg p$ is an ECTL property

- - Such a path is called a *witness* for the ECTL property $\neg p$

An Example

- We want to check the property AG(p)
- We compute the fixpoint for $EF(\neg p)$
- We check if the intersection of the set of initial states I and the truth set of EF(¬p) is empty
 - If it is not empty we generate a counter-example path starting from the intersection

$$\mathsf{EF}(\neg p) \equiv \mathsf{states}$$
 that can reach $\neg p \equiv \neg p \cup \mathsf{EX}(\neg p) \cup \mathsf{EX}(\mathsf{EX}(\neg p)) \cup \ldots$

• In order to generate the counter-example path, save the fixpoint iterations.

 After the fixpoint computation converges, do a second pass to generate the counter-example path.

Generate a counter-example path starting from a state here

Another Example

- We want to check the property AF(p)
- We compute the fixpoint for $EG(\neg p)$
- We check if the intersection of the set of initial states I and the truth set of EG(¬p) is empty
 - If it is not empty we generate a counter-example path starting from the intersection

 $EG(\neg p) \equiv$ states that can avoid reaching $p \equiv \neg p \cap EX(\neg p) \cap EX(EX(\neg p)) \cap ...$

• In order to generate the counter-example path, look for a cycle in the resulting fixpoint

Generate a counter-example path starting from a state here

Counter-example generation

- In general the counter-example for an ACTL property (equivalently a witness to an ECTL property) is not a single path
- For example, the counter example for the property AF(AGp) would be a witness for the property EG(EF¬p)
 - It is not possible to characterize the witness for EG(EF¬p) as a single path
- However it is possible to generate tree-like transition graphs containing counter-example behaviors as a counterexample:
 - Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut
 Veith: "Tree-Like Counterexamples in Model Checking".
 LICS 2002: 19-29