CS 267: Automated Verification

Lecture 7: SMV Symbolic Model Checker, Partitioned Transition Systems, Counter-example Generation in Symbolic Model Checking

Instructor: Tevfik Bultan
SMV [McMillan 93]

- BDD-based symbolic model checker
- Finite state
- Temporal logic: CTL
- Focus: hardware verification
 - Later applied to software specifications, protocols, etc.
- SMV has its own input specification language
 - concurrency: synchronous, asynchronous
 - shared variables
 - boolean and enumerated variables
 - bounded integer variables (binary encoding)
 - SMV is not efficient for integers, but that can be fixed
 - fixed size arrays
SMV Language

• An SMV specification consists of a set of modules (one of them must be called main)
• Modules can have access to shared variables
• Modules can be composed asynchronously using the process keyword
• Module behaviors can be specified using the ASSIGN statement which assigns values to next state variables in parallel
• Module behaviors can also be specified using the TRANS statements which allow specification of the transition relation as a logic formula where next state values are identified using the next keyword
Example Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter a critical section without violating mutual exclusion

Process 1:
while (true) {
 out: a := true; turn := true;
 wait: await (b = false or turn = false);
 cs: a := false;
}

||

Process 2:
while (true) {
 out: b := true; turn := false;
 wait: await (a = false or turn);
 cs: b := false;
}
Example Mutual Exclusion Protocol in SMV

MODULE process1(a,b,turn)
VAR
 pc: {out, wait, cs};
ASSIGN
 init(pc) := out;
 next(pc) :=
 case
 pc=out : wait;
 pc=wait & (!b | !turn) : cs;
 pc=cs : out;
 1 : pc;
 esac;
 next(turn) :=
 case
 pc=out : 1;
 1 : turn;
 esac;
 next(a) :=
 case
 pc=out : 1;
 pc=cs : 0;
 1 : a;
 esac;
 next(b) := b;
FAIRNESS
running

MODULE process2(a,b,turn)
VAR
 pc: {out, wait, cs};
ASSIGN
 init(pc) := out;
 next(pc) :=
 case
 pc=out : wait;
 pc=wait & (!a | turn) : cs;
 pc=cs : out;
 1 : pc;
 esac;
 next(turn) :=
 case
 pc=out : 0;
 1 : turn;
 esac;
 next(b) :=
 case
 pc=out : 1;
 pc=cs : 0;
 1 : b;
 esac;
 next(a) := a;
FAIRNESS
running
Example Mutual Exclusion Protocol in SMV

MODULE main
VAR
 a : boolean;
 b : boolean;
 turn : boolean;
p1 : process process1(a,b,turn);
p2 : process process2(a,b,turn);
SPEC
 AG(!p1.pc=cs & p2.pc=cs))
 -- AG(p1.pc=wait -> AF(p1.pc=cs)) & AG(p2.pc=wait -> AF(p2.pc=cs))

Here is the output when I run SMV on this example to check the mutual exclusion property

% smv mutex.smv
-- specification AG (!p1.pc = cs & p2.pc = cs)) is true

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 692
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6
Example Mutual Exclusion Protocol in SMV

The output for the starvation freedom property:

```plaintext
% smv mutex.smv
-- specification AG (p1.pc = wait -> AF p1.pc = cs) & AG ... is true

resources used:
user time: 0 s, system time: 0 s
BDD nodes allocated: 1251
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6
```
Example Mutual Exclusion Protocol in SMV

Let’s insert an error

change \(pc = \text{wait} \land (!b \lor \neg \text{turn}) : cs; \)

to \(pc = \text{wait} \land (!b \lor \text{turn}) : cs; \)
-- specification AG (!(p1.pc = cs & p2.pc = cs)) is false
-- as demonstrated by the following execution sequence
state 1.1:
a = 0
b = 0
turn = 0
p1.pc = out
p2.pc = out
[stuttering]

state 1.2:
[executing process p2]

state 1.3:
b = 1
p2.pc = wait
[executing wait process p2]

state 1.4:
p2.pc = cs
[executing process p1]

state 1.5:
a = 1
turn = 1
p1.pc = wait
[executing wait process p1]

state 1.6:
p1.pc = cs
[stuttering]

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 1878
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6
Symbolic Model Checking with BDDs

• As we discussed earlier BDDs are used as a data structure for encoding trust sets of Boolean logic formulas in symbolic model checking

• One can use BDD-based symbolic model checking for any finite state system using a Boolean encoding of the state space and the transition relation

• Why are we using symbolic model checking?
 – We hope that the symbolic representations will be more compact than the explicit state representation on the average
 – In the worst case we may not gain anything
Symbolic Model Checking with BDDs

• Possible problems
 – The BDD for the transition relation could be huge
 • Remember that the BDD could be exponential in the number of disjuncts and conjuncts
 • Since we are using a Boolean encoding there could be a large number of conjuncts and disjuncts
 – The EX computation could result in exponential blow-up
 • Exponential in the number of existentially quantified variables
Partitioned Transition Systems

• If the BDD for the transition relation R is too big, we can try to partition it and represent it with multiple BDDs

• We need to be able to do the EX computation on this partitioned transition system
Disjunctive Partitioning

- Disjunctive partitioning:
 \[R \equiv R_1 \lor R_2 \lor \ldots \lor R_k \]

We can distribute the EX computation since \textit{existential quantification distributes over disjunction}.

We compute the EX for each \(R_i \) separately and then take the disjunction of all the results.
Disjunctive Partitioning

- Remember EX, let’s assume that EX also takes the transition relation as input:
 \[EX(p, R) = \{ s \mid (s, s') \in R \text{ and } s' \in p \} \]
 which in symbolic model checking becomes:
 \[EX(p, R) \equiv \exists V' \; R \land p[V' / V] \]

If we can write \(R \) as \(R \equiv R_1 \lor R_2 \lor \ldots \lor R_k \) then
\[EX(p, R) \equiv \exists V' \; R \land p[V' / V] \]
\[\equiv \exists V' \; (R_1 \lor R_2 \lor \ldots \lor R_k) \land p[V' / V] \]
\[\equiv \exists V' \; (R_1 \land p[V' / V] \lor R_2 \land p[V' / V] \lor \ldots \lor R_k \land p[V' / V]) \]
\[\equiv (\exists V' \; R_1 \land p[V' / V]) \lor (\exists V' \; R_2 \land p[V' / V]) \lor \ldots \lor (\exists V' \; R_k \land p[V' / V]) \]
\[\equiv EX(p, R_1) \lor EX(p, R_2) \lor \ldots \lor EX(p, R_k) \]
Disjunctive Partitioning

The purpose of disjunctive partitioning is the following:

• If we can write \(R \) as
 \[
 R \equiv R_1 \lor R_2 \lor \ldots \lor R_k
 \]
 then we can use \(R_1 \ldots R_k \) instead of \(R \) during the \(\text{EX} \) computation and we never have to construct the BDD for \(R \)

• We can use \(R_i \)'s to compute the \(\text{EX}(p, R) \) as
 \[
 \text{EX}(p, R) \equiv \text{EX}(p, R_1) \lor \text{EX}(p, R_2) \lor \ldots \lor \text{EX}(p, R_k)
 \]

• If \(R \) is much bigger than all the \(R_i \)'s, then disjunctive partitioning can improve the model checking performance.
Recall this Extremely Simple Example

Variables: x, y: boolean
Set of states:
$S = \{(F,F), (F,T), (T,F), (T,T)\}$
$S \equiv \text{True}$

Initial condition:
$I \equiv \neg x \land \neg y$

Transition relation (negates one variable at a time):
$R \equiv x' = \neg x \land y' = y \lor x' = x \land y' = \neg y$

A possible disjunctive partitioning:
$R \equiv R_1 \lor R_2$
$R_1 \equiv x' = \neg x \land y' = y \quad R_2 \equiv x' = x \land y' = \neg y$
An Extremely Simple Example

Given $p \equiv x \land y$, compute $\text{EX}(p)$

$$\text{EX}(p, R) \equiv \exists V' \ R \land p[V' / V]$$
$$\equiv \text{EX}(p, R_1) \lor \text{EX}(p, R_2)$$

$$\text{EX}(p, R_1) \equiv (\exists V' \ R_1 \land x' \land y') \equiv (\exists V' \ x' = \neg x \land y' = y \land x' \land y')$$
$$\equiv (\exists V' \ \neg x \land y \land x' \land y') \equiv \neg x \land y$$

$$\text{EX}(p, R_2) \equiv (\exists V' \ R_2 \land x' \land y') \equiv (\exists V' \ x' = x \land y' = \neg y \land x' \land y')$$
$$\equiv (\exists V' \ x \land \neg y \land x' \land y') \equiv x \land \neg y$$

$$\text{EX}(x \land y) \equiv \text{EX}(p, R_1) \lor \text{EX}(p, R_2) \equiv \neg x \land y \lor x \land \neg y$$

In other words $\text{EX}((T,T)) \equiv \{(F,T), (T,F)\}$
Conjunctive Partitioning

• Conjunctive partitioning:
 \[R \equiv R_1 \land R_2 \land \ldots \land R_k \]

Unfortunately EX computation does not distribute over the conjunction partitioning in general since existential quantification does NOT distribute over conjunction

• However if each \(R_i \) is expressed on a separate set of next state variables (i.e., if a next state variable appears in \(R_i \) then it should not appear in any other conjunct)
 – Then we can distribute the existential quantification over each \(R_i \)
Conjunctive Partitioning

- If we can write R as $R \equiv R_1 \land R_2 \land \ldots \land R_k$
 where R_i is a formula only on variables V_i and V_i'
 and $i \neq j \Rightarrow V_i' \cap V_j' = \emptyset$
 which means that a primed variable does not appear in more than one R_i

- Then, we can do the existential quantification separately for each R_i as follows:
 $$EX(p, R) \equiv \exists V' \ R \land p[V' / V]$$
 $$\equiv \exists V' \ p[V' / V] \land (R_1 \land R_2 \land \ldots \land R_k)$$
 $$\equiv (\exists V_k' \ \ldots \ (\exists V_2' \ (\exists V_1' \ p[V' / V] \land R_1) \land R_2) \land \ldots \land R_k)$$
An Even Simpler Example

Variables: x, y: boolean
Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S ⊨ True

Initial condition:
I ≡ ¬x ∧ ¬y

Transition relation (negates one variable at a time):
R ≡ x’ = ¬x ∧ y’ = ¬y (= means ↔)

A possible conjunctive partitioning:
R ≡ R₁ ∧ R₂
R₁ ≡ x’ = ¬x R₂ ≡ y’ = ¬y
An Even Simpler Example

Given $p \equiv x \land y$, compute $EX(p)$

$$EX(p, R) \equiv \exists V' \ R \land p[V' / V]$$

$$\equiv \exists V_2' \ (\exists V_1' \ p[V' / V] \land R_1) \land R_2$$

$$\equiv \exists V_2' \ (\exists V_1' \ x' \land y' \land R_1) \land R_2$$

$$\equiv \exists y' \ (\exists x' \ x' \land y' \land x' = \neg x) \land y' = \neg y$$

$$\equiv \exists y' \ (\exists x' \ x' \land y' \land \neg x) \land y' = \neg y$$

$$\equiv \exists y' \ y' \land \neg x \land y' = \neg y$$

$$\equiv \exists y' \ y' \land \neg x \land \neg y$$

$$\equiv \neg x \land \neg y$$

$$EX(x \land y) \equiv \neg x \land \neg y$$

In other words $EX(\{(T,T)\}) \equiv \{(F,F)\}$
Partitioned Transition Systems

• Using partitioned transition systems we can reduce the size of memory required for representing R and the size of the memory required to do model checking with R.

• Note that, for either type of partitioning:
 – disjunctive $R \equiv R_1 \lor R_2 \lor \ldots \lor R_k$
 – or conjunctive $R \equiv R_1 \land R_2 \land \ldots \land R_k$

 size of R can be exponential in k.

• So by keeping R in partitioned form we can avoid constructing the BDD for R which can be exponentially bigger than each R_i.
Other Improvements for BDDs

• Variable ordering is important
 – For example for representing linear arithmetic constraints such as \(x = y + z \) where \(x, y, \) and \(z \) are integer variables represented in binary,
 • If the variable ordering is: all the bits for \(x \), all the bits for \(y \) and all the bits for \(z \), then the size of the BDD is exponential in the number of bits
 – In fact this is the ordering used in SMV which makes SMV very inefficient for verification of specifications that contain arithmetic constraints
 • If the binary variables for \(x, y, \) and \(z \) are interleaved, the size of the BDD is linear in the number of bits
 – So, for specific classes of systems there may be good variable orderings
Other Improvements to BDDs

- There are also dynamic variable ordering heuristics which try to change the ordering of the BDD on the fly and reduce the size of the BDD.

- There are also variants of BDDs such as multi-terminal decision diagrams, where the leaf nodes have more than two distinct values.
 - Useful for domains with more than two values.
 - Can be translated to BDDs.
Counter-Example Generation

• Remember: Given a transition system $T= (S, I, R)$ and a CTL property p, $T \models p$ iff for all initial state $s \in I$, $s \models p$

• Verification vs. Falsification
 – Verification:
 • Show: initial states \subseteq truth set of p
 – Falsification:
 • Find: a state \in initial states \cap truth set of $\neg p$
 • Generate a counter-example starting from that state

• The ability to find counter-examples is one of the biggest strengths of the model checkers
An Example

- If we wish to check the property $AG(p)$

- We can use the equivalence:

 $AG(p) \equiv \neg EF(\neg p)$

If we can find an initial state which satisfies $EF(\neg p)$, then we know that the transition system T, does not satisfy the property $AG(p)$
Another Example

• If we wish to check the property $AF(p)$

• We can use the equivalence:
 $AF(p) \equiv \neg EG(\neg p)$

If we can find an initial state which satisfies $EG(\neg p)$, then we know that the transition system T, does not satisfy the property $AF(p)$
General Idea

• We can define two temporal logics using subsets of CTL operators
 – ACTL: CTL formulas which only use the temporal operators AX, AG, AF and AU and all the negations appear only in atomic properties (there are no negations outside of temporal operators)
 – ECTL: CTL formulas which only use the temporal operators EX, EG, EF and EU and all the negations appear only in atomic properties

• Given an ACTL property its negation is an ECTL property
Counter-Example Generation

• Given an ACTL property p, we negate it and compute the set of states which satisfy it is negation $\neg p$
 – $\neg p$ is an ECTL property

• If we can find an initial state which satisfies $\neg p$ then we generate a counter-example path for p starting from that initial state
 – Such a path is called a witness for the ECTL property $\neg p$
An Example

- We want to check the property $\text{AG}(p)$
- We compute the fixpoint for $\text{EF}(\neg p)$
- We check if the intersection of the set of initial states I and the truth set of $\text{EF}(\neg p)$ is empty
 - If it is not empty we generate a counter-example path starting from the intersection

$$\text{EF}(\neg p) \equiv \text{states that can reach } \neg p \equiv \neg p \cup \text{EX}(\neg p) \cup \text{EX}(\text{EX}(\neg p)) \cup \ldots$$

- In order to generate the counter-example path, save the fixpoint iterations.
- After the fixpoint computation converges, do a second pass to generate the counter-example path.
Another Example

- We want to check the property \(AF(p) \)
- We compute the fixpoint for \(EG(\neg p) \)
- We check if the intersection of the set of initial states \(I \) and the truth set of \(EG(\neg p) \) is empty
 - If it is not empty we generate a counter-example path starting from the intersection

\[
EG(\neg p) \equiv \text{states that can avoid reaching } p \equiv \neg p \cap EX(\neg p) \cap EX(EX(\neg p)) \cap \ldots
\]

- In order to generate the counter-example path, look for a cycle in the resulting fixpoint

Generate a counter-example path starting from a state here
Counter-example generation

- In general the counter-example for an ACTL property (equivalently a witness to an ECTL property) is not a single path
- For example, the counter example for the property $\text{AF}(\text{AG}p)$ would be a witness for the property $\text{EG}(\text{EF}\neg p)$
 - It is not possible to characterize the witness for $\text{EG}(\text{EF}\neg p)$ as a single path
- However it is possible to generate tree-like transition graphs containing counter-example behaviors as a counter-example:
 - Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut Veith: “Tree-Like Counterexamples in Model Checking”. LICS 2002: 19-29