CS 267: Automated Verification

Lecture 7: SMV Symbolic Model Checker,
Partitioned Transition Systems,
Counter-example Generation in Symbolic Model
Checking

Instructor: Tevfik Bultan



SMV [McMillan 93]

« BDD-based symbolic model checker
* Finite state
* Temporal logic: CTL
* Focus: hardware verification
— Later applied to software specifications, protocols, etc.
 SMV has its own input specification language
— concurrency: synchronous, asynchronous
— shared variables
— boolean and enumerated variables
— bounded integer variables (binary encoding)
« SMV is not efficient for integers, but that can be fixed
— fixed size arrays



SMV Language

An SMV specification consists of a set of modules (one of
them must be called main)

Modules can have access to shared variables

Modules can be composed asynchronously using the
process keyword

Module behaviors can be specified using the ASSIGN
statement which assigns values to next state variables in
parallel

Module behaviors can also be specified using the TRANS

statements which allow specification of the transition

relation as a logic formula where next state values are
identified using the next keyword



Example Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter a
critical section without violating mutual exclusion

Process 1:
while (true) {

out: a := true,; turn := true;
walt: await (b = false or turn = false);
CS: a := false;

}
||

Process 2:

while (true) {
out: Db := true; turn := false;
walt: await (a = false or turn):;
CS: b := false;



Example Mutual Exclusion Protocol in SMV

MODULE processl (a,b, turn) MODULE process?2 (a,b, turn)
VAR VAR
pc: {out, wait, cs}; pc: {out, wait, cs};
ASSIGN ASSIGN
init (pc) := out; init (pc) := out;
next (pc) := next (pc) :=
case case
pc=out : wait; pc=out : wait;
pc=walt & (!b | !turn) : cs; pc=wait & (!a | turn)
pc=cs : out; pc=cs : out;
1 : pc; 1 : pc;
esac; esac;
next (turn) := next (turn) :=
case case
pc=out : 1; pc=out : 0;
1 : turn; 1 : turn;
esac; esac;
next (a) := next (b) :=
case case
pc=out : 1; pc=out : 1;
pc=cs : 0; pc=cs : 0;
1 : a; 1 : b;
esac; esac;
next (b) := b; next (a) := a;
FATRNESS FATRNESS

running running

CSy;



Example Mutual Exclusion Protocol in SMV

MODULE main

VAR
a : boolean;
b : boolean;
turn : boolean;

pl : process processl (a,b, turn);
p2 : process processZ(a,b, turn);
SPEC

AG(!(pl.pc=cs & p2.pc=cs))
-— AG(pl.pc=wait -> AF(pl.pc=cs)) & AG(p2.pc=wait -> AF(p2.pc=cs))

Here is the output when | run SMV on this example to
check the mutual exclusion property

% smv mutex.smv
-— specification AG (! (pl.pc = cs & p2.pc = cs)) 1is true

resources used:

user time: 0.01 s, system time: 0 s

BDD nodes allocated: 692

Bytes allocated: 1245184

BDD nodes representing transition relation: 143 + 6



Example Mutual Exclusion Protocol in SMV

The output for the starvation freedom property:

% smv mutex.smv
-— specification AG (pl.pc = wait -> AF pl.pc = cs) & AG ... 1s true

resources used:

user time: 0 s, system time: 0 s

BDD nodes allocated: 1251

Bytes allocated: 1245184

BDD nodes representing transition relation: 143 + 6



Example Mutual Exclusion Protocol in SMV

Let’ s insert an error

Change pc=wait & (!b | !turn) : cs;

to pc=wait & (!b | turn) : cs;



$ smv mutex.smv

-— specification AG

(' (pl.pc

= Ccs & p2.pc = cs)) 1is false

-- as demonstrated by the following execution sequence

state 1.1:

a =0

b =20

turn = 0
pl.pc = out
pZ2.pc = out
[stuttering]

state 1.2:
[executing process

state 1.3:

b =1

p2.pc = wait
[executing process

state 1.4:
p2.pc = CsS
[executing process

state 1.5:

a =1

turn =1

pl.pc = wait
[executing process

state 1.6:
pl.pc = cs
[stuttering]

resources used:

user time: 0.01 s, system time: 0 s

BDD nodes allocated: 1878

Bytes allocated: 1245184

BDD nodes representing transition relation:

143 + ©



Symbolic Model Checking with BDDs

* As we discussed earlier BDDs are used as a data structure
for encoding trust sets of Boolean logic formulas in
symbolic model checking

* One can use BDD-based symbolic model checking for any
finite state system using a Boolean encoding of the state
space and the transition relation

* Why are we using symbolic model checking?

— We hope that the symbolic representations will be more
compact than the explicit state representation on the
average

— In the worst case we may not gain anything



Symbolic Model Checking with BDDs

* Possible problems
— The BDD for the transition relation could be huge

« Remember that the BDD could be exponential in the
number of disjuncts and conjuncts

« Since we are using a Boolean encoding there could
be a large number of conjuncts and disjuncts

— The EX computation could result in exponential blow-up

« Exponential in the number of existentially quantified
variables



Partitioned Transition Systems

 |f the BDD for the transition relation R is too big, we can try
to partition it and represent it with multiple BDDs

* We need to be able to do the EX computation on this
partitioned transition system



Disjunctive Partitioning

 Disjunctive partitioning:
RER1 \/R2V \/Rk

We can distribute the EX computation since existential
quantification distributes over disjunction

We compute the EX for each R; separately and then take
the disjunction of all the results



Disjunctive Partitioning

« Remember EX, let’ s assume that EX also takes the
transition relation as input:

EX(p, R)={s|(s,s’) e Rands” ep}
which in symbolic model checking becomes:
EX(p, R)= 3V’ RAp[V’ /V]

If we canwrite RasR=R; vR, v ... v R then
EX(p, R)= 3V  RAp[V' /V]
=3V (Ri{vR,v ... vR) Ap[V' /V]

= 3V RiAp[V IVIVR APV /V]Vv ...vRAP[V /
V])

= @AV RiAp[V /V]) v@AV RyAplV /V]DvV ...v 3@V
RA p[V' 1V])

= EX(p, Ry) v EX(p, Ry) v ... v EX(p, Ry)



Disjunctive Partitioning

The purpose of disjunctive partitioning is the following:
« |f we can write R as
RER1 \/R2V \/Rk

then we can use R, ... Ry instead of R during the EX

computation and we never have to construct the BDD for
R

* We can use R;s to compute the EX(p, R) as
EX(p, R) = EX(p, R1) vV EX(p, RZ) VoV EX(p, Rk)

* If Ris much bigger than all the R;s, then disjunctive
partitioning can improve the model checking performance



Recall this Extremely Simple Example

Variables: x, y: boolean

Set of states:

S ={(F,F), (F,T), (T,F), (T,T)}
S =True

Initial condition:
I =— XA T y

Transition relation (negates one variable at a time):
R=X=-XAY Sy VX =X AY =y (= means <)

A possible disjunctive partitioning:
R = R1 V R2
Ri=X=XAY =y Ry=X=XAY =y



An Extremely Simple Example

Given p = x Ay, compute EX(p)

EX(p, R)= 3V' RAp[V’ /V]
= EX(p, Ry) v EX(p, Ry)

EX(p, Ri)= AV RiAX AY )= AV X ==XAY Y AX AY )
=3V —XAYAX AY )=—XAY

EX(p, Ry)= AV RoAaX AY )=@V X =XAY ==y AX AY )
= AV XA=YAX AY )=XA-Y

EX(xAY)=EX(p, Ry) vVEX(p, Ry))==-XAYyVXA-Y
In other words EX({(T,T)}) = {(F,T), (T,F)}



Conjunctive Partitioning

« Conjunctive partitioning:
RER1 /\Rz/\ /\Rk

Unfortunately EX computation does not distribute over the
conjunction partitioning in general since existential
quantification does NOT distribute over conjunction

 However if each R is expressed on a separate set of next
state variables (i.e., if a next state variable appears in R,
then it should not appear in any other conjunct)

— Then we can distribute the existential quantification over
each R,



Conjunctive Partitioning

 [fwecanwrite RasR=R;{AR, A ... ARy
where R is a formula only on variables V,and V,’
andizj=V, NV, =g
which means that a primed variable does not appear in
more than one R

* Then, we can do the existential quantification separately for
each R, as follows:

EX(p, R)= 3V’ R Ap[V' /V]
=3V p[V /IVIA(RIAR A ... AR))
= (EIVk’ (ElVZ’ (ElV»]’ p[V’ /V]/\R1) /\Rz)/\ .../\Rk)



An Even Simpler Example

Variables: x, y: boolean

Set of states: @ @
S ={(F,F), (F,T), (T,F), (T,T)}

S =True

Initial condition:
I =— XA T y

Transition relation (negates one variable at a time):
R=X=—XAYy =~y (= means <)

A possible conjunctive partitioning:
R = R1 AN R2
R1 = X’ ——X R2 = y’ =—|y



An Even Simpler Example

| F.F @
Given p = x Ay, compute EX(p) él

EX(p, R)= 3V’ R A p[V’ /V]

= 3V, 3V, p[V' /V]AR,) AR,

= 3V, 3V, x Ay ARy AR,

= Jy 3X X AY AX ==X) AY =y
= Jy 3X X AY A—=X) AY =y

= 3y Yy A—X AY =y

= Ay Y A=X A-Y

= X A-Y

EX(XAY) =—XA—Yy
In other words EX({(T,T)}) = {(F,F)}



Partitioned Transition Systems

» Using partitioned transition systems we can reduce the size
of memory required for representing R and the size of the
memory required to do model checking with R

* Note that, for either type of partitioning
— disjunctive R=R; vR, v ... VR
— orconjunctive R=R; AR, A ... ARy
size of R can be exponential in k

* So by keeping R in partitioned form we can avoid
constructing the BDD for R which can be exponentially
bigger than each R;



Other Improvements for BDDs

* Variable ordering is important

— For example for representing linear arithmetic
constraints such as x =y + z where X, y, and z are
integer variables represented in binary,

* If the variable ordering is: all the bits for x, all the bits
for y and all the bits for z, then the size of the BDD is
exponential in the number of bits

— In fact this is the ordering used in SMV which
makes SMV very inefficient for verification of
specifications that contain arithmetic constraints

* |f the binary variables for X, y, and z are interleaved,
the size of the BDD is linear in the number of bits

— S0, for specific classes of systems there may be good
variable orderings



Other Improvements to BDDs

* There are also dynamic variable ordering heuristics which
try to change the ordering of the BDD on the fly and reduce
the size of the BDD

* There are also variants of BDDs such as multi-terminal
decision diagrams, where the leaf nodes have more than
two distinct values.

— Useful for domains with more than two values
e Can be translated to BDDs



Counter-Example Generation

 Remember: Given a transition system T= (S, |, R) and a
CTL property p T |= p iff for all initial state s € |, s |=p

* Verification vs. Falsification
— Verification:
« Show: initial states c truth set of p
— Falsification:
e Find: a state < initial states m truth set of —p
« Generate a counter-example starting from that state

* The ability to find counter-examples is one of the biggest
strengths of the model checkers



An Example

* |f we wish to check the property AG(p)

 We can use the equivalence:

If we can find an initial state which satisfies EF(—p), then we

know that the transition system T, does not satisfy the
property AG(p)



Another Example

* |f we wish to check the property AF(p)

 We can use the equivalence:
AF(p) = - EG(—p)

If we can find an initial state which satisfies EG(—p), then we

know that the transition system T, does not satisfy the
property AF(p)



General Idea

* We can define two temporal logics using subsets of CTL
operators

— ACTL: CTL formulas which only use the temporal
operators AX, AG, AF and AU and all the negations
appear only in atomic properties (there are no negations
outside of temporal operators)

— ECTL: CTL formulas which only use the temporal
operators EX, EG, EF and EU and all the negations
appear only in atomic properties

* Given an ACTL property its negation is an ECTL property



Counter-Example Generation

* Given an ACTL property p, we negate it and compute the
set of states which satisfy it is negation — p

— —p is an ECTL property

 |If we can find an initial state which satisfies — p then we
generate a counter-example path for p starting from that
Initial state

— Such a path is called a witness for the ECTL property
—p



An Example

» We want to check the property AG(p)
» We compute the fixpoint for EF(—p)

 We check if the intersection of the set of initial states | and
the truth set of EF(—p) is empty

— If it is not empty we generate a counter-example path
starting from the intersection

EF(—p) = states that can reach —p = —p U EX(—p) U EX(EX(—p)) U ...

* In order to generate the
counter-example path, save
the fixpoint iterations.

« After the fixpoint computation
converges, do a second pass

to generate the counter-example path. Generate.a counter-example
path starting from a state here




Another Example

 We want to check the property AF(p)
« We compute the fixpoint for EG(—p)

 We check if the intersection of the set of initial states | and
the truth set of EG(—p) is empty

— If it is not empty we generate a counter-example path
starting from the intersection

EG(—p) = states that can avoid reaching p = —p N EX(=p) N EX(EX(—p)) N ...
/

\\‘
\ I
* In order to generate the ¢ o o EG(—p) \_& |

counter-example path, look
for a cycle in the resulting
fixpoint

Generate a counter-example
path starting from a state here



Counter-example generation

* In general the counter-example for an ACTL property
(equivalently a witness to an ECTL property) is not a single
path

* For example, the counter example for the property AF(AGP)
would be a witness for the property EG(EF—p)

— It is not possible to characterize the witness for
EG(EF—p) as a single path
 However it is possible to generate tree-like transition
graphs containing counter-example behaviors as a counter-
example:
— Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut

Veith: “Tree-Like Counterexamples in Model Checking”.
LICS 2002: 19-29



