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SMV [McMillan 93]

• BDD-based symbolic model checker  

• Finite state

• Temporal logic: CTL

• Focus: hardware verification

– Later applied to software specifications, protocols, etc.

• SMV has its own input specification language 

– concurrency: synchronous, asynchronous 

– shared variables

– boolean and enumerated variables

– bounded integer variables (binary encoding) 

• SMV is not efficient for integers, but that can be fixed

– fixed size arrays



SMV Language

• An SMV specification consists of a set of modules (one of 
them must be called main)

• Modules can have access to shared variables
• Modules can be composed asynchronously using the 
process keyword

• Module behaviors can be specified using the ASSIGN
statement which assigns values to next state variables in 
parallel

• Module behaviors can also be specified using the TRANS
statements which allow specification of the transition 
relation as a  logic formula where next state values are 
identified using the next keyword



Example Mutual Exclusion Protocol

Process 1:
while (true) {

out:  a := true; turn := true;
wait: await (b = false or turn = false);
cs:   a := false;

}
||
Process 2:
while (true) {

out:  b := true; turn := false;
wait: await (a = false or turn);
cs:   b := false;

}

Two concurrently executing processes are trying to enter a 
critical section without violating mutual exclusion



Example Mutual Exclusion Protocol in SMV
MODULE process1(a,b,turn)
VAR
pc: {out, wait, cs};

ASSIGN
init(pc) := out;
next(pc) :=
case
pc=out : wait;
pc=wait & (!b | !turn) : cs;
pc=cs : out;
1 : pc;

esac;
next(turn) :=
case
pc=out : 1;
1 : turn;

esac;
next(a) :=
case
pc=out : 1;
pc=cs : 0;
1 : a;

esac;
next(b) := b;

FAIRNESS
running

MODULE process2(a,b,turn)
VAR
pc: {out, wait, cs};

ASSIGN
init(pc) := out;
next(pc) :=
case
pc=out : wait;
pc=wait & (!a | turn) : cs;
pc=cs : out;
1 : pc;

esac;
next(turn) :=
case
pc=out : 0;
1 : turn;

esac;
next(b) :=
case
pc=out : 1;
pc=cs : 0;
1 : b;

esac;
next(a) := a;

FAIRNESS
running



Example Mutual Exclusion Protocol in SMV
MODULE main
VAR
a : boolean;
b : boolean;
turn : boolean;
p1 : process process1(a,b,turn);
p2 : process process2(a,b,turn);

SPEC
AG(!(p1.pc=cs & p2.pc=cs))
-- AG(p1.pc=wait -> AF(p1.pc=cs)) & AG(p2.pc=wait -> AF(p2.pc=cs))

Here is the output when I run SMV on this example to 
check the mutual exclusion property

% smv mutex.smv
-- specification AG (!(p1.pc = cs & p2.pc = cs)) is true

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 692
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6



Example Mutual Exclusion Protocol in SMV

The output for the starvation freedom property:

% smv mutex.smv
-- specification AG (p1.pc = wait -> AF p1.pc = cs) & AG ... is true

resources used:
user time: 0 s, system time: 0 s
BDD nodes allocated: 1251
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6



Example Mutual Exclusion Protocol in SMV

Let’s insert an error

change pc=wait & (!b | !turn) : cs;

to pc=wait & (!b | turn) : cs;



% smv mutex.smv
-- specification AG (!(p1.pc = cs & p2.pc = cs)) is false
-- as demonstrated by the following execution sequence
state 1.1:
a = 0
b = 0
turn = 0
p1.pc = out
p2.pc = out
[stuttering]

state 1.2:
[executing process p2]

state 1.3:
b = 1
p2.pc = wait
[executing process p2]

state 1.4:
p2.pc = cs
[executing process p1]

state 1.5:
a = 1
turn = 1
p1.pc = wait
[executing process p1]

state 1.6:
p1.pc = cs
[stuttering]

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 1878
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6



Symbolic Model Checking with BDDs

• As we discussed earlier BDDs are used as a data structure 
for encoding trust sets of Boolean logic formulas in 
symbolic model checking

• One can use BDD-based symbolic model checking for any 
finite state system using a Boolean encoding of the state 
space and the transition relation

• Why are we using symbolic model checking?
– We hope that the symbolic representations will be more 

compact than the explicit state representation on the 
average

– In the worst case we may not gain anything



Symbolic Model Checking with BDDs

• Possible problems
– The BDD for the transition relation could be huge

• Remember that the BDD could be exponential in the 
number of disjuncts and conjuncts

• Since we are using a Boolean encoding there could 
be a large number of conjuncts and disjuncts 

– The EX computation could result in exponential blow-up
• Exponential in the number of existentially quantified 

variables



Partitioned Transition Systems

• If the BDD for the transition relation R is too big, we can try 
to partition it and represent it with multiple BDDs

• We need to be able to do the EX computation on this 
partitioned transition system



Disjunctive Partitioning

• Disjunctive partitioning:
R º R1 Ú R2 Ú … Ú Rk

We can distribute the EX computation since existential 
quantification distributes over disjunction

We compute the EX for each Ri separately and then take 
the disjunction of all the results



Disjunctive Partitioning

• Remember EX, let’s assume that EX also takes the 
transition relation as input:
EX(p, R) = { s | (s,s’) Î R and s’ Î p }
which in symbolic model checking becomes:
EX(p, R) º $V’ R Ù p[V’ / V]

If we can write R as R º R1 Ú R2 Ú … Ú Rk then
EX(p, R) º $V’ R Ù p[V’ / V]
º $V’ (R1 Ú R2 Ú … Ú Rk) Ù p[V’ / V]
º $V’ (R1 Ù p[V’ / V] Ú R2 Ù p[V’ / V] Ú … Ú Rk Ù p[V’ / 

V])
º ($V’ R1 Ù p[V’ / V]) Ú ($V’ R2 Ù p[V’ / V]) Ú … Ú ($V’

Rk Ù p[V’ / V])
º EX(p, R1) Ú EX(p, R2) Ú … Ú EX(p, Rk) 



Disjunctive Partitioning

The purpose of disjunctive partitioning is the following:
• If we can write R as 

R º R1 Ú R2 Ú … Ú Rk

then we can use R1 … Rk instead of R during the EX 
computation and we never have to construct the BDD for 
R

• We can use Ris to compute the EX(p, R) as
EX(p, R) º EX(p, R1) Ú EX(p, R2) Ú … Ú EX(p, Rk) 

• If R is much bigger than all the Ris, then disjunctive 
partitioning can improve the model checking performance



Recall this Extremely Simple Example

Variables: x, y: boolean
Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S º True

Initial condition:
I º ¬ x Ù ¬ y

Transition relation (negates one variable at a time):
R º x’=¬x Ù y’=y Ú x’=x Ù y’=¬y  (= means «)

A possible disjunctive partitioning:
R º R1 Ú R2
R1 º x’=¬x Ù y’=y R2 º x’=x Ù y’=¬y 

F,T

F,F

T,T

T,F



An Extremely Simple Example

Given p º x Ù y, compute EX(p)

EX(p, R) º $V’ R Ù p[V’ / V] 
º EX(p, R1) Ú EX(p, R2) 

EX(p, R1) º ($V’ R1 Ù x’ Ù y’) º ($V’ x’=¬x Ù y’=y Ù x’ Ù y’) 
º ($V’ ¬x Ù y Ù x’ Ù y’) º ¬x Ù y 

EX(p, R2) º ($V’ R2 Ù x’ Ù y’) º ($V’ x’=x Ù y’=¬y Ù x’ Ù y’)
º ($V’ x Ù ¬y Ù x’ Ù y’) º x Ù ¬y

EX(x Ù y) º EX(p, R1) Ú EX(p, R2) º ¬x Ù y Ú x Ù ¬y
In other words EX({(T,T)}) º {(F,T), (T,F)}

F,T

F,F

T,T

T,F



Conjunctive Partitioning

• Conjunctive partitioning:

R º R1 Ù R2 Ù … Ù Rk

Unfortunately EX computation does not distribute over the 

conjunction partitioning in general since existential 
quantification does NOT distribute over conjunction

• However if each Ri is expressed on a separate set of next 

state variables (i.e., if a next state variable appears in Ri

then it should not appear in any other conjunct)

– Then we can distribute the existential quantification over 

each Ri



Conjunctive Partitioning

• If we can write R as R º R1 Ù R2 Ù … Ù Rk

where Ri is a formula only on variables Vi and Vi’

and i ¹ j Þ Vi’ Ç Vj’ = Æ
which means that a primed variable does not appear in 

more than one Ri

• Then, we can do the existential quantification separately for 
each Ri as follows:
EX(p, R) º $V’ R Ù p[V’ / V]
º $V’ p[V’ / V] Ù (R1 Ù R2 Ù … Ù Rk)
º ($Vk’… ($V2’ ($V1’ p[V’ / V] Ù R1) Ù R2 ) Ù … Ù Rk)



An Even Simpler Example

Variables: x, y: boolean
Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S º True

Initial condition:
I º ¬ x Ù ¬ y

Transition relation (negates one variable at a time):
R º x’=¬x Ù y’= ¬y (= means «)

A possible conjunctive partitioning:
R º R1 Ù R2
R1 º x’=¬x R2 º y’=¬y 

F,F T,T



An Even Simpler Example

Given p º x Ù y, compute EX(p)

EX(p, R) º $V’ R Ù p[V’ / V] 
º $V2’ ($V1’ p[V’ / V] Ù R1) Ù R2

º $V2’ ($V1’ x’ Ù y’ Ù R1) Ù R2

º $y’ ($x’ x’ Ù y’ Ù x’=¬x ) Ù y’=¬y 
º $y’ ($x’ x’ Ù y’ Ù ¬x ) Ù y’=¬y
º $y’ y’ Ù ¬x Ù y’=¬y
º $y’ y’ Ù ¬x Ù ¬y
º ¬x Ù ¬y

EX(x Ù y) º ¬x Ù ¬y
In other words EX({(T,T)}) º {(F,F)}

F,F T,T



Partitioned Transition Systems

• Using partitioned transition systems we can reduce the size 
of memory required for representing R and the size of the 
memory required to do model checking with R 

• Note that, for either type of partitioning
– disjunctive R º R1 Ú R2 Ú … Ú Rk

– or conjunctive R º R1 Ù R2 Ù … Ù Rk

size of R can be exponential in k

• So by keeping R in partitioned form we can avoid 
constructing the BDD for R which can be exponentially 
bigger than each Ri



Other Improvements for BDDs

• Variable ordering is important
– For example for representing linear arithmetic 

constraints such as x = y + z where x, y, and z are 
integer variables represented in binary, 
• If the variable ordering is: all the bits for x, all the bits 

for y and all the bits for z, then the size of the BDD is 
exponential in the number of bits

– In fact this is the ordering used in SMV which 
makes SMV very inefficient for verification of 
specifications that contain arithmetic constraints

• If the binary variables for x, y, and z are interleaved, 
the size of the BDD is linear in the number of bits

– So, for specific classes of systems there may be good 
variable orderings



Other Improvements to BDDs

• There are also dynamic variable ordering heuristics which 
try to change the ordering of the BDD on the fly and reduce 
the size of the BDD 

• There are also variants of BDDs such as multi-terminal 
decision diagrams, where the leaf nodes have more than 
two distinct values. 
– Useful for domains with more than two values

• Can be translated to BDDs



Counter-Example Generation

• Remember: Given a transition system T= (S, I, R) and a 

CTL property p T |= p iff for all initial state s Î I, s |= p

• Verification vs. Falsification

– Verification: 

• Show: initial states Í truth set of p
– Falsification:

• Find: a state Î initial states Ç truth set of ¬p
• Generate a counter-example starting from that state

• The ability to find counter-examples is one of the biggest 

strengths of the model checkers



An Example

• If we wish to check the property AG(p)

• We can use the equivalence:
AG(p) º ¬ EF(¬p)

If we can find an initial state which satisfies EF(¬p), then we 
know that the transition system T, does not satisfy the 
property AG(p)



Another Example

• If we wish to check the property AF(p)

• We can use the equivalence:
AF(p) º ¬ EG(¬p)

If we can find an initial state which satisfies EG(¬p), then we 
know that the transition system T, does not satisfy the 
property AF(p)



General Idea

• We can define two temporal logics using subsets of CTL 
operators
– ACTL: CTL formulas which only use the temporal 

operators AX, AG, AF and AU and all the negations 
appear only in atomic properties (there are no negations 
outside of temporal operators)

– ECTL: CTL formulas which only use the temporal 
operators EX, EG, EF and EU and all the negations 
appear only in atomic properties 

• Given an ACTL property its negation is an ECTL property



Counter-Example Generation

• Given an ACTL property p, we negate it and compute the 
set of states which satisfy it is negation ¬ p 
– ¬p is an ECTL property

• If we can find an initial state which satisfies ¬ p then we 
generate a counter-example path for p starting from that 
initial state
– Such a path is called a witness for the ECTL property    
¬ p



An Example

•  •  •¬p

EF(¬p) º states that can reach ¬p  º ¬p  È EX(¬p) È EX(EX(¬p)) È ...

EF(¬p)

• We want to check the property AG(p) 
• We  compute the fixpoint for EF(¬p)
• We check if the intersection of the set of initial states I and 

the truth set of EF(¬p) is empty
– If it is not empty we generate a counter-example path 

starting from the intersection

I

Generate a counter-example
path starting from a state here

• In order to generate the 
counter-example path, save
the fixpoint iterations.
• After the fixpoint computation
converges, do a second pass 
to generate the counter-example path.

•  •  •



Another Example

•  •  • EG(¬p)

EG(¬p) º states that can avoid reaching p º ¬p Ç EX(¬p) Ç EX(EX(¬p)) Ç ...

I

Generate a counter-example
path starting from a state here

• We want to check the property AF(p) 
• We  compute the fixpoint for EG(¬p)
• We check if the intersection of the set of initial states I and 

the truth set of EG(¬p) is empty
– If it is not empty we generate a counter-example path 

starting from the intersection

• In order to generate the 
counter-example path, look
for a cycle in the resulting
fixpoint 

•  •  •



Counter-example generation

• In general the counter-example for an ACTL property 
(equivalently a witness to an ECTL property) is not a single 
path

• For example, the counter example for the property AF(AGp) 
would be a witness for the property EG(EF¬p)
– It is not possible to characterize the witness for 

EG(EF¬p) as a single path
• However it is possible to generate tree-like transition 

graphs containing counter-example behaviors as a counter-
example:
– Edmund M. Clarke, Somesh Jha, Yuan Lu, Helmut 

Veith: “Tree-Like Counterexamples in Model Checking”. 
LICS 2002: 19-29


