
CS 267: Automated Verification

Lecture 8: Automata Theoretic Model Checking

Instructor: Tevfik Bultan

LTL Properties º Büchi automata
[Vardi and Wolper LICS 86]

• Büchi automata: Finite state automata that accept infinite
strings

– The better known variant of finite state automata accept

finite strings (used in lexical analysis for example)

• A Büchi automaton accepts a string when the

corresponding run visits an accepting state infinitely often
– Note that an infinite run never ends, so we cannot say

that an accepting run ends at an accepting state

• LTL properties can be translated to Büchi automata

– The automaton accepts a path if and only if the path

satisfies the corresponding LTL property

LTL Properties º Büchi automata

G p p ¬p
true

F p p¬p
true

G (F p) p

The size of the property automaton can be exponential in the
size of the LTL formula (recall the complexity of LTL model
checking)

¬p

¬p

p

Büchi Automata: Language Emptiness Check

• Given a Buchi automaton, one interesting question is:
– Is the language accepted by the automaton empty?

• i.e., does it accept any string?
• A Büchi automaton accepts a string when the

corresponding run visits an accepting state infinitely often
• To check emptiness:

– Look for a cycle which contains an accepting state and is
reachable from the initial state
• Find a strongly connected component that contains

an accepting state, and is reachable from the initial
state

– If no such cycle can be found the language accepted by
the automaton is empty

LTL Model Checking

• Generate the property automaton from the negated LTL
property

• Generate the product of the property automaton and the
transition system

• Show that there is no accepting cycle in the product
automaton (check language emptiness)
– i.e., show that the intersection of the paths generated by

the transition system and the paths accepted by the
(negated) property automaton is empty

• If there is a cycle, it corresponds to a counterexample
behavior that demonstrates the bug

LTL Model Checking Example

G q

Each state is labeled with
the propositions that hold
in that state

Example transition system
Property to be verified

Negation of the property
¬ G q º F ¬q

Property automaton for
the negated property

q ¬q
true

2

1

3

p,q

q p

{q},{p,q}

Æ, {p}
Æ,{p},{q},

{p,q}
1 2

Equivalently

Transition System to Buchi Automaton Translation

2

1

3

Each state is labeled with
the propositions that hold
in that state

Example transition system Corresponding Buchi automaton

{p,q}

{p}

{q}

{p,q}

{q}

i

1

2 3

p,q

q p

{p,q}

{p}

{q}

{p,q}

{q}

{q},{p,q}
Æ, {p}

Æ,{p},{q},
{p,q}

1

2

3 4

1 2

Product automaton

{p,q}

{p}

{q}

{p,q}

1,1

2,1

3,1

4,2

{q}
3,2

{p}

Buchi automaton for
the transition system
(every state is accepting)

Property Automaton
Accepting cycle:
(1,1), (2,1), (3,1), ((4,2), (3,2))w
Corresponds to a counter-example
path for the property G q

SPIN [Holzmann 91, TSE 97]

• Explicit state model checker
• Finite state
• Temporal logic: LTL
• Input language: PROMELA

– Asynchronous processes
– Shared variables
– Message passing through (bounded) communication

channels
– Variables: boolean, char, integer (bounded), arrays

(fixed size)
– Structured data types

SPIN

Verification in SPIN
• Uses the LTL model checking approach
• Constructs the product automaton on-the-fly

– It is possible to find an accepting cycle (i.e. a counter-
example) without constructing the whole state space

• Uses a nested depth-first search algorithm to look for an
accepting cycle

• Uses various heuristics to improve the efficiency of the
nested depth first search:
– partial order reduction
– state compression

Example Mutual Exclusion Protocol

Process 1:
while (true) {

out: a := true; turn := true;
wait: await (b = false or turn = false);
cs: a := false;

}
||
Process 2:
while (true) {

out: b := true; turn := false;
wait: await (a = false or turn);
cs: b := false;

}

Two concurrently executing processes are trying to enter a
critical section without violating mutual exclusion

Example Mutual Exclusion Protocol in Promela

#define cs1 process1@cs
#define cs2 process2@cs
#define wait1 process1@wait
#define wait2 process2@wait
#define true 1
#define false 0
bool a;
bool b;
bool turn;
proctype process1()
{
out: a = true; turn = true;
wait: (b == false || turn == false);
cs: a = false; goto out;
}
proctype process2()
{
out: b = true; turn = false;
wait: (a == false || turn == true);
cs: b = false; goto out;
}
init {
run process1(); run process2()

}

Property automaton generation
% spin -f "! [] (! (cs1 && cs2))“

never { /* ! [] (! (cs1 && cs2)) */
T0_init:

if
:: ((cs1) && (cs2)) -> goto accept_all
:: (1) -> goto T0_init
fi;

accept_all:
skip

}

% spin -f "!([](wait1 -> <>(cs1)))“

never { /* !([](wait1 -> <>(cs1))) */
T0_init:

if
:: (!((cs1)) && (wait1)) -> goto accept_S4
:: (1) -> goto T0_init
fi;

accept_S4:
if
:: (! ((cs1))) -> goto accept_S4
fi;

}

Concatanate the generated never claims to the end of the specification file

• Input formula
“[]” means G
“<>” means F

• “spin –f” option
generates a Buchi
automaton for the
input LTL formula

SPIN

• “spin –a mutex.spin” generates a C program “pan.c” from
the specification file
– This C program implements the on-the-fly nested-depth

first search algorithm
– You compile “pan.c” and run it to the model checking

• Spin generates a counter-example trace if it finds out that a
property is violated

%mutex -a
warning: for p.o. reduction to be valid the never claim must be stutter-invariant
(never claims generated from LTL formulae are stutter-invariant)
(Spin Version 4.2.6 -- 27 October 2005)

+ Partial Order Reduction

Full statespace search for:
never claim +
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 28 byte, depth reached 33, errors: 0
22 states, stored
15 states, matched
37 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype process1
line 18, state 6, "-end-"
(1 of 6 states)

unreached in proctype process2
line 27, state 6, "-end-"
(1 of 6 states)

unreached in proctype :init:
(0 of 3 states)

Automata Theoretic LTL Model Checking

Input: A transition system T and an LTL property f

• Translate the transition system T to a Buchi automaton AT

• Negate the LTL property and translate the negated property
¬f to a Buchi automaton A¬f

• Check if the intersection of the languages accepted by AT
and A¬f is empty
– Is L(AT) Ç L(A¬f) = Æ ?

– If L(AT) Ç L(A¬f) ¹ Æ, then the transition system T
violates the property f

Automata Theoretic LTL Model Checking

• Note that
– L(AT) Ç L(A¬f) = Æ if and only if L(AT) Í L(Af)

• By negating the property f we are converting language
subsumption check to language intersection followed by
language emptiness check

• Given the Buchi automata AT and A¬f we will construct a
product automaton AT ´ A¬f such that
– L(AT ´ A¬f) = L(AT) Ç L(A¬f)

• So all we have to do is to check if the language accepted
by the Buchi automaton AT ´ A¬f is empty

Buchi Automata

A Buchi automaton is a tuple A = (S, Q, D, Q0, F) where
S is a finite alphabet
Q is a finite set of states
D Í Q ´ S ´ Q is the transition relation
Q0 Í Q is the set of initial states
F Í Q is the set of accepting states

• A Buchi automaton A recognizes a language which consists
of infinite words over the alphabet S

L(A) Í Sw

Sw denotes the set of infinite words over the alphabet S

Buchi Automaton

• Given an infinite word w Î Sw where w = a0, a1, a2, …
a run r of the automaton A over w is an infinite sequence of

automaton states r = q0, q1, q2, … where q0 Î Q0 and for
all i ³ 0, (qi,ai,qi+1) Î D

• Given a run r, let inf(r) Í Q be the set of automata states
that appear in r infinitely many times

• A run r is an accepting run if and only if inf(r) Ç F ¹ Æ
i.e., a run is an accepting run if some accepting states

appear in r infinitely many times

Transition System to Buchi Automaton Translation

Given a transition system T = (S, I, R)
a set of atomic propositions AP and
a labeling function L : S ´ AP ® {true, false}

the corresponding Buchi automaton AT = (ST, QT, DT, Q0T, FT)
ST = 2AP an alphabet symbol corresponds to a set

of atomic propositions
QT = S È {i} i is a new state which is not in S
QoT = {i} i is the only initial state
FT = S È {i} all states of AT are accepting states

DT is defined as follows:
(s,a,s’) Î D iff either (s,s’) Î R and pÎa iff L(s’,p) = true

or s=i and s’ Î I and pÎa iff L(s’,p) = true

Transition System to Buchi Automaton Translation

2

1

3

Each state is labeled with
the propositions that hold
in that state

Example transition system Corresponding Buchi automaton

{p,q}

{p}

{q}

{p,q}

{q}

i

1

2 3

p,q

q p

Generalized Buchi Automaton

A generalized Buchi automaton is a tuple A = (S, Q, D, Q0, F)
where
S is a finite alphabet
Q is a finite set of states
D Í Q ´ S ´ Q is the transition relation
Q0 Í Q is the set of initial states
F Í 2Q is sets of accepting states
i.e., F = {F1, F2, …, Fk} where Fi Í Q for 1 £ i £ k

• Given a generalized Buchi automaton A, a run r is an
accepting run if and only if
– for all 1 £ i £ k, inf(r) Ç Fi ¹ Æ

This is different than
the standard definition

Buchi Automata Product

Given A1 = (S, Q1, D1, Q01, F1) and A2 = (S, Q2, D2, Q02, F2)
the product automaton A1 ´ A2 = (S, Q, D, Q0, F) is defined as:

Q = Q1 ´ Q2

Q0 = Q01 ´ Q02

F = {F1 ´ Q2, Q1 ´ F2} (a generalized Buchi automaton)

D is defined as follows:
((q1,q2),a,(q1’,q2’)) Î D iff (q1,a,q1’) Î D1 and (q2,a,q2’) Î D2

Based on the above construction, we get
L(A1 ´ A2) = L(A1) Ç L(A2)

Buchi automaton 1

{p,q}

{p}

{q}

{p,q}

{q}

{q},{p,q}
Æ, {p}

Æ,{p},{q},
{p,q}

Buchi automaton 2

1

2

3 4

1 2

Product automaton

{p,q}

{p}

{q}

{p,q}

1,1

2,1

3,1

4,2

{q}
3,2

{p}

Example from the Last Lecture is a Special Case

Since all the states in the
automaton 1 is accepting, only
the accepting states of
automaton 2 decide the
accepting states of the
product automaton

Buchi Automata Product Example

a b

r1 r2

b

a

b a

q1 q2

a

b
L(R) = (b*a)w

Automaton R Automaton Q

L(Q) = (a*b)w

r1,q1

Automaton R ´ Q
L(R ´ Q) = L(R) Ç L(Q)

r2,q1

r1,q2 r2,q2

F = {
{(r1,q1), (r1,q2)},
{(r1,q1), (r2,q1)}

}

b

b
b

b

a
a

a
a

Generalized to Standard Buchi Automata Conversion

Given a generalized Buchi automaton A = (S, Q, D, Q0, F)

where F = {F1, F2, …, Fk}

it is equivalent to standard Buchi automaton

A’ = (S, Q’, D’, Q0’, F’) where

Q’ = Q ´ {1, 2, …, k}

Q0’ = Q0 ´ {1}

F’ = F1 ´ {1}

D’ is defined as follows:

((q1, i), a, (q2 , j)) Î D’ iff (q1,a,q2) Î D and

j=i if q1 Î Fi

j=(i mod k) + 1 if q1 Î Fi

Based on the above construction we have L(A’) = L(A)

Keep a counter. When the counter is i

look only for the accepting states in Fi.

When you see a state from Fi, increment

the counter (mod k). When the counter

makes one round, you have seen an

accepting state from all Fis.

Example (Cont’d)

q1

A generalized Buchi automaton G

q2

q3 q4

F = { {q1, q3}, {q1, q2} }

b

b
b

b

a

a

a
a

q1,1

q2,1

q3,1

q4,1

q1,2

q2,2

q3,2

q4,2

b

b

b

a

a ab b

a

a

b

a

a

F = { (q1,1), (q3,1)}

b

a

b

A standard Buchi automaton S
where L(S) = L(G)

