
272: Software Engineering

Instructor: Tevfik Bultan

Lectures 2 and 3: Alloy and Alloy Analyzer



Alloy: A Modeling Language

• Alloy is a formal modeling language

• Alloy has formal syntax and semantics

• Alloy specifications are written in ASCII
– There is also a visual representation (similar to UML class 

diagrams and entity-relationship diagrams) but the visual 
representation does not have the expressiveness of the whole 
language

• Alloy has a verification tool called Alloy Analyzer which can be used to 
automatically analyze properties of Alloy models



Alloy: A Modeling Language 

• Alloy targets formal specification of object oriented data models

• It can be used for data modeling in general
– It is good at specifying classes objects, the associations among 

them, and constraints on those associations

• It is most similar to UML class diagrams combined with OCL (Object 
Constraint Language)
– However, it has a simpler and cleaner semantics than UML/OCL 

and it is also supported by a verification tool (Alloy Analyzer)



Alloy Analyzer

• Alloy Analyzer is a verification tool that analyzes Alloy specifications

• It uses bounded verification
– It limits the number of objects in each class to a fixed number and 

checks assertions about the specification within that bound

• It uses a SAT-solver to answer verification queries
– It converts verification queries to satisfiability of Boolean logic 

formulas and calls a SAT solver to answer them



Alloy and Alloy Analyzer
• Alloy and Alloy Analyzer were developed by Daniel Jackson’s group 

at MIT
• References

– “Alloy: A Lightweight Object Modeling Notation”
Daniel Jackson, ACM Transactions on Software Engineering and 
Methodology (TOSEM), Volume 11, Issue 2 (April 2002), pp. 256-
290. 

– “Software Abstractions: Logic, Language and Analysis, Revised 
Edition” by Daniel Jackson. MIT Press.

– “Formal Software Design with Alloy 6” 
https://haslab.github.io/formal-software-design/

• Unfortunately, the TOSEM paper is based on the old syntax of Alloy
– The syntax of the Alloy language is different in the more recent 

versions of the tool
– My slides are based on an old Alloy tutorial, documentation about 

the current version of Alloy is available here: 
https://alloytools.org/ 



A Book Store Data Model in UML

Book 
Category

Book

Book Edition Order Line

Shopping 
Cart

User

1

0..*

0..*

0..*

1..*

1

1 0..*

1

1

0..1

0..*



Alloy Specification of Book Store Data Model

sig BookCategory {
books:  set Book

}
sig Book {

category: one BookCategory,
edition: set BookEdition,
similar: set Book

}
sig BookEdition {

book: one Book
}
sig OrderLine {

order: one BookEdition
}
sig ShoppingCart {

contents: set OrderLine
}
sig User {

cart: lone ShoppingCart
}



A File System Model in Alloy
// File system objects
abstract sig FSObject { } 
sig File, Dir extends FSObject { }

// A File System
sig FileSystem { 

live: set FSObject, 
root: Dir & live, 
parent: (live - root) -> one (Dir & live), 
contents: Dir -> FSObject 

}
{

// live objects are reachable from the root
live in root.*contents
// parent is the inverse of contents
parent = ~contents 

}



Textual Representation

• Alloy is a textual language 
– There used to be a graphical representation to support it initially

• The textual representation represents the Alloy model completely
– i.e., a graphical representation is not needed



Basics of Alloy Semantics

• Each sig denotes a set of objects (atoms)
– Corresponds to an object class in UML/OCL
– In Alloy these are called signatures

• An object is an abstract, atomic and unchanging entity

• The state of the model is determined by 
– the relationships among objects and 
– the membership of objects in sets
– these can change in time



Signatures
• In Alloy sets of atoms such as FSObject, File, Dir, FileSystem

are called signatures
– Signatures correspond to object classes

• A signature that is not subset of another signature is a top-level 
signature

• Top-level signatures are implicitly disjoint
– FileSystem and FSObject are top-level signatures

• They represent disjoint sets of objects
• Extensions of a signature are also disjoint

– File and Dir are disjoint sets
• An abstract signature has no elements except those belonging to its 

extensions
– There is no FSObject that is not a File or a Dir



Subclasses as subsets
• The keyword extends indicates disjoint subsets

– This is the default, if a subset is not labeled, then it is assumed to 
extend

– File and Dir are disjoint sets (their intersection is empty)
• There is no FSObject that is both a File and a Dir

• The keyword in indicates subsets, not necessarily disjoint from each 
other (or other subsets that extend)



Class associations are relations

• For example, live is a relation between FileSystem to FSObject

• Relations are expressed as fields of signatures
– These correspond to associations in UML-OCL
– They express relations between object classes 



Signatures
• Textual representation starts with sig declarations defining the 

signatures (sets of atoms)
– You can think of signatures as object classes, each signature 

represents a set of objects

• Multiplicity:
– set zero or more
– one exactly one
– lone zero or one
– some one or more

• extends and in are used to denote which signature is subset of 
which other signature
– extends denotes disjoint subsets



Signatures
sig A {}

set of atoms A

sig A {}
sig B {}

disjoint sets A and B. As an Alloy expression we can write: no A & B 
(Alloy expressions are discussed in later slides)

sig A, B {}
same as above

sig B extends A {}
set B is a subset of A. As an Alloy epxression: B in A

sig B extends A {}
sig C extends A {}

B and C are disjoint subsets of A:  B in A && C in A && no B & C

sig B, C extends A {}
same as above

intersection

subset

logical and



Signatures
abstract sig A {}
sig B extends A {}
sig C extends A {}

A partitioned by disjoint subsets B and C:  no B & C && A = (B + C)

sig B in A {}
B is a subset of A, not necessarily disjoint from any other set

sig C in A + B {}
C is a subset of the union of A and B:  C in A + B

one sig A {}
lone sig B {}
some sig C {}

A is a singleton set
B is a singleton or empty
C is a non-empty set

union



Fields are Relations

• The fields define relations among the signatures
– Similar to a field in an object class that establishes a relation 

between objects of two classes
– Similar to associations in UML/OCL 

• Visual representation of a field is an arrow with a small filled arrow 
head



Fields Are Relations
sig A {f: e}

f is a binary relation with domain A and range given by expression e
each element of  A is associated with exactly one element from e
(i.e., the default cardinality is one)
all a: A | a.f: one e

sig A {
f1: one e1,
f2: lone e2,
f3: some e3,
f4: set e4
}
Multiplicities correspond to the following constraint, where m could be 
one, lone, some, or set

all a: A | a.f : m e



Fields
sig A {f, g: e}

two fields with the same constraint

sig A {f: e1 m -> n e2}
a field can declare a ternary relation, each tuple in the relation f has 

three elements (one from A, one from e1 and one from e2), m and 
n denote the cardinalities of the sets

all a: A | a.f : e1 m -> n e2

sig AdressBook {
names: set Name,
addrs: names -> Addr

}
In definition of one field you can use another field defined earlier 

(these are called dependent fields)
(all b: AddressBook | b.addrs: b.names -> Addr)



Facts

• After the signatures and their fields, facts are used to express 
constraints that are assumed to always hold

• Facts are not assertions, they are constraints that restrict the model
– Facts are part of our specification of the system
– Any configuration that is an instance of the specification has to 

satisfy all the facts



Facts
fact { F }

fact f { F }
Facts can be written as separate paragraphs and can be named.

Sig A { ... }{ F } 
Facts about a signature can be written immediately after the signature

Signature facts are implicitly quantified over the elements of the 
signature

It is equivalent to:
fact {all a: A | F’} 
where any field of A in F is replaced with a.field in F’



Facts
sig Host {}

sig Link {from, to: Host}

fact {all x: Link | x.from != x.to}
no links from a host to itself

fact noSelfLinks {all x: Link | x.from != x.to}
same as above

sig Link {from, to: Host} {from != to}
same as above, with implicit 'this.'



Functions
fun f[x1: e1, ..., xn: en] : e { E }

• A function is a named expression with zero or more arguments
– When it is used, the arguments are replaced with the instantiating 

expressions



Predicates
pred p[x1: e1, ..., xn: en] { F }

• A predicate is a named constraint with zero or more arguments
– When it is used, the arguments are replaced with the instantiating 

expressions



Assertions
assert a { F }

Assertions are constraints that were intended to follow from facts of the 
model

You can use Alloy analyzer to check the assertions

sig Node {
children: set Node
}

one sig Root extends Node {}
fact {

Node in Root.*children
}

// invalid assertion:
assert someParent {

all n: Node | some children.n
}

// valid assertion:
assert someParent {

all n: Node – Root | some children.n
}

reflexive transitive closure



Assertions

• In Alloy, assertions are used to specify properties about the 
specification

• Assertions state the properties that we expect to hold

• After stating an assertion we can check if it holds using the Alloy 
analyzer (within a given scope)



Check command
assert a { F }
check a scope

• Assert instructs Alloy analyzer to search for counterexample to 
assertion within scope
– Looking for counter-example means looking for a solution to 
M && !F   where M is the formula representing the model

check a
top-level sigs bound by 3

check a for default
top-level sigs bound by default

check a for default but list
default overridden by bounds in list

check a for list
sigs bound in list



Run Command
pred p[x: X, y: Y, ...] { F }
run p scope

Instructs analyzer to search for instance of a predicate within scope
If the model is represented with formula M, run finds solution to
M && (some x: X, y: Y, ... | F)

fun f[x: X, y: Y, ...] : R { E }
run f scope

Instructs analyzer to search for instance of function within scope
If model is represented with formula M, run finds solution to 

M && (some x: X, y: Y, ..., result: R | result = E)



Alloy Expressions

• Expressions in Alloy are expressions in Alloy’s logic

• atoms are Alloy's primitive entities
– indivisible, immutable, uninterpreted

• relations associate atoms with one another
– set of tuples, tuples are sequences of atoms

• every value in Alloy logic is a relation!
– relations, sets, scalars are all the same thing



Everything is a relation
sig Name { }
abstract sig Person {

name: one Name,

}

sets are unary (1 column) relations
Person = {(P0), (P1), (P2)} 
Name = {(N0), (N1), (N2), (N3)}

scalars are singleton sets
myName = {(N1)}
yourName = {(N2)}

binary relation
name = {(P0, N0), (P1, N0), (P2, N2)}

Alloy also allows relations with higher arity (like ternary relations)



Constants
none empty set
univ universal set
iden identity relation

Person = {(P0), (P1), (P2)}
Name = {(N0), (N1), (N2), (N3)}
none = {}
univ = {(P0), (P1), (P2), (N0), (N1), (N2), (N3)}
iden = {(P0, P0),(P1, P1), (P2, P2), (N0, N0), (N1, 

N1), (N2, N2),(N3,N3) }



Set Declarations
x: m e x is a subset of e and its cardinality 

(size) is restricted to be m

m can be:

set any number
one exactly one (default)
lone zero or one
some one or more

x: e is equivalent to x: one e

SomePeople: set Person
SomePeople is a subset of the set Person



Set Operators
+ union

& intersection

- difference

in subset

= equality



Product Operator
-> cross product

Person = {(P0), (P1)}
Name = {(N0), (N1)}
Address = {(A0)}

Person -> Name = 
{(P0, N0), (P0, N1), (P1, N0), (P1, N1)}

Person -> Name -> Adress = 
{(P0, N0, A0), (P0, N1, A0), (P1, N0, A0), 
(P1, N1, A0)}



Relation Declarations with Multiplicity
r: A m -> n B cross product with multiplicity constraints

m and n can be one, lone, some, set

r: A -> B is equivalent to (default multiplicity is set)
r: A set -> set B 

r: A m -> n B is equivalent to:
r: A -> B
all a: A | n a.r
all b: B | m r.b



Relation Declarations with Multiplicity
r: A -> one B

r is a function with domain A
r: A one -> B

r is an injective relation with range B
r: A -> lone B

r is a function that is partial over the domain A
r: A one -> one B

r is an injective function with domain A and range B (a bijection from A 
to B)

r: A some -> some B
r is a relation with domain A and range B



Relational Join (aka navigation)
p.q

dot is the relational join operator

Given two tuples (p1, …, pn) in p  and (q1, …, qm) in q where pn = q1

p.q  contains the tuple (p1, …, pn-1, q2,…,qm) 

{(N0)}.{(N0,D0)} = {(D0)}
{(N0)}.{(N1,D0)} = {}
{(N0)}.{(N0,D0),(N0,D1)}} = {(D0),(D1)}
{(N0),(N1)}.{(N0,D0),(N1,D1),(N2,D3)}} = {(D0),(D1)}
{(N0, A0)}.{(A0, D0)} = {(N0, D0)}



Box join
[]

box join, box join can be defined using dot join

e1[e2] = e2.e1

a.b.c[d] = d.(a.b.c)



Unary operations on relations
~ transpose 

^ transitive closure 

* reflexive transitive closure 
these apply only to binary relations 

^r = r + r.r + r.r.r + ... 

*r = iden + ^r 

parent = {(N1,N3), (N2, N3)}
~parent = child = {(N3,N1), (N3, N2)}



Relation domain, range, restriction
domain returns the domain of a relation
range returns the range of a relation
<: domain restriction (restricts the domain of a relation) 
:> range restriction (restricts the range of a relation)

name = {(P0,N1), (P1,N2), (P3,N4), (P4, N2)}
domain(name) = {(P0), (P1), (P3), (P4)}
range(name) = {(N1), (N2), (N4)}

somePeople = {(P0), (P1)}
someNames = {(N2), (N4)}

name :> someNames = {(P1,N2), (P3,N4), (P4,N2)}

somePeople <: name= {(P0,N1), (P1,N2)}



Relation override
++ override 

p ++ q = p - (domain(q) <: p) + q

m' = m ++ (k > v)
update map m with key-value pair (k, v)



Boolean operators
! not negation 
&& and conjunction 
|| or disjunction 
=> implies implication 

else alternative 
<=> iff bi-implication

four equivalent constraints: 
F => G else H 
F implies G else H 
(F && G) || ((!F) && H) 
(F and G) or ((not F) and H)



Quantifiers
all x: e | F
all x: e1, y: e2 | F
all x, y: e | F 
all disj x, y: e | F F holds on distinct x and y

all F holds for every x in e
some F holds for at least one x in e
no  F holds for no x in e
lone F holds for at most one x in e
one F holds for exactly one x in e



A File System Model in Alloy
// File system objects
abstract sig FSObject { } 
sig File, Dir extends FSObject { }

// A File System
sig FileSystem { 

live: set FSObject, 
root: Dir & live, 
parent: (live - root) -> one (Dir & live), 
contents: Dir -> FSObject 

}
{

// live objects are reachable from the root
live in root.*contents
// parent is the inverse of contents
parent = ~contents 

}



An Instance of the File System Specification
FileSystem = {(FS0)}
FSObject = {(F0), (F1), (F2), (F4), (D0), (D1)}
File = {(F0), (F1), (F2), (F4)}
Dir = {(D0), (D1)}

live = {(FS0,F0),(FS0,F1),(FS0,F2),(FS0,D0),(FS0,D1)}
root = {(FS0,D0)}
parent = {(FS0,F0,D0),(FS0,D1,D0),
(FS0,F1,D1),(FS0,F2,D1)}
contents = {(FS0,D0,F0),(FS0,D0,D1),
(FS0,D1,F1),(FS0,D1,F2)}

D0

D1 F0

F1 F2

parentparent

parent parent



A File System Model in Alloy

// Move x to directory d
pred move [fs, fs': FileSystem, x: FSObject, d: Dir]{

// precondition
(x + d) in fs.live 
// postcondition
fs'.parent = fs.parent - x->(x.(fs.parent)) + x->d

}



File System Model in Alloy
// Delete the file or empty directory x
pred remove [fs, fs': FileSystem, x: FSObject] { 

x in (fs.live - fs.root) 
fs'.root = fs.root 
fs'.parent = fs.parent - x->(x.(fs.parent)) 

}

// Recursively delete the directory x
pred removeAll [fs, fs': FileSystem, x: FSObject] { 

x in (fs.live - fs.root) 
fs'.root = fs.root 
let subtree = x.*(fs.contents) | 
fs'.parent = fs.parent – subtree->(subtree.(fs.parent)) 

}



File System Model in Alloy
// Moving doesn't add or delete any file system objects
moveOkay: check { 

all fs, fs': FileSystem, x: FSObject, d:Dir | 
move[fs, fs', x, d] => fs'.live = fs.live 

} for 5

// remove removes exactly the specified file or directory
removeOkay: check { 

all fs, fs': FileSystem, x: FSObject | 
remove[fs, fs', x] => fs'.live = fs.live - x 

} for 5



File System Model in Alloy
// removeAll removes exactly the specified subtree
removeAllOkay: check { 

all fs, fs': FileSystem, d: Dir | 
removeAll[fs, fs', d] => 

fs'.live = fs.live - d.*(fs.contents) 
} for 5

// remove and removeAll has the same effects on files
removeAllSame: check { 

all fs, fs1, fs2: FileSystem, f: File | 
remove[fs, fs1, f] && removeAll[fs, fs2, f] =>

fs1.live = fs2.live 
} for 5



Alloy Specification of Book Store Data Model

sig BookCategory {
books:  set Book

}
sig Book {

category: one BookCategory,
edition: set BookEdition,
similar: set Book

}
sig BookEdition {

book: one Book
}
sig OrderLine {

order: one BookEdition
}
sig ShoppingCart {

contents: set OrderLine
}
sig User {

cart: lone ShoppingCart
}



A Book Store Data Model in UML

Book 
Category

Book

Book Edition Order Line

Shopping 
Cart

User

1

0..*

0..*

0..*

1..*

1

1 0..*

1

1

0..1

0..*



Alloy Specification (Cont.)

fact {
books = ~category 
book = ~edition
all e1, e2: BookEdition | e1 != e2 => e1.book != e2.book
all b1, b2: Book | b1 in b2.similar => b1.category = b2.category
all u1, u2: User | u1.cart = u2.cart => u1 = u2
all o:OrderLine, c1, c2:ShoppingCart | 

(o in c1.contents && o in c2.contents) => c1 = c2 
}

pred addCart[u, u’ : User, o : OrderLine]{
!(o in u.cart.contents)
u'.cart.contents = u.cart.contents + o    

}

pred removeCart[u, u’ : User, o : OrderLine]{
o in u.cart.contents
u'.cart.contents = u.cart.contents - o    

}



Checking the Alloy Specification

assert category {
all b1, b2 : Book | b1.category != b2.category => b1 !in b2.similar

}

assert category1 {
no b: Book,  e1, e2:BookEdition | e1 != e2 && e1.book=b && e2.book=b

}

run addCart 

run removeCart

run emptyCart

check category

check category1



Alloy Kernel

• Alloy is based on a small kernel language

• The language as a whole is defined by the translation to the kernel

• It is easier to define and understand the formal syntax and semantics 
of the kernel language 



Alloy Kernel Syntax

formula ::= formula syntax
elemFormula elementary formulas
| compFormula compound formulas
| quantFormula quantified formulas

elemFormula ::=
expr in expr subset
expr = expr equality

compFormula ::=
not formula negation (not)
formula and formula conjunction (and)

quantFormula ::=
all var : expr | formula universal quantification

expr ::= expression syntax
rel relation
| var quantified variable
| none empty set
| expr binop expr
| unop expr

binop ::= binary operators
+ union
| & intersection
| - difference
| . join
| -> product

unop ::= unary operators
~ transpose 
| ^ transitive closure



Alloy Kernel Semantics
• Alloy kernel semantics is defined using denotational semantics

• There are two meaning functions in the semantic definitions
– M: which interprets a formula as true or false

• M: Formula, Instance ® Boolean
– E: which interprets an expression as a relation value

• E: Expression, Instance  ® RelationValue

• Interpretation is given with respect to an instance that assigns a 
relational value to each declared relation

• Meaning functions take a formula or an expression and the instance 
as arguments and return a Boolean value or a relation value



Alloy Kernel Semantics

• To handle the sets and relations in a uniform way Alloy semantics 
encodes sets also as relations

• Set {x1, x2, ...} is represented as a relation {(unit,x1), (unit,x2), ...}

• Scalar types are singleton sets, i.e., a scalar x1 is represented as {x} 
which is actually represented as the relation {(unit,x1)}



Alloy Kernel Semantics

M: Formula, Instance ® Boolean

Formula Semantics:

M[p in q]i = E[p]i Í E[q]i

M[p = q]i = (E[p]i = E[q]i)

M[ !f ]i = ¬M[f]i

M[f and g]i = M[f]i Ù M[g]i

M[all x:e | f]i = Ù{M[f](iÅx®v) | v Í E[e]i  Ù #v = 1}

iÅx®v is the instance generated 
by extending i with the binding 
of variable x to the value v 

#v denotes the cardinality of v



Alloy Kernel Semantics
E: Expression, Instance  ® RelationValue

Expression Semantics:

E[none]i = Æ

E[p+q]i = E[p]i È E[q]i

E[p&q]i = E[p]i Ç E[q]i

E[p–q]i = E[p]i \ E[q]i

E[p.q]i = {(p1, …, pn-1, q2,…,qm) |
(p1, …, pn) ÎE[p]i Ù (q1, …, qm) ÎE[q]i Ù pn = q1} 

E[~p]i = {(y,x) | (x,y) ÎE[p]i}

E[^p]i = {(x,y) |  $p1, … $pn , n³0 | (x,p1), (p1,p2), … (pn,y) ÎE[p]i}



Analyzing Specifications

• Possible problems with a specification

– The specification is over-constrained: There is no model for the 
specification

– The specification is under-constrained: The specification allows 
some unintended behaviors

• Alloy analyzer has automated support for finding both over-constraint 
and under-constraint errors



Analyzing Specifications
• Remember that the Alloy specifications define formulas and given an 

environment (i.e., bindings to the variables in the specification) the 
semantics of Alloy maps a formula to true or false

• An environment for which a formula evaluates to true is called a 
model (or instance or solution) of the formula

• If a formula has at least one model then the formula is consistent 
(i.e., satisfiable)

• If every (well-formed) environment is a model of the formula, then the 
formula is valid

• The negation of a valid formula is inconsistent



Analyzing Specifications

• Given a assertion we can check it as follows:
– Negate the assertion and conjunct it with the rest of the 

specification
– Look for a model for the resulting formula, if there exists such a 

model (i.e., the negation of the formula is consistent) then we call 
such a model a counterexample

• Bad news
– Validity and consistency checking for Alloy is undecidable

• The domains are not restricted to be finite, they can be infinite, 
and there is quantification



Analyzing Specifications
• Alloy analyzer provides two types of analysis:

– Simulation, in which consistency of an invariant or an operation is 
demonstrated by generating an environment that models it

• Simulations can be used to check over-constraint errors: To 
make sure that the constraints in the specification is so 
restrictive that there is no environment which satisfies them

• The run command in Alloy analyzer corresponds to simulation

– Checking, in which a consequence of the specification is tested by 
attempting to generate a counter-example

• The check command in Alloy analyzer corresponds to 
checking

• Simulation is for determining consistency (i.e., satisfiability) and 
Checking is for determining validity
– And these problems are undecidable for Alloy specifications



Trivial Example
• Consider checking the theorem

all x:X | some y:Y | x.r = y

• To check this formula we formulate its negation as a problem
r: X -> Y
!all x:X | some y:Y | x.r = y

• The Alloy analyzer will generate an environment such as
X = {X0, X1}
Y = {Y0, Y1}
r = {(X0, Y0), (X0, Y1)}
x = {X1}
which is a model for the negated formula. Hence this environment is 

a counterexample to the claim that the original formula is valid
The value X1 for the quantified variable x is called a Skolem 

constant and it acts as a witness to the to the invalidity of the 
original formula



Sidestepping Undecidability
• Alloy analyzer restricts the simulation and checking operations to a 

finite scope
– where a scope gives a finite bound on the sizes of the domains in 

the specification (which makes everything else in the specification 
also finite)

• Here is another way to put it: 
– Alloy analyzer rephrases the consistency problem as: Does there 

exist  an environment within the given scope that is a model for 
the formula

– Alloy analyzer rephrases the validity problem as: Are all the well-
formed environments within the scope a model for the formula

• Validity and consistency problem within a finite scope are decidable 
problems 
– Simple algorithm: just enumerate all the environments and 

evaluate the formula on all environments using the semantic 
function



Simulation: Consistency within a Scope

• If the Alloy analyzer finds a model within a given scope then we know 
that the formula is consistent!

• On the other hand, if the Alloy analyzer cannot find a model within a 
given scope does not prove that the formula is inconsistent
– General problem is is undecidable

• However, the fact that there is no model within a given scope shows 
that the formula might be inconsistent 
– which would prompt the designer to look at the specification to 

understand why the formula is inconsistent within that scope



Checking: Validity within a given Scope

• If the formula is not valid within a given scope then we are sure that 
the formula is not valid
– Alloy analyzer would generate a counter-example and the 

designer can look at this counter-example to figure out the 
problem with the specification.

• On the other hand, the fact that Alloy analyzer shows that a formula is 
valid within a given scope does not prove that the formula is valid in 
general
– Again, the problem is undecidable

• However, the fact that the formula is valid within a given scope gives 
the designer a lot of confidence about the specification



Alloy Analyzer
• Alloy analyzer converts the simulation and checking queries to 

boolean satisfiability problems (SAT) and uses a SAT solver to solve 
the satisfiability problem

• Here are the steps of analysis steps for the Alloy analyzer:
1. Conversion to negation normal form and skolemization
2. Formula is translated for a chosen scope to a boolean formula 

along with a mapping between relational variables and the 
boolean variables used to encode them. This boolean formula is 
constructed so that it has a model exactly when the relational 
formula has a model in the given scope

3. The boolean formula is converted to a conjunctive normal form, 
(the preferred input format for most SAT solvers)

4. The boolean formula is presented to the SAT solver
5. If the solver finds a model, a model of the relational formula is 

then reconstructed from it using the mapping produced in step 2



Translation Overview

• In negation normal form only elementary formulas are negated 
– To convert to negation normal form push negations inwards using 

de Morgan’s laws

• Skolemization eliminates existentially quantified variables. 
– If the existential quantification is not within a universal 

quantification the quantified variable is replaced with a constant 
and an additional constraint that such a constant exists

– If the existential quantification is within a universal quantification 
the existentially quantified variable is replaced with a function



Translation Overview
• For example 

!all x: X | some y: Y | x.r=y

is converted to

some x: X | all y: Y | !x.r=y

which is converted to the problem 

r: X->Y
x: X
all y:Y| !x.r=y
some z:X | z=x



Translation Overview

• For example 
all x: X | some y: Y | x.r=y

is converted to
all x: X | x.r=y[x]

by replacing y with the function
y: X->one Y

• This method generalizes to arbitrary number of universal quantifiers 
by creating functions indexed by as many types as necessary



Translation Overview

• Once a scope is fixed a value of a relation from S to T can be 
represented as a bit matrix with a 1 in the ith row of jth column when 
the ith atom in S is related to the jth atom in T and 0 otherwise
– Such matrices encode all possible relations from S to T

• Hence, collection of possible values of a relation can be expressed by 
a matrix of boolean variables

• Any constraint on a relation can be expressed as a formula in these 
boolean variables and a relational formula as a whole can be similarly 
expressed by introducing boolean variables for each relational 
variables



Translation Overview

• For example 
all y: Y | !x.r=y

using a scope of 2 would be translated as follows
• First let’s look at the negation of the formula

some y: Y | x.r=y

• Generate a vector [x0  x1] for x and a matrix [r00 r01,  r10 r11] for r

• The expression x.r corresponds to the vector
[x0 Ù r00 Ú x1 Ù r10     x0 Ù r01 Ú x1 Ù r11]



Translation Overview

• Given,
x.r  º [x0 Ù r00 Ú x1 Ù r10    x0 Ù r01 Ú x1 Ù r11]

and y  º [y0   y1], we get
x.r = y   º
(y0 « (x0 Ù r00 Ú x1 Ù r10)) Ù (y1 « (x0 Ù r01 Ú x1 Ù r11)) 
Ù (y0 Ù ¬y1 Ú ¬ y0 Ù y1) 

• Then the boolean logic translation for some y: Y | x.r=y is
true « (x0 Ù r00 Ú x1 Ù r10) Ù false « (x0 Ù r01 Ú x1 Ù r11)
Ú false « (x0 Ù r00 Ú x1 Ù r10) Ù true « (x0 Ù r01 Ú x1 Ù r11)
º (x0 Ù r00 Ú x1 Ù r10) Ù ¬ (x0 Ù r01 Ú x1 Ù r11)
Ú ¬ (x0 Ù r00 Ú x1 Ù r10) Ù (x0 Ù r01 Ú x1 Ù r11)



Translation Overview

• Hence, the formula some y: Y | x.r=y is satisfiable within a scope 
of 2 if and only if the following boolean logic formula is satisfiable
(x0 Ù r00 Ú x1 Ù r10) Ù ¬ (x0 Ù r01 Ú x1 Ù r11)
Ú ¬ (x0 Ù r00 Ú x1 Ù r10) Ù (x0 Ù r01 Ú x1 Ù r11)

This is equivalent to checking validity of the formula:
all y: Y | !x.r=y 

equivalently we can write 
º ¬ (some y: Y | x.r=y) 

and then check satisfiability of its negation:
(some y: Y | x.r=y)

within the scope of 2 that is equivalent to the boolean logic formula 
above:

¬((x0 Ù r00 Ú x1 Ù r10) Ù ¬ (x0 Ù r01 Ú x1 Ù r11)
Ú ¬ (x0 Ù r00 Ú x1 Ù r10) Ù (x0 Ù r01 Ú x1 Ù r11))



Translation Overview

• The generated boolean satisfiability problem (SAT) is an NP-complete 
problem 

• Alloy analyzer implements an efficient translation in the sense that the 
problem instance presented to the SAT solver is as small as possible 
– It will take the SAT solver exponential time in the worst case to 

solve the boolean satisfiability problem


