
272: Software Engineering
Winter 2024

Instructor: Tevfik Bultan

Lecture: Dafny

Dafny: A quick overview

These slides are based on:
• “Getting Started with Dafny: A Guide” Jason Koenig and K. Rustan M.

Leino
https://dafny.org/dafny/OnlineTutorial/guide

Other Dafny resources:
• https://dafny.org/
• https://dafny.org/dafny/QuickReference
• https://dafny.org/latest/Installation
• https://dafny.org/latest/toc

https://dafny.org/dafny/OnlineTutorial/guide
https://dafny.org/
https://dafny.org/dafny/QuickReference
https://dafny.org/latest/Installation
https://dafny.org/latest/toc

Dafny

• Dafny is a programming language
• And, Dafny is a program verification tool

• Dafny supports program specification and verification using method
pre- and postconditions and loop invariants

• Uses a verification approach similar to ESC/Java
• Uses Z3 SMT solver as a backend theorem prover

Dafny

• Dafny relies on high-level annotations to reason about and prove
correctness of code

• Dafny lifts the burden of writing bug-free code into that of writing bug-
free annotations

• A Dafny annotation stating that each element of array a is strictly
positive:

forall k: int :: 0 <= k < a.Length ==> 0 < a[k]

• In addition to proving a correspondence to user supplied annotations,
Dafny proves that there are no run time errors
– index out of bounds, null dereferences, division by zero, etc.

Dafny

Object-based language
• generic classes, no subclassing
• object references, dynamic allocation
• sequential control
Built-in specifications
• pre- and postconditions
• framing
• loop invariants, inline assertions
• termination
Specification support
• Sets, sequences, inductive datatypes, …
• User-defined recursive functions
• Ghost variables

Dafny: pre and post-conditions

Dafny supports pre and post-conditions:

method MultipleReturns(x: int, y: int) returns (more:
int, less: int)

requires 0 < y
ensures less < x < more

{
more := x + y;
less := x - y;

}

Dafny: assertions, modular verification

Dafny supports assertions
Dafny cannot prove the assertion below since it uses modular verification
and takes into account only pre and post-conditions of a called method
method Abs(x: int) returns (r: int)
{

if (x < 0)
{ return -x; }

else
{ return x; }

}
method Testing()
{

var v := Abs(3);
assert 0 <= v;

}

Dafny: assertions, modular verification

Dafny can prove the assertion below

method Abs(x: int) returns (y: int)
ensures 0 <= y
ensures 0 <= x ==> y == x
ensures x < 0 ==> y == -x

{
if (x < 0) { y := -x; }
else { y := x; }

}
method Testing()
{

var v := Abs(3);
assert 0 <= v;

}

Dafny: loop invariants

Dafny supports specification and verification of loop invariants

method Loop(n: int) returns (i: int)
requires n >= 0

{
i := 0;
while (i < n)

invariant 0 <= i <= n
{

i := i + 1;
}
assert i == n;

}

Dafny: functions

Dafny allows definition of functions which are more like mathematical
functions.
A Dafny function cannot write to memory, and consists solely of one
expression.

function fib(n: nat): nat
{

if n == 0 then 0 else
if n == 1 then 1 else

fib(n - 1) + fib(n - 2)
}

Dafny: functions
method ComputeFib(n: nat) returns (b: nat)

ensures b == fib(n)
{

if (n == 0) { return 0; }
var i := 1;
var a := 0;
b := 1;
while (i < n)

invariant 0 < i <= n
invariant a == fib(i-1)
invariant b == fib(i)

{
a, b := b, a + b;
i := i + 1;

}
}

Dafny: arrays and quantifiers
method Find(a: array<int>, key: int) returns (index: int)

requires a != null
ensures 0 <= index ==> index < a.Length && a[index] == key
ensures index < 0 ==> forall k :: 0 <= k < a.Length ==>

a[k] != key;
{

index := 0;
while (index < a.Length)

invariant 0 <= index <= a.Length;
invariant forall k :: 0 <= k < index ==> a[k] != key;

{
if (a[index] == key) { return; }
index := index + 1;

}
index := -1;

}

Dafny: termination

Dafny can prove termination for loops and recursion

A decreases annotation specifies an expression that is expected to
decrease with every loop iteration or recursive call

Dafny verifies two conditions to verify termination given a decreases
annotation:

1. the decreases expression gets smaller in every loop iteration or
recursive call

2. that it is bounded
These conditions together prove termination

Dafny: framing

Dafny supports “reads” annotations to specify which memory locations a
function is allowed to read

Dafny supports “modifies” annotations to specify which memory locations
a method is allowed to modify

