272: Software Engineering
Winter 2024

Instructor: Tevfik Bultan

Lecture: Hoare Logic and Weakest Preconditions
class BankAccount {
 int: balance;
 //@ invariant balance >= 0;

 withdraw(int: i) {
 //@ requires balance >= i and i >= 0;
 balance = balance - i;
 //@ ensures balance == \old(balance) - i;
 }
 deposit(int: i) {
 //@ requires i >= 0;
 balance = balance + i;
 //@ ensures balance == \old(balance) + i;
 }
 boolean isEmpty() {
 return balance == 0;
 //@ ensures result == (balance == 0);
 }
}

A Simple Class and Its Contract in JML
class BankAccount {
 int: balance;

 withdraw(int: i) {
 int oldbalance = balance;
 assert(balance >= i and i >= 0);
 balance = balance - i;
 assert(balance == oldbalance - i);
 }

 deposit(int: i) {
 int oldbalance = balance;
 assert(i >= 0);
 balance = balance + i;
 assert(balance == oldbalance + i);
 }

 boolean isEmpty() {
 boolean result = (balance == 0);
 assert(result == (balance == 0));
 return result;
 }
}
Dynamic Contract Monitoring

• We can do dynamic contract monitoring for such specifications
• When the contract fails we know that there is an error in the implementation
 – We can identify who is responsible for the contract violation (i.e., the caller or the callee)
• Note that the contract monitoring is dynamic, i.e., it is done during the program execution
 – If we do not observe a contract violation for a set of executions, that does not mean that a contract violation will never happen.
• But some of the implementation code is so close to the pre and post-conditions specified in the contract, it looks like we should be able to prove that the implementation is correct with respect to the contract
 – Proving the implementation correct with respect to the contract means proving that there will never be a contract violation for any execution of the program!
Example

• Here is the question:
 – If we assume that the pre-condition holds, then does the implementation guarantee that the post-condition is satisfied?
 – I.e., if the pre-condition holds, then is it guaranteed that the assertion that checks the post-condition will not cause an assertion failure?

withdraw(int: i) {
 int oldbalance = balance;
 assert(balance >= i and i >= 0);
 balance = balance - i;
 assert(balance == oldbalance - i);
}
Hoare Logic and Weakest Preconditions

• Hoare Logic and Weakest Preconditions are formalisms which can be used to answer such questions

• The material in the following slides is mostly from the following papers:
Correctness

• How can we reason about the correctness of programs?
 – Use mathematics!

• We know what correctness means mathematically
 – For example:
 • \(5 = 2 + 2\) is incorrect
 • \(3 = 2 + 1\) is correct
 • \(\forall x, \exists y, y = x + 1\) is correct for integers
 • \(\exists x, \exists y, \exists z, x^4 = y^4 + z^4 \land x \neq 0\) is incorrect for integers

• So, what does correctness mean?
 – A mathematical statement about integers is correct if it can be inferred from the axioms defining integers
 • Showing this is called a proof
 – If we can show that the negation of a statement is correct, then we know that the statement is incorrect
What about Programs?

- Then the question becomes
 - Can we develop a mathematical framework for proving correctness of programs?
 - And the answer is yes.
 - But it is not very easy to do the proofs by hand.
 - And it is not possible to automate the proofs in general.
Reasoning About Programs

- Mathematical formalisms do not immediately translate to reasoning about programs
 - Integer arithmetic used in programs is different
 - Is \(\forall x, \exists y, y = x + 1 \) true for integer constants in a program?
 - No, because we will eventually get to MAXINT and get overflow

- We can still formalize mathematical rules about the programs
 - This is what the semantics of the programming language is supposed to do
 - Semantics of programming languages are complicated:
 - variables, assignments, arrays, pointers, procedures, parameter passing, object classes, inheritance, concurrency, etc.
Reasoning about program segments

• Reasoning about a program as a whole could be very complicated due to
 – procedure calls, parameter passing, recursion, dynamic memory allocation, etc.
• Let’s focus on simple program segments
 – Sequences of assignments, loops etc. without procedure calls
• Note that, the example we had earlier suggests a form of modularization for checking correctness for procedures
 – To show the correctness of a procedure, show that when the precondition holds, the post-condition always holds after executing the procedure
 – Then we also have to show that whenever the procedure is called its precondition is established. We can check that by inserting assertions to the procedure call sites.
Assertsions

- We can use logical assertions to state properties about variables of a program
 - Assertion $x > y$ (where x and y are integer variables) is true if the value of x is greater than value of y
 - Assertion $x+y=C$ is (x, y integer variables, C an integer constant) is true if addition of the values of variables x and y is equal to the constant C
 - $\forall i, \ 0 \leq i < A.length, A[i] = 0$ is true if all members of the integer array A have the value 0
Using Assertions To Specify Properties

- We can use assertions to reason about the correctness of program segments.

- Hoare Logic formalizes this idea.

- An Hoare triple is in the following form:
 - \(\{P\} \ S \ \{Q\} \)
 where \(P \) and \(Q \) are assertions, and \(S \) is a program segment.

- \(\{P\} \ S \ \{Q\} \) means “if we assume that \(P \) holds before \(S \) starts executing, then \(Q \) holds at the end of the execution of \(S \)”.
 - I.e., if we assume \(P \) before execution of \(S \), \(Q \) is guaranteed after execution of \(S \).
Example Hoare triples

• Correct Hoare triples (i.e., we can prove them)

 - \{x=0\} x:=x+1 \{x=1\}

 - \{x+y=5\} x:=x+5; y:=y-1 \{x+y=9\}

 - \{x+y=C\} x:=x+5; y:=y-1 \{x+y=C+4\} where C is a place holder for any integer constant, i.e., it is equivalent to

 - \forall C, \{x+y=C\} x:=x+5; y:=y-1 \{x+y=C+4\}

 - \{x>C\} x:=x+1 \{x>C+1\}

 - \{x>C\} x:=x+1 \{x>C\}

• Incorrect Hoare triples

 - \{x=1\} x:=x+1 \{x=1\}

 - \{x+y=C\} x:=x+1; y:=y-1 \{x+y=C+1\}
What about our example?

Here is the Hoare triple for the procedure body of the withdraw method:
\{balance \geq i \land i \geq 0 \land \text{balance=oldbalance} \land balance \geq 0\}
\text{balance := balance} - i
\{\text{balance = oldbalance} - i \land balance \geq 0\}

Here is the Hoare triple for the procedure body of the deposit method:
\{i \geq 0 \land \text{balance=oldbalance} \land balance \geq 0\}
\text{balance := balance} + i
\{\text{balance = oldbalance} + i \land balance \geq 0\}

If we can PROVE the above Hoare triples, then that means that we proved the implementation of the withdraw and deposit methods.
Partial vs. Total Correctness

• I use the notation
 – \{P\} S \{Q\}
• instead of the original notation in Hoare’s paper
 – P \{S\} Q

• Some researchers differentiate the meaning of these notations
 – \{P\} S \{Q\} means total correctness:
 • If we assume that P holds before S starts executing, then S terminates and Q holds at the end of the execution of S
 – P \{S\} Q means partial correctness:
 • If we assume that P holds before S starts executing and if S terminates then Q holds at the end of the execution of S
Proving properties of program segments

• How can we prove that:
 – \{x=0\} x:=x+1 \{x=1\} is correct?

• We need an axiom which explains what assignment does

• First, we will need more notation

• We need to define the substitution operation
 – Let \(P[x \leftarrow \text{exp}] \) denote the assertion obtained from \(P \) by replacing every appearance of \(x \) in \(P \) by the value of the expression \(\text{exp} \)

• Examples
 – \(x=0[x \leftarrow 0] \equiv 0=0 \)
 – \(x+y=z[x \leftarrow 0] \equiv 0+y=z \equiv y=z \)

I am using “≡” to denote equivalence between assertions
Axiom of Assignment

• Here is the **axiom of assignment**:
 - \{P[x←exp]\} x:=exp \{P\}
 • where exp is a simple expression (no procedure calls in exp) that has no side effects (evaluating the expression does not change the state of the program)

• Now, let’s try to prove
 - \{x=0\} x:=x+1 \{x=1\}
 - We have
 - \{x=1[x←x+1]\} x:=x+1 \{x=1\} (by axiom of assignment)
 \[\equiv \{x+1=1\} x:=x+1 \{x=1\} \text{ (by definition of the substitution operation)}\]
 \[\equiv \{x=0\} x:=x+1 \{x=1\} \text{ (arithmetic manipulation, i.e., by some axiom of arithmetic)}\]
 - This is the end of our proof, we showed that the Hoare triple \{x=0\} x:=x+1 \{x=1\} follows from the axiom of assignment
Axiom of Assignment

• Another example
 – \{x \geq 0\} \ x := x + 1 \ \{x \geq 1\}
 – We have
 \{x \geq 1\} \ x := x + 1 \ \{x \geq 1\} \ (by \ axiom \ of \ assignment)
 \equiv \{x + 1 \geq 1\} \ x := x + 1 \ \{x \geq 1\} \ (by \ definition \ of \ the \ substitution \ operation)
 \equiv \{x \geq 0\} \ x := x + 1 \ \{x \geq 1\} \ (arithmetic \ manipulation, \ i.e., \ by \ some \ axiom \ of \ arithmetic)
Justification for the Axiom of Assignment

- Axiom assignment: \(\{P[x←exp]\} \ x:=\text{exp} \ \{P\} \)

- Let us write the assignment using equality and primed variables:
 \[x' = \text{exp} \]
 where \(x \) denotes the value of variable \(x \) before the assignment, and \(x' \) denotes the value of the variable \(x \) after the assignment.

- Then we can consider the assignment and the property \(P \) as a conjunction if we replace every appearance of \(x \) in \(P \) with \(x' \):
 \[x'= \text{exp} \land P[x ← x'] \]

- Then we have:
 \[x'= \text{exp} \land P[x ← x'] \implies (P[x ← x'])[x' ← \text{exp}] \]

- For example:
 \[x:=x+1 \ \{x=1\} \text{ becomes: } x'=x+1 \land x'=1 \]
 \[x'=x+1 \land x'=1 \implies x+1 = 1 \implies x=0 \]
Rules of Inference

• Once we prove a Hoare triple we may want to use it to prove other Hoare triples

• If we already proved \(\{x=0\} \ x:=x+1 \{x=1\} \), then we should be able to conclude that \(\{x=0\} \ x:=x+1 \{x>0\} \) also holds

• Here is the general rule (rule of consequence 1)
 – If \(\{P\}S\{Q\} \) and \(Q \Rightarrow R \) then we can conclude \(\{P\}S\{R\} \)

• This rule means that once you prove a post-condition, you can always infer a weaker post-condition

• Example:
 – \(\{x=0\} \ x:=x+1 \{x=1\} \) and \(x=1 \Rightarrow x>0 \)
 • hence, we conclude \(\{x=0\} \ x:=x+1 \{x>0\} \)
Rules of Inference

• If we already proved \{x \geq 0\} x := x + 1 \{x \geq 1\}, then we should be able to conclude \{x \geq 5\} x := x + 1 \{x \geq 1\}

• Here is the general rule (rule of consequence 2)
 – If \{P\}S\{Q\} and \(R \Rightarrow P\) then we can conclude \{R\}S\{Q\}

• This rule means that once you prove a pre-condition assumption, you can always infer a stronger pre-condition assumption

• Example
 – \{x \geq 0\} x := x + 1 \{x \geq 1\} and \(x \geq 5 \Rightarrow x \geq 0\)
 • hence, we conclude \{x \geq 5\} x := x + 1 \{x \geq 1\}
Back to Our Example

Proving the implementation of the withdraw method:
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} [\text{balance} \leftarrow \text{balance} - i] \\
\text{balance} := \text{balance} - i \\
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{ (by axiom of assignment)}
\equiv \{ \text{balance} - i = \text{oldbalance} - i \land \text{balance} - i \geq 0 \land i \geq 0 \} \\
\text{balance} := \text{balance} - i \\
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{ (by definition of the substitution operation)}
\equiv \{ \text{balance} = \text{oldbalance} \land \text{balance} \geq i \land i \geq 0 \} \\
\text{balance} := \text{balance} - i \\
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \land i \geq 0 \} \text{ (arithmetic manipulation)}
\equiv \{ \text{balance} = \text{oldbalance} \land \text{balance} \geq i \land i \geq 0 \} \\
\text{balance} := \text{balance} - i \\
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \} \text{ (rule of consequence 1)}
\equiv \{ \text{balance} = \text{oldbalance} \land \text{balance} \geq i \land i \geq 0 \land \text{balance} \geq 0 \} \\
\text{balance} := \text{balance} - i \\
\{ \text{balance} = \text{oldbalance} - i \land \text{balance} \geq 0 \} \text{ (rule of consequence 2)}
Rule of Sequential Composition

- Program segments can be formed by sequential composition
 - \(x := x + 5; \ y := y - 1 \) is sequential composition of two assignment statements \(x := x + 5 \) and \(y := y - 1 \)
 - \(x := x + 5; \ y := y - 1; \ t := 0 \) is a sequential composition of the program segment \(x := x + 5; \ y := y - 1 \) and the assignment statement \(t := 0 \)

- How do we reason about sequences of program statements?

- Here is the inference rule of sequential composition
 - If \(\{ P \} S_1 \{ Q \} \) and \(\{ Q \} S_2 \{ R \} \) then we can conclude that \(\{ P \} S_1; S_2 \{ R \} \)
Example: Swap

- Let’s try to prove a swap operation based on what we learned
 - Here is the program segment for swap:
 \[t := x; \ x := y; \ y := t \]

- Let’s assume that \(x = A \wedge y = B \) holds before we start executing the swap segment.

- If swap is working correctly we would like \(x = B \wedge y = A \) to hold at the end of the swap (note that we did not restrict the values A and B in any way)

- Let’s apply the axiom of assignment twice
 - \(\{x = B \wedge y = A[y \leftarrow t]\} \ y := t \ \{x = B \wedge y = A\} \equiv \{x = B \wedge t = A\} \ y := t \ \{x = B \wedge y = A\} \)
 - \(\{x = B \wedge t = A[x \leftarrow y]\} \ x := y \ \{x = B \wedge t = A\} \equiv \{y = B \wedge t = A\} \ x := y \ \{x = B \wedge t = A\} \)
Example: Swap

- Now since we have
 - \{y=B \land t=A\} \ x:=y \ \{x=B \land t=A\} \ \text{and} \ \{x=B \land t=A\} \ y:=t \ \{x=B \land y=A\},
 - using the rule of sequential composition we get:
 - \{y=B \land t=A\} \ x:=y; \ y:=t \ \{x=B \land y=A\}

- Let's apply the axiom of assignment once more
 - \{y=B \land t=A[t \leftarrow x]\} \ t:=x \ \{y=B \land t=A\}
 \equiv \{y=B \land x=A\} \ t:=x \ \{y=B \land t=A\}

- Using the rule of sequential composition once more
 \{y=B \land x=A\} \ t:=x \ \{y=B \land t=A\} \ \text{and} \ \{y=B \land t=A\} \ x:=y; \ y:=t \ \{x=B \land y=A\}
 \Rightarrow \{y=B \land x=A\} \ t:=x; \ x:=y; \ y:=t \ \{x=B \land y=A\}
Inference rule for conditionals

• There are two inference rules for conditional statements, one for if-then and one for if-then-else statements

• For if-then-else statements the rule is (rule of conditional 1)
 – If \(\{P \land B\} S_1 \{Q\} \) and \(\{P \land \neg B\} S_2 \{Q\} \) hold then we conclude that \(\{P\} \) if \(B \) then \(S_1 \) else \(S_2 \) \(\{Q\} \)

• For if-then statements the rule is (rule of conditional 2)
 – If \(\{P \land B\} S \{Q\} \) and \(P \land \neg B \Rightarrow Q \) hold then we conclude that \(\{P\} \) if \(B \) then \(S \) \(\{Q\} \)
Example for conditionals

• Here is an example
 – if (x > y) max := x else max := y
 – We want to prove
 – {True} if (x > y) max := x else max := y {max ≥ x ∧ max ≥ y}

{max ≥ x ∧ max ≥ y[max ← x]} max := x {max ≥ x ∧ max ≥ y} (r.assign.)
≡ {x ≥ x ∧ x ≥ y} max := x {max ≥ x ∧ max ≥ y} (definition of subs.)
≡ {True ∧ x ≥ y} max := x {max ≥ x ∧ max ≥ y} (some axiom of arith.)
≡ {x ≥ y} max := x {max ≥ x ∧ max ≥ y} (some axiom of logic)
≡ {x > y} max := x {max ≥ x ∧ max ≥ y} (r. of cons. 2)
Example for conditionals

\[\{\max \geq x \land \max \geq y[x \leftarrow y]\}\] \[\max := y \{\max \geq x \land \max \geq y\} \text{ (r.assign.)}\]
\[\equiv \{y \geq x \land y \geq y\} \max := y \{\max \geq x \land \max \geq y\} \text{ (definition of subs.)}\]
\[\equiv \{y \geq x \land \text{True}\} \max := y \{\max \geq x \land \max \geq y\} \text{ (some axiom of arith.)}\]
\[\equiv \{y \geq x\} \max := y \{\max \geq x \land \max \geq y\} \text{ (some axiom of logic)}\]
\[\equiv \{\neg x > y\} \max := y \{\max \geq x \land \max \geq y\} \text{ (some axiom of logic)}\]

So we proved that \(\{x > y\} \max := x \{\max \geq x \land \max \geq y\}\) and
\(\{\neg x > y\} \max := y \{\max \geq x \land \max \geq y\}\) then we can use the rule of conditional 1
and conclude that:
\(\{\text{True}\} \text{ if } (x > y) \max := x \text{ else } \max := y \{\max \geq x \land \max \geq y\}\)
What about the loops?

• Here is the inference rule (**rule of iteration**) for while loops
 – If \{P \land B\} S \{P\} then we can conclude that
 \{P\} while B do S \{\neg B \land P\}

• This is what the inference rule for while loop is saying:
 – If you can show that every iteration of the loop preserves the
 property P,
 – and you know that the property holds before you start executing
 the loop,
 – then you can conclude that the property holds at the termination of
 the loop.
 – Also the loop condition will not hold at the termination of the loop
 (otherwise the loop would not terminate).
Loop invariants

• Given a loop
 – while B do S
 – Any assertion P which satisfies \(\{P \land B\} \rightarrow S \rightarrow \{P\} \) is called a **loop invariant**

• A loop invariant is an assertion such that, every iteration of the loop body preserves it
 – We write this as a Hoare triple as \(\{P \land B\} \rightarrow S \rightarrow \{P\} \)

• Note that rule of iteration given in the previous slide is for partial correctness
 – It does not guarantee that the loop will terminate
Example

• Here is an example loop
 while (y <= r) do (r:=r–y; q:=q+1)

• Let’s pick P as r+y\times q= A where A is an integer value

\{ r+y\times(q+1)=A \} \; q:=q+1 \; \{ r+y\times q=A \} \; (by \; axiom \; of \; assignment) \\
\{ r–y+y\times(q+1)=A \} \; r:=r–y \; \{ r+y\times(q+1)=A \} \; (by \; axiom \; of \; assignment) \\
\{ r+y\times q=A \} \; r:=r–y; \; q:=q+1 \; \{ r+y\times q=A \} \; (by \; sequential \; composition \; rule) \\
\{ r+y\times q=A \land (y\leq r) \} \; r:=r–y; \; q:=q+1 \; \{ r+y\times q=A \} \; (by \; rule \; of \; consequence \; 2) \\
\{ r+y\times q=A \} \; \text{while} \; (y \leq r) \; \text{do} \; (r:=r–y; \; q:=q+1) \; \{ \neg (y\leq r) \land r+y\times q=A \} \; (by \; rule \; of \; iteration)
Using the rule of iteration

• To prove that a property Q holds after the loop while B do S terminates, we can use the following strategy
 – Find a strong enough loop invariant P such that:
 \((\neg B \land P) \Rightarrow Q\)
 – Show that P is a loop invariant: \(\{P \land B\} \ S \ \{P\}\)
 – If we can show that P is a loop invariant, we get
 \(\{P\} \ \text{while} \ B \ \text{do} \ S \ \{\neg B \land P\}\)
 – Since we had \((\neg B \land P) \Rightarrow Q\), using the rule of consequence 1, we get
 \(\{P\} \ \text{while} \ B \ \text{do} \ S \ \{Q\}\)
Example

- Consider the following program segment:

 \[\text{sum}:=0; \text{i}:=1; \text{while (i} \leq 10 \text{) do (sum}:=\text{sum}+\text{i}; \text{i}:=\text{i}+1) \]

- We want to prove that \(Q \equiv \sum_{0 \leq k \leq 10} k \)

 holds at the loop termination, i.e., we want to prove the Hoare triple:

 \[\{\text{true}\} \text{ sum}:=0; \text{i}:=0; \text{while (i} \leq 10 \text{) do (sum}:=\text{sum}+\text{i}; \text{i}:=\text{i}+1) \} \{Q\} \]

- We need to find a strong enough loop invariant \(P \)
- Let’s choose \(P \) as follows:

 \[P \equiv i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k \]
To use the rule of iteration we need to show \(\{P \land B\} S \{P\} \) where

- \(P \equiv i \leq 11 \land \text{sum}=\sum_{0 \leq k < i} k \)
- \(S: \text{sum}:=\text{sum}+i; \ i:=i+1 \)
- \(B \equiv i \leq 10 \)

Using the rule of assignment we get:

\[
\begin{align*}
\{i \leq 11 \land \text{sum}=\sum_{0 \leq k < i} k[i\leftarrow i+1]\} & \ i:=i+1 \ {\{i \leq 11 \land \text{sum}=\sum_{0 \leq k < i} k\}} \\
\equiv \ {\{i+1 \leq 11 \land \text{sum}=\sum_{0 \leq k < i+1} k\} i:=i+1 \ {\{i \leq 11 \land \text{sum}=\sum_{0 \leq k < i} k\}}}
\end{align*}
\]

\[
\begin{align*}
\equiv \ {\{i \leq 10 \land \text{sum}=\sum_{0 \leq k < i+1} k\} i:=i+1 \ {\{i \leq 11 \land \text{sum}=\sum_{0 \leq k < i} k\}}}
\end{align*}
\]
Example

Using the rule of assignment one more time:

\[\{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i+1} \} \text{sum} := \text{sum} + i \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i+1} \} \]

\[\equiv \{ i \leq 10 \land \text{sum} + i = \sum_{0 \leq k < i+1} \} \text{sum} := \text{sum} + i \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i+1} \} \]

\[\equiv \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i} \} \text{sum} := \text{sum} + i \{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i+1} \} \]

Using the rule of sequential composition we get:

\[\{ i \leq 10 \land \text{sum} = \sum_{0 \leq k < i} \} \text{sum} := \text{sum} + i; \ i := i + 1 \{ i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} \} \]
Example

• Note that

\[P \land B \equiv (i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k) \land (i \leq 10) \equiv i \leq 10 \land \text{sum} = \sum_{0 \leq k < i} k \]

\[P \land \neg B \equiv (i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k) \land \neg(i \leq 10) \]

\[\equiv i \leq 11 \land i > 10 \land \text{sum} = \sum_{0 \leq k < i} k \equiv i = 11 \land \text{sum} = \sum_{0 \leq k < i} k \]

\[\equiv \text{sum} = \sum_{0 \leq k < 11} k \]

• Using the rule of iteration we get:

\[\{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} k\} \text{ while } (i \leq 10) \text{ do } (\text{sum} := \text{sum} + i; i := i + 1) \} \{\text{sum} = \sum_{0 \leq k < 11} k\} \]
Example

• To finish the proof, apply rule of assignment

\{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} [i \leftarrow 1] \} \ i := 1 \{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} \}

\equiv \{1 \leq 11 \land \text{sum} = \sum_{0 \leq k < 1} \} \ i := 1 \{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} \}

\equiv \{\text{sum}=0\} \ i := 1 \{i \leq 11 \land \text{sum} = \sum_{0 \leq k < i} \}

Another rule of assignment application

\{\text{sum}=0 \ [\text{sum} \leftarrow 0]\} \ \text{sum} := 0 \ \{\text{sum}=0\}

\{0=0\} \ \text{sum} := 0 \ \{\text{sum}=0\}

\{\text{true}\} \ \text{sum} := 0 \ \{\text{sum}=0\}
Example

- Finally, combining the previous results with rule of sequential composition we get:

\[
\{\text{true}\} \sum_{0 \leq k \leq 10} k
\]

\[
\{
\text{true} \}
\sum_{0 \leq k \leq 10} k
\]

\[
\{\text{true}\} \sum_{0 \leq k \leq 10} k
\]

\[
\{\text{true}\} \sum_{0 \leq k \leq 10} k
\]
Difficulties in Proving Programs Correct

• Finding a loop invariant that is strong enough to prove the property that we are interested in can be difficult

• Also, note that we did not prove that the loop will terminate
 – To prove total correctness we also have to prove that the loop terminates

• Things get more complicated when there are procedures and recursion
Hoare Logic is a formalism for reasoning about correctness about programs. Developing proof of correctness using this formalism is another issue. In general proving correctness about programs is uncomputable – For example determining that a program terminates is uncomputable. This means that there is no automatic way of generating these proofs. Still Hoare’s formalism is useful for reasoning about programs.
Weakest Preconditions

• Dijkstra added another tool to Hoare’s formalism called **weakest precondition**.
 – It is another useful tool in reasoning about programs

• Given an assertion Q and a program segment S weakest precondition of S with respect to Q written \(\text{wp}(S, Q) \) is defined as:
 – the weakest condition such that if S starts executing in a state which satisfies that condition, when it terminates it is guaranteed that Q will hold.

• Note that the Hoare triple \{P\}S{Q} is correct if and only if \(P \Rightarrow \text{wp}(S, Q) \)
 – this is why it is called the weakest precondition, every other assertion P where we can show \{P\}S{Q} implies (i.e., is stronger than) \(\text{wp}(S, Q) \)
Weakest Preconditions

• Dijkstra calls $wp(S,Q)$ a predicate transformer
 – $wp(S,Q)$ takes a predicate (assertion, same thing) Q and a program segment S, and transforms it to another predicate that corresponds to the weakest precondition of S with respect to Q

• For example, for simple assignments $x:=\text{exp}$ (where exp is a simple expression with no procedure calls and no side effects) we already know the predicate transformer:
 – $wp(x:=\text{exp},Q) = Q[x\leftarrow\text{exp}]$
 • where exp is a simple expression (no procedure calls in exp) that has no side effects (evaluating the expression does not change the state of the program)
Some rules about weakest preconditions

- If $P \Rightarrow Q$ then $wp(S, P) \Rightarrow wp(S, Q)$

- $wp(S, P) \land wp(S, Q) \equiv wp(S, P \land Q)$

- $wp(S, P) \lor wp(S, Q) \equiv wp(S, P \lor Q)$

- $wp(S_1 ; S_2 , P) \equiv wp(S_1 , wp(S_2 , P))$

- $wp(\text{if } B \text{ then } S_1 \text{ else } S_2 , P) \equiv (B \Rightarrow wp(S_1 , P)) \land (\neg B \Rightarrow wp(S_2 , P))$

- $wp(\text{if } B \text{ then } S_1 , P) \equiv (B \Rightarrow wp(S_1 , P)) \land (\neg B \Rightarrow P)$
Examples

• \(\text{wp}(x:=x+1, x \geq 1)\)
 \(\equiv x \geq 1[x \leftarrow x+1]\)
 \(\equiv x+1 \geq 1\)
 \(\equiv x \geq 0\)

• \(\text{wp}(x:=x+1; x:=x+2, x < 10)\)
 \(\equiv \text{wp}(x:=x+1, \text{wp}(x:=x+2, x < 10))\)
 \(\equiv \text{wp}(x:=x+1, x < 10[x \leftarrow x+2])\)
 \(\equiv \text{wp}(x:=x+1, x+2 < 10)\)
 \(\equiv \text{wp}(x:=x+1, x < 8)\)
 \(\equiv x < 8[x \leftarrow x+1]\)
 \(\equiv x+1 < 8\)
 \(\equiv x < 7\)
Examples

• \(\text{wp}(\text{if} \ (x > y) \ \text{max}:=x \ \text{else} \ \text{max}:=y, \ \text{max} \geq x \land \text{max} \geq y) \)

 \(\equiv (x > y \Rightarrow \text{wp}(\text{max}:=x, \ \text{max} \geq x \land \text{max} \geq y)) \land (\neg (x > y) \Rightarrow \text{wp}(\text{max}:=y, \ \text{max} \geq x \land \text{max} \geq y)) \)

 \(\equiv (x > y \Rightarrow \text{max} \geq x \land \text{max} \geq y[\text{max} \leftarrow x]) \land (x \leq y \Rightarrow \text{max} \geq x \land \text{max} \geq y[\text{max} \leftarrow y]) \)

 \(\equiv (x > y \Rightarrow x \geq x \land x \geq y) \land (x \leq y \Rightarrow y \geq x \land y \geq y) \)

 \(\equiv (x > y \Rightarrow x \geq y) \land (x \leq y \Rightarrow y \geq x) \)

 \(\equiv \text{true} \)
Loops

- Loops are more complicated

- We want to compute $wp(\text{while } B \text{ do } S, P)$

- We will need the following definitions:
 - Let $H_0(P) \equiv \neg B \land P$
 - Let (for $k > 0$) $H_k(P) \equiv wp(\text{if } B \text{ then } S, H_{k-1}(P)) \lor H_0(P)$

- **Intuition:** $H_k(P)$ is the weakest precondition for the case that the loop body is executed less than or equal to k times
Loops

• One can show that the weakest precondition is the (infinite) disjunction of the iterates $H_0(P), H_1(P), H_2(P), \ldots$:

 – $wp(\text{while } B \text{ do } S, P) \equiv H_0(P) \vee H_1(P) \vee H_2(P) \ldots$

 – Equivalently (by replacing the infinite disjunction with existential quantification, we get):

 • $wp(\text{while } B \text{ do } S, P) \equiv \exists m, m \geq 0, H_m(P)$

 – Intuition: The weakest precondition states that there exists an m where the loop will iterate at most m times, and the weakest precondition of the loop is the weakest precondition that corresponds to iterating the loop m times or less.
Loops

• One can show that, if there is an n where $H_n(P) \equiv H_{n-1}(P)$ then

 – $H_0(P) \lor H_1(P) \lor H_2(P) \ldots \equiv H_n(P)$

• Hence, if we can find an n where $H_n(P) \equiv H_{n-1}(P)$ then

 – $wp(\text{while } B \text{ do } S, P) \equiv H_n(P)$

 – However, there may not be an n where $H_n(P) \equiv H_{n-1}(P)$
Loops: Example

- Assume that we want to compute the following weakest precondition
 - \(wp(\text{while (i<=10) do i:=i+1, i=11}) \)

\[
H_0(i=11) \equiv i>10 \land i=11 \equiv i =11
\]

\[
H_1(i=11) \equiv wp(\text{if(i<=10) then i:=i+1, i=11}) \lor i=11
\equiv i=10 \lor i=11
\]

\[
H_2(i=11) \equiv i=9 \lor i=10 \lor i=11
\]

\[
H_3(i=11) \equiv i=8 \lor i=9 \lor i=10 \lor i=11
\]

...

We can see that, \(H_k(i=11) \equiv \lor_{0 \leq j \leq k} i = 11-j \)

Note that, for each \(k \), \(H_k(i=11) \preceq H_{k-1}(i=11) \)
Loops: Example

Remember, we said that the weakest precondition can be written as an infinite disjunction of the iterates:

\[\text{wp(while } (i \leq 10) \text{ do } i := i+1, \ i=11) \equiv H_0(i=11) \lor H_1(i=11) \lor H_2(i=11) \ldots \]

and that the infinite disjunction is equivalent to

\[\begin{align*}
\text{wp(while } (i \leq 10) \text{ do } i := i+1, \ i=11) & \equiv \exists m, \ m \geq 0, \ H_m(i=11) \\
& \equiv \exists m, \ m \geq 0, \ \bigvee_{0 \leq j \leq m} i = 11 - j \\
& \equiv \exists m, \ m \geq 0, \ 11 - m \leq i \leq 11 \\
& \equiv \exists m, \ m \geq 0 \land 11 - m \leq i \land i \leq 11 \equiv i \leq 11
\end{align*} \]
Loops: Fixpoint

• Note that $i \leq 11$ is a fixpoint of the iterative definition for the weakest precondition in this example.
 The iterative definition was:
 \[H_k(i=11) \equiv wp(\text{while } (i\leq10) \text{ do } i:=i+1, \ H_{k-1}(i=11)) \lor H_0(i=11) \]
 where \[H_0(i=11) \equiv i>10 \land i=11 \equiv i =11 \]

• What does fixpoint mean?
 – It means that, if we set \[H_{k-1}(i=11) \equiv i \leq 11 \] we will get \[H_k \equiv H_{k-1} \]

• Let’s try:
 \[H_k \equiv wp(\text{if}(i\leq10) \text{ then } i:=i+1, i \leq 11) \lor i = 11 \]
 \[\equiv i \leq 10 \lor i = 11 \equiv i \leq 11 \]

 We see that, \[H_k \equiv H_{k-1} \equiv i \leq 11 \]
Loops: Least Fixpoint

- Actually, $i \leq 11$ is the **least fixpoint** of the iterative definition for the weakest precondition in this example.

- What does it mean that $i \leq 11$ is the least fixpoint of the iterative definition?
 - It means that for any other predicate P which is the fixpoint of the iteration $i \leq 11 \Rightarrow P$

- For example, $i \leq 12$ is also a fixpoint of the iterative definition for the weakest precondition in this example, however it is not the least fixpoint since $i \leq 12 \nRightarrow i \leq 11$
 - Note that, “true” is also a fixpoint of the iterative definition for the weakest precondition in this example

- Weakest precondition if the least fixpoint of the iterative definition
Loops: A Non-terminating Example

• We can check termination using weakest preconditions
 – To check termination set the post-condition to “true”

• Let’s look at the following loop: while (i <= i) do i:=i+1
 – Let’s compute, wp(while (i <= i) do i:=i+1, true)

\[H_0(i=11) \equiv i > i \land \text{true} \equiv false\]
\[H_1(i=11) \equiv wp(\text{if}(i<=i) \text{ then } i:=i+1, \text{false}) \lor \text{false} \equiv false\]
 – Hence, wp(while (i <= i) do i:=i+1, true) \equiv false
 • i.e., the loop does not terminate

• Remember that halting problem is undecidable
 – We cannot automatically compute weakest preconditions