
272: Software Engineering
Winter 2024

Instructor: Tevfik Bultan

Lecture: Testing Overview, Foundations

Verification, Validation, Testing
• Verification: Demonstration of consistency, completeness, and

correctness of the software artifacts at each stage of and between
each stage of the software life-cycle.
– Different types of verification: manual inspection, testing, formal

methods
– Verification answers the question: Am I building the product

right?
• Validation: The process of evaluating software at the end of the

software development to ensure compliance with respect to the
customer needs and requirements.
– Validation can be accomplished by verifying the artifacts produced

at each stage of the software development life cycle
– Validation answers the question: Am I building the right product?

• Testing: Examination of the behavior of a program by executing the
program on sample data sets.
– Testing is a verification technique used at the implementation

stage.

Verification/Testing Through Software Life-Cycle

• Every phase of software life-cycle requires verification techniques to
find errors (violating correctness), omissions (violating completeness),
contradictions (violating consistency)
– Requirements analysis and specification

• use cases, scenarios of expected system use, help in
establishing completeness, and can be used to generate test
cases later on in the implementation stage

• formal requirements specifications (for example: Statecharts,
UML+OCL) can be checked for properties such as consistency
and completeness automatically

• As I mentioned earlier, late discovery of requirements errors is
very costly

Verification/Testing Through Software Life-Cycle

– Design
• Pre, post-conditions, class invariants can be used for

verification at the detailed design stage
• Design walk-throughs, design inspections, and design review

– Implementation
• Program testing is one of the main verification tools at this stage
• Code walk-throughs, code inspections, code review, audits
• Dynamic analysis tools such as dynamic monitoring of

assertions and dynamic design by contract monitoring
• Static verification tools like ESC/Java Dafny

Relationships between different phases
of software life-cycle and testing

software
requirements

software
system test
planning

system
testing

preliminary
design

detailed
design

coding

unit test
planning

integration test
planning

integration
testing

unit
testing delivery

production
deployment

maintenance

acceptance
testing

regression
testing

Manual Verification:
Reviews, Walkthroughs, Inspections,

Audits

Manual Verification

• When we have an executable program we can use testing methods for
verification

• Can we find a way to check requirements specifications, design
specifications, and source code?

• Manual verification techniques help in these situations:
– Walkthroughs, Inspections, Reviews, Audits
– Sometimes all of these techniques together are called Reviews

• These tasks are done typically in meetings, manually

• They are useful when no automated technique is available

General Characteristics
Each Review, Walk-through, Inspection and Audit should have the

following three phases:

1. The planning phase
– stating the purpose of the review
– arranging the participants
– ensuring that review materials are provided for their

inspection well prior to the conduct of the review
– making arrangements for the location and support required
– preparing an agenda

General Characteristics

2. The meeting conduct phase
– follow the agenda in a disciplined manner
– identify problems and assign action for their resolution not try to fix

them during the review
– a moderator or review leader maintains control
– a recorder has to be assigned to transcribe the proceedings for

preparing a record of the meeting and post-meeting action list

3. The post-meeting phase
– flexible depending on the actions required
– actions are followed to completion by management and reported in

the next review

Reviews

• Review: A process or meeting during which a work product, or a set of
work products, is presented to project personnel, managers, users,
customers, or other interested parties for comment or approval. Types
include code review, design review, and requirements review.

• Characteristics for a review:
– Review should generate a written report on status of the product

reviewed—a report that is available to everyone involved in the
project, including management;

– Review requires active and open participation of everyone in the
review group;

– Review requires full responsibility of all participants for the quality of
the review—that is, for the quality of the information in the written
report.

Walk-through

• Walk-through: A manual static analysis technique in which a designer
or programmer leads members of the development team and other
interested parties through a segment of documentation or code, and
the participants ask questions and make comments about possible
errors, violation of development standards, and other problems.

• Walk-throughs are a form of manual simulation
• Two variations

– led by a reader or presenter who could be the person responsible
for the product

– led by a moderator independent of the person responsible for the
product

• In a code walkthrough, you go over the code statement-by-statement
explaining what each statement does

Walkthroughs
• Objectives

– detect, identify, and describe software element defects
– examine alternatives and stylistic issues
– provide a mechanism that enables the authors to collect valuable

feedback on their work, yet allows them to retain the decision-
making authority for any changes

• Planning
– identify the walkthrough team
– select a place and schedule a meeting
– distribute all necessary input materials to the participants, allowing

for adequate preparation time

• Participants review the input material during the preparation phase

Walkthroughs
• During the meeting

– author makes an overview presentation of the software element
– the author walks through the specific software element so that

member of the walkthrough team may ask questions or raise issues
about the software element, and/or make notes documenting
concerns

– the recorder writes down comments and decision of inclusion in the
walk-through report

• Output: the walkthrough-report contains
– identification of the walkthrough team
– identification of the software elements examined
– the statement of objectives that were to be handled during the

walkthrough meeting
– A list of noted deficiencies, omissions, contradictions, and

suggestions for improvement

Inspection

• Inspection: A manual static analysis technique that relies on visual
examination of development products to detect errors, violations of
developing standards, and other problems. Types include code
inspection; design inspections.

• Inspections are used to manually check for common errors
• A method of rapidly evaluating material by confining attention to a few

selected aspects, one at a time.
• In an inspection, the inspector uses a rigid set of guidelines or a

checklist to assess the degree of compliance with the checklist or
guidelines

• In a code inspection you have a checklist that looks for errors such as
uninitialized variables, division by zero etc. and check each item in the
checklist one by one

Inspections

• Objective is to detect defects in the product by comparison with a
checklist that typifies the types of defects that are common to the type
of product being inspected.

• There is a moderator and inspectors, the developer of the product and
a recorder

• Planning:
– moderator makes arrangements: the materials to be inspected, the

checklists to be used, selecting a place and scheduling the meeting
• The moderator controls the meeting by walking through the code
• A checklist is used to identify the defects

Inspections

• A typical inspection checklist for code inspections may include:
– wrongful use of data: unintialized variables, array index out of

bounds, dangling pointers
– faults in declarations: use of undeclared variables, declaration of

the same name in nested blocks
– faults in computations: division by zero, overflow, wrong use of

variables of different types in one and the same expression, faults
caused by an erroneous conception of operator priorities

– faults in relational expressions: using an incorrect operator, an
erroneous conception of priorities of Boolean operators

– faults in control flow: infinite loops, a loop that gets executed n+1 or
n-1 times rather than n

– faults in interfaces: incorrect number of parameters, parameters of
the wrong types, inconsistent use of global variables

Audits

• Audit: An independent examination of a work product or a set of work
products to assess compliance with specifications, standards,
contractual agreements, or other criteria.

• Similar to inspections but
– More interactive than inspections
– Less structured than inspections

• You can consider your project demo an audit

Manual Verification Software Life-Cycle

Software
Requirements
Analysis Preliminary

Design Detailed
Design Coding and

Unit Test System Test
and Integration

Requirements
Walkthroughs

Requirements
Specification
Inspection

Software
Requirements
Review

Design
Walkthroughs

Preliminary
Design
Review

Design
Specification
Inspection

Critical
Design
Review

Code
Walkthroughs

Code Inspections

User Manual
Inspection

Functional and
Physical
Configuration
Audits

Software Testing

Software Testing

• Correctness
– software should match its specifications
– software should meet its functional requirements

• Testing is necessary because we cannot guarantee correctness in the
software development process

• Testing: techniques of checking software correctness by executing the
software on some data sets

Software Testing
• Goal of testing

– finding faults in the software
– demonstrating that there are no faults in the software

• It is not possible to prove that there are no faults in the software using
testing

• Testing should help locate errors, not just detect their presence
– a “yes/no” answer to the question “is the program correct?” is not

very helpful

• Testing should be repeatable
– could be difficult for distributed or concurrent software
– effect of the environment, uninitialized variables

Testing Software is Hard

• If you are testing a bridge’s ability to sustain weight, and you test it with
1000 tons you can infer that it will sustain weight ≤ 1000 tons

• This kind of reasoning does not work for software systems
– software systems are not linear nor continuous

• Exhaustively testing all possible input output combinations is too
expensive
– the number of test cases increase exponentially with the number of

input/output variables

Some Definitions

• Let P be a program and let D denote its input domain

• A test case d is an element of input domain d ∈ D
– a test case gives a valuation for all the input variables of the

program

• A test set T is a finite set of test cases, i.e., a subset of D, T ⊆ D

• The basic difficulty in testing is finding a test set that will uncover the
faults in the program

• Exhaustive testing corresponds to setting T = D

Exhaustive Testing is Hard

• Number of possible test cases
(assuming 32 bit integers)
– 232× 232 = 264

• Do bigger test sets help?
– Test set
{(x=3,y=2), (x=2,y=3)}
will detect the error
– Test set
{(x=3,y=2),(x=4,y=3),(x=5,y=1)}
will not detect the error although

it has more test cases
• It is not the number of test cases
• But, if T1⊇ T2, then T1 will detect

every fault detected by T2

int max(int x, int y)
{

if (x > y)
return x;

else
return x;

}

Exhaustive Testing

• Assume that the input for the max procedure was an integer array of
size n
– Number of test cases: 232× n

• Assume that the size of the input array is not bounded
– Number of test cases: ∞

• The point is, exhaustive testing is infeasible in many cases

Random Testing

• Use a random number generator to generate test cases

• Derive estimates for the reliability of the software using some
probabilistic analysis

• Coverage is a problem

Generating Test Cases Randomly

• If we pick test cases randomly it is
unlikely that we will pick a case where x
and y have the same value

• If x and y can take 232 different values,
there are 264 possible test cases. In 232

of them x and y are equal
– probability of picking a case where x

is equal to y is 2-32

• It is not a good idea to pick the test
cases randomly (with uniform
distribution) in this case

bool isEqual(int x, int y)
{

if (x = y)
z := false;

else
z := false;

return z;
}

Testing

• Testing can be categorized in different ways:
– Functional vs. Structural testing

• Functional testing: Generating test cases based on the
functionality of the software

• Structural testing: Generating test cases based on the structure
of the program

– Black box vs. White box testing
• Black box testing is same as functional testing. Program is

treated as a black box, its internal structure is hidden from the
testing process.

• White box testing is same as structural testing. In white box
testing internal structure of the program is taken into account

– Module (Unit) vs. Integration testing
• Module testing: Testing the modules of a program in isolation
• Integration testing: Testing an integrated set of modules

Functional Testing, Black-Box Testing

• Functional testing:
– identify the the functions which software is expected to perform
– create test data which will check whether these functions are

performed by the software
– no consideration is given how the program performs these

functions, program is treated as a black-box: black-box testing
– need an oracle: oracle states precisely what the outcome of a

program execution will be for a particular test case. This may not
always be possible, oracle may give a range of plausible values

• A systematic approach to functional testing: requirements based
testing
– driving test cases automatically from a formal specification of the

functional requirements

Domain Testing

• Partition the input domain to equivalence classes
• For some requirements specifications it is possible to define

equivalence classes in the input domain
• Here is an example: A factorial function specification:

– If the input value n is less than 0 then an appropriate error message
must be printed. If 0 ≤ n < 20, then the exact value n! must be
printed. If 20 ≤ n ≤ 200, then an approximate value of n! must be
printed in floating point format using some approximate numerical
method. The admissible error is 0.1% of the exact value. Finally, if
n > 200, the input can be rejected by printing an appropriate error
message.

• Possible equivalence classes: D1 = {n<0}, D2 = {0 ≤ n < 20}, D3 = {20 ≤
n ≤ 200}, D4 = {n > 200}

• Choose one test case per equivalence class to test

Equivalence Classes

• If the equivalence classes are disjoint, then they define a partition of
the input domain

• If the equivalence classes are not disjoint, then we can try to minimize
the number of test cases while choosing representatives from different
equivalence classes

• Example: D1 = {x is even}, D2 = {x is odd}, D3 = {x ≤ 0}, D4={x > 0}
– Test set {x=48, x= –23} covers all the equivalence classes

• On one extreme we can make each equivalence class have only one
element which turns into exhaustive testing

• The other extreme is choosing the whole input domain D as an
equivalence class which would mean that we will use only one test
case

Testing Boundary Conditions

• For each range [R1, R2] listed in either the input or output
specifications, choose five cases:
– Values less than R1
– Values equal to R1
– Values greater than R1 but less than R2
– Values equal to R2
– Values greater than R2

• For unordered sets select two values
– 1) in, 2) not in

• For equality select 2 values
– 1) equal, 2) not equal

• For sets, lists select two cases
– 1) empty, 2) not empty

R1 R2

Testing Boundary Conditions

• For the factorial example, ranges for variable n are:

– [−∞, 0], [0,20], [20,200], [200, ∞]

– A possible test set:

• {n = -5, n=0, n=11, n=20, n= 25, n=200, n= 3000}

– If we know the maximum and minimum values that n can take we
can also add those n=MIN, n=MAX to the test set.

Structural Testing, White-Box Testing

• Structural Testing
– the test data is derived from the structure of the software

– white-box testing: the internal structure of the software is taken
into account to derive the test cases

• One of the basic questions in testing:
– when should we stop adding new test cases to our test set?
– Coverage metrics are used to address this question

Coverage Metrics
• Coverage metrics

– Statement coverage: all statements in the programs should be
executed at least once

– Branch coverage: all branches in the program should be executed
at least once

– Path coverage: all execution paths in the program should be
executed at lest once

• The best case would be to execute all paths through the code, but
there are some problems with this:
– the number of paths increases fast with the number of branches in

the program
– the number of executions of a loop may depend on the input

variables and hence may not be possible to determine
– most of the paths can be infeasible

Statement Coverage

• Choose a test set T such
that by executing program P
for each test case in T, each
basic statement of P is
executed at least once

• Executing a statement once
and observing that it
behaves correctly is not a
guarantee for correctness,
but it is an heuristic
– this goes for all testing

efforts since in general
checking correctness is
undecidable

bool isEqual(int x, int y)
{

if (x = y)
z := false;

else
z := false;

return z;
}

int max(int x, int y)
{

if (x > y)
return x;

else
return x;

}

Statement Coverage

areTheyPositive(int x, int y)
{

if (x >= 0)
print(“x is positive”);

else
print(“x is negative”);

if (y >= 0)
print(“y is positive”);

else
print(“y is negative”);

}

Following test set will give us statement
coverage:
T1 = {(x=12,y=5), (x=−1,y=35),
(x=115,y=−13),(x=−91,y=−2)}

There are smaller test cases which will
give us statement coverage too:
T2 = {(x=12,y=−5), (x=−1,y=35)}

There is a difference between these two
test sets though

Control Flow Graphs (CFGs)

• Nodes in the control flow graph are basic blocks
– A basic block is a sequence of statements always entered at the

beginning of the block and exited at the end
• Edges in the control flow graph represent the control flow

if (x < y) {
x = 5 * y;
x = x + 3;

}
else

y = 5;
x = x+y;

(x < y)

x = 5 * y
x = x + 3

y = 5

x = x+y

B1 B2

B0

B3

• Each block has a sequence of statements
• No jump from or to the middle of the block
• Once a block starts executing, it will execute till the
end

Y N

Statement vs. Branch Coverage

assignAbsolute(int x)
{

if (x < 0)
x := -x;

z := x;
}

Consider this program segment, the test set
T = {x=−1} will give statement coverage,
however not branch coverage

(x < 0)

x := -x

z := x

B0

B1

B2

Test set {x=−1} does not
execute this edge, hence, it
does not give branch coverage

true false

Control Flow Graph:

Branch Coverage

• Construct the control flow graph

• Select a test set T such that by executing program P for each test
case d in T, each edge of P’s control flow graph is traversed at least
once

(x < 0)

x := -x

z := x

B0

B1

B2

Test set {x=−1} does not
execute this edge, hence, it
does not give branch
coverage

Test set {x=−1, x=2}gives
both statement and branch
coverage

true false

Path Coverage

• Select a test set T such that by executing program P for each test case
d in T, all paths leading from the initial to the final node of P’s control
flow graph are traversed

Path Coverage

areTheyPositive(int x, int y)
{

if (x >= 0)
print(“x is positive”);

else
print(“x is negative”);

if (y >= 0)
print(“y is positive”);

else
print(“y is negative”);

}

(x >= 0)
B0

B1
print(“x is p”)

B2
print(“x is n”)

(y >= 0)
B3

B4
print(“y is p”)

B5
print(“y is n”)

return

B6

Test set:
T2 = {(x=12,y=−5), (x=−1,y=35)}
gives both branch and statement
coverage but it does not give path coverage

Set of all execution paths: {(B0,B1,B3,B4,B6), (B0,B1,B3,B5,B6), (B0,B2,B3,B4,B6),
(B0,B2,B3,B5,B6)}
Test set T2 executes only paths: (B0,B1,B3,B5,B6) and (B0,B2,B3,B4,B6)

true false

true false

Path Coverage

areTheyPositive(int x, int y)
{

if (x >= 0)
print(“x is positive”);

else
print(“x is negative”);

if (y >= 0)
print(“y is positive”);

else
print(“y is negative”);

}

(x >= 0)
B0

B1
print(“x is p”)

B2
print(“x is n”)

(y >= 0)

B3

B4
print(“y is p”)

B5
print(“y is n”)

return
B6

Test set:
T1 = {(x=12,y=5), (x=−1,y=35),
(x=115,y=−13),(x=−91,y=−2)}
gives both branch, statement and path
coverage

true false

true false

Path Coverage

• Number of paths is exponential in the number of conditional branches
– testing cost may be expensive

• Note that every path in the control flow graphs may not be executable
– It is possible that there are paths which will never be executed due

to dependencies between branch conditions

• In the presence of cycles in the control flow graph (for example loops)
we need to clarify what we mean by path coverage
– Given a cycle in the control flow graph we can go over the cycle

arbitrary number of times, which will create an infinite set of paths
– Redefine path coverage as: each cycle must be executed 0, 1, ..., k

times where k is a constant (k could be 1 or 2)

Condition Coverage

• In the branch coverage we make sure that we execute every branch
at least once
– For conditional branches, this means that, we execute the TRUE

branch at least once and the FALSE branch at least once
• Conditions for conditional branches can be compound boolean

expressions
– A compound boolean expression consists of a combination of

boolean terms combined with logical connectives AND, OR, and
NOT

• Condition coverage:
– Select a test set T such that by executing program P for each test

case d in T,
(1) each edge of P’s control flow graph is traversed at least once
and
(2) each boolean term that appears in a branch condition takes
the value TRUE at least once and the value FALSE at least once

• Condition coverage is a refinement of branch coverage (part (1) is
same as the branch coverage)

Condition Coverage

something(int x)
{

if (x < 0 || y < x)
{

y := -y;
x := -x;

}
z := x;

}

T = {(x=−1, y=1), (x=1, y=1)} will achieve
statement, branch and path coverage, however
T will not achieve condition coverage
because the boolean term (y < x) never
evaluates to true. This test set satisfies part (1)
but does not satisfy part (2).

(x < 0 || y < x)

y := -y;
x := -x;

z := x

B0

B1

B2

true false

Control Flow Graph

T = {(x=−1, y=1), (x=1, y=0)}
will not achieve condition coverage
either. This test set satisfies part (2)
but does not satisfy part (1). It does
not achieve branch coverage since
both test cases take the true branch,
and, hence, it does not achieve
condition coverage by definition.

T = {(x=−1, y=−2), {(x=1, y=1)}
achieves condition coverage.

Multiple Condition Coverage

• Multiple Condition Coverage requires that all possible combination of truth

assignments for the boolean terms in each branch condition should

happen at least once

• For example for the previous example we had:

x < 0 && y < x

• Test set {(x=−1, y=−2), (x=1, y=1)}, achieves condition coverage:

– test case (x=−1, y=−2) makes term1=true, term2=true, and the whole

expression evaluates to true (i.e., we take the true branch)

– test case (x=1, y=1) makes term1=false, term2=false, and the whole

expression evaluates to false (i.e., we take the false branch)

• However, test set {(x=−1, y= −2), (x=1, y=1)} does not achieve multiple

condition coverage since we did not observe the following truth

assignments

– term1=true, term2=false

– term1=false, term2=true

term1 term2

Types of Testing

• Unit (Module) testing
– testing of a single module in an isolated environment

• Integration testing
– testing parts of the system by combining the modules

• System testing
– testing of the system as a whole after the integration phase

• Acceptance testing
– testing the system as a whole to find out if it satisfies the

requirements specifications

Unit Testing
• Involves testing a single isolated module

• Note that unit testing allows us to isolate the errors to a single module
– we know that if we find an error during unit testing it is in the

module we are testing

• Modules in a program are not isolated, they interact with each other.
Possible interactions:
– calling procedures in other modules
– receiving procedure calls from other modules
– sharing variables

• For unit testing we need to isolate the module we want to test, we do
this using two things
– drivers and stubs

Drivers and Stubs

• Driver: A program that calls the interface procedures of the module
being tested and reports the results

– A driver simulates a module that calls the module currently being
tested

• Stub: A program that has the same interface as a module that is being
used by the module being tested, but is simpler.

– A stub simulates a module called by the module currently being
tested

Drivers and Stubs

Driver Module
Under Test Stub

procedure
call

procedure
call

access to global
variables

• Driver and Stub should have the same interface as the modules they
replace

• Driver and Stub should be simpler than the modules they replace

Integration Testing

• Integration testing: Integrated collection of modules tested as a group
or partial system

• Integration plan specifies the order in which to combine modules into
partial systems

• Different approaches to integration testing
– Bottom-up
– Top-down
– Big-bang
– Sandwich

Module Structure

A

C

D

E F G

H

• A uses C and D; B uses D; C uses E and F; D uses F, G, H and I; H uses I
• Modules A and B are at level 3; Module D is at level 2
Modules C and H are at level 1; Modules E, F, G, I are at level 0
• level 0 components do not use any other components
• level i components use at least one component on level i-1 and no
component at a level higher than i-1

I

B
• We assume that
the uses hierarchy is
a directed acyclic graph.
• If there are cycles
merge
them to a single module

level 0

level 1

Bottom-Up Integration

• Only terminal modules (i.e., the modules that do not call other
modules) are tested in isolation

• Modules at lower levels are tested using the previously tested higher
level modules

• Non-terminal modules are not tested in isolation

• Requires a module driver for each module to feed the test case
input to the interface of the module being tested
– However, stubs are not needed since we are starting with the

terminal modules and use already tested modules when testing
modules in the lower levels

Bottom-up Integration

A

C

D

E F G

H

I

B

Top-down Integration

• Only modules tested in isolation are the modules which are at the
highest level

• After a module is tested, the modules directly called by that module are
merged with the already tested module and the combination is tested

• Requires stub modules to simulate the functions of the missing
modules that may be called
– However, drivers are not needed since we are starting with the

modules which is not used by any other module and use already
tested modules when testing modules in the higher levels

Top-down Integration

A

C

D

E F G

H

I

B

Other Approaches to Integration

• Sandwich Integration
– Compromise between bottom-up and top-down testing
– Simultaneously begin bottom-up and top-down testing and meet at

a predetermined point in the middle

• Big Bang Integration
– Every module is unit tested in isolation
– After all of the modules are tested they are all integrated together at

once and tested
– No driver or stub is needed
– However, in this approach, it may be hard to isolate the bugs!

System Testing, Acceptance Testing

• System and Acceptance testing follows the integration phase
– testing the system as a whole

• Test cases can be constructed based on the the requirements
specifications
– main purpose is to assure that the system meets its requirements

• Manual testing
– Somebody uses the software on a bunch of scenarios and records

the results
– Use cases and use case scenarios in the requirements

specification would be very helpful here
– manual testing is sometimes unavoidable: usability testing

System Testing, Acceptance Testing

• Alpha testing is performed within the development organization

• Beta testing is performed by a select group of friendly customers

• Stress testing
– push system to extreme situations and see if it fails
– large number of data, high input rate, low input rate, etc.

Regression testing
• You should preserve all the test cases for a program

• During the maintenance phase, when a change is made to the
program, the test cases that have been saved are used to do
regression testing
– figuring out if a change made to the program introduced any faults

• Regression testing is crucial during maintenance
– It is a good idea to automate regression testing so that all test

cases are run after each modification to the software

• When you find a bug in your program you should write a test case that
exhibits the bug
– Then using regression testing you can make sure that the old bugs

do not reappear

Test Plan

• Testing is a complicated task
– it is a good idea to have a test plan

• A test plan should specify
– Unit tests
– Integration plan
– System tests
– Regression tests

Automation and Research in Software
Testing

Automated Testing Techniques

Fuzzing / fuzz testing: An automated software testing technique that
provides unexpected (or invalid) inputs to the program to find bugs
• Can be seen as an advanced version of random testing
• Especially useful in finding security vulnerabilities

Symbolic execution: Symbolically executes programs on undefined
inputs (called symbols) and uses logic solvers to identify feasible path
constraints (constraints on the inputs that correspond to a particular
execution path)
• Can be used at function/method level, not scalable to large programs
• Can be seen as a verification technique and help prove properties

about programs
• Can be combined with fuzzing to generate hybrid testing strategies

Automated Testing Techniques

Differential testing: Feeding the same input to two programs which are
expected to have same functionality in order to detect variations in their
behaviors.
• Addresses the oracle generation problem

Metamorphic testing: Given a program (and its expected functionality)
find transformations on input with corresponding known transformations
on output. Given a successful test case, transform the input and see the
generated output by the program is equal to the transformed output.
• Addresses the oracle generation problem

Mutation testing / mutation analysis: Modify (mutate) program in small
ways and see if the test suite detects (kills) the mutants
• Can be used to assess quality of a test suite

Mutation Analysis

• Mutation analysis is used to figure out the quality of a test set
• Mutation analysis creates mutants of a program by making changes

to the program (change a condition, change an assignment, etc.)
• Each mutant program and the original program are executed using

the test set
• If a mutant and the original program give different results for a test

case then the test set detected that the mutant is different from the
original program, hence the mutant is said to be dead

• If test set does not detect the difference between the original program
and some mutants, these mutants are said to be live

• We want the test set to kill as many mutants as possible
– Mutant programs can be equivalent to the original program, hence

no test set can kill them

robustness failures

67

bus

bird

temple

ostrich

ostrich

ostrich

Adding small perturbations to images
that are not visible to humans can
change the classification generated by
Neural Network based classifiers
(NNs)

Testing in the Age of AI: Robustness

robustness failures can be
exploited in real world

Kevin Eykholt et al. CVPR 2017Christian Szegedy et al. ICLR 2014

fairness failures

in recidivism risk assessment hiring
recommendations

68

AI systems learn the unfair bias in the historic data and make
recommendations based on that bias

Testing in the Age of AI: Fairness

Testing in the Age of AI

As the use of AI components in software increases, software testing
techniques will need to be adapted to address weaknesses and
vulnerabilities of AI components
• For example, software components that use Machine Learning

techniques such as Deep Neural Networks need to be tested for
robustness and fairness

Meanwhile, use of AI techniques in software development is also
increasing.
• Copilot and ChatGPT provide code generation capabilities
• How should we test software generated using AI techniques?
• Can we trust software generated by AI techniques?

Currently, these are among the most significant research questions in
software testing area

Formalizing Testing

• The terminology used for testing is not always consistent

• The paper titled “Programs, Tests, and Oracles: The Foundations of
Testing Revisited” tries to clarify some of the concepts about testing
– It particularly focuses on the formalization of oracles

Formalizing Testing

• Basic concepts in testing:

– P, Programs: This is the code, the implementation that we wish to
test

– T, Tests: T is a set of tests. Each test t Î T defines all the inputs to
the program, so that given a test t, we can run the program p
using t

– S, Specifications: These are the specifications that characterize
the correct behavior of the program; they may not be written down

– O, Oracle: Oracle is used to determine if a test case passes or
fails

Formalizing Testing

P

S

TO

Syntactic structure may guide
test selection
Semantic determines propagation
of errors for each test

Tests are designed to distinguish
incorrect P from S
S may guide test selection

P attempts
to implement S

Combination of
O and T determine
the effectiveness
of testing

Tests suggest variables
worth observing

O approximates S

Observability of P limits the
information available to O

Formalizing Testing

• A testing system consists of (P, S, T, O, corr, corrt)
– S is a set of specifications
– P is a set of programs
– T is a set of tests
– O is a set of oracles
– corr Í P × S
– corrt Í T × P × S

corr(p, s) is returns true if the program p is correct with respect to s
corrt(t, p, s) is true if and only if the specification s holds for program p

when running test t
for all p Î P, for all s Î S, corr(p,s) Þ for all t Î T corrt(t, p, s)

– These functions are not known and are just theoretical concepts
used for defining properties of oracles

Formalizing Oracles

• An oracle o Î O identifies which tests pass and which tests fail
o(t, p) means that the test t passes for program p based on oracle o

• An oracle is complete with respect to p and s for t if:
corrt(t, p, s) Þ o(t, p)

• An oracle is sound with respect to p and s for t if:
o(t, p) Þ corrt(t, p, s)

• An oracle is perfect with respect to p and s if :
for all t, o(t, p) if and only if corrt(t, p, s)

• Most oracles used in testing techniques are complete. However, in
practice oracles are rarely sound.

Oracle Comparisons

• Given a test set TS, oracle o1 has greater power than oracle o2

(denoted as o1 ³TS o2) for program p and specification s if:

for all t Î TS, o1(t, p) Þ o2(t, p)

• Assuming that the oracles are both complete, a more powerful oracle
can catch more errors

• In some cases an oracle o1 can be more powerful than another oracle
o2 for all possible test sets. In such cases, o1 has power universally
greater than o2 (denoted as o1 ³ o2)

Test Adequacy

• Based on this formal framework, test and oracle adequacy can be
defined as predicates:

• Test adequacy criterion: TC Í P × S × 2T

• Oracle adequacy criterion: OC Í P × S × O

• Complete adequacy criterion: TOC Í P × S × 2T× O

• Complete adequacy criterion underlines the fact that the adequacy of
testing must take into account both the tests and the oracles
• Effectiveness of testing depends on both the tests and the oracles

Comparison of testing criteria

• A testing criterion C1 is at least as powerful as a testing criterion C2
with respect to a complete oracle o if:

For all p in P, s in S, T1 in C1, T2, in C2

If there exists a t2 in T2 where ¬o(p, t2) then
there exists a t1 in T1 where ¬o(p, t1)

i.e., if test sets satisfying C2 are guaranteed to find a fault for p when
using oracle o, then so are all test sets satisfying C1

Test Adequacy for Mutation Testing

• If we consider the method used to distinguish the mutants M from the
program p as an oracle, we can formulate the mutation testing
approaches using complete adequacy criterion

• For the set of mutants M, mutation adequacy MutM is satisfied for
program p, specification s, test set TS, and oracle o if:

MutM(p, s, TS, o) Þ for all m Î M, there exists a t Î TS: ¬o(t, m)

In other words, for each mutant m Î M, there exists a test t such that
the oracle o signals a fault.

