
272: Software Engineering

Instructor: Tevfik Bultan

Lecture 1: Software Specification Problem,
Unified Modeling Language (UML), Object

Constraint Language (OCL)

1

Software Specification Problem

• In different phases of the software process we need ways to specify
the deliverable for that phase
– Need to specify the requirements

• What is the software system expected to do, what is its
functionality?

– Need to specify the design
• We need to document and communicate the design

– Need to specify the implementation
• Comments
• Assertions

2

Specification Languages
• Main issue: When you write code you write it in a programming

language
– How do you write the requirements?
– How do you write the design?

• Specification languages
– Used to specify the requirements or the design
– Parts of requirements are necessarily in English (customer has to

understand). To bring some structure to requirements one can use
semi-formal techniques such as UML use-case diagrams.
Depending on the application you maybe able to use formal
techniques too

– For design you can use UML class diagrams, sequence diagrams,
state diagrams, activity diagrams

– Some specification languages (such as UML class diagrams are
supported with code generation tools)

3

Specification
• Specifications can be

– Informal
• No formal syntax or semantics

– for example in English
• Informal specifications can be ambiguous and imprecise

– Semiformal
• Syntax is precise but does not have formal semantics
• UML (Universal Modeling Language) class diagrams,

sequence diagrams
– Formal

• Both syntax and semantics are formal
• Alloy, Z, Statecharts, SDL (Specification and Design

Language), Message Sequence Charts (MSC), Petri nets,
CSP (Communicating Sequential Processes), Process
Algebras, SCR (Software Cost Reduction), RSML
(Requirements State Machine Language), …

4

Ambiguities in Informal Specifications

• “The input can be typed or selected from the menu“
– The input can be typed or selected from the menu or both
– The input can be typed or selected from the menu but not both

• “The number of songs selected should be less than 10”
– Is it strictly less than?
– Or, is it less than or equal?

• “The user has to select the options A and B or C”
– Is it “(A and B) or C”
– Or, is it “A and (B or C)”

5

A Success Story: RSML and TCAS

• Requirements State Machine Language (RSML)
– A formal specification language based on hierarchical state

machines (statecharts)
• The developers of RSML applied it to the specification of Traffic

Collision Avoidance System (TCAS) to demonstrate benefits of using
RSML [Leveson et al. 1994]
– TCAS: the specification of a software system which is required on

all aircraft in USA carrying more than 30 passengers During the
specification of TCAS in RSML ambiguities were discovered in the
original English specification of TCAS

– Eventually FAA decided to use the RSML versions of the TCAS
specification

6

Another Example Formal Specification

• Formal specifications avoid ambiguity

– However, they could be hard to understand

– And it is not easy to write formal specifications

• Let’s try to specify a sorting procedure formally (mathematically)

• I will just use basic Math concepts: functions, integers, arithmetic

– Input: I : An array of size n of integers
• How do we formally specify what an array is?

• I : Z ® Z (a function from integers to integers)

• I : 1 ... n ® Z
• n ³ 1

7

Example: Sorting
– Output: O : 1 ... n ® Z

• " i , O(i) £ O(i+1)
• " i , 1 £ i £ n Þ O(i) £ O(i+1)
• " i , 1 £ i < n Þ O(i) £ O(i+1)
• (" i , 1 £ i < n Þ O(i) £ O(i+1))
Ù (" i , 1 £ i £ n Þ ($ j , 1 £ j £ n Ù O(i) = I(j)))

• (" i , 1 £ i < n Þ O(i) £ O(i+1))
Ù (" i , 1 £ i £ n Þ ($ j , 1 £ j £ n Ù O(i) = I(j)))
Ù (" i , 1 £ i £ n Þ ($ j , 1 £ j £ n Ù I(i) = O(j)))
• (" i , 1 £ i < n Þ O(i) £ O(i+1))
Ù ($ f : 1 ... n ® 1 ... n ,

(" i , j , (1 £ i £ n Ù 1 £ j £ n Ù i ¹ j) Þ f(i) ¹ f(j))
Ù (" i, 1 £ i £ n Þ O(i) = I(f(i))))

8

UML (Unified Modeling Language)

• Combines several visual specification techniques

– use case diagrams, component diagrams, package diagrams,
deployment diagrams, class diagrams, sequence diagrams,
collaboration diagrams, state diagrams, activity diagrams

• Based on object oriented principles and concepts

– encapsulation, abstraction
– classes, objects

• Semi-formal

– Precise syntax but no formal semantics

– There have been efforts in formalizing UML semantics

• The Object Management Group (OMG, a computer industry
consortium) defines the UML standard

– The current UML language specification is available at:

http://www.uml.org/

9

UML
• UML can be used in all phases of software development

– specification of requirements, architectural design, detailed design
and implementation

• There are different types of UML diagrams for specifying different
aspects of software:
– Functionality, requirements

• Use-case diagrams
– Architecture, modularization, decomposition

• Class diagrams (class structure)
• Component diagrams, Package diagrams, Deployment

diagrams (architecture)
– Behavior

• State diagrams, Activity diagrams
– Communication, interaction

• Sequence diagrams, Collaboration diagrams

10

Use cases for Requirements Specification

• Use cases document the behavior of the system from the users’ point
of view.
– By user we mean anything external to the system

• An actor is a role played by an outside entity that interacts directly
with the system
– An actor can be a human, or a machine or program
– Actors are shown as stick figures in use case diagrams

Customer

11

Use cases

• A use case describes the possible sequences of interactions
among the system and one or more actors in response to some
initial stimulus by one of the actors
– Each way of using the system is called a use case
– A use case is not a single scenario but rather a description of

a set of scenarios
– For example: Creating an account
– Individual use cases are shown as named ovals in use case

diagrams

• A use case involves a sequence of interactions between the
initiator and the system, possibly involving other actors.

• In a use case, the system is considered as a black-box. We are
only interested in externally visible behavior

Creating
an account

12

Documenting use cases: Online Shopping
Use case: Place Order Actors: Costumer
Precondition: A valid user has logged into the system
Flow of Events:

1. The use case begins when the customer selects Place Order
2. The customer enters his or her name and address
3. If the customer enters only the zip code, the system supplies the city and state
4. The customer enters product codes for products to be ordered
5. For each product code entered

a) the system supplies a product description and price
b) the system adds the price of the item to the total

end loop
6. The customer enters credit card payment information
7. The customer selects Submit
8. The system verifies the information [Exception: Information Incorrect], saves the order as
pending, and forwards payment information to the accounting system.
9. When payment is confirmed [Exception: Payment not Confirmed], the order is marked
confirmed, an order ID is returned to the customer, and the use case terminates

Exceptions:
Payment not Confirmed: the system will prompt the customer to correct payment information
or cancel. If the customer chooses to correct the information, go back to step 6 in the Basic
Path. If the customer chooses to cancel, the use case terminates.
Information Incorrect: If any information is incorrect, the system prompts the customer to
correct it.

Postcondition: If the order was not canceled, it is saved in the system and marked confirmed

13

Combining use cases
• A use case extends another use case when it embeds new behavior

into a complete base case
– Check Baggage extends the base case Check in for Flight
– You do not have to check baggage to check in for flight.

• A use case uses another use case when it embeds a subsequence
as a necessary part of a larger case (In some texts this relationship is
called includes instead of uses)
– uses relationship permits the same behavior to be embedded in

many otherwise unrelated use cases
– For example Check in for Flight use case uses Assign Seat use

case
• The difference is

– In the extends the extended use case is a valid use case by itself
– In the uses the use case which is using the other use case is not

complete without it

14

UML use case diagrams

Assign Seat
Check in
for Flight

Check
Baggage

Upgrade
Seat

<<extends>>
<<extends>>

<<uses>>

Customer

Flight Attendant

actor

use case

15

Online Human Resources (HR) System

Employee

Online HR System

Locate
Employee

Update Employee
Profile

Update Benefits

Access Travel
System

Access Pay
Records

Manager

Healthcare Plan System

Insurance Plan
System

system
boundary

[current month is October]

[read only access]

Employee Account
Database

16

UML Class Diagrams
• Class diagram describes

– Types of objects in the system
– Static relationships among them

• Two principal kinds of static relationships
– Associations between classes
– Subtype relationships between classes

• Class descriptions show
– Attributes
– Operations

• Class diagrams can also show constraints on associations

17

Sequence Diagrams

• A sequence diagram shows a particular sequence of messages
exchanged between a number of objects

• Sequence diagrams also show behavior by showing the ordering of
message exchange

• A sequence diagram shows some particular communication
sequences in some run of the system
– it is not characterizing all possible runs

18

Example Class Diagram
Order

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

Product Order

quantity: Int
price: Money
isSatisfied: Bool

1

1..*

Ordered
Product

Constraint
for order class

Product
1..* 1

Corporate
Customer

contactName
creditRating
creditLimit

remind()
billForMonth(Int)

Customer

name
address

creditRating():String

Personal
Customer

creditCardNumber

indicates
generalization

11..*

Employee

0..1

1..*
Sales
Rep

{creditRating()=“poor”}

indicates that credit
rating is always
set to poor for a
Personal Customer

{ if Order.customer.creditRating() = “poor”
then Order.isPrepaid = true }

19

Sequence Diagrams

• A sequence diagram shows a particular sequence of messages
exchanged between a number of objects

• Sequence diagrams also show behavior by showing the ordering of
message exchange

• A sequence diagram shows some particular communication sequences
in some run of the system
– it is not characterizing all possible runs

20

Sequence Diagrams

• Sequence diagrams can be used in conjunction with use-cases
– At the requirements phase they can be used to visually represent

the use cases
– At the design phase they can be used to show the system’s

behavior that corresponds to a use-case

• During the testing phase sequence diagrams from the requirements or
design phases can be used to generate test cases for the software
product

• Sequence diagrams are similar to MSCs (Message Sequence Charts)
which are a part of SDL(Specification and Description Language) and
have formal semantics

21

Example Sequence Diagram

:ProductOrder :StockItem

check()

:Order

*prepare()

[check=“true”]
remove()

:OrderEntryWindow

prepare()

:ReorderItem

:DeliveryItem

needsToReorder()

<<create>>

[check=“true”]
<<create>>

[needsToReorder=“true”]

22

Collaboration (Communication) Diagrams
• Collaboration diagrams (aka Communication diagrams) show a

particular sequence of messages exchanged between a number of
objects
– this is what sequence diagrams do too!

• Use sequence diagrams to model flows of control by time ordering
– sequence diagrams can be better for demonstrating the ordering

of the messages
– sequence diagrams are not suitable for complex iteration and

branching

• Use collaboration diagrams to model flows of control by organization
– collaboration diagrams are good at showing the static connections

among the objects while demonstrating a particular sequence of
messages at the same time

23

Corresponding Collaboration Diagram

:ProductOrder :StockItem

:Order

:OrderEntryWindow

:ReorderItem

:DeliveryItem

1:prepare()

1.1:*prepare()

1.1.1:check()
1.1.2:[check==true]remove()

1.1.2.1:needsToReorder()

1.1.2.2:new

1.1.3:[check==true]new

message

object

link sequence number

Sequence numbers are used
to show the time ordering among
the messages

24

State Diagrams

• State diagrams are used to show possible states a single object can
get into
– shows states of an object

• How object changes state in response to events
– shows transitions between states

• Uses the same basic ideas from statecharts and adds some extra
concepts such as internal transitions, deferred events etc.
– “A Visual Formalism for Complex Systems,” David Harel, Science

of Computer Programming, 1987
– Statecharts are basically hierarchical state machines
– Statecharts have formal semantics

25

State Diagrams

• Hierarchical grouping of states
– composite states are formed by grouping other states
– A composite state has a set of sub-states

• Concurrent composite states can be used to express concurrency
– When the system is in a concurrent composite state, it is in all of

its substates at the same time
– When the system is in a normal (non-concurrrent) composite

state, it is in only one of its substates
– If a state has no substates it is an atomic state

• Synchronization and communication between different parts of the
system is achieved using events

26

State Diagrams: Superstates

Checking

do/checkItem

/ getFirstItem

getNextItem
[not all items checked]

Dispatching

do/initiate
Delivery

Waiting

Cancelled Delivered

itemsReceived
[some items not in stock]

[all items checked and
some items not in stock]

itemReceived
[all items available]

[all items checked and
all items available]

cancelled

Active

Active is a superstate
with substates Checking,
Waiting and Dispatching

27

State Diagrams: Concurrent States

Checking Dispatching

Waiting

Authorizing Authorized

Delivered

Cancelled

Rejected[payment not OK]

cancelled

this transition
can only be taken
after both concurrent
states reach their
final states

28

Activity Diagrams

• Activity diagrams show the flow among activities and actions
associated with a given object using:
– activity and actions
– transitions
– branches
– merges
– forks
– joins

• Activity diagrams are similar to SDL state diagrams, SDL state
diagrams have formal semantics

• Activity diagrams are basically an advanced version of flowcharts

29

Receive Order

Check Order
Item

Dispatch
Order

Authorize
Payment

Cancel Order

Add Remainder
to Stock

[succeeded]

[failed]
Assign to Order

ReceiveSupply

Choose Outstanding
Order Items

Assign to
Order

* for each
chosen
order item

[in stock]

*for each
order item

[need to reorder]

Reorder
item

[all outstanding order
items filled]

[stock assigned to all order items
and payment authorized]

Order
Processing

Finance Stock
Manager

vertical lines
are used to separate
“swimlanes”
to show which
activities are handled
by which part of the
system

30

UML Diagrams

• Functionality, requirements
– use case diagrams

• Architecture, modularization, decomposition
– class diagrams (class structure)
– component diagrams, package diagrams, deployment

diagrams (architecture)

• Behavior
– state diagrams, activity diagrams

• Communication, interaction
– sequence diagrams, collaboration diagrams

31

How do they all fit together?

• Requirements analysis and specification
– use-cases, use-case diagrams, sequence diagrams

• Design and Implementation
– Class diagrams can be used for showing the decomposition of the

design
– Activity diagrams can be used to specify behaviors described in

use cases
– State diagrams are used to specify behavior of individual objects
– Sequence and collaboration diagrams are used to show

interaction among different objects
– Component diagrams, package diagrams and deployment

diagrams can be used to show the high level architecture
– Use cases and sequence diagrams can be used to derive test

cases

32

Object Constraint Language

• Object Constraint Language (OCL) is part of UML

• OCL was developed at IBM by Jos Warmer as a language for
business modeling within IBM

• OCL specification is available here:
https://www.omg.org/spec/OCL

• My slides are based on the following text:
– “The Objection Constraint Language: Precise Modeling with

UML”, by Jos Warmer and Anneke Kleppe

33

Object Constraint Language (OCL)

• OCL provides a way to develop more precise models using UML

• What is a constraint in Object Constraint Language?
– A constraint is a restriction on one or more values of (part of) an

object-oriented model or system

34

Advantages of Constraints

• Better documentation
– Constraints add information about the model elements and their

relationships to the visual models used in UML
– It is a way of documenting the model

• More precision
– OCL constraints have formal semantics, hence, can be used to

reduce the ambiguity in the UML models

• Communication without misunderstanding
– UML models are used to communicate between developers
– Using OCL constraints modelers can communicate

unambiguously

35

OCL Constraints

• OCL constraints are declarative
– They specify what must be true not what must be done

• OCL constraints have no side effects
– Evaluating an OCL expression does not change the state of the

system

• OCL constraints have formal syntax and semantics
– their interpretation is unambiguous

36

An Example

• Loyalty programs are used by companies to offer their customers
bonuses (for example frequent flier miles programs)

• There may be more than one company participating in a loyalty
program (each participating company is called a program partner)

• A customer who enters a loyalty program gets a membership card.
• Program partners provide services to customers in their loyalty

programs.
• A loyalty program account can be used to save the points

accumulated by a customer. Each transaction on a loyalty program
account either earns or burns some points.

• Loyalty programs can have multiple service levels

37

LoyaltyProgram

enroll(c:Customer)

Service
condition: Boolean
pointsEarned: Integer
pointsBurned: Integer
description: String

0..*deliveredServices

Membership

LoyaltyAccount

points: Integer

earn(i: Integer)
burn(i: Integer)
isEmpty(): Boolean

Customer
name: String
title:String
isMale: Boolean
dateOfBirth: Date

CustomerCard
valid: Boolean
validForm: Date
goodThru: Date
color: enum{silver,

gold}
printedName: String

0..*

0..*

age(): Integer

program

owner

card0..*

card

ProgramPartner

numberOfCustomers: Integer

partners
1..*1..*

ServiceLevel

name: String

availableServices
0..*

{ordered} 1..*
0..1

0..*
actualLevel

Transaction
points: Integer
date:Date
program(): LoyaltyProgram

0..*transactions

card
transactions
0..*transactions

0..*

Burning Earning

Date
$now: Date
isBefore(t:Date): Boolean
isAfter(t:Date): Boolean
=(t:Date): Boolean

An Example

38

Types and Instances

• OCL types are divided into following groups

– Predefined types
• Basic types: String, Integer, Real, Boolean
• Collection types: Collection, Set, Bag, Sequence

– User-defined model types
• User defined classes such as Customer, Date, LoyaltyProgram

39

Operations on Boolean Type
• Boolean operators that result in boolean values

a or b, a and b, a xor b, not a, a = b,
a <> b (not equal), a implies b

• Another operator that takes a boolean argument is
if b then e1 else e2 endif

where b is Boolean and the result type of the expression is the type
of e1 if b is true or the type of e2 if b is false

Customer
title = (if isMale = true

then ‘Mr.’
else ‘Ms.’

endif)

40

Operations on Integer and Real Types

• Operation on Real and Integer with Boolean result type
a = b, a <> b , a < b, a > b, a <= b, a >= b

• Operations on Real and Integer types with result type Real or Integer
a + b, a - b, a * b, a / b, a.abs, a.max(b),
a.min(b)

• Operations on Real and Integer types with result type Integer
a.mod(b), a.div(b), a.round, a.floor

41

Operations on String Type

• Operations on String type with result type Boolean
s1 = s2, s1 <> s2

• Operations on String type with result type String
s1.concat(s2), s1.toLower, s1.toUpper,
s1.substring(int1, int2) returns the substring that starts at

character int1 up to and including character int2

• Operations on String type with result type Integer
s1.size

42

Model Types

• Model types are classes, subclasses, association classes, interfaces,
etc. defined in the model

• Properties of a model type are
– attributes
– operations and methods
– navigations that are derived from the associations
– enumerations defined as attribute types

• Properties of a model type can be referenced in OCL expressions

43

OCL expressions and constraints

• Each OCL expression has a result
– the value that results by evaluating the expression

• The type of an OCL expression is the type of the result value
– either a predefined type or a model type

• An OCL constraint is an OCL expression of type Boolean

44

Invariants

• Using OCL we can specify class invariants such as
Customer
age >= 18

• As a convention we will write the OCL expressions in the following
form:
OCLcontext
OCLexpression

• The class on which the invariant must hold is the invariant context
– Invariant has to hold for all instances of the class

• For the above example, the expression age >= 18 is an invariant of
the Customer class, i.e. it holds for every instance of that class

45

Invariants
• We can also write invariants on attributes of associated classes

• In OCL you can use the rolename to refer to the object on the other
end of an association.
– If the rolename is not present, you can use the classname starting

with a lowercase letter

• Examples:

Membership
card.owner = customer

CustomerCard
printedName = owner.title.concat(owner.name)

46

Choosing a Context

• The class on which the invariant must be put is the invariant context

• One can write the same invariant property in different contexts

• For example

Customer
age >= 18

LoyaltyProgram
customer.forAll(age >= 18)

47

Navigating Associations

LoyaltyProgram Customer

CustomerCard

0..*0..*

program
owner

card0..*

• Navigation starting from
CustomerCard

CustomerCard
owner.program ...

The owner attribute of the
CustomerCard instance
(which is an instance
of the Customer class)

The program attribute of the
owner attribute (which will
be instances of the
LoyaltyProgram class)

CustomerCard
self.owner.program ...

You can also say:

48

• Default multiplicity in UML is 1
– Hence, each CustomerCard instance has exactly one
owner and navigating from CustomerCard class to
Customer class through the owner attribute results in a
single instance of Customer class

A single instance
of Customer

CustomerCard
printedName = owner.title.concat(owner.name)

LoyaltyProgram Customer

CustomerCard

0..*0..*

program
owner

card0..*

Multiplicity and Navigation

49

Multiplicity and Navigation

• If the multiplicity is greater than 1, navigation results in a collection
of values
– Navigating from Customer class to LoyaltyProgram class

through the program attribute results in a set of instances of the
LoyaltyProgram class

LoyaltyProgram Customer

CustomerCard

0..*0..*

program
owner

card0..*

Customer
program->size <= 10 Equivalently, this constraint can be specified

as a multiplicity constraint by changing the
multiplicity of the association between
LoyaltyProgram and Customer from 0..*
to 0..10 on the LoyaltyProgram side

A set of instances
of the LoyaltyProgram class

50

Multiplicity and Navigation

• According to UML semantics an instance of an association class is
associated with one instance of the classes in each side of the
association
– Hence, each instance of Membership is associated with one

instance of Customer and one instance of LoyaltyProgram
– If we navigate from Membership class to Customer we would

get a single instance of Customer class

LoyaltyProgram

Membership

Customer

CustomerCard

0..*0..*

program
owner

card0..*
card

A single instance
of CustomerCard

Membership
card.owner = customer

A single instance
of Customer

51

Multiplicity and Navigation

• However, one class can be associated with multiple instances
of an association class
– Hence, navigating from Customer to Membership results

in a set of instances of the Membership class.

LoyaltyProgram

Membership

Customer

CustomerCard

0..*0..*

program
owner

card0..*
card

A set of instances
of Membership
class

Customer
membership.program = program

52

Qualified Associations

• You can navigate qualified associations by
providing an index to the qualified
association using a qualifier

object.navigation[qualifierValue]

– If there are multiple qualifiers their values
are separated using commas

• Example

LoyaltyProgram
serviceLevel[1].name = ‘basic’

LoyaltyProgram
serviceLevel-> exists(name = ‘basic’)

LoyaltyProgram

enroll(c:Customer)

ServiceLevel

name: String

0..1

levelNumber: Integer

53

Collections

• Often the multiplicity of an association is greater than 1, linking one
object to a set of objects of the associated class
– In such a scenario navigating through the association results in a

collection of objects from the association class

• OCL has a number of collection operations to write expressions in
such situations

• Whenever the link in a constraint results in a set of objects, you can
use one of the collection operations by putting an arrow between the
rolename and the operation

54

Collections

• The size of a collection can be expressed as:

LoyaltyProgram
serviceLevel->size = 2

• You can also select a subset of a list by passing an OCL expression
as an argument to the select operation:

Customer
program->size = cards->select(valid = true)->size

55

Flattening of Collections

• In OCL collection types are automatically flattened

– Whenever a collection is inserted into another collection, the

resulting collection is automatically flattened; the elements of the

inserted collection become elements of the resulting collection

– for example, there is no “set of sets of integers” it is always just a

“set of integers” or a “bag of integers”

• Example: in OCL

we do not have:

Set{ Set{ 1, 2, 3 } Set{ 3, 4} }
instead we get:

Bag{ 1, 2, 3, 3, 4 }
Flattening of a set of sets results in a Bag.

56

Collections
• You can also use forAll operation to evaluate a condition on a

collection
• forAll operation takes an OCL expression as an argument, and

returns a boolean value
• If the argument of forAll operation evaluates to true for all members of

the collection, then the result of the forAll operation is true, otherwise
it is false

• Example
LoyaltyProgram
partners.deliveredServices->forAll(

pointsEarned = 0 and pointsBurned = 0)
implies membership.loyaltyAccount->isEmpty

If there is no way to earn or burn points then there should be no loyalty
accounts

57

Collections: Sets, Bags and Sequences

• There are different types of collections

– Set
• In a set, each element may occur only once

– Bag
• In a bag, elements may be present more than once

– Sequence
• Sequence is a bag in which elements are ordered
• When you navigate an association marked {ordered} then

the resulting collection is a sequence

58

Sets vs. Bags

• Consider the expression

ProgramPartner
numberOfCustomers = loyaltyProgram.customer->size

• This expressions is not correct since a customer can participate in
more than one program

• In OCL, the rule is:
– If you navigate through more than one associations with

multiplicity greater than one, you get bags.
– If you navigate through only one association with multiplicity

greater than one you get a set.

• The correct constraint is:

ProgramPartner
numberOfCustomers = loyaltyProgram.customer->asSet->size

59

Operations on Collection Types
• The following operations have different meanings for Sets, Bags and

Sequences: =, union, intersection, including,
excluding

including(object) adds one element to the collection (for a set the
element is added if it is not in the set)

excluding(object) removes one element from the collection (from a
bag or sequence it removes all occurrences)

size number of elements in the collection
count(object) number of occurrences of the object in the collection
includes(object) True if the object is an element of the collection
includesAll(collection) True if all elements of the parameter

collection are members of the collection
isEmpty
notEmpty

60

Operations on Collection Types

• Operations on collection types
iterate(Expression) The expression is evaluated for every

element in the collection. The result type depends on the expression.
sum() The addition of all the elements in the collection. The elements

in the collection must support addition operation
exists(expression) True is expression is true for at least one

element in the collection (expression must be a boolean expression)
forAll(expression) True if for all elements expression is true

(expression must be a boolean expression)

61

Operations on Collection Types

• Operations on Sets
s1->minus(s2)

• Operations on Sequences
s->first
s->last
s->at(i)
s1->append(s2)
s1->prepend(s2)

Example:
LoyaltyProgram
serviceLevel->first.name = ‘Silver’

62

Select Operation

• The result of the select operation is the collection that contains all
elements for which the boolean expression (that is the parameter of
the select operation) evaluates to true

• The result of the select operation is a subset of the original collection

CustomerCard
self.transactions->select(points > 100)

• General syntax is

collection->select(element: Type | expression)

• Example

Customer
membership.loyaltyAccount->select(a: LoyaltyAccount |

a.points > 0)

63

Reject Operation

• Reject operation is used to remove elements from a collection
• Returns the collection that contains all elements for which the

boolean expression (that is the parameter of the select operation)
evaluates to false

• Following two expressions are equivalent

CustomerCard
self.transactions->select(points > 100)

CustomerCard
self.transactions->reject(not (points > 100))

64

Collect Operation

• Collect operation operates over a collection, computes an expression
for each member of the collection and gathers the results in a new
collection

LoyaltyAccount
transactions->collect(points)

• The result of a collection operation on a Set or a Bag is a Bag and on
a Sequence is a Sequence

• General syntax is

collection->collect(element: Type | expression)

65

Writing Pre and Postconditions

• OCL supports Design by Contract style constraints

• One can specify the pre and postcondition of an operation of a class
using OCL expressions

• For example

LoyaltyAccount::isEmpty()
pre: -- none
post: result = (points = 0)

Type1::operation(arg: Type2) : ReturnType

pre: arg.attr = true

post: result = arg.attr xor self.attribute2

66

Constructs for Postconditions

• One can refer to the value of an attribute at the beginning operation in
the postcondition using the @pre syntax

LoyaltyProgram::enroll(c: Customer)
pre: not customer->includes(c)
post: customer = customer@pre->including(c)

• You can refer to the return value of the method using the result
keyword

LoyaltyAccount::isEmpty()
pre: -- none
post: result = (points = 0)

67

Iterate Operation
• The select, reject, collect, forAll and exists operations

can all be described as a special case of iterate operation
• The syntax is
collection->iterate(

element : Type1;
result : Type2 = <expression>
| <expression-with-element-and-result>)

• The element is the iterator, the resulting value is accumulated in the
variable result (called accumulator). The accumulator is initialized
to the <expression>

• The result of the iterate operation is a value accumulated by iterating
over all elements in a collection.

68

Iterate Operation

• Iterate operation corresponds to the following pseudo code

result = <expression>;
while (collection.notEmpty() do

element = collection.nextElement();
result = <expression-with-element-and-result>;

endwhile
return result;

69

ProgramPartner
self.services.transaction->iterate(

t: Transaction;
result : Integer = 0 |
if t.oclType = Burning then

result + t.points
else

result
endif

)
<=

self.services.transaction->iterate(
t: Transaction;
result : Integer = 0 |
if t.oclType = Earning then

result + t.points
else

result
endif

)

This constraint states that given
a program partner, the total
points for all burning transactions
of all the delivered services should
be less than or equal to total points of
all earning transactions of all the services

A Class Invariant Using the Iterate Operation

70

Enumerations

• Values of an enumerated variable can be written as #valuename

• For example

Membership
actualLevel.name = ‘Silver’ implies card.color = #silver
and actualLevel.name = ‘Gold’ implies card.color = #gold

71

Using Operations of a Model Type in OCL

• The operations that are defined on the UML model types can be used
in OCL
– Only query operations can be used in OCL
– Query operations are operations which return a value but do not

change the state of the object

• For example

Customer
name: String
title:String
isMale: Boolean
dateOfBirth: Date

age(): Integer
isRelatedTo(p: Customer): Boolean

Customer
age() >= 18

Customer
self.isRelatedTo(self) = true

Customer
self.name=‘Joe Senior’ implies

self.age() > 21

72

Classes and Subclasses
• Consider the following constraint used to limit the number of points

given by each partner

LoyaltyProgram
partners.deliveredServices.transactions.points->sum < 10,000

• However, this constraint is incorrect since it does not distinguish
burning and earning transactions.

• To determine the subclass of an element that belongs to a collection,
we can use the operation oclType and fix the above constraint as
follows:

LoyaltyProgram
partners.deliveredServices.transactions

->select(oclType = Burning)
->collect(points)->sum < 10,000

73

Operations Defined for every OCL Type
• Following operations return a Boolean value

o1 = o2, o1 <> o2
• Following operation returns true only if the type of the object is

identical to the argument type
o.oclIsTypeOf(type: OclType)

• Following operation returns true only if the type of the object is
identical to the argument type or identical to any of the subtypes of
the argument type
o.oclIsKindOf(type: OclType)

• Following operation returns the type of the object
o.oclType

• Following operation returns the same object but changes its type to
the argument type
o.oclAsType(type: OclType)

74

Example

• Given the class structure
shown in the diagram, following
invariants for the Transaction
class will hold

Transaction

Burning Earning

Transaction
self.oclType = Transaction
self.oclIsKindOf(Transaction) = true
self.oclIsTypeOf(Transaction) = true
self.oclIsTypeOf(Burning) = false
self.oclIsTypeOf(Earning) = false
self.oclIsKindOf(Burning) = false
self.oclIsKindOf(Earning) = false

75

Example

• Given the class structure
shown in the diagram, following
invariants for the Burning class
will hold

Transaction

Burning Earning

Burning
self.oclType = Burning
self.oclIsKindOf(Transaction) = true
self.oclIsTypeOf(Transaction) = false
self.oclIsTypeOf(Burning) = true
self.oclIsKindOf(Burning) = true
self.oclIsTypeOf(Earning) = false
self.oclIsKindOf(Earning) = false

76

Example

• Given the class structure
shown in the diagram, following
invariants for the Earning class
will hold

Transaction

Burning Earning

Earning
self.oclType = Earning
self.oclIsKindOf(Transaction) = true
self.oclIsTypeOf(Transaction) = false
self.oclIsTypeOf(Burning) = false
self.oclIsKindOf(Burning) = false
self.oclIsTypeOf(Earning) = true
self.oclIsKindOf(Earning) = true

77

Using OCL in Class Diagrams

LoyaltyAccount

points: Integer

earn(i: Integer)

burn(i: Integer)

isEmpty(): Boolean

{ points >= 0 }

<<postcondition>>
points = points@pre - i

class invariant

postcondition for burn operation
<<postcondition>>
result = (points=0)

<<precondition>>
points >= i and i >= 0

precondition for burn operation

<<postcondition>>
points = points@pre + i

<<precondition>>
i >= 0

78

Using OCL in State Diagrams

Empty

do/checkItem

earn(i: integer)
[i = 0]

NotEmpty

do/initiate
Delivery

State Transition Diagram for LoyaltyAccount

burn(i: integer)
[points - i > 0]

earn(i: integer)
[i > 0]

burn(i: integer)
[points - i = 0]

earn(i: integer)

79

USE: A Tool for Validating OCL Specifications

• USE (UML Specification Environment)

available at: https://sourceforge.net/projects/useocl/

• A tool for validating OCL specifications

– The developer can create test cases and check if the specified
constraints are satisfied for these test cases

– USE checks the test cases with respect to invariants and pre-
post-conditions

• There are special USE commands for creating and manipulating
object diagrams that can be accumulated in command files

• There is some support for automated testing
– USE has a snapshot sequence language and a snapshot

generator

– The snapshot sequence language enables the user to write high
level implementations for the user defined operations, so that they
can be tested

80

