
272: Software Engineering

Instructor: Tevfik Bultan

Lecture 0: Introduction

1

Computer Science vs. Software Engineering

• Degree: Computer Science

UCSB CS website: This program introduces students to core concepts and
cutting-edge topics in computer science. The program provides students with
hands-on experience and a depth of understanding of computer theory,
systems, and applications that prepares them for successful careers in
computer science and to participate in the next-generation of technological
advances.

• Job: Software Engineer

ChatGPT: A software engineer is a professional who applies engineering
principles to the design, development, maintenance, testing, and evaluation
of software and systems that make computers or anything containing software,
such as chips, work. They use various programming languages, tools, and
techniques to create software solutions that meet the needs of users or clients.
Software engineers play a crucial role in the technology industry, contributing to
the development of software applications, operating systems, databases, and
more.

2

Software engineering is 55 years old!

Purpose: to look for a
solution to software crisis

–50 distinguished computer
scientists, programmers and
industry leaders got together
to look for a solution to the
difficulties in building large
software systems

–Considered to be the birth of
“software engineering” as a
research area

• In 1968 a seminal NATO Conference
was held in Garmisch, Germany

3

Margaret
Hamilton
Director of
Software
Development for
the NASA’s
Apollo mission

Attendees of the
1968 Garmisch
conference

Software’s Chronic Crisis

Large software systems often:
• Do not provide the desired functionality
• Take too long to build
• Cost too much to build
• Require too much resources (time, space) to run
• Cannot evolve to meet changing needs

Software engineering as a remedy: a systematic, disciplined, quantifiable
approach to the production and maintenance of software.

4

Software’s chronic crisis
• A quarter century (1994) after the Garmisch conference, an article

in Scientific American declared:

5

Software’s chronic crisis
• Another quarter century later:

• This is a photo of the navigation system of my car

– It crashes and reboots while I am driving!

6

Software’s chronic crisis
We are still looking for a:
systematic, disciplined, quantifiable approach to the production and
maintenance of software

which ensures:
safety, dependability, security, reliability, availability, usability,
efficiency, scalability, and maintainability

of software systems.

7

Software Failures

• There is a long list of failed software projects and software failures

• You can find a list of famous software bugs at:
http://www5.in.tum.de/~huckle/bugse.html

• I will talk about two famous and interesting software bugs

8

Ariane 5 Failure
• A software bug caused European

Space Agency’s Ariane 5 rocket
to crash 40 seconds into its first
flight (cost: half billion dollars)

• The bug was caused because of a software component that was
being reused from Ariane 4

• A software exception occurred during execution of a data conversion
from 64-bit floating point to 16-bit signed integer value
– The value was larger than 32,767, the largest integer storable in a

16 bit signed integer, and thus the conversion failed and an
exception was raised by the program

• When the primary computer system failed due to this problem, the
secondary system started running.
– The secondary system was running the same software, so it failed

too!

9

Ariane 5 Failure

• The programmers for Ariane 4 had decided that this particular velocity
figure would never be large enough to raise this exception.

– Ariane 5 was a faster rocket than Ariane 4!

• The calculation containing the bug actually served no purpose once
the rocket was in the air.

– Engineers chose long ago, in an earlier version of the Ariane
rocket, to leave this function running for the first 40 seconds of
flight to make it easy to restart the system in the event of a brief
hold in the countdown.

• You can read the report of Ariane 5 failure at:

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

10

Mars Pathfinder

• Priority inversion occurs when
– a thread that has higher priority is waiting for a resource held by

thread with a lower priority
• Pathfinder contained a data bus shared among multiple threads and

protected by a mutex lock
• Two threads that accessed the data bus were: a high-priority bus

management thread and a low-priority meteorological data gathering
thread

• Yet another thread with medium-priority was a long running
communications thread (which did not access the data bus)

• A few days into its mission, NASA’s Mars
Pathfinder computer system started rebooting
itself
– Cause: Priority inversion during preemptive

priority scheduling of threads

11

Mars Pathfinder
• The scenario that caused the reboot was:

– The meteorological data gathering thread accesses the bus and obtains
the mutex lock

– While the meteorological data gathering thread is accessing the bus, an
interrupt causes the high-priority bus management thread to be
scheduled

– Bus management thread tries to access the bus and blocks on the mutex
lock

– Scheduler starts running the meteoroloVgical thread again
– Before the meteorological thread finishes its task yet another interrupt

occurs and the medium-priority (and long running) communications
thread gets scheduled

– At this point high-priority bus management thread is waiting for the low-
priority meteorological data gathering thread, and the low-priority
meteorological data gathering thread is waiting for the medium-priority
communications thread

– Since communications thread had long-running tasks, after a while a
watchdog timer would go off and notice that the high-priority bus
management thread has not been executed for some time and conclude
that something was wrong and reboot the system

12

Disastrous consequences: Security

● Facebook
data leak

● Microsoft software
misconfiguration

● SolarWinds hack

October 4, 2021

August 24, 2021

December 19, 2020

13

Access Control Data Breaches

User must manually write policies
▪ Easy to write incorrect/overly permissive policies
▪ Leads to unintended access to secure data

14

Side-channels

Reading kernel memory from user space Exploiting speculative execution

15

Confidentiality and side-channels

● Confidentiality: A program that manipulates secret information
should not reveal/leak that information

● Side-channel attacks recover secret information from programs
by observing non-functional characteristics

■ execution time, memory usage, memory accesses,
network communication, energy consumption, etc.

16

New problems!

robustness failure fairness failure
in image classification in recidivism risk assessment

bus

bird

temple

ostrich

ostrich

ostrich

17

Software’s Chronic Crisis

• These are not isolated incidents:
– An IBM survey of 24 companies developing distributed systems:

• 55% of the projects cost more than expected
• 68% overran their schedules
• 88% had to be substantially redesigned

18

Software’s Chronic Crisis
• Software product size is increasing exponentially

– faster, smaller, cheaper hardware
• Software is everywhere: from TV sets to cell-phones to watches to

cars
• Marc Andreessen: “Software is Eating the World”
• Software is in safety-critical systems

– cars, airplanes, nuclear-power plants
• We are seeing more of

– distributed systems
– embedded systems
– real-time systems

• These kinds of systems are harder to build
• Software requirements change

– software evolves rather than being built
• Novel problems related to security arms race and increasing use of AI

19

Summary

• Software’s chronic crisis: Development of large software systems is a
challenging task
– Large software systems often: Do not provide the desired

functionality; Take too long to build; Cost too much to build
Require too much resources (time, space) to run; Cannot evolve
to meet changing needs

• Software engineering focuses on addressing challenges that arise in
development of large software systems using a systematic,
disciplined, quantifiable approach

20

No Silver Bullet

• In 1987, in an article titled:

“No Silver Bullet: Essence and Accidents of Software Engineering”

Frederick P. Brooks made the argument that there is no silver bullet
that can kill the werewolf software projects

• Following Brooks, let’s philosophize about software a little bit

21

Essence vs. Accident

• Essence vs. accident in software development
– We can get rid of accidental difficulties in developing software
– Getting rid of these accidental difficulties will increase productivity

• For example using a high level programming language instead of
assembly language programming
– The difficulty we remove by replacing assembly language with a

high-level programming language is not an essential difficulty of
software development,

• It is an accidental difficulty brought by inadequacy of assembly
language for programming

22

Essence vs. Accident

• Essence vs. accident in software development
– Brooks argues that software development is inherently difficult

• “The essence of a software entity is a construct of interlocking
concepts: data sets, relationships among data items,
algorithms and invocations of functions. This essence is
abstract in that such a conceptual construct is the same
under many different representations. ... The hard part of
building software is the specification, design, and testing of
this conceptual construct, not the labor of representing it and
testing the fidelity of the representation.”

• Even if we remove all accidental difficulties which arise during
the translation of this conceptual construct (design) to a
representation (implementation), still at its essence software
development is difficult

23

Inherent Difficulties in Software

• Software has the following properties in its essence:
– Complexity
– Conformity
– Changeability
– Invisibility

• Since these properties are not accidental representing software in
different forms do not effect them

• The moral of the story:
– Do not raise your hopes up for a silver bullet, there may never be

a single innovation that can transform software development as
electronics, transistors, integrated-circuits and VLSI transformed
computer hardware

24

Complexity

• Software systems do not have regular structures, there are no
identical parts

• Identical computations or data structures are not repeated in software

• In contrast, there is a lot of regularity in hardware
– for example, a memory chip repeats the same basic structure

millions of times

25

Complexity

• Software systems have a very high number of discrete states
– Infinite if the memory is not bounded

• Elements of software interact in a non-linear fashion

• Complexity of the software increases much worse than linearly with
its size

26

Complexity
• Consider a plane that is going into a wind-tunnel for aerodynamics

tests
– During that test it does not matter what is the fabric used for the

seats of the plane, it does not even matter if the plane has seats
at all!

– Only thing that matters is the outside shape of the plane
– This is a great abstraction provided by the physical laws and it

helps mechanical engineers a great deal when they are designing
planes

• Such abstractions are available in any engineering discipline that
deals with real world entities

• Unfortunately, software engineers do not have the luxury of using
such abstractions which follow from physical laws
– Software engineers have to develop the abstractions themselves

(without any help from the physical laws)

27

Conformity

• Software has to conform to its environment
– Software conforms to hardware interfaces not the other way

around

• Most of the time software systems have to interface with an existing
system

• Even for a new system, the perception is that, it is easier to make
software interfaces conform to other parts of the system

28

Changeability

• Software is easy to change, unlike hardware

• Once an Intel processor goes to the production line, the cost of

replacing it is enormous (the Pentium FDIV bug in 90s cost Intel half

billion dollars)

• If a Microsoft or Apple product has a bug, the cost of replacing it is

negligible.

– Just ask users to update their software

29

Changeability is not an Advantage

• Although it sounds like, finally, software has an advantage over
hardware, the effect of changeability is that there is more pressure on
changing the software

• Since software is easy to change software gets changed frequently
and deviates from the initial design
– adding new features
– supporting new hardware

30

Changeability

• Conformity and Changeability are two of the reasons why reusability
is not very successful in software systems

• Conformity and Changeability make it difficult to develop component
based software, components keep changing

31

Invisibility

• Software is invisible and un-visualizable
• Complete views can be incomprehensible
• Partial views can be misleading
• All views can be helpful

• Geometric abstractions are very useful in other engineering
disciplines
– Floor plan of a building helps both the architect and the client to

understand and evaluate a building
• Software does not exist in physical space and, hence, does not have

an inherent geometric representation

32

Invisibility

• Visualization tools for computer aided design are very helpful to
computer engineers
– Software tools that show the layout of the circuit (which has a two-

dimensional geometric shape) makes it much easier to design a
chip

• Visualization tools for software are not as successful
– There is nothing physical to visualize, it is hard to see an abstract

concept
– There is no physical distance among software components that

can be used in mapping software to a visual representation

33

Summary

• According to Brooks, there are essential difficulties in software
development which prevents significant improvements in software
engineering:
– Complexity; Conformity; Changeability; Invisibility

• He argues that an order of magnitude improvement in software
productivity cannot be achieved using a single technology due to
these essential difficulties

34

How Do We Build Software?

Let’s look at an example:
• Sometime ago I asked our IT folks if they can do the following:

– Every year all the PhD students in our department fill out a
progress report that is evaluated by the graduate advisors. We
want to make this online.

• After I told this to our IT manager, he said “OK, let’s have a meeting
so that you can explain us the functionality you want.”

• We scheduled a meeting and at the meeting we went over
– The questions that should be in the progress report
– Type of answers for each question (is it a text field, a date, a

number, etc?)
– What type of users will access this system (students, faculty,

staff)?
– What will be the functionality available to each user?

35

Requirements Analysis and Specification
• This meeting where we discussed the functionality, input and output

formats, types of users, etc. is called requirements analysis
– During requirements analysis software developers try to figure out

the functionality required by the client

• After the requirements analysis all these issues can be clarified as a
set of Requirements specifications
– Maybe the IT folks who attended the requirements analysis

meeting are not the ones who will develop the software, so the
software developers will need a specification of what they are
supposed to build.

• Writing precise requirements specifications can be very challenging:
– Formal (mathematical) specifications are precise, but hard to read

and write
– English is easy to read and write, but ambiguous

36

Design
• After figuring out the requirements specifications, we have to build the

software
• In our example, I assume that the IT folks are going to talk about the

structure of this application first.
– There will be a backend database, the users will first login using

an authorization module, etc.
• Deciding on how to modularize the software is part of the

Architectural Design.
– It is helpful (most of the time necessary, since one may be

working in a team) to document the design architecture (i.e.,
modules and their interfaces) before starting the implementation.

• After figuring out the modules, the next step is to figure out how to
build those modules.

• Detailed Design involves writing a detailed description of the
processing that will be done in each module before implementing it.
– Generally written in some structured pseudo-code.

37

Implementation and Testing

• Finally, the IT folks are going to pick an implementation language
(PHP, python, Java, etc.) and start writing code.

• This is the Implementation phase:
– Implement the modules defined by the architectural design and

the detailed design.

• After the implementation is finished the IT folks will need to check if
the software does what it is supposed to do.

• Use a set of inputs to Test the program
– When are they done with testing?
– Can they test parts of the program in isolation?

38

Maintenance

• After they finished the implementation, tested it, fixed all the bugs, are
they done?

• No, I (client) may say, “I would like to add a new question to the PhD
progress report” or “I found a bug when I was using it” or “You know,
it would be nice if we can also do the MS progress reports online” etc.
– The difficulty of changing the program may depend on how we

designed and implemented it:
• Are the module interfaces in the program well defined? Is

changing one part of the code effect all the other parts?

• This is called the Maintenance phase where the software is
continually modified to adopt to the changing needs of the customer
and the environment.

39

Software Process

• Then there is the question of how to organize the activities we
mentioned before (requirements analysis, design, implementation,
testing).

• There have been significant research on how to organize these
activities
– Waterfall model, spiral model, agile software development,

extreme programming, Scrum, etc.

40

Software Engineering Process

requirements analysis
and specification

design

implementation

testing and
integration

maintenance

The waterfall model

41

Software Engineering Process

specification

validation

developmentoutline
description

initial
version

intermediate
versions

final
version

Agile/Evolutionary/Incremental Software Development Process

42

Summary

• Software development involves multiple activities:
– Requirements analysis and specification
– Architectural design, detailed design
– Implementation
– Testing
– Maintenance
– Software development process

• There is active research in all of these areas in the software
engineering community

43

This Course
• Software Engineering has been an active research area since its

inception in 1968
• In this course we will have just a sampling of research in various

areas of software engineering
Currently, most significant research results in software engineering are
published in conferences:
• International Conference on Software Engineering (ICSE)
• ACM SIGSOFT International Conference on the Foundations of

Software Engineering (FSE)
• IEEE/ACM International Conference on Automated Software

Engineering (ASE)
• ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA)
Top journals in software engineering are:
• IEEE Transactions on Software Engineering (TSE)
• ACM Transactions on Software Engineering and Methodology

(TOSEM)
44

Active Research Areas In Software Engineering
(based on submissions to ICSE 2019)

Software testing 140
Empirical software engineering 134
Software evolution and maintenance 117
Program analysis 115
Mining software engineering repositories 88
AI and software engineering 84
Security, privacy and trust 60
Tools and environments 58
Validation and verification 54
Debugging 45
Mobile applications 44
Human and social aspects of software engineering 39
Program comprehension 35
Dependability, safety, and reliability 35
Fault localization 33
Formal methods 29
Performance 27
Search-based software engineering 26
Software modeling and design 24
Software architecture 24
Programming languages 23
Apps and app store analysis 22
Agile software development 21
Middleware, frameworks, and APIs 21
Parallel, distributed, and concurrent systems 20
Model-driven engineering 19

Program repair 19
Distributed and collaborative software engineering 18
Software reuse 18
Specification and modeling languages 17
Refactoring 17
Recommendation systems 16
Requirements engineering 15
Autonomic and (self-)adaptive systems 14
Software process 14
Cloud computing 14
Software product lines 14
Program synthesis 14
Reverse engineering 13
Software services 12
Software economics and metrics 12
Crowd sourced software engineering 11
Configuration management and deployment 11
Component-based software engineering 9
Traceability 9
Software visualization 8
Human-computer interaction 8
Cyber physical systems 7
Green and sustainable technologies 5
End-user software engineering 5
Embedded software 4
Ubiquitous/pervasive software systems 0

45

Papers we will discuss

• There are many active research conferences that focus on software
engineering research and its sub-areas

• The premier professional organization in software engineering
domain is ACM SIGSOFT
– SIGSOFT sponsors conferences
– It also gives distinguished paper and impact paper awards

• For this course I mostly selected papers that received awards and
also some other impactful papers

• At the end of the class I hope that you will have a good
understanding of the software engineering research and some of the
major research contributions in this area

46

