Binary Decision Diagrams

Binary Decision Diagrams (BDDs)
[Bryant 86]

* Reduced Ordered Binary Decision Diagrams (BDDs)

— An efficient data structure for representing Boolean
functions (or truth sets of Boolean formulas) and
manipulating them

— There are BDD packages available: (for example CUDD
from Colorado University)

 BDDs are a canonical representation for Boolean functions

— given two Boolean logic formulas F and G, if F and G are
equivalent (i.e. if their truth sets are the same), then their
BDD representations will be the same

BDDs for Symbolic Model Checking

« BDD data structure can be used to implement the symbolic
model checking algorithm we discussed earlier

« BDDs support all the operations we need for symbolic
model checking

— take conjunction of two BDDs

— take disjunction of two BDDs

— test equivalence of two BDDs

— test subsumption between two BDDs
— negate a BDD

— test if a BDD satisfiable

— test if a BDD is a tautology

— existential variable elimination

Binary Decision Trees

Given a variable order, in each level of the tree, branch on the
value of the variable in that level.

« Examples for boolean formulas on two variables
Variable order: x, y

False

Ahdh dh A%

Reduced and Ordered Binary Decision Diagrams

 We are interested in Reduced and Ordered Binary
Decision Diagrams

 Reduced:

— Merge all identical sub-trees in the binary decision tree
(converts it to a directed-acyclic graph)

— Remove redundant tests (if the false and true branches
for a node go to the same place, remove that node)

* Ordered
— We pick a fix order for the Boolean variables:
Xg < X4< Xy < ...
— The nodes in the BDD are listed based on this ordering

BDDs

« Repeatedly apply the following transformations to a binary
decision tree:

1. Remove duplicate terminals
2. Remove duplicate non-terminals
3. Remove redundant tests

« These transformations transform the tree to a directed
acyclic graph

Binary Decision Trees vs. BDDs

X VY XAY X False

F U U F U
F| \T F T F F[\T F F F/ AT
FILTI|T F||F FILF||T F F

!
- (X

OR\
Fl T

F

Good News About BDDs

« Given BDDs for two boolean logic formulas F and G

— The BDDs for F A G and F v G are of size |F| x |G| (and
can be computed in that time)

— The BDD for —F is of size |F| (and can be computed in
that time)

— F =7 G can be checked in linear time

— Satisfiability of F can be checked in constant time

* No, this does not mean that you can solve SAT in
constant time

Bad News About BDDs

* The size of a BDD can be exponential in the number of
boolean variables

« The sizes of the BDDs are very sensitive to the variable
ordering. Bad variable ordering can cause exponential
iIncrease in the size of the BDD

* There are functions which have BDDs that are exponential
for any variable ordering (for example binary multiplication)

BDDs are Sensitive to Variable Ordering
|dentity relation for two variables: (X’ < x) A (Y' &)

Variable order: x, X', y, V' Variable order: x, y, X', V'

For n variables, 3n+2 nodes For n variables, 3x 2" — I nodes

BDDs from Another Perspective

« Any Boolean formula f on variables x4, x,, ..., X,, can be
written as (called Shannon expansion):

f=x Af[True/x] v — x;A f[False/x] (thisis an if-then-else)

« BDDs use this idea

This node corresponds to

XAY .

. the formula y, which comes
This node corresponds to from the Shannon expansion:
the formula False, which = T B True/
comes from the Shannon y=xny[True/x]
expansion:

FAT

False = x A y [False/X]

Model counting with BDDs

Once you construct a BDD, you can count the number of
models by counting paths of the BDD

Count the paths that reach from the root to the “True” leaf
node

You need to take into account the variables that are not
represented in the BDD

— they are removed as redundant tests but we need to
keep track of them to count

Count the number of paths that reach True

— keep track of missing (redundant) variables on a path,
and add 2 to the count for each path that has k missing
variables

Can compute the count in linear time by traversing the
nodes from leaves towards the root node

