
Binary Decision Diagrams

Binary Decision Diagrams (BDDs)
[Bryant 86]

• Reduced Ordered Binary Decision Diagrams (BDDs)
– An efficient data structure for representing Boolean

functions (or truth sets of Boolean formulas) and
manipulating them

– There are BDD packages available: (for example CUDD
from Colorado University)

• BDDs are a canonical representation for Boolean functions
– given two Boolean logic formulas F and G, if F and G are

equivalent (i.e. if their truth sets are the same), then their
BDD representations will be the same

BDDs for Symbolic Model Checking

• BDD data structure can be used to implement the symbolic
model checking algorithm we discussed earlier

• BDDs support all the operations we need for symbolic
model checking
– take conjunction of two BDDs
– take disjunction of two BDDs
– test equivalence of two BDDs
– test subsumption between two BDDs
– negate a BDD
– test if a BDD satisfiable
– test if a BDD is a tautology
– existential variable elimination

Binary Decision Trees

Given a variable order, in each level of the tree, branch on the
value of the variable in that level.

• Examples for boolean formulas on two variables
Variable order: x, y

F

F

F

T

T

T

x

y y

T

F T

T

x Ú y

F

F

F

T

T

F

x

y y

F

F T

T

x Ù y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

Reduced and Ordered Binary Decision Diagrams

• We are interested in Reduced and Ordered Binary
Decision Diagrams

• Reduced:
– Merge all identical sub-trees in the binary decision tree

(converts it to a directed-acyclic graph)
– Remove redundant tests (if the false and true branches

for a node go to the same place, remove that node)

• Ordered
– We pick a fix order for the Boolean variables:

x0 < x1< x2 < …
– The nodes in the BDD are listed based on this ordering

BDDs

• Repeatedly apply the following transformations to a binary
decision tree:

1. Remove duplicate terminals

2. Remove duplicate non-terminals

3. Remove redundant tests

• These transformations transform the tree to a directed
acyclic graph

Binary Decision Trees vs. BDDs

F

F

F

T

T

T

x

y y

T

F T

T

x Ú y

F

F

F

T

T

F

x

y y

F

F T

T

x Ù y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

F

F

F

T

T

T

x

y

F

F

F

T

T

T

x

y
F

F T

T

x F

Good News About BDDs

• Given BDDs for two boolean logic formulas F and G

– The BDDs for F Ù G and F Ú G are of size |F| ´ |G| (and
can be computed in that time)

– The BDD for ¬F is of size |F| (and can be computed in
that time)

– F º? G can be checked in linear time

– Satisfiability of F can be checked in constant time
• No, this does not mean that you can solve SAT in

constant time

Bad News About BDDs

• The size of a BDD can be exponential in the number of
boolean variables

• The sizes of the BDDs are very sensitive to the variable
ordering. Bad variable ordering can cause exponential
increase in the size of the BDD

• There are functions which have BDDs that are exponential
for any variable ordering (for example binary multiplication)

BDDs are Sensitive to Variable Ordering
Identity relation for two variables: (x’« x) Ù (y' « y)

T

F

F

F
T

F

y

y’

F

F

T

T

x

x’ x’

y’

T

TT
F

Variable order: x, x’, y, y'

For n variables, 3n+2 nodes

F

F

T

F T

T

x’

y’

F

F

T

T

x

y y

y’

T

T

F

F

Variable order: x, y, x’, y'

For n variables, 3´ 2n – 1 nodes

x’ x’x’

FT

F
F

T
T

BDDs from Another Perspective

• Any Boolean formula f on variables x1, x2, …, xn can be
written as (called Shannon expansion):

f = xi Ù f [True/xi] Ú ¬ xi Ù f [False/xi] (this is an if-then-else)

• BDDs use this idea

F

F

F

T

T

T

x

y

x Ù y

y º x Ù y [True/x]

This node corresponds to
the formula y, which comes
from the Shannon expansion:

False º x Ù y [False/x]

This node corresponds to
the formula False, which
comes from the Shannon
expansion:

Model counting with BDDs

• Once you construct a BDD, you can count the number of
models by counting paths of the BDD

• Count the paths that reach from the root to the “True” leaf
node

• You need to take into account the variables that are not
represented in the BDD
– they are removed as redundant tests but we need to

keep track of them to count
• Count the number of paths that reach True

– keep track of missing (redundant) variables on a path,
and add 2k to the count for each path that has k missing
variables

• Can compute the count in linear time by traversing the
nodes from leaves towards the root node

