Automata-based Model Counting
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Automata Based Counter (ABC)
A Model Counting String Constraint Solver
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String Constraint Language

bterm —+ v | true | false
| —bterm | bterm A bterm | bterm V bterm | (bterm)
| sterm = sterm
| match(sterm, sterm)
| contains(sterm, sterm)
| begins(sterm, sterm)
| ends(sterm, sterm)
| aterm = iterm | iterm < iterm | iterm > iterm

iterm —+ v | n
| iterm + iterm | iterm — iterm | iterm x n | (iterm)
| length(sterm) | toint(sterm)
| indexof(sterm, sterm)
| lastindexof(sterm, sterm)

sterm — v | £ | s
| sterm.sterm | sterm|sterm | sterm” | (sterm)
| charat(sterm, iterm) | tostring(iterm)
| toupper(sterm) | tolower(sterm)
| substring(sterm. iterm, iterm)
| replacefirst(sterm, sterm, sterm)
| replacelast(sterm, sterm. sterm)
| replaceall(sterm., sterm. sterm)



ABC: Constraint language

e A more compact notation

e — eApleVeo|-plez|es|T|L
pz — B=B|B<B|B>B
s — Y=7|7<~v|~v >~ | match(v,p) | contains(y,~) | begins(~,~) | ends(v,~)

B — vi|n|B+B|B-B|Bxn
| length(y) | toint(«y) | indexof(~,~) | lastindexof(~, 7)

¥ — vs|p|~-v|reverse(y) | tostring(8) | charat(y, 38) | toupper(y) | tolower(xy)
| substring(y, 3, B) | replacefirst(y, v,~) | replacelast(~y,v,v) | replaceall(~, v, )

p —>&|5|p-p|Fiple



Java

PHP

Example String Expressions

String Expression

Constraint Language

s.length () length (s)

”éfiéﬁ5§£§£5 ..................... iéﬂé{ﬂfé;”;;”6 ................................................................

”éfé£é££éﬁi££2£mﬁ5 ..... 6M£HHMAHAMéM{éTMA .......................................................
begins (substring(s,n, |s|),t)

”éfiﬁAégbff£mﬁ$ ............. iﬂaéggfféﬁﬁéﬁ;iﬁéfé?ﬁ;ﬁéi5:{5 .........................

”éffééiéééAiifé;£5 ..... fééiééééiifé;é;L& .........................................................

strrpos (s, t) lastindexof (s, t)

J)

mysql real escape
_string(s)

...replaceall (s
,replaceall (s, ™ \\", "\\\\")

,"I", \\\IH)...




Model Counting String Constraint Solver

INPUT OUTPUT
string counting
constraint: / \ function:

Automata-Based
model Counting
string constraint

solver
(ABC)

fc <— length bound: k

!

# of strings with length < k
for which C evaluates to true

C

\_ J

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)
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ABC in a nutshell

Automata-based constraint solving

Why!?



ABC in a nutshell

Automata-based constraint solving
Basic idea:

Constructing an automaton for the set of solutions of a
constraint reduces model counting problem to path counting!



Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the constraint

ABC can handle both
string and integer constraints

Constraints over Constraints over Constraints over both
only string only integer string and integer
variables variables variables

(e.g., v="abcd”) (e.g., i =2xj) (e.g., length(v) = i)

|10



Automata-based constraint solving: expr, —

Basic string constraints are directly mapped to automata

v = “ab” match (v, (ab)*)

o=@ [~00

—match (v,

(ab) *)

(v

.

b

b

a,b

BOER EFC

J

automata

complement



Automata-based constraint solving: expr, -, A, V

More complex constraints are solved by creating automata for subformulae
then combining their results

—match (v, (ab)*) A length(v) = 2
) /\

L =000

automata product D



Automata-based constraint solving: expr, —, A, V

More complex constraints are solved by creating automata for subformulae
then combining their results

—match (v, (ab)*) A length(v) = 2

’ d @\a’ i
— ®
o O

automata product

R

13



String Automata Construction:
More Details

C=-(xe(01)) ALEN(x) =2



String Automata Construction

C=-(xe(01)) ALEN(x) =2

0,1



String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)") ALEN(x) =2
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&

.
QW@ ()

|
O & &

e
¥oRoroNe
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)) ALEN(x) =2

O
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String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2




String Automata Construction

C=-(xe(01)) ALEN(x) =2
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String Automata Construction

C=-(xe(01)) ALEN(x) =2

00, 10, I |

35



Relational constraints

» Relational constraints:

Constraints that involve multiple variables

» How do we handle relational constraints with automata’

36



Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

- Y N N N p N .
v a,b |l a,b ol a,b || T a,b v a,b ||t a,b

~6 =0l=-¢) (~8]-6

37



Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each variable

- N/ N N N - N
4 a,b |l ¢ a,b ol a,b || T a,b ¥ a,b || T

~6 =0l-¢)| (=8| -6

Satisfiable!



Automata-based constraint solving: relational

Single track automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying solutions

Use multi-track automata

39



Multi-track automata

Multi-track automaton DFA accepting tuples of strings

Each track represents the values of a single variable

Preserves relations
among variables!

40



Multi-track automata

v = t Vv 7'5 T v==t /\ v # t
~ & i v i i )
(V? t) ( ( ) t) (a, a), (z z)' automata (v- t)

(Z’,T))), (b,b), (a,b), (X, ), product

(A A) (b,a), (A T)

. e Nz

| S —’@

) N o

Padding symbol A & % used
to align tracks of different
length (appears at the end)

Correctly encodes
the constraint

41



Relational String Constraints: Summary

» How to handle constraints with multiple string variables?

» One approach is to use multiple single-track DFAs
One DFA per variable

» Alternative approach: Use one multi-track DFAs
Each track represents the values of one string variable

» Using multi-track DFAs:
|dentifies the relations among string variables
Improves the precision

Can be used to represent properties that depend on relations
among string variables, e.g., $file = $usr.txt



Multi-track Automata

» Let X (the first track),Y (the second track), be two string
variables
» A is the padding symbol

» A multi-track automaton that encodes the word
equation:

Y = Xixt E (A1) (A, X) (\1)

(a,a), (b,b) ...



Alignment

» To conduct relational string analysis, we need to compute
union or intersection of multi-track automata

Intersection is closed under alighed multi-track automata

In an aligned multi-track automaton As are right justified in all tracks, e.g.,
abAA instead of aAbA

» However, there exist unaligned multi-track automata that are
not equivalent to any aligned multi-track automata

Use an alignment algorithm that constructs aligned automata which
over or under approximates unaligned ones

Over approximation: Generates an aligned multi-track automaton that
accepts a super set of the language recognized by the unaligned multi-
track automaton

Under approximation: Generates an aligned multi-track automaton that
accepts a subset of the language recognized by the unaligned multi-track
automaton



Word Equations

» Word equations: Equality of two expressions that consist of
concatenation of a set of variables and constants

Example: X =Y . txt

» Word equations and their combinations (using Boolean connectives)
can be expressed using only equations of the form X =Y .¢, X =c.
Y,c = X.Y, X =Y.Z,Boolean connectives and existential
quantification

» Construct multi-track automata from basic word equations
The automata should accept tuples of strings that satisfy the equation

» Boolean connectives can be handled using intersection, union and
complement

» Existential quantification can be handled using projection



Word Equations to Automata

» Basic equations X =Y .¢, X =c.Y,c = X.Y and their
Boolean combinations can be represented precisely using
multi-track automata

» The size of the aligned multi-track automaton for X = c .
Y is exponential in the length of ¢

» The nonlinear equation X =Y . Z cannot be represented
precisely using an aligned multi-track automaton



Word Equations to Automata

» When we cannot represent an equation precisely, we can
generate an over or under-approximation of it

Over-approximation: The automaton accepts all string tuples that
satisfy the equation and possibly more

Under-approximation: The automaton accepts only the string tuples
that satify the equation but possibly not all of them

» We can implement a function CONSTRUCT (equation, sign)

Which takes a word equation and a sign and creates a multi-track
automata that over or under-approximation of the equation based
on the input sign



Integer Constraints

C

bterm

iterm

sterm

<]

s
w

—_

—+ bterm

¥y ltrue | false _ _ _ o L o o e e e e e e m - -
sterm = sterm

match(sterm, sterm)

contains(sterm, sterm)

begins(sterm, sterm)

—r V Il

|
1
|

iterm + iterm | iterm — iterm | iterm x n | (iterm)

_le_ng_t hxsza;nr |_tgigtrsterm) ___________

indexof(sterm, sterm)
lastindexof(sterm, sterm)

—s v | g | s

sterm.sterm | sterm|sterm | sterm® | (sterm)
charat(sterm, iterm) | tostring(iterm)
toupper(sterm) | tolower(sterm)
substring(sterm, iterm, iterm)
replacefirst(sterm, sterm, sterm)
replacelast(sterm, sterm, sterm)
replaceall(sterm, sterm. sterm)
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Multi-track automata

Multi-track automata can also represent Presburger (linear arithmetic)

arithmetic constraints

e Each track represents a single numeric variable

e Encoded as binary integers

1 = 7

%
(7,4) (0,0),

(1,1)

(0,0),
(1,1)
RoLlo)

in 2’s complement form

i = 2%

1 #F 7
(i, 4) (0, 0),
(1,1),
(0,0) (0,1),
(1,1) (1,0)
(1,0
)

pu
(7,7)

>

(0,0
(0.0) () 0.1)

(1,0)

(1,1)

(1,1) @
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» Can be used to represent sets of valuations of
unbounded integers

» Linear integer arithmetic formulas can be stored as a set
of polyhedra

F=V/\Ckl
ko1

where each ¢, is a linear equality or inequality constraint
and each

A\ Ccu
I

is a polyhedron



Automata Representation for Arithmetic

Constraints
[Bartzis, Bultan CIAA’ 02, IJFCS " 02]

» Given an atomic linear arithmetic constraint in one of the
following two forms

Za,-‘x,:C' Za,fx,-%‘

we construct a DFA which accepts all the solutions to the given
constraint

» By combining such automata one can handle full

Presburger arithmetic (linear arithmetic constraints +
quantification)



Basic Construction

» We first construct a basic state machine which

Reads one bit of each variable at each step, starting from the
least significant bits

and executes bitwise binary addition and stores the carry in
each step in its state

01
Example 00
X+ 2y 6 /1

010 ( )
+2 x 001 @ 1 2
1700

Number of states: O(S| a.; |)
i=1

—_ = O
[ e R
S TS = O
e e

S ™~ = O
—_—— =
O ™~ = =

A

—_ O P
S O P
=N N



Automaton Construction
» Equality With 0

All transitions writing | go to a sink state

State labeled 0O is the only accepting state

For disequations (#), state labeled O is the only rejecting state
» Inequality (<0)

States with negative carries are accepting

No sink state
» Non-zero Constant Term c

Same as before, but now -c is the initial state

If there is no such state, create one (and possibly some
intermediate states which can increase the size by |c|)



Conjunction and Disjunction

» Conjunction and disjunction is handled by generating the
product automaton  : 0 1

0,11 0,1 0

1 1
0 0
> 0 ~ 1
. A AN L o “\
< & N OOt
1 0,1,1
00 00
0,1 0 0,1 a
A

11 0
0,1 1

01 L
01 ( )
—A

Automaton for x-y<1

Automaton for x-y<1 A
Automaton ol 2x-y>0

for 2x-y>0




Integer Automata Construction

C=x=—-1Ax+y=1
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Integer Automata Construction

C=x=-1Ax+y=1
C;=Ex+0xy+1=0=>[101]
C;=x+y —1=0=>[11-1]
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Integer Automata Construction
C=x=-1Ax+y=1
C;=Ex+0xy+1=0=>[101]
C;=x+y —1=0=>[11-1]

» Using automata construction techniques described in:

C. Bartzis and Tevfik Bultan. Efficient symbolic representations for
arithmetic constraints in verification. Int. J. Found. Comput. Sci., 2003
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Integer Automata Construction

C=x=-1Ax+y=1

0
1
0 1 O

(111,010) = (—1, 2)

» Conjunction and disjunction is handled by automata
product, negation is handled by automata complement

58



Constraint Solving: Example Combining String
and Integer Constraints

i = 2x3 A length (v) i A match(v, (a | b)¥*)

(( 'y J) B 2.1 (0,0,0) )
Vi, 1, g Ao 1 V>
115 J (quOS 1) . -
v
0,0,1) 0,0,1 .
— ‘/\8) VO 00
a,b
(0,0,0) |
. )
automaton for numeric variables automaton for string variables

(v auxiliary variable encoding length of v)



Apporoximation

» In general ABC constructs automata that over
approximate the solution set

Some string constraints and combinations of string and integer
constraints can lead to non-regular sets,

which means they are not representable as automata

» ABC provides a sound over-approximation/abstraction:

If the automata does not accept any strings then the original
formula is guaranteed to be NOT satisfiable

» It is possible to also provide a sound under-
approximation using automata

60



Model Counting String Constraints Solver

INPUT

string
constraint:

C

-

\_

Automata-Based
model Counting
string constraint

solver
(ABC)

~

J

OUTPUT

counting
function:

fc <— length bound: k

!

# of strings with length < k
for which C evaluates to true

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15) 61



solve it Will Hunting?

g ] l
—~— /
: (
Y 7,
Sdamm .
-~
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Automata-based Model Counting

» Converting constraints to automata reduces the model counting
problem to path counting problem in graphs

(0 C=-(xe (01))

» We will generate a function f (k)
Given length bound k, it will count the number of paths with length k.

f(0) =0, {
f() =2,{0,1}
£(2) = 3,{00,10,11}

63



Path Counting via Matrix Exponentiation
C =-(xe(01))

01
1011
0021

0000

f(0)=0

T? =

fQ) =2

f2)=3

01148])

10157

~ 100168

0000
f(3) =8
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Path Counting via Recurrence Relation

foLky= ) fmk=1)

(mn)EE
f(0,0) =1
£(1,0) =0
£(2,0) =0

£(i,0) = 0

65



Path Counting via Recurrence Relation

1
fAk)=f2k—-—1)+f3k—-1)
F3 ) = f(Lk—1)+f2k—1)+f(3 k—1)
f2k)=f(1,k—-1)
f(1,0) =1,f(2,0) =0,f(30) =0,f(40) =0

66



Path Counting via Recurrence Relation

» We can solve system of recurrence relations for final
node

f(0)=0,f1)=2f(2)=3
fk) =2f(k =1+ f(k—2)=2f(k-3)

67



Counting Paths via Generating Functions

» We can compute a generating function, g(z), for a DFA
from the associated matrix

(0110]
1011
0021

10000

det(/ —zT:n+1,1) 2z — z°
zxdet(I —zT)  1—2z—2z%2+ 223

g(z) = (—1)"

68



Counting Paths via Generating Functions

27 — 72

1—2z—2%24 2273

g(z) =
» Each f(i) can be computed by Taylor expansion of g(z)

g(O) 0 +g(1)(0) g ) g(")(O)

9(z) ==~ T TR ey

g(z) =0z + 2z1 + 322 + 823 + 15z* +
g(2) = f(0)z° + f(Dz' + f(2)z* + f(3)z® + f(4)z* +

zm 4+ ...

69



Good job Will Hunting!
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This is correct.
Who did this ?




Applicable to Both Automata

» Multi-track Binary Integer Automaton: 0
1

» String Automaton:

71



Model Counting String Constraints Solver

INPUT

string
constraint:

( —

-

\_

Automata-Based
model Counting
string constraint

solver
(ABC)

OUTPUT

\ counting

function:

— fc <— length bound: k

J

!

# of strings with length < k
for which C evaluates to true

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’5) 72



Automata-based model counting
extensions

« In order to scale the automata-based model counting, it
is necessary to cache the prior results

» Many constraints generated from programs are

equivalent
By normalizing constraints we can identify many equivalent

constraints

- 87X improvement for the Kaluza big data set
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Kaluza Dataset:
1,342 big constraints and 17,554 small

42 | 42 | 40 | 40
1875 1874 | 1020
253 wo | 30 | 28 | 28 2543
39 | 38 | 36|36 |35 a5 | 399 | 345 [323 p1g
99 374 [195[152 A
38 28 | 27 _|94
s > 2537 | 729 | 374 "7z
o o7 |13 168[7 3T HH
39 37 | 32 65 445 | 371 15572 '
15 Sl
1,342 big constraints are reduced 17,554 small constraints are reduced
to 34 equivalent constraints after to 360 equivalent constraints after

normalization normalization 74



Automata-based model counting
extensions

» More caching
Cache subformulas

Automata provide a canonical form for constraints after
minimization and determinization

Generate keys for automata and use a compute cache like
BDDs

» Subformula caching leads to order of magnitude
improvement for attack synthesis
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ABC DEMO

https://github.com/vlab-cs-ucsb/ABC

h . = = = = -‘us-west-

2.compute.amazonaws.com/
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https://github.com/vlab-cs-ucsb/ABC
http://ec2-52-35-130-176.us-west-2.compute.amazonaws.com/

