292 - Fall 2021
Quantitative Information Flow and Side Channels
Instructor: Tevfik Bultan
Lecture 2
Slides for this lecture are based on the following papers:

Geoffrey Smith. Quantifying Information Flow Using Min-Entropy. QEST 2011: 159-167
How do we quantify information leakage?

- How can we quantify information leakage from a side channel (or main channel)?
- Before we figure out how to quantify information leakage, we need to answer the following question:
 - How do we quantify information?
How do we quantify information?

● Shannon Entropy

● Intuitively
 ○ a measure of uncertainty about a random variable X
 ○ expected (average) amount of information gain (i.e., the expected amount of surprise) by observing the value of the random variable expressed in terms of bits

● More precisely
 expected (average) number of bits required to transmit X optimally
Entropy example:

Example:
- Seattle weather, always raining: \(p_{\text{rain}} = 1 \)
 - Entropy: \(H = 0 \)

- Costa Rica weather, coin flip: \(p_{\text{rain}} = \frac{1}{2}, \ p_{\text{sun}} = \frac{1}{2} \)
 - Entropy: \(H = 1 \)

- Santa Barbara weather, almost always beautiful: \(p_{\text{rain}} = \frac{1}{10}, \ p_{\text{sun}} = \frac{9}{10} \)
 - Entropy: \(H = 0.496 \)
Binary Entropy
How do we quantify information?

- Random variable: X
- Set of possible values for the random variable: \mathcal{X}
- Probability that the random variable takes the value $x \in \mathcal{X}$
 \[
P[X = x]
 \]
- Shannon Entropy: $H(X)$
 \[
 H(X) = \sum_{x \in \mathcal{X}} P[X = x] \log_2(1/P[X = x])
 \]
 or
 \[
 H(X) = E[\log_2(1/P[X = x])]
 \]
 - i.e., Shannon entropy is the expected value of: $\log_2(1/P[X = x])$
How do we quantify information leakage?

- Now that we know how to quantify information, how can we quantify information leakage?
- First, let’s give a simple program model:

 S is the secret input to the program. We will model it as a random variable.

 O is the public output of the program. We will model it also as a random variable.

 f is a function from values of S to values of O we use to model a deterministic program.
Initial uncertainty

- What is the initial uncertainty for S?
 - What is the amount of information that we need to learn about the secret?

\[H(S) = \sum_{s \in S} P[S = s] \log_2 \left(\frac{1}{P[S = s]} \right) \]

- Assume that the probability distribution for the secret is uniform
 - so all values are equally likely
 - then, the amount of information that we need to learn is:

\[H(S) = \log_2 |S| \]
Partitioning the secret domain

- Given a program
 \[f : S \rightarrow O \]

- The values we observe as the output of the program define an equivalence relation for the secret S
 \[s \sim s' \text{ iff } f(s) = f(s') \]

- So, by observing output of the program, we partition the secret values to equivalence classes
Partitioning the secret domain

- The number of equivalence classes in the partition are:
 \[|\mathcal{O}| \]

- If the function is a constant function, where the output is constant, then
 \[|\mathcal{O}| = 1 \]
 - and, there is a single equivalence class where
 \[S_o = S \]
Non-interference

- So, if the output function is a constant function
 - the amount of information we need to learn remains the same
 \[H(S) = \log_2 |S| \]
 - means there is no information leakage

- This correspond to non-interference!
 - If the output/observable remains constant for all values of the secret then there is no information leakage!
Partitioning the secret domain

- Now, let us assume that the output values partition the secret domain to two equivalence classes with equal number of elements
 - I.e., there are two output values, half of the secret values map to one and the other half map to the other

- What is the remaining entropy?
Another example

```c
f(S) { print S & 0xF; }
```

- Assume that `S` is a 32-bit unsigned integer
- `0xF` is the hexadecimal constant corresponding to decimal 15, and `&` denotes bitwise “and” operation
 - So, the above code prints the last 4 bits of the secret
- The output partitions the secret domain to 16 equivalence classes, each of which has 2^{28} values in it
 - So, the remaining entropy is 28 bits
How do we quantify information leakage?

- Now that we know how to quantify information, how can we quantify information leakage?
- Here is what we would expect:

 \[\text{initial uncertainty} = \text{information leaked} + \text{remaining uncertainty} \]

- Equivalently

 \[\text{information leaked} = \text{initial uncertainty} - \text{remaining uncertainty} \]
How do we quantify the remaining uncertainty?

- Remaining uncertainty can be characterized as the conditional entropy.
- Conditional entropy: What is the uncertainty about S given O?

\[H(S|O) = \sum_{o \in O} P(O = o) H(S|O = o) \]

\[H(S|O = o) = \sum_{s \in S} P(S = s|O = o) \log_2 \left(\frac{1}{P(S = s|O = o)} \right) \]
Conditional Entropy uses Conditional Probability

\[H(S|O = o) = \sum_{s \in S} P[S = s|O = o] \log_2 (1/P[S = s|O = o]) \]

\[P[S = s|O = o] = P[S = s, O = o]/P[O = o] \]
Mutual information

- Mutual information $I(S; O)$ is the amount of information shared between S and O
- It is defined as:

$$I(S; O) = H(S) - H(S|O)$$

- Mutual information is symmetric:

$$I(S; O) = I(O; S)$$
How do we quantify information leakage?

- So, the intuitive property
 \[\text{information leaked} = \text{initial uncertainty} - \text{remaining uncertainty} \]
- is formalized as
 \[I(S; O) = H(S) - H(S|O) \]
Examples

\[I(S; O) = H(S) - H(S|O) \]

\[
\begin{align*}
\text{f(S) \{ print 10; \} } & \quad 0 \quad = \quad 32 \quad - \quad 32 \\
\text{f(S) \{ print S + 10; \} } & \quad 32 \quad = \quad 32 \quad - \quad 0 \\
\text{f(S) \{ print S \& 0xF; \} } & \quad 4 \quad = \quad 32 \quad - \quad 28
\end{align*}
\]
What about side channels?

f(S) { sleep(S); }

f(S) { if (S % 2 == 0) sleep(1); else sleep (2); }

- These programs do not return any output or print any information.
 - So, they do not leak information from the main channel of the program.
- However, they do have side channel leakage
 - They leak information from the execution time
What about side channels?

\[I(S; O) = H(S) - H(S|O) \]

\[
\begin{align*}
32 &= 32 - 0 \\
1 &= 32 - 31
\end{align*}
\]

```c
f(S) { sleep(S); }

f(S) { if (S % 2 == 0)
    sleep(1);
else
    sleep(2); }
```
Deterministic programs

- If we assume that the program is deterministic with only input S and only output O
 - then the value of O is determined only by the input S
 - which means $H(O|S) = 0$

Then, we have:

$$I(S;O) = I(O;S) = H(O) - H(O|S) = H(O)$$

- So, for deterministic programs with input S and output O, the information leaked is equivalent to the uncertainty of O