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Slides for this lecture are based on the following papers:

Geoffrey Smith. On the Foundations of Quantitative Information Flow. 
FOSSACS 2009: 288-302

Geoffrey Smith. Quantifying Information Flow Using Min-Entropy. QEST 
2011: 159-167



How do we quantify information leakage?
● How can we quantify information leakage from a side channel (or 

main channel)?
● Before we figure out how to quantify information leakage, we need 

answer the following question:
○ How do we quantify information?
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How do we quantify information?
● Shannon Entropy
● Intuitively

○ a measure of uncertainty about a random variable X
○ expected (average) amount of information gain (i.e., the expected 

amount of surprise) by observing the value of the random variable 
expressed in terms of bits

● More precisely

expected (average) number of bits required to transmit X optimally 
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Entropy example:
Example:
● Seattle weather, always raining: prain

 = 1
● Entropy: H = 0

● Costa Rica weather, coin flip: prain= ½, psun=½
● Entropy: H = 1

● Santa Barbara weather, almost always beautiful: prain=1/10, psun=9/10
● Entropy: H = 0.496
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Binary Entropy



How do we quantify information?
● Random variable: 
● Set of possible values for the random variable:
● Probability that the random variable takes the value 

● Shannon Entropy:  

● i.e., Shannon entropy is the expected value of:  
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How do we quantify information leakage?
● Now that we know how to quantify information, how can we 

quantify information leakage?
● First, let’s give a simple program model:

S is the secret input to the program. We will model it as a random 
variable.

O is the public output of the program. We will model it also as a 
random variable

f is a function from values of S to values of O we use to model a 
deterministic program 



Initial uncertainty
● What is the initial uncertainty for S? 

○ What is the amount of information that we need to learn about 
the secret?

● Assume that the probability distribution for the secret is uniform
○ so all values are equally likely
○ then, the amount of information that we need to learn is:



Partitioning the secret domain
● Given a program 

● The values we observe as the output of the program define an 
equivalence relation for the secret S

● So, by observing output of the program, we partition the secret 
values to equivalence classes



Partitioning the secret domain
● The number of equivalence classes in the partition are: 

● If the function is a constant function, where the output is constant, 
then 

○ and, there is a single equivalence class where



Non-interference
● So, if the output function is a constant function

○ the amount of information we need to learn remains the same

○ means there is no information leakage

● This correspond to non-interference!
○ If the output/observable remains constant for all values of the 

secret then there is no information leakage! 



Partitioning the secret domain
● Now, let us assume that the output values partition the secret 

domain to two equivalence classes with equal number of elements
○ I.e., there are two output values, half of the secret values map 

to one and the other half map to the other

● What is the remaining entropy?



Another example
f(S) { print S & 0xF; } 

● Assume that S is a 32-bit unsigned integer
● 0xF is the hexadecimal constant corresponding to decimal 15, and 

& denotes bitwise “and” operation
○ So, the above code prints the last 4 bits of the secret

● The output partitions the secret domain to 16 equivalence classes, 
each of which has 228 values in it
○ So, the remaining entropy is 28 bits



How do we quantify information leakage?
● Now that we know how to quantify information, how can we 

quantify information leakage
● Here is what we would expect:

initial uncertainty = information leaked + remaining uncertainty

● Equivalently

information leaked = initial uncertainty - remaining uncertainty



How do we quantify the remaining uncertainty?
● Remaining uncertainty can be characterized as the conditional 

entropy 
● Conditional entropy: What is the uncertainty about S given O?



Conditional Entropy uses Conditional Probability



Mutual information
● Mutual information I(S;O) is the amount of information shared 

between S and O
● It is defined as:

● Mutual information is symmetric:



How do we quantify information leakage?
● So, the intuitive property  

information leaked = initial uncertainty - remaining uncertainty

● is formalized as



Examples

f(S) { print 10; } 0   = 32       - 32

f(S) { print S + 10; } 32     = 32       - 0

f(S) { print S & 0xF; } 4       = 32       - 28



What about side channels?
f(S) { sleep(S); }

f(S) { if (S % 2 == 0) sleep(1); else sleep (2); }

● These programs do not return any output or print any information. 
○ So, they do not leak information from the main channel of the 

program.
● However, they do have side channel leakage

○ They leak information from the execution time



What about side channels?

f(S) { sleep(S); }    32  = 32       - 0

f(S) {if (S % 2 == 0) 1    = 32       - 31

sleep(1); 

else 

sleep (2); }



Deterministic programs
● If we assume that the program is deterministic with only input S and 

only output O
○ then the value of O is determined only by the input S
○ which means H(O|S) = 0

Then, we have:

I(S;O) = I(O;S) = H(O) - H(O|S) = H(O)

● So, for deterministic programs with input S and output O, the 
information leaked is equivalent to the uncertainty of O


