
292 - Fall 2021
Quantitative Information Flow and

Side Channels
Instructor: Tevfik Bultan

Lecture 3

Slides for this lecture are based on the following papers:

Boris Köpf, David A. Basin. An information-theoretic model for adaptive
side-channel attacks. ACM Conference on Computer and
Communications Security 2007: 286-296

Boris Köpf, David A. Basin. Automatically deriving information-theoretic
bounds for adaptive side-channel attacks. Journal of Computer Security
19(1): 1-31 (2011)

Analyzing leakage
● In Lecture 2, we discussed information leakage and showed that

information leakage can be modeled using entropy
● We saw that the information leaked can be characterized as the

initial uncertainty about the secret minus the remaining uncertainty
about the secret

● We saw that different entropy formulations can be used to quantify
the amount of uncertainty about the secret

3

Analyzing leakage vs. analyzing attacks
● The leakage measurements we discussed in Lecture 2 answer only

the following question:
○ How much information is leaked after a single interaction with

the program (i.e. executing the program once)
○ An attacker can execute the program multiple times!

● Moreover, we simplified the problem and did not take into account
that attacker may control part of the input
○ There may be a public input that influences that program’s

behavior which can be controlled by the attacker

4

Modeling and analyzing attacks
● In order to model and analyze the attacks we need to take into

account that
○ Attacker can run the program multiple times
○ Attacker can provide public inputs to the program

5

Adaptive attacks
● Note that the first time the attacker interacts with the program, the

attacker has no information about the secret
○ First, attacker needs to provide a public input to the program

without prior knowledge about the secret
● However, the next time the attacker interacts with the program, they

may already have some information about the secret based on their
previous interactions with the program
○ So, attacker should try to pick a public input that is consistent

with what they know about the secret

6

Adaptive attacks
● In order to develop an efficient attack, the attacker has to “adapt” its

interactions with the program
○ based on the information they gain by their prior interactions

with the program

● This type of attacks are called “adaptive attacks”

7

An example: password checker
check(password,guess) {

if (password == guess) permit();

else error();

}

● Inputs to a password checker are the password and the guess
provided by the user

● Password is the secret input
○ Attacker does not know the password

● Guess is the public input
○ Attacker controls the guess

An example: password checker
Consider a password checker with no side channels.

However, the password checker still leaks information since its main
channel output tells the user if the guess matches the password or not.

An attacker can develop a brute-force attack to discover the password

Note that, an efficient brute-force attack should be an adaptive attack

An example: password checker
How should an efficient brute-force attack adapt?

● The public input provided by the attacker is the guess
● First guess could be a random value chosen from the domain of the

password
○ such as a random string

● However, the next input selected by the attacker should not be a
random value
○ for an efficient brute-force attack, the attacker should try a

guess that they did not try before!
○ this is the adaptive strategy that makes the brute-force attack

work

Modeling programs with public input
S is the secret input to the program.

P is the public input to the program. We will assume that this input
is under the control of the attacker

O is the public output of the program.

f is going be our model for the program and it is a function from
values of S and P to values of O, we will assume that f is
deterministic

Modeling programs with public input
● Given a program

● So for the password example

Secret (S) is the password

Public input (P) is the guess

Partitioning the secret domain
● Given a program

● The values we observe as the output of the program define an
equivalence relation for the secret S

● So, by observing output of the program, we partition the secret
values to equivalence classes

Partitioning the secret domain using public input
● Let 𝜋 = {B1,B2, …, Br} denote a partition of the secret domain

○ where Bis (blocks/cells of the partition) are mutually exclusive
○ and their union is equal to the secret domain

● Note that, every equivalence relation on the secret domain
corresponds to a partition of the secret domain
○ where the values that are equivalent are placed in the same

block/cell of the partition

Partitioning the secret domain using public input
● Each public input p defines an equivalence relation/partition of the

secret domain
● Let 𝜋p denote the partition of the secret domain induced by the

public input p and the program f

● Let 𝚷 = {𝜋p| p ∈ P } denote the set of all partitions induced by the
public inputs (P is the domain of public inputs)

Attack steps
Based on this model, two basic attack steps can be characterized as
follows:

● Attacker chooses a partition from 𝚷
○ i.e., attacker chooses an input

● Attacker executes the program on the chosen public input
○ the output of the program reveals which partition block/cell the

secret belongs to

Partition refinement
Once the attacker figures out which partition cell the secret belongs to,
now the attacker has to “adapt” its strategy to pick the next public input

Note that, based on their knowledge of the secret, the attacker can
refine the partitions.

For example, if the attacker knows that the secret is in the set A ⊆ S,
then the attacker can use a refined partition which partitions the set A

Partition restriction
Given a partition 𝜋 of S and a set A ⊆ S

Let A ∩ 𝜋 denote a partition of A which is obtained by taking the
intersection of each cell/block of 𝜋 with A

This is called a restriction of partition 𝜋 to A

Partition refinement
A partition 𝜋1 is a refinement of partition 𝜋2 if each block/cell of 𝜋1 is a
subset of some block/cell of 𝜋2

We denote 𝜋1 is a refinement of partition 𝜋2 as

 𝜋1 ⊑ 𝜋2

Given two partitions 𝜋1 and 𝜋2 the partition 𝜋1 ∩ 𝜋2 is their refinement
obtained by taking intersection of all their blocks/cells

𝜋1 ∩ 𝜋2 ⊑ 𝜋1 and 𝜋1 ∩ 𝜋2 ⊑ 𝜋2

Attack strategy
An attack strategy can be thought of as an attack tree

Each node corresponds to a subset of the secret domain

Root node corresponds to the full secret domain

Each node of the tree corresponds to a partition/public input
selection

Children of each node n in the tree correspond to the
blocks/cells of a partition obtained by the restriction of a
partition in 𝚷 to the subset of the secret domain that
correspond to the node n

Attack Strategy
Given the set of partitions 𝚷, an attack strategy is a triple (T, v*, L)
where

● T = (V, E) is a tree with v* ∈ V is the root
● L : V → 2S is a vertex labeling with the following properties

○ L(v*) = S
○ For every v ∈ V there is a 𝜋p ∈ 𝚷 where

L(v) ∩ 𝜋p = {L(w) | (v,w) ∈ E}

An example
Consider the secret domain {1, 2, 3, 4} and consider the set of
partitions:

𝚷 = {

{{1},{2,3,4}},

{{1,2},{3,4}}

{{1,2,3},{4}}

}

We can show different attack strategies as attack trees

Example 1
f(S,P) {

if (P == 1)
switch (S) {

case 1: sleep(0);
case 2: case 3: case 4: sleep(1);
}

if (P == 2)
switch (S) {

case 1: case 2: sleep(0);
case 3: case 4: sleep(1);

}
if (P == 2)

switch (S) {
case 1: case 2: case 3: sleep(0);
case 4: sleep(1);

}
}

Example 2
f(S,P) {

if (P == 1)
switch (S) {

case 1: case 2: sleep(0);
case 3: case 4: sleep(1);

}
if (P == 2)

switch (S) {
case 1: case 3: sleep(0);
case 2: case 4: sleep(1);

}

}

Example 3
f(S,P) {

if (P == 1)
switch (S) {

case 1: case 2: case 3: sleep(0);
case 4: sleep(1);

}
if (P == 2)

switch (S) {
case 1: case 3: sleep(0);
case 2: case 4: sleep(1);

}
}

Adaptive vs. non-adaptive attack strategies
An attack strategy is called non-adaptive:

● if the attacker does not have access to the output of the program
○ i.e., the attacker does not know which block/cell the secret

belongs to after each step

An adaptive attack strategy does have access to the output of the
program and can tell which block/cell the secret belongs to after each
step and can use this information in selecting the next partition

Evaluating attack strategies
Given this model, we can use different entropy measures to evaluate
the effectiveness of different attack strategies

Let Va denote the choices the attacker makes in selecting the partition,
i.e., the attack strategy of the attacker

Then H(S | Va) denotes the remaining uncertainty about the secret
given the attack strategy Va

We can use this measure to evaluate attacks

We can also use different entropy definitions like Shannon entropy,
min-entropy, guessing entropy

Optimal attacks
Let 𝝫H(n) = H(S | Va) where a is an optimal attack of length n

Hence, 𝝫H(n) denotes the remaining uncertainty after maximum
amount of leakage for the given program against an optimal attack of
length n

Again, different entropy definitions can be used.

Optimal attacks
𝝫H(n) can be computed in

O(n ×|P|e ×|S| × log|S|) where e =rn and r is the maximum number of
cells in a given partition

Approximating optimal attacks
𝝫H(n) can be approximated using a greedy heuristic

And approximation of 𝝫greedy
H(n) can be computed in

O(n × r × |P| × |S|2) where r is the maximum number of cells in a given
partition

