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Vulnerability with respect to information leakage
● In analyzing vulnerability of a program with respect to information 

leakage, we may not be solely interested in the average behavior
● In fact, we may be more interested in what happens in the worst 

case
● Is there a way to analyze the program to look at the worst case 

scenarios?



Other definitions of entropy
● Shannon entropy computes an expected value, which is a weighted 

average over all possibilities
● This may not be suitable if the goal is to assess vulnerability of a 

software system
● Rather than evaluating how much information leaks on average, we 

may want to evaluate how much information leaks in the worst case
● There are different entropy definitions which may be more suitable 

if the goal is to assess the vulnerability of a software system



Guessing entropy
● Guessing entropy G(S) is defined as the expected number of 

guesses required to guess S optimally 
● Optimal strategy is to guess the values of S in nonincreasing order 

of probability

If we assume: 

then



Guessing entropy vs. Shannon entropy
Shannon entropy H(S) provides a lower bound for guessing entropy 
G(S) (expected number of guesses required to guess S optimally)

assuming that H(S) is greater than or equal to 2. 

 



Conditional Guessing entropy
Conditional guessing entropy G(S|O) is the expected number of optimal 
guesses required to guess S when the value of O is already known 



Guessing entropy vs. remaining uncertainty
Conditional entropy H(S|O) provides a lower bound for conditional 
guessing entropy G(S|O) 

assuming that H(S|O) is greater than or equal to 2. 

 



Guessing entropy
● Guessing entropy gives the expected value on the number of 

guesses
● Instead of the expected value of the number of guesses, we may 

worry about adversary guessing the value in just one try

Let  Pe denote the probability that an adversary will fail to guess the 
value of S correctly in one try, given the value of O

● Shannon entropy can be used to give a lower bound for this value 
(Pe) using Fano’s inequality



Fano’s inequality
Let Pe denote the probability that an adversary will fail to guess the 
value of S correctly in one try, given the value of O. 

Then, we have



Lower bounds with Shannon entropy
Lower bounds provided by the Shannon entropy for G(S|O) or Pe may 
not be very tight 

This limits the usefulness of these lower bounds



Renyi entropy
Renyi-entropy 

Renyi entropy is a family of entropy measures defined based on the 
parameter (order) α where α ≥ 0 and α ≠ 1

Each value of α defines a different entropy measure



Renyi entropy, max-entropy, and Shannon entropy
Renyi-entropy 

Case             is called max-entropy

 Case             corresponds to Shannon entropy



Renyi entropy and min-entropy
Renyi-entropy 

Case             is called min-entropy

 



Renyi-entropy
Min-entropy is an instance of Renyi-entropy

where  

So, min-entropy is also called Renyi min-entropy

If the distribution is uniform, then min-entropy is equal to the Shannon 
entropy



Renyi entropy

For all values of α, uniform distribution has the same Renyi entropy

I.e., if P[X = i] = 1/n  for i = 1, …, n, 

then, 

for all α, Hα(X) = log2n

            



Shannon entropy vs. min-entropy
α





“vulnerability” and min-entropy
Let “vulnerability” of S be V(S), defined as

Vulnerability V(S) is the worst-case probability that an adversary could 
guess the value of the secret correctly in one try. 

Then, min-entropy H∞(S) is defined as



Conditional vulnerability
Conditional vulnerability V(S|O) is defined as:

I.e., the expected value of the vulnerability, where 

then, using Bayes’ theorem,



Conditional min-entropy
Conditional min-entropy H∞(S|O) is defined as:

So, now we can use the following alternative definitions

initial uncertainty:

remaining uncertainty:

Information leaked (min-mutual information):

and, we also have: 



Deterministic programs
For deterministic programs we have 

Since the program is deterministic, S is partitioned to       equivalence 
classes by the program:

then 



Deterministic programs and uniform distribution
For deterministic programs where the secret is uniformly distributed, we 
have 

then the information leakage can be computed as:



Comparing Shannon entropy and min-entropy
Assume S is a 8k-bit integer value, uniformly distributed

Program 1: 

f(S) { if (S % 8 == 0) print S; else print 1; }
   

Program 2:

f(S) { print S & C }

where C is a binary constant and its least significant k+1 bits are one, 
rest are 0



Shannon entropy for programs 1 and 2
Since the input is a uniformly distributed 8k-bit integer value, for both 
programs 1 and 2 we have:

Since the programs 1 and 2 are deterministic, we also have: 

which implies that



Shannon entropy for program 1 
We can compute H(O) for program 1 by noting that:  

P[O=1] = ⅞

and

P[O=8n] = 1/28k for each n where 1 ≤ n < 28k-3

Then, H(O) = ⅞ (log2(8/7)) +  28k-3(1/28k)log2(1/28k) ≈ k + 0.169

which means I(S;O) = H(O) =  k + 0.169

and H(S|O) = H(S) - H(O) = 8k - (k + 0.169) = 7k - 0.169 



Shannon entropy for program 2
We can compute H(O) for program 2 by noting that k+1 bits of S is 
copied to O, so

H(O) = k + 1

which means I(S;O) = k + 1

and  H(S|O) = H(S) - H(O) = 8k - (k + 1) = 7k - 1 



Shannon entropy for programs 1 and 2
According to Shannon entropy, amount of information leaked and 
remaining uncertainty for programs 1 and 2 are:

Program 1:  leakage: I(S;O) = k + 0.169  H(S|O) = 7k - 0.169  

Program 2:  leakage: I(S;O) = k + 1 H(S|O) = 7k - 1



Shannon entropy for programs 1 and 2
So, Program 2 leaks more information according to Shannon entropy.

Note that, program 1 leaks the full secret ⅛ of the time, whereas for 
program 2, 7k-1 bits of information remains uncertain for all cases

So, in the worst case, program 1 leaks much more information than 
program 2, but since Shannon entropy focuses on average case, it 
concludes that program 2 leaks more information



Min entropy for programs 1 and 2
Since the input is a uniformly distributed 8k-bit integer value, for both 
programs 1 and 2 we have:



Min entropy for programs 1 and 2
Since secret is uniformly distributed and the programs are deterministic, 
for both programs 1 and 2, the information leakage is

For program 1:

For program 2:

 



Min-entropy for programs 1 and 2
According to min-entropy, amount of information leaked and remaining 
uncertainty for programs 1 and 2 are:

Program 1:  leakage: I∞(S;O) = 8k - 3 H∞(S|O) = 3 

Program 2:  leakage: I∞(S;O) = k + 1 H∞(S|O) = 7k - 1



Min-entropy for programs 1 and 2
Since min-entropy focuses on the worst-case probability that an 
adversary could guess the value of the secret correctly in one try, the 
leakage computed for program 1 increases significantly

According the min-entropy, program 1 leaks much more information 
than program 2 for large values of k.  


