
Automata Based String Analysis for
Vulnerability Detection

1

Automata-based String Analysis
•  Finite State Automata can be used to characterize sets of string values

•  Automata based string analysis
–  Associate each string expression in the program with an automaton
–  The automaton accepts an over approximation of all possible

values that the string expression can take during program
execution

•  Using this automata representation we symbolically execute the
program, only paying attention to string manipulation operations

2

Forward & Backward Analyses
l  First convert sanitizer functions to dependency graphs
l  Combine symbolic forward and backward symbolic reachability

analyses
l  Forward analysis

l  Assume that the user input can be any string
l  Propagate this information on the dependency graph
l  When a sensitive function is reached, intersect with attack pattern

l  Backward analysis
l  If the intersection is not empty, propagate the result backwards to

identify which inputs can cause an attack

Forward
Analysis

Backward
Analysis

Attack
patterns

Vulnerability
Signatures

3

Sanitizer
functions

Dependency Graphs
Extract dependency
graphs from
sanitizer functions

1:<?php
2: $www = $ GET[”www”];
3: $l_otherinfo = ”URL”;
4: $www = ereg_replace(
”[^A-Za-z0-9 .-@://]”,””,$www
);

5: echo $l_otherinfo .
”: ” .$www;

6:?>
echo, 5

str_concat, 5

$www, 4

“”, 4

preg_replace, 4

[^A-Za-z0-9 .-@://], 4 $www, 2

$_GET[www], 2

“: “, 5 $l_otherinfo, 3

“URL”, 3

str_concat, 5

Dependency
Graph

4

Forward Analysis
•  Using the dependency graph conduct vulnerability analysis

•  Automata-based forward symbolic analysis that identifies the possible
values of each node

•  Each node in the dependency graph is associated with a DFA
–  DFA accepts an over-approximation of the strings values that the

string expression represented by that node can take at runtime

–  The DFAs for the input nodes accept Σ∗

•  Intersecting the DFA for the sink nodes with the DFA for the attack
pattern identifies the vulnerabilities

5

Forward Analysis
•  Need to implement post-image computations for string operations:

–  postConcat(M1, M2)
returns M, where M=M1.M2

–  postReplace(M1, M2, M3)
returns M, where M=replace(M1, M2, M3)

•  Need to handle many specialized string operations:
–  regmatch, substring, indexof, length, contains, trim, addslashes,

htmlspecialchars, mysql_real_escape_string, tolower, toupper

6

Forward Analysis

echo, 5

str_concat, 5

$www, 4

“”, 4

preg_replace, 4

[^A-Za-z0-9 .-@://], 4 $www, 2

$_GET[www], 2

“: “, 5
$l_otherinfo, 3

“URL”, 3

str_concat, 5

 Forward = URL: [A-Za-z0-9 .-@/]*

Forward = URL: [A-Za-z0-9 .-@/]*

Forward = [A-Za-z0-9 .-@/]*

Forward = [A-Za-z0-9 .-@/]*

Forward = Σ* Forward = ε Forward = [^A-Za-z0-9 .-@/]

Forward = Σ*

Forward = :

Forward = URL

Forward = URL

Forward = URL:

L(URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*)

 Attack Pattern = Σ*<Σ*

 ∩
≠ Ø

 L(URL: [A-Za-z0-9 .-@/]*) = L(Σ*<Σ*)

7

Result Automaton

U

R

L

:

Space

<

[A-Za-z0-9 .-;=-@/]

URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

[A-Za-z0-9 .-@/]

8

Automata Lattice
•  Given an automaton A, let L(A) denote the set of string accepted by the

automaton

•  We use automata A to represent sets of string values in L(A)

•  We can define partial order among automata based on the subset
ordering among the languages they accept.

•  If we have a program with a set of variables V and a set of statement
labels L (assume that each statement is labeled), we can use |L|×|V|
automata to represent value of each string variable at each program
point.

Forward Reachability

Symbolic Automata Representation
•  MONA DFA Package for automata manipulation

–  [Klarlund and Møller, 2001]
•  Compact Representation:

–  Canonical form and
–  Shared BDD nodes

•  Efficient MBDD Manipulations:
–  Union, Intersection, and Emptiness Checking
–  Projection and Minimization

•  Cannot Handle Nondeterminism:
–  Use dummy bits to encode nondeterminism

11

Symbolic Automata Representation

Explicit DFA
representation

Symbolic DFA
representation

12

Symbolic Automata Representation

Automata Widening
•  String verification problem is undecidable

•  The forward fixpoint computation is not guaranteed to converge in the
presence of loops and recursion

•  Compute a sound approximation
–  During fixpoint compute an over approximation of the least fixpoint

that corresponds to the reachable states

•  Use an automata based widening operation to over-approximate the
fixpoint
–  Widening operation over-approximates the union operations and

accelerates the convergence of the fixpoint computation

14

Automata Widening
Given a loop such as

1:<?php
2: $var = “head”;
3: while (...){
4: $var = $var . “tail”;
5: }
6: echo $var
7:?>

Our forward analysis with widening would compute that the value of the

variable $var in line 6 is (head)(tail)*

15

A widening operator
•  Idea:

–  Instead of computing a sequence of automata
 A1, A2, … where Ai+1=Ai ∪ post(Ai),

–  compute
A’1, A’2, … where A’i+1=A’i∇(A’i∪ post(A’i))

•  By definition A∪B ⊆ A∇B

•  The goal is to find a widening operator ∇ such that:
1. The sequence A’1, A’2, … converges
2.  It converges fast
3. The computed fixpoint is as close as possible to the exact set of

reachable states

 Backward Analysis
•  A vulnerability signature is a characterization of all malicious inputs

that can be used to generate attack strings
•  Identify vulnerability signatures using an automata-based backward

symbolic analysis starting from the sink node

•  Need to implement Pre-image computations on string operations:
–  preConcatPrefix(M, M2)

returns M1 and where M = M1.M2
–  preConcatSuffix(M, M1)

returns M2, where M = M1.M2
–  preReplace(M, M2, M3)

returns M1, where M=replace(M1, M2, M3)

17

Backward Analysis

echo, 5

str_concat, 5

$www, 4

“”, 4

preg_replace, 4

[^A-Za-z0-9 .-@://], 4 $www, 2

$_GET[www], 2

“: “, 5
$l_otherinfo, 3

“URL”, 3

str_concat, 5

Forward = URL: [A-Za-z0-9 .-@/]*

Backward =
URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

Forward = URL: [A-Za-z0-9 .-@/]*

Backward =
 URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

Forward = [A-Za-z0-9 .-@/]*

Backward =
[A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

Forward = [A-Za-z0-9 .-@/]*

Backward =
 [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

Forward = Σ*

Backward = [^<]*<Σ*

Forward = ε

Backward = Do not care

Forward = [^A-Za-z0-9 .-@/]

Backward = Do not care

Forward = Σ*

Backward = [^<]*<Σ*

Forward = :

Backward = Do not care

Forward = URL

Backward = Do not care

Forward = URL

Backward = Do not care

Forward = URL:

Backward = Do not care

node 3 node 6

node 10

node 11

node 12

Vulnerability Signature = [^<]*<Σ*

18

Vulnerability Signature Automaton

[^<]*<Σ*

<

[^<]

Σ

Non-ASCII

19

Backward Symbolic Reachability

Recap
Given an automata-based string analyzer:

• Vulnerability Analysis: We can do a forward analysis to detect all the
strings that reach the sink and that match the attack pattern

–  We can compute an automaton that accepts all such strings
–  If there is any such string the application might be vulnerable to the

type of attack specified by the attack pattern

• Vulnerability Signature: We can do a backward analysis to compute the
vulnerability signature

–  Vulnerability signature is the set of all input strings that can
generate a string value at the sink that matches the attack pattern

–  We can compute an automaton that accepts all such strings

