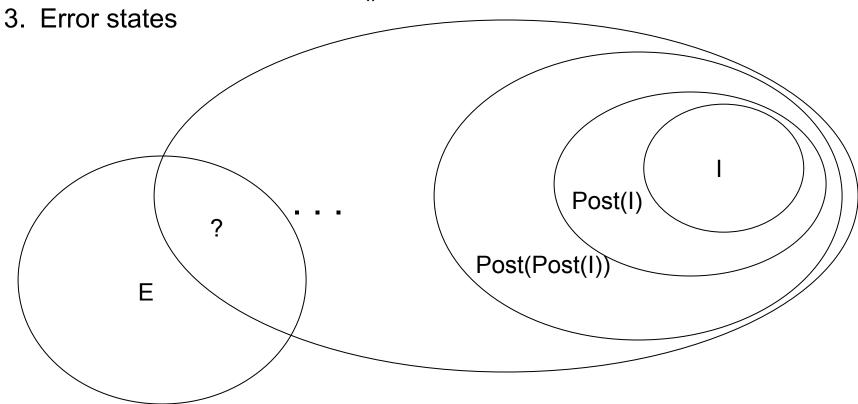
Widening Automata

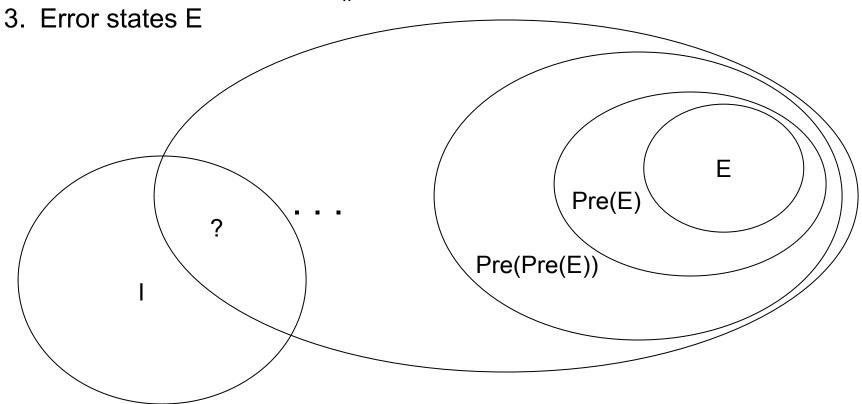
Verification of assertions Forward fixpoint computation

- 1. Set of initial states I
- 2. Postcondition function Post()



Verification of assertions Backward fixpoint computation

- 1. Set of initial states I
- 2. Precondition function Pre()



Fixpoints may not converge

- For infinite state systems fixpoint computations may
 - □ not converge at all
 - □ require a large number of iterations
- Widening is a approximation technique that helps a fixpoint computation converge

M

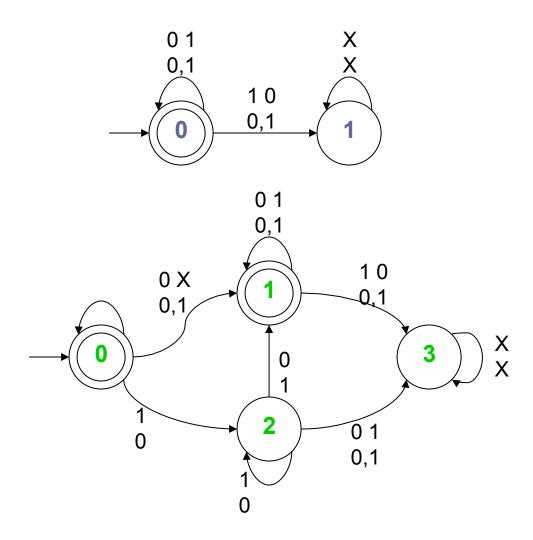
A widening operator

- Idea: Instead of computing a sequence of automata $A_1, A_2, ...$ where $A_{i+1}=A_i\cup post(A_i),$ compute $A'_1, A'_2, ...$ where $A'_{i+1}=A'_i\nabla(A'_i\cup post(A'_i))$
- By definition A∪B ⊆ A∇B
- The goal is to find a widening operator ∇ such that:
 - 1. The sequence A'₁, A'₂, ... converges
 - It converges fast
 - The computed fixpoint is as close as possible to the exact set of reachable states

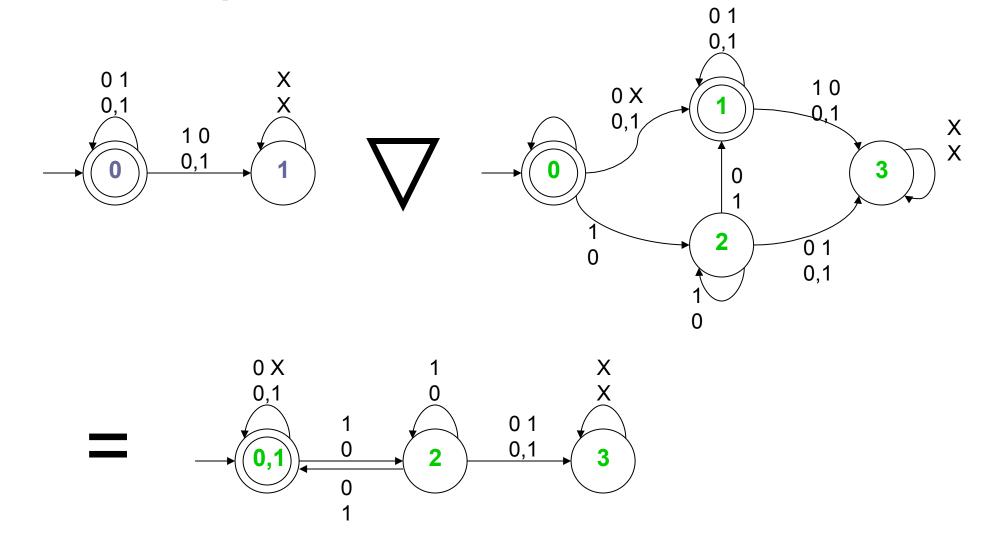
Widening Automata

- Given automata A and A' we want to compute A∇A'
- We say that states k and k' are equivalent (k≡k') if either
 - □ k and k' can be reached from either initial state with the same string (unless k or k' is a sink state)
 - □ or, the languages accepted from k and k' are equal
 - □ or, for some state k'', k=k'' and k'=k''
- The states of $A\nabla A'$ are the equivalence classes of \equiv

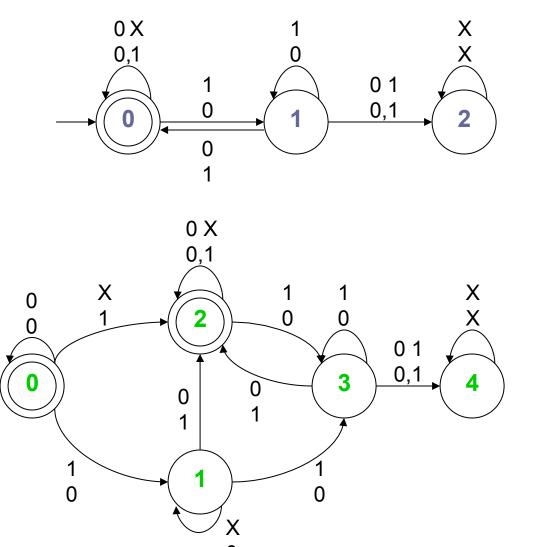
0	0	1	
1	3		
0			
1			
2			
3			



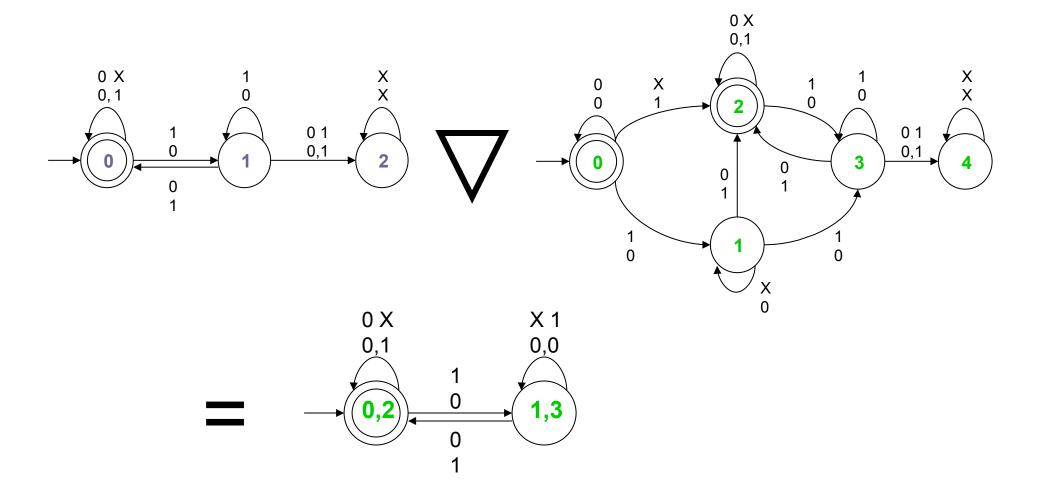
NA.



0	0	2	
1	~	3	
2	4		
0			
1			
2			
3			
4			



Ŋ.



M

An exactness result (some definitions)

- An automaton (Q,Σ,δ,q_0,F) is called state-disjoint if for all $q_i\neq q_i\in Q$, $L(q_i)\cap L(q_i)=\emptyset$
- An automaton $(Q_1, \Sigma, \delta_1, q_{01}, F_1)$ is called weakly equivalent to $(Q_2, \Sigma, \delta_2, q_{02}, F_2)$ iff there exists
 - f: $Q_1 \rightarrow Q_2$, such that:
 - $\Box f(q_{01}) = q_{02}$
 - \Box $f(\delta_1(q,\sigma))=\delta_2(f(q),\sigma)$ for all $q\in Q_1$ and $\sigma\in \Sigma$
 - \Box f(q) \in F₂ for all q \in F1

An exactness result

If

- □ a least fixpoint is represented by a state-disjoint automaton A_∞
- \square and, the first automaton A_s in the approximate sequence is weakly equivalent to A_∞

then

□ the approximate sequence converges to the exact least fixpoint