
Relational String Verification Using Multi-
track Automata

Relational String Analysis
•  Earlier work on string analysis use multiple single-track DFAs during

symbolic reachability analysis
–  One DFA per variable per program location

•  Alternative approach: Use one multi-track DFA per program location
–  Each track represents the values of one string variable

•  Using multi-track DFAs:
–  Identifies the relations among string variables
–  Improves the precision of the path-sensitive analysis
–  Can be used to prove properties that depend on relations among

string variables, e.g., $file = $usr.txt

Multi-track Automata
•  Let X (the first track), Y (the second track), be two string variables
•  λ is the padding symbol
•  A multi-track automaton that encodes the word equation:

 Y = X.txt

(a,a), (b,b) …

(λ,t) (λ,x) (λ,t)

Alignment
•  To conduct relational string analysis, we need to compute union or

intersection of multi-track automata
–  Intersection is closed under aligned multi-track automata

•  In an aligned multi-track automaton λs are right justified in all
tracks, e.g., abλλ instead of aλbλ

•  However, there exist unaligned multi-track automata that are not
equivalent to any aligned multi-track automata
–  Use an alignment algorithm that constructs aligned automata which

over or under approximates unaligned ones
•  Over approximation: Generates an aligned multi-track

automaton that accepts a super set of the language recognized
by the unaligned multi-track automaton

•  Under approximation: Generates an aligned multi-track
automaton that accepts a subset of the language recognized by
the unaligned multi-track automaton

Symbolic Reachability Analysis
•  Transitions and configurations of a string system can be represented

using word equations

•  Word equations can be represented/approximated using aligned multi-
track automata which are closed under intersection, union,
complement and projection

•  Operations required for reachability analysis (such as equivalence
checking) can be computed on DFAs

Word Equations
•  Word equations: Equality of two expressions that consist of

concatenation of a set of variables and constants
–  Example: X = Y . txt

•  Word equations and their combinations (using Boolean connectives)
can be expressed using only equations of the form X = Y . c, X = c . Y,
c = X . Y, X = Y. Z, Boolean connectives and existential quantification

•  Our goal:
–  Construct multi-track automata from basic word equations

•  The automata should accept tuples of strings that satisfy the
equation

–  Boolean connectives can be handled using intersection, union and
complement

–  Existential quantification can be handled using projection

Word Equations to Automata
•  Basic equations X = Y . c, X = c . Y, c = X . Y and their Boolean

combinations can be represented precisely using multi-track automata

•  The size of the aligned multi-track automaton for X = c . Y is
exponential in the length of c

•  The nonlinear equation X = Y . Z cannot be represented precisely
using an aligned multi-track automaton

Word Equations to Automata
•  When we cannot represent an equation precisely, we can generate an

over or under-approximation of it

–  Over-approximation: The automaton accepts all string tuples that
satisfy the equation and possibly more

–  Under-approximation: The automaton accepts only the string tuples
that satify the equation but possibly not all of them

•  We can implement a function CONSTRUCT(equation, sign)
–  Which takes a word equation and a sign and creates a multi-track

automata that over or under-approximation of the equation based
on the input sign

Post condition computation
•  During symbolic reachability analysis we compute the post-conditions

of statements using the function CONSTRUCT

Given a multi-track automata M and
an assignment statement: X := sexp

Post(M, X := sexp) denotes the post-condition of X := sexp with

respect to M

Post(M, X := sexp)
= (∃ X , M ∩ CONSTRUCT(X’ = sexp, +))[X/X’]

