Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

Abstract Interpretation Framework

m Associate each string variable at each program point with an
automaton that accepts an over approximation of its possible
values.

m Use these automata to perform symbolic executions on string
variables.
m lteratively

m Compute the next state of current automata against string
operations and

m Update automata by joining the result to the automata at the
next statement

m Terminate the execution upon reaching a fixed point.

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

Challenges

m Precision: Need to deal with sanitization routines having
decent PHP functions, e.g., ereg_replacement.

m Complexity: Need to face the fact that the problem itself is
undecidable. The fixed point may not exist and even if it
exists the computation itself may not converge.

m Performance: Need to perform efficient automata
manipulations in terms of both time and memory.

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

Features of Our Approach

We propose:

m A Language-based Replacement: to model decent string
operations in PHP programs.

m An Automata Widening Operator: to accelerate fixed point
computation.

m A Symbolic Encoding: using Multi-terminal Binary Decision
Diagrams (MBDDs) from MONA DFA packages.

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

A Language-based Replacement

M=REPLACE(M;, My, M3)
m My, M,, and M3 are DFAs.

m M accepts the set of original strings,
m M, accepts the set of match strings, and
m M3 accepts the set of replacement strings

m Let s € L(M1), x € L(M2), and ¢ € L(M3):
m Replaces all parts of any s that match any x with any c.
m Outputs a DFA that accepts the result to M.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

M=REPLACE(M;, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms3) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}
{baaabaa} | ath {c} {bcaa}
{baaabaa} at {c} {bcecbcec, becebe,
beebee, beebe, bebec, bebe}
ba*t b at {c} bcth

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

M=REPLACE(M;, M,, Ms)

m An over approximation with respect to the
leftmost /longest(first) constraints
m Many string functions in PHP can be converted to this form:

m htmlspecialchars, tolower, toupper, str_replace, trim, and
m preg_replace and ereg_replace that have regular expressions as

their arguments.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

A Language-based Replacement

Implementation of REPLACE(M;, My, M3):

m Mark matching sub-strings
m Insert marks to M;
m Insert marks to M
m Replace matching sub-strings
m Identify marked paths
m Insert replacement automata
In the following, we use two marks: < and > (not in), and a
duplicate set of alphabet: ¥’ = {a/|a € £}. We use an example to

illustrate our approach.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

An Example

Construct M = REPLACE(M;y, My, M3).
m L(M;) = {baab}
m L(My)=a" ={a,aa,aaa,...}
m L(M3) ={c}

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

Construct M from My:

m Duplicate My using Y/

m Connect the original and duplicated states with < and >
For instance, M] accepts b < a’'a’ > b, b < & > ab.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

Construct M} from Ma:
m Construct M5 that accepts strings do not contain any
substring in L(M,). (a)
m Duplicate M, using ¥'. (b)
m Connect (a) and (b) with marks. (c)
For instance, M} accepts b < a'a’ > b, b<a' > bc < a >.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

Intersect M; and Mj.
m The matched substrings are marked in ¥’.
m |dentify (s,s’), so that s =< ... =~ ¢

In the example, we idenitfy three pairs:(i,j), (i,k), (j,k).

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

Construct M:
m Insert M3 for each identified pair. (d)
m Determinize and minimize the result. (e)

L(M) = {bcb, becb}.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Fi

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

The operator was originally proposed by Bartzis and Bultan [BB,
CAVO04]. Intuitively, we

m |dentify equivalence classes, and

m Merge states in an equivalence class

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework
A Language-based Replacement

Symbolic String Verification Widening Automata
Symbolic Encoding

State Equivalence

g, q are equivalent if one of the following condition holds:
m Vw € X%, w is accepted by M from g then w is accepted by
M’ from ¢’, and vice versa.
m Jw € Ix, M reaches state g and M’ reaches state ¢’ after
consuming w from its initial state respectively.

m Jq", g and ¢" are equivalent, and ¢’ and q"are equivalent.

Symbolic String Verification: An Automata-based Approach

Fang Yu

Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

An Example for MV M’

m (M) ={e, ab} and L(M') = {¢, ab, abab}.
m The set of equivalence classes: C = {q(, q{ }, where
90 = {90, 90,92, 9. 4} and qf = {q1, g7, G5}

(a) M (b) M’ (c) MV M’

Figure: Widening automata

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

A Fixed Point Computation

Recall that we want to compute the least fixpoint that corresponds
to the reachable values of string expressions.

m The fixpoint computation will compute a sequence My, My,
., M;, ..., where My = | and M; = M;_1 U post(M;_1)

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

A Fixed Point Computation

Consider a simple example:
m Start from an empty string and concatenate ab at each
iteration

m The exact computation sequence My, My, ..., M;, ... will
never converge, where L(Mp) = {€} and
L(M;) = {(ab)k | 1<k <i}U{e}.

Fang Yu Symbolic String Verification: An Automata-based Approach

Abstract Interpretation Framework

A Language-based Replacement
Symbolic String Verification Widening Automata

Symbolic Encoding

Accelerate The Fixed Point Computation

Use the widening operator V.

m Compute an over-approximate sequence instead: M}, My, ...,
M,
m M{ = My, and for i >0, M/ = M!_,V(M!_, U post(M;_,)).

An over-approximate sequence for the simple example:

btﬂ

@M (b)M ()Mz (

Fang Yu Symbolic String Verification: An Automata-based Approach

