
Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Abstract Interpretation Framework

Associate each string variable at each program point with an
automaton that accepts an over approximation of its possible
values.

Use these automata to perform symbolic executions on string
variables.

Iteratively

Compute the next state of current automata against string
operations and
Update automata by joining the result to the automata at the
next statement

Terminate the execution upon reaching a fixed point.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Challenges

Precision: Need to deal with sanitization routines having
decent PHP functions, e.g., ereg replacement.

Complexity: Need to face the fact that the problem itself is
undecidable. The fixed point may not exist and even if it
exists the computation itself may not converge.

Performance: Need to perform efficient automata
manipulations in terms of both time and memory.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Features of Our Approach

We propose:

A Language-based Replacement: to model decent string
operations in PHP programs.

An Automata Widening Operator: to accelerate fixed point
computation.

A Symbolic Encoding: using Multi-terminal Binary Decision
Diagrams (MBDDs) from MONA DFA packages.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Language-based Replacement

M=replace(M1, M2, M3)

M1, M2, and M3 are DFAs.

M1 accepts the set of original strings,
M2 accepts the set of match strings, and
M3 accepts the set of replacement strings

Let s ∈ L(M1), x ∈ L(M2), and c ∈ L(M3):

Replaces all parts of any s that match any x with any c .
Outputs a DFA that accepts the result to M.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

M=replace(M1, M2, M3)

Some examples:
L(M1) L(M2) L(M3) L(M)

{ baaabaa} {aa} {c} {bacbc, bcabc}
{baaabaa} a+ ǫ {bb}
{baaabaa} a+b {c} {bcaa}
{baaabaa} a+ {c} {bcccbcc, bcccbc,

bccbcc, bccbc, bcbcc, bcbc}
ba+b a+ {c} bc+b

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

M=replace(M1, M2, M3)

An over approximation with respect to the
leftmost/longest(first) constraints

Many string functions in PHP can be converted to this form:

htmlspecialchars, tolower, toupper, str replace, trim, and
preg replace and ereg replace that have regular expressions as
their arguments.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Language-based Replacement

Implementation of replace(M1, M2, M3):

Mark matching sub-strings

Insert marks to M1

Insert marks to M2

Replace matching sub-strings

Identify marked paths
Insert replacement automata

In the following, we use two marks: < and > (not in Σ), and a
duplicate set of alphabet: Σ′ = {α′|α ∈ Σ}. We use an example to
illustrate our approach.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

An Example

Construct M = replace(M1,M2,M3).

L(M1) = {baab}

L(M2) = a+ = {a, aa, aaa, . . .}

L(M3) = {c}

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 1

Construct M ′
1 from M1:

Duplicate M1 using Σ′

Connect the original and duplicated states with < and >

For instance, M ′
1 accepts b < a′a′ > b, b < a′ > ab.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 2

Construct M ′
2 from M2:

Construct M2̄ that accepts strings do not contain any
substring in L(M2). (a)

Duplicate M2 using Σ′. (b)

Connect (a) and (b) with marks. (c)

For instance, M ′
2 accepts b < a′a′ > b, b < a′ > bc < a′ >.

(a) (b) (c)

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 3

Intersect M ′
1 and M ′

2.

The matched substrings are marked in Σ′.

Identify (s, s ′), so that s →< . . . →> s ′.

In the example, we idenitfy three pairs:(i,j), (i,k), (j,k).

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Step 4

Construct M:

Insert M3 for each identified pair. (d)

Determinize and minimize the result. (e)

L(M) = {bcb, bccb}.

(d) (e)

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

M∇M
′

The operator was originally proposed by Bartzis and Bultan [BB,
CAV04]. Intuitively, we

Identify equivalence classes, and

Merge states in an equivalence class

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

State Equivalence

q, q′ are equivalent if one of the following condition holds:

∀w ∈ Σ∗, w is accepted by M from q then w is accepted by
M ′ from q′, and vice versa.

∃w ∈ Σ∗, M reaches state q and M ′ reaches state q′ after
consuming w from its initial state respectively.

∃q”, q and q” are equivalent, and q′ and q”are equivalent.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

An Example for M∇M
′

L(M) = {ǫ, ab} and L(M ′) = {ǫ, ab, abab}.

The set of equivalence classes: C = {q′′
0 , q′′

1}, where
q′′
0 = {q0, q

′
0, q2, q

′
2, q

′
4} and q′′

1 = {q1, q
′
1, q

′
3}.

(a) M (b) M ′ (c) M∇M ′

Figure: Widening automata

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Fixed Point Computation

Recall that we want to compute the least fixpoint that corresponds
to the reachable values of string expressions.

The fixpoint computation will compute a sequence M0, M1,
..., Mi , ..., where M0 = I and Mi = Mi−1 ∪ post(Mi−1)

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

A Fixed Point Computation

Consider a simple example:

Start from an empty string and concatenate ab at each
iteration

The exact computation sequence M0, M1, ..., Mi , ... will
never converge, where L(M0) = {ǫ} and
L(Mi ) = {(ab)k | 1 ≤ k ≤ i} ∪ {ǫ}.

Fang Yu Symbolic String Verification: An Automata-based Approach



Outline
Motivation

Symbolic String Verification
Experiments

Abstract Interpretation Framework
A Language-based Replacement
Widening Automata
Symbolic Encoding

Accelerate The Fixed Point Computation

Use the widening operator ∇.

Compute an over-approximate sequence instead: M ′
0, M ′

1, ...,
M ′

i
, ...

M ′
0 = M0, and for i > 0, M ′

i
= M ′

i−1∇(M ′
i−1 ∪ post(M ′

i−1)).

An over-approximate sequence for the simple example:

(a) M ′
0 (b) M ′

1 (c) M ′
2 (d) M ′

3

Fang Yu Symbolic String Verification: An Automata-based Approach


