String Abstractions

String Verification

Given a string manipulating program, string analysis
determines all possible values that a string
expression can take during any program execution

Using string analysis we can verify properties of
string manipulating programs

For example, we can identify all possible input values of
sensitive functions in a web application and then check
whether inputs of sensitive functions can contain attack
strings

Reqular Abstraction

Configurations/Transitions are represented using
word equations

Word equations are represented/approximated
using (aligned) multi-track DFAs which are closed
under intersection, union, complement and
projection

Operations required for reachability analysis (such
as equivalence checking) are computed on DFAs

Reqular Abstraction

Let X (the first track), Y (the second track), be
two string variables
A : a padding symbol that appears only on the tail

of each track (aligned)
A multi-track automaton that encodes X =Y.txt

Reqular Abstraction

Compute the post-conditions of statements

Given a multi-track automata M and
an assignment statement: X:=sexp

Post(M, X := sexp) denotes the post-condition of X := sexp
with respect to M

Post(M, X := sexp)
= (AX, M N CONSTRUCT(X" =sexp, +))[X/X’]

Reqular Abstraction

We implement a symbolic forward reachability
computation using the post-condition operations

The forward fixpoint computation is not guaranteed
to converge in the presence of loops and recursion

We use an automata based widening operation to
over-approximate the fixpoint
Widening operation over-approximates the union

operations and accelerates the convergence of the fixpoint
computation

Abstractions on String Contents

The alphabet of an n-track automaton is 2"

The size of multi-track automata could be huge during
computations

On the other hand, we may carry more information than
we need to verify the property

More Abstractions:
We propose alphabet abstraction to reduce 2
We propose relation abstraction to reduce n

Alphabet Abstraction

Select a subset of alphabet characters (2') to
analyze distinctly and merge the remaining
alphabet characters into a special symbol (@)

For example:
Let >2={<, a, b, ¢} and 2'={<}, L(M) = a<b*,
we have:
o5 (M) =M, andy; 5(M,) =M,, where
L(M,)=®<®*, and L(M,) = (a|b|c)<(alb|c)*

Alphabet Transducer: M ;.

We use an alphabet transducer Mj ;. to construct
abstract automata

a denotes any characterin 2
B denotes any character in 2\’

(a,0) (AN)

(B, ®)

An Example of Alphabet Abstraction

2=§{<,a, b, ¢} and Z’={<}

@ OO0 @ O-~O%0Or

(b) (b, ®)

OROEORO @
)\)\)

(a,®), (b,® 00)

An Example of Alphabet Abstraction

2=§{<,a, b, ¢} and Z'={<}

abc PN
b, b,
FOC C‘ 50-06
d
Eﬁti EZ:;Z 22:):: oo <
® : ’ ’ ;
O OO0
(<,<) (AA)

Apply Alphabet Abstraction

1:<?php

2: Swww = $_GET["www”];

3: $1 otherinfo = "URL’;

4: Swww = Str_replace(<,””,$www);

5: echo '<td>" . $1 otherinfo . ": 7 . Swww . </
td>";

6:7>

Consider the above example, choosing 2'={<, s}
(instead of all ASCII characters) is sufficient to
conclude that the echo string does not contain any
substring that matches “<script”

Length abstraction as alphabet

abstraction

Consider the following abstraction: We map
all the symbols in the alphabet to a single
symbol

The automaton we generate with this
abstraction will be a unary automaton (an
automaton with a unary alphabet)

The only information that this automaton will
give us will be the length of the strings

So alphabet abstraction corresponds to
length abstraction

Relation Abstraction

Select sets of string variables to analyze relationally
(using multi-track automata), and analyze the rest
independently (using single-track automata)

For example, consider three string variables n,, n,, n..
Let x={{n,n,}, n;}and x'={{n }, {n,}, {n}}
Let M = {M_ ,, M.} that consists of a 2-track automaton
for n, and n, and a single track automaton for n,

We have
O(XIX,(M) =M,

Yy (M) =M, , where

Relation Abstraction

M, ={M,, M,, M.} such that M, and M, are
constructed by the projection of M, , to the first
track and the second track respectively

M, = {M’, ,, M} such that M’, , is constructed by the
intersection of M, . and M., , where

M. « is the two-track automaton extended from M1 with
arbitrary values in the second track

M. , is the two-track automaton extended from M2 with
arbitrary values in the first track

An Example of Relation Abstraction

. M, M

1/

Ma,2 | 2 b
v S D
(c.c) :
HeaO—O

VY
. (c,)
N " @&Q
C,C
W ?; Q&@

Apply Relation Abstraction

1:<?php

2: Susr = $ GET[usr];

3: S$passwd = $ GET[“passwd”];
4: Skey = Susr.S$passwd;

5: 1if (Skey = “adminl234”)

6: echo $usr;

77>

Consider the above example, choosing x'={{$usr,
skey}, {$spasswd}} is sufficient to identify the echo
string is a prefix of "fadmin1234"” and does not
contain any substring that matches “<script”

Abstraction Lattice

Both alphabet and relation abstractions form
abstraction lattices, which allow different levels of

abstractions

Combining these abstractions leads a product
lattice, where each point is an abstraction class that
corresponds to a particular alphabet abstraction and
a relation abstraction

The top is a non relational analysis using unary alphabet

The bottom is a complete relational analysis using full
alphabet

Abstraction Lattice

Some abstraction from the abstraction lattice
and the corresponding analyses

size
()(T , OT) analysis

relational (XL, 0O

) string
size analysis T

, O .
(XT L) analysis

relational

o
(Xe . 0L) string analysis

Abstraction Class Selection

Select an abstraction class
Ideally, the choice should be as abstract as possible while
remaining precise enough to prove the property in
question

Heuristics

Let the property guide the choice
Collect constants and relations from assertions and their

dependency graphs
It forms the lower bound of the abstraction class
Select an initial abstraction class, e.g., characters and relations
appearing in assertions
Refine the abstraction class toward the lower bound

