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A simple string manipulation language  

•  Language syntax •  Example code 



Reachability problem 

•  Reachability problem in string programs:  
–  Given a string program P and a program state s  

•  where a program state s is defined with the instruction 
label of an instruction in the program and the values 
of all the variables,  

•  determine if at some point during the execution of the 
program P, the program state s will be reached. 

•  Reachability problem for string programs is undecidable 
(even if we allow only 3 string variables) 



Counter machines 

•  Counter machines are a simple and powerful computational 
model that can simulate Turing Machines. 

•  A counter machine consists of a finite number of counters 
(unbounded integer variables) and a finite set of 
instructions.  

•  Counter machines have a very small instruction set that 
includes an increment, a decrement, a conditional branch 
instruction that tests if a counter value is equal to zero, and 
a halt instruction. 

•  The counters can only assume nonnegative values.  
•  It is well-known that the halting problem for two-counter 

machines, where both counters are initialized to 0, is 
undecidable.  

•  Two counter machines can simulate Turing Machines. 



String programs can simulate counter machines 

•  A string program P with three string variables (X1, X2, X3)  
can simulate a counter machine M with two counters (C1, 
C2) 

•  We will use the lengths of the strings X1, X2 and X3 to 
simulate the values of the counters C1 and C2 

Where  
 C1 = |X1| - |X3| 
 C2 = |X2| - |X3| 



String programs can simulate counter machines 

•  M starts from the initial configuration (q0, 0, 0) where q0 
denotes the initial instruction and the two integer values 
represent the initial values of counters C1 and C2, 
respectively.  

•  The initial state of the string program P will be (q0, ε, ε, ε) 
where q0 is the label of the first instruction, and the string 
variables X1, X2, and X3, are initialized to empty string: ε 



Translation of counter-machine instructions to string 
program instructions 



Reachability problem 

•  Halting problem for counter machines is undecidable 

•  String programs can simulate counter machines 

•  Hence, halting problem for string programs is undecidable. 

•  Hence, reachability problem for string programs is 
undecidable. 



A richer string manipulating language 



Semantics 



Semantics 



Semantics 
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Semantics of a string program 

•  Semantics of a string program can be defined as a 
transition system 

 
•  A transition system T = (S, I, R) consists of 

–  a set of states   S 
–  a set of initial states   I ⊆ S 
–  and a transition relation  R ⊆ S × S 

  



Semantics of a string program 

•   Let L denote the labels of program statements, and 
assume n string and m integer variables, then the set of 
states of the string program can be defined as: 

and the initial state is (where l1 is the label of the first 
statement):  



Semantics of a string program 

•   Given a statement labeled l, its transition relation can be 
defined as a set of tuples: 

 
where   
means that executing statement l in state s1 results in state in 
s2 
 

•  Then, the transition relation of the whole program can be 
defined as: 

  
 
 



Post condition function 

•  Using the transition relation, we can define the post 
condition function that identifies, given a state which state 
the program will transition.  



Computing reachable states 

•  The set of states that are reachable from the initial states of 
the program can be defined as: 

•  Reachable states can be computed using a simple depth-
first-search 



Computing reachable states with DFS 



Pre-condition function 



Backward reachability using DFS 



Explicit vs. Symbolic reachability analysis 

•  The DFS algorithms that we showed work on one state at a 
time. This is called explicit state (or enumerative, or 
concrete) reachability analysis 

•  It is not feasible to enumerate each state since state space 
of a program is exponential in the number of variables 

•  Symbolic reachability analysis works on sets of states, 
rather than a single state at a time 

•  We need to generalize pre and post condition functions so 
that they work on sets of states 



Post and pre condition 



Symbolic Reachability Analysis 



Reachability and fixpoints 

•  We will demonstrate that reachability analysis corresponds 
to computing the least fixpoint of a function.  

•  In order to do that we need to introduce the concept of a 
lattice 



Pre and post condition functions on sets of states 

•  Given a transition system T=(S, I, R), we define functions 
from sets of states to sets of states  
– F : 2S → 2S 

•  For example, one such function is the post function (which 
computes the post-condition of a set of states) 
–  post : 2S → 2S 

which can be defined as (where P ⊆ S): 

Post(P) = { s’ | (s,s’) ∈ R and s ∈ P } 

•  We can similarly define the pre function (which computes 
the pre-condition of a set of states) 
–  pre : 2S → 2S 

which can be defined as: 

Pre(P) = { s | (s,s’) ∈ R and s’ ∈ P } 
 



Lattices 

The set of states of the transition system forms a lattice: 
•  lattice     2S   
•  partial order    ⊆  
•  bottom element    ∅ (alternative notation: ⊥)   
•  top element    S  (alternative notation: T) 
•  Least upper bound (lub)  ∪   
    (aka join) operator   
•  Greatest lower bound (glb)  ∩   
    (aka meet) operator 
 

 



Lattices 

In general, a lattice is a partially ordered set with a least upper 
bound operation and a greatest lower bound operation. 

 
•  Least upper bound a ∪ b is the smallest element where      

 a ⊆ a ∪ b and b ⊆ a ∪ b   
•  Greatest lower bound a ∩ b is the biggest element where  

 a ∩ b ⊆ a and a ∩ b ⊆ b  
 
A partial order is a  
•  reflexive (for all x, x ⊆ x),  
•  transitive (for all x, y, z, x ⊆ y ∧ y ⊆ z ⇒ x ⊆ z), and  
•  antisymmetric (for all x, y, x ⊆ y ∧ y ⊆ x ⇒ x = y)  
relation. 
 



Complete Lattices 

2S forms a lattice with the partial order defined as the subset-
or-equal relation and the least upper bound operation 
defined as the set union and the greatest lower bound 
operation defined as the set intersection. 

 
In fact, (2S, ⊆, ∅, S, ∪, ∩) is a complete lattice since for each 

set of elements from this lattice there is a least upper bound 
and a greatest lower bound. 

 
Also, note that the top and bottom elements can be defined 

as: 
⊥  = ∅ = ∩ { y | y ∈ 2S }   
T  = S = ∪ { y | y ∈ 2S } 
This definition is valid for any complete lattice. 



An Example Lattice 

{∅, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}} 
partial order: ⊆ (subset relation) 
bottom element: ∅ = ⊥      top element: {0,1,2} = T 
lub: ∪ (union)   glb: ∩ (intersection)  

 {0,1,2}  =  T  (top element) 

∅  =  ⊥ (bottom element) 

{0}  

{0,1}  {1,2}  {0,2}  

{2}  {1}  

The Hasse diagram for the example 
lattice (shows the transitive reduction of 
the corresponding partial order relation) 



What is a Fixpoint (aka, Fixed Point) 

 
Given a function   

 F : D → D 

 
  
x ∈ D is a fixpoint of F     if and only if  F (x) = x 



Reachability 

Let RS(I) denote the set of states reachable from the initial 
states I of the transition system T = (S, I, R) 

 
In general, given a set of states P ⊆ S , we can define the 

reachability function as follows:  
RS(P) = {sn |  sn ∈ P, or there exists s0s1…sn ∈ S,  

   where for all 0≤i<n (si,si+1) ∈ R, and s0 ∈ P } 

 
We can also define the backward reachability function BRS as 

follows: 
BRS(P) = {s0 | s0 ∈ P, or there exists s0s1…sn ∈ S,  

   where for all 0≤i<n (si,si+1) ∈ R, and sn ∈ P } 

 



Reachability ≡ Fixpoints 

Here is an interesting property 
  

RS(P) = P  ∪ post(RS(P))  
 
we observe that  RS(P) is a fixpoint of the following function: 
 
  F y = P ∪ post(y) (we can also write it as λ y . P ∪ post(y))   
 
  F (RS(P)) = RS(P)       
 
In fact, RS(P) is the least fixpoint of F, which is written as: 
 

 RS(P) = µ y . F y  = µ y . P ∪ post(y)    
    (µ means least fixpoint) 



Reachability ≡ Fixpoints 

We have the same property for backward reachability 
  

BRS(P) = P  ∪ pre(RS(P))  
 
i.e., BRS(P) is a fixpoint of the following function: 
 
  F y = P ∪ pre(y) (we can also write it as λ y . P ∪ pre(y))   
 
  F (RS(P)) = RS(P)       
 
In fact, BRS(P) is the least fixpoint of F, which is written as: 
 

 BRS(P) = µ y . F y  = µ y . P ∪ pre(y)    
    



RS(P) = µ y . P ∪ RS(y)     

•  Let’s prove this. 

•  First we have the equivalence RS(P) = P ∪ post(RS(P))  
•  Why? Because according to the definition of RS(P), a 

state is in RS(P) if that state is in P, or if that state has a 
previous state which is in RS(P). 

•  From this equivalence we know that RS(P) is a fixpoint 
of the function λ y . P  ∪  post(y) and since the least 
fixpoint is the smallest fixpoint we have:  

         µ y . P  ∪  post(y)  ⊆ RS(P) 
 



RS(P) = µ y . P ∪ RS(y)      

•  Next we need to prove that RS(P) ⊆ µ y . P ∪ RS(y) to 
complete the proof. 
•  Suppose z is a fixpoint of λ y . P ∪ RS(y), then we know 
that z = P ∪ RS(z) which means that RS(z)  ⊆ z and this 
means that no state that is reachable from z is outside of z. 
•  Since we also have P ⊆ z, any path that is reachable from 
P must be in z. 
Hence, we can conclude that RS(P) ⊆ z. 
Since we showed that RS(P) is contained in any fixpoint of the 
function λ y . P ∪ RS(y), we get 
RS(P) ⊆ µ y . P ∪ RS(y) 
which completes the proof. 
   



Monotonicity 

•  Function F is monotonic if and only if, for any x and y, 
     x ⊆ y ⇒ F x ⊆ F y 
 
Note that,  
λ y . P ∪ post(y) 
λ y . P ∪ pre(y) 
are monotonic. 
 
For both these functions, if you give a bigger y as input you 

will get a bigger result as output. 



Monotonicity 

•  One can define non-monotonic functions: 
For example: λ  y . P  ∪ post(S - y) 
This function is not monotonic. If you give a bigger y as input 
you will get a smaller result. 
 
•  For the functions that are non-monotonic the fixpoint 

computation techniques we are going to discuss will not 
work. For such functions a fixpoint may not even exist. 

•  The functions we defined for reachability are monotonic 
because we are applying monotonic operations (like post 
and  ∪ ) to the input variable y.  

•  Set complement – is not monotonic. However, if you have 
an even number of negations in front of the input variable y, 
then you will get a monotonic function. 

 



Least Fixpoint 

Given a monotonic function F, its least fixpoint exists, and it is 
the greatest lower bound (glb) of all the reductive 
elements : 

 
  µ y . F y = ∩ { y | F y ⊆ y }  

 



µ y . F y = ∩ { y | F y ⊆ y }  

•  Let’s prove this property. 
•  Let us define z as z = ∩ { y | F y ⊆ y } 
We will first show that z is a fixpoint of F and then we will 
show that it is the least fixpoint which will complete the proof. 
  
•  Based on the definition of z, we know that: 

 for any y, F y ⊆ y, we have z ⊆ y. 
Since F is monotonic, z ⊆ y ⇒ F z ⊆ F y. 
But since F y ⊆ y, then F z ⊆ y. 
I.e., for all y, F y ⊆ y, we have F z ⊆ y. 
This implies that, F z ⊆ ∩ { y | F y ⊆ y }, 
and based on the definition of z, we get F z ⊆ z       
 



µ y . F y = ∩ { y | F y ⊆ y }  

•  Since F is monotonic and since F z ⊆ z, we have  
F (F z) ⊆ F z which means that F z ∈ { y | F y ⊆ y }. 
Then by definition of z we get, z ⊆ F z  
 
•  Since we showed that F z ⊆ z  and z ⊆ F z, we conclude 

that F z = z, i.e., z is a fixpoint of the function F.  

•  For any fixpoint of F we have F y = y which implies F y ⊆ y 
So any fixpoint of F is a member of the set { y | F y ⊆ y } and 
z is smaller than any member of the set { y | F y ⊆ y } since it 
is the greatest lower bound of all the elements in that set.  
Hence, z is the least fixpoint of F. 
 



Computing the Least Fixpoint 

The least fixpoint µ y . F y is the limit of the following 
sequence (assuming F is ∪-continuous): 

 
 ∅, F ∅, F2 ∅, F3 ∅, ... 

 
F is ∪-continuous if and only if 
p1 ⊆ p2 ⊆ p3 ⊆ …   implies that F (∪i pi) = ∪i F (pi)   
 
 
If S is finite, then we can compute the least fixpoint using the 

sequence ∅, F ∅, F2 ∅, F3 ∅, ... This sequence is 
guaranteed to converge if S is finite and it will converge to 
the least fixpoint. 

 



Computing the Least Fixpoint  

Given a monotonic and union continuous function F   
  µ y . F y = ∪i F i (∅)  
 
We can prove this as follows: 
•  First, we can show that for all i, F i (∅) ⊆ µ y . F y using 

induction 
for i=0, we have F 0 (∅) = ∅ ⊆ µ y . F y 
Assuming   F i (∅) ⊆ µ y . F y  
and applying the function F to both sides and using 
monotonicity of F we get: F (F i (∅)) ⊆ F (µ y . F y)  
and since µ y . F y is a fixpoint of F we get: 
F i+1 (∅) ⊆ µ y . F y  
which completes the induction. 
 



Computing the Least Fixpoint  

•  So, we showed that for all i, F i (∅) ⊆ µ y . F y  

•  If we take the least upper bound of all the elements in the 
sequence F i (∅) we get ∪i F i (∅) and using above result, 
we have: 

 ∪i F i (∅) ⊆ µ y . F y 
  
•  Now, using union-continuity we can conclude that 
F (∪i F i (∅))  = ∪i F (F i (∅)) = ∪i F i+1 (∅)  
= ∅ ∪i F i+1 (∅) = ∪i F i (∅)  
 
•  So, we showed that ∪i F i (∅) is a fixpoint of F and ∪i F i 

(∅) ⊆ µ y . F y, then we conclude that µ y . F y = ∪i F i (∅)  



Computing the Least Fixpoint 

If there exists a j, where F j (∅) = F j+1 (∅), then   
 µ y . F y = F j (∅)  

 
•  We have proved earlier that for all i, F i (∅) ⊆ µ y . F y  

•  If F j (∅) = F j+1 (∅), then F j (∅) is a fixpoint of F and since 
we know that F j (∅) ⊆ µ y . F y then we conclude that 

 µ y . F y = F j (∅)  
 



RS(P) Fixpoint Computation 

RS(P) = µ y . P ∪ RS(y)  is the limit of the sequence: 
 
∅,  
P ∪ post(∅), 
P ∪ post(P ∪ post(∅)) , 
P ∪ post(P ∪ post (p ∪ post(∅)))  
, ... 
 
which is equivalent to 
 
∅, P, P ∪ post(P) , P ∪ post(P ∪ post(P) ) , ... 
 
 
 
 



RS(P) Fixpoint Computation 

•  •  • p 

RS(P) ≡ states that are reachable from P  ≡ P  ∪  post(P)  ∪  post(post(P))  ∪ ...  
  

  
RS(p) 


