Difficulty of String Analysis, Reachability &
Fixpoints

292C
Tevfik Bultan

A simple string manipulation language

* Language syntax « Example code
prog — (Istmt)™ 1: read x1;
Istmt — | : stmt <3 read xs;
3: x1 :=x1 . "a";
Stmt = V= Sexp: 4: x2 :=x2 . "a";
if bexp then gotol; 3: if (x1 = x2) goto 7;
goto [; 5: print x1 . x2;
read v, 6: halt;
7: print x1;

print sexp;
assert bexp;
halt;

bexp — v = sexp | bexp A bexp | bexp V bexp | —bexp
sexp — v | "c¢” | sexp.sexp

Reachability problem

* Reachability problem in string programs:
— Given a string program P and a program state s

* where a program state s is defined with the instruction
label of an instruction in the program and the values
of all the variables,

» determine if at some point during the execution of the
program P, the program state s will be reached.

« Reachability problem for string programs is undecidable
(even if we allow only 3 string variables)

Counter machines

« Counter machines are a simple and powerful computational
model that can simulate Turing Machines.

A counter machine consists of a finite number of counters
(unbounded integer variables) and a finite set of
instructions.

« Counter machines have a very small instruction set that
Includes an increment, a decrement, a conditional branch

instruction that tests if a counter value is equal to zero, and
a halt instruction.

* The counters can only assume nonnegative values.

* It is well-known that the halting problem for two-counter
machines, where both counters are initialized to 0, is
undecidable.

* Two counter machines can simulate Turing Machines.

String programs can simulate counter machines

« A string program P with three string variables (X1, X2, X3)

can simulate a counter machine M with two counters (C1,
C2)

« We will use the lengths of the strings X1, X2 and X3 to
simulate the values of the counters C1 and C2

Where
C1 = |X1| - |X3|
C2 = |X2| - |X3|

String programs can simulate counter machines

« M starts from the initial configuration (g0, 0, 0) where g0
denotes the initial instruction and the two integer values

represent the initial values of counters C1 and C2,
respectively.

« The initial state of the string program P will be (q0, ¢, ¢, €)
where g0 is the label of the first instruction, and the string
variables X1, X2, and X3, are initialized to empty string: €

Translation of counter-machine instructions to string
program instructions

Counter machine instruction | String program simulation
inc C4 Xy :=Xy.a;

inc Cs X5 := Xs.a;

dec Cl Xo 1= Xg.a; X3 1= X3.a;
dec (5 X; :=X;.a; X3 := Xj.a;
if (C1 =0) if (X; = X3)

if (Cy =0) if (X5 = X3)

halt halt;

Reachability problem

« Halting problem for counter machines is undecidable
« String programs can simulate counter machines
* Hence, halting problem for string programs is undecidable.

* Hence, reachability problem for string programs is
undecidable.

A richer string manipulating language

prog — block
block — Istmt™
Istmt — [: stmt

stmt —
I
I
I
I
I
I
I
exp —

bexp —

iexp

sexp

—————

v = exp;

readyv;

print exp;

assert bexp;

halt;

if (bexp) then {block}

if (bexp) then {block} e1se {block}
while (bexp) {block}

sexp | iexp

sexp = sexp

mat ch(sexp, sexp)

contains(sexp, sexp)

begins(sexp, sexp)

ends(sexp, sexp)

iexp = iexp | iexp < iexp | iexp > iexp
bexp N bexp | bexp \ bexp | —bexp

v | n | iexp + iexp | iexp — iexp
length(sexp)

indexof(sexp, sexp)

v | %" | sexp.sexp | sexp* | sexp|sexp
replace(sexp, sexp, sexp)
substring(sexp,iexp,iexrp)
charat(sexp,iexp)

reverse(sexrp)

Semantics

match(s,r) < s € L(r)

contains(s,t) < dsy,89 € X* s = s1tso

begins(s,t) & ds; € X : s =ts;

ends(s,t) & ds; € L : s = st

Semantics

t = substring(s,i,7) < ds1,s0 € X° : s=s1ts9 A ls1| =1 A |t| =5 —1

t = charat(s,i) < dso,81,...,8, € X : s=5051...5, AN0<i<nAt=s;

t = reverse(s) & dsp,S1,...,8, €Y : §s=5081...8 N t=S5;...5180

Semantics

(length(s) =0« s =€) A(length(s) =n < dej,co,...,cnp € X 1 s=cica...Cp)

(indexof(s,t) = —1 & —contains(s,t)) A
(indexof(s,t) =n < (3ds1,80 € L* : s = s1ts9 A |s1| =n)
AVi<mn : —(dsy,s0 € X 1 s=s1tsa A|s1| =1)))

Semantics

r = replace(s,p,t) & ((—contains(s,p) A r=35s)V
(ds3, 84,85 € X* : s = s3psy A r = satss A s; = replace(sy,p,t) A
(Vsg, 57 € X* 1 s = sgps7 = |sg| = |s3])))

Semantics of a string program

« Semantics of a string program can be defined as a
transition system

« A transition system T = (S, |, R) consists of
— a set of states S
— a set of initial states |C S
— and a transition relation RCSxS

Semantics of a string program

« Let L denote the labels of program statements, and
assume n string and m integer variables, then the set of

states of the string program can be defined as:

S =L x ()" x (Z)™

and the initial state is (where /, is the label of the first
statement):

I ={{ly,e,...,€0,...,0)}

Semantics of a string program

 (Given a statement labeled /, its transition relation can be
defined as a set of tuples:

r; C S xS

where (81, 82) € 1y
means that executing statement / in state s, results in state in

S
* Then, the transition relation of the whole program can be

defined as:
R p— U 'l
le L

Post condition function

« Using the transition relation, we can define the post
condition function that identifies, given a state which state
the program will transition.

So = POST(Sl,l) = (81, SQ) & 7
Sy = POST(s1) & dl € L : sy = POST(S1,77)
Sy = POST(s1) & (s1,82) € R

Computing reachable states

 The set of states that are reachable from the initial states of
the program can be defined as:

RS ={s|3s0,81,...,8n, : Vi<n : (si,si+1) ER N sp e N s, = s}

 Reachable states can be computed using a simple depth-
first-search

Computing reachable states with DFS

Algorithm 1 REACHABILITYDEFS

1: Stack :=1I;
2: RS =1,

3: while Stack # () do

4: s := POP(Stack);

5: s’ := POST(s);

6: if s € RS then

7: RS :=RSU{s"};
8 PUSH(Stack, s’);

9 end if
0

- end while

|
11: return RS:

Pre-condition function

So € PRE(S1,0) & (s2,81) €1
So €EPRE(s1) < dl€ L : sy € PRE(S1,77)
S2 € PRE(s1) < (s2,81) ER

Backward reachability using DFS

Algorithm 2 BACKWARDREACHABILITYDFS(P)

1: Stack = P;
2: BRS :=P;
3: while Stack # 0 do

4: s := POP(Stack);

5: for s’ € PRE(s) do

6: if s € BRS then

7: BRS:=BRS U {s'};
8: PUSH(Stack, s);

9: end if

10: end for

11: end while
12: return BRS;

Explicit vs. Symbolic reachability analysis

The DFS algorithms that we showed work on one state at a
time. This is called explicit state (or enumerative, or
concrete) reachability analysis

It is not feasible to enumerate each state since state space
of a program is exponential in the number of variables

Symbolic reachability analysis works on sets of states,
rather than a single state at a time

We need to generalize pre and post condition functions so
that they work on sets of states

PosT(P,l) = {s
PosT(P) = {s
PRE(P,l) = {s
PRE(P) ={s

Post and pre condition

ds’ € P :
ds’ € P
ds’ € P
ds’ € P :

Symbolic Reachability Analysis

Algorithm 3 REACHABILITYFIXPOINT

1: RS:=1;

2: repeat

3: RS’ = RS;

4: RS = RS UPOST(RS);
5: until RS = RS’

6: return RS;

Algorithm 4 BACKWARDREACHABILITYFIXPOINT(P)

1: BRS :=P;

2: repeat

3: BRS’ := BRS;,

4: BRS := BRS UPRE(BRS);
5: until BRS = BRS’

6: return BRS;

Reachability and fixpoints

« We will demonstrate that reachability analysis corresponds
to computing the least fixpoint of a function.

* In order to do that we need to introduce the concept of a
lattice

Pre and post condition functions on sets of states

« Given a transition system T=(S, I, R), we define functions
from sets of states to sets of states

- F: 2508
* For example, one such function is the post function (which
computes the post-condition of a set of states)
— post : 25 — 25
which can be defined as (where P C S):
Post(P)={s’|(s,s’)ERands &P}

« We can similarly define the pre function (which computes
the pre-condition of a set of states)

— pre : 25— 25
which can be defined as:
Pre(P)={s|(s,s)€ERands &P}

L attices

The set of states of the transition system forms a lattice:

lattice

partial order

bottom element

top element

Least upper bound (lub)
(aka join) operator
Greatest lower bound (glb)
(aka meet) operator

2S
-

& (alternative notation: L)
S (alternative notation: T)
U

M

L attices

In general, a lattice is a partially ordered set with a least upper
bound operation and a greatest lower bound operation.

* Least upper bound a U b is the smallest element where
aCaUbandbCauUb

« Greatest lower bound a N b is the biggest element where
anbCaandanbChb

A partial order is a

* reflexive (for all x, x C x),

 transitive (forall x,y,z,xCyayCz=xCz),and
e antisymmetric (forallx,y, XxCyaAayCx=Xx=Yy)
relation.

Complete Lattices

25 forms a lattice with the partial order defined as the subset-
or-equal relation and the least upper bound operation
defined as the set union and the greatest lower bound
operation defined as the set intersection.

In fact, (25, C, &, S, U, N) is a complete lattice since for each
set of elements from this lattice there is a least upper bound
and a greatest lower bound.

Also, note that the top and bottom elements can be defined
as:

L=0=n{y|lye2°}
T=S=U{y|y&Ee 25}
This definition is valid for any complete lattice.

An Example Lattice

{2, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}}

partial order: C (subset relation)
bottom element: & = L top element: {0,1,2} =T
lub: U (union) glb: N (intersection)

{0,1,2} = T (top element)

{0,1} {0,2} {1,2}
The Hasse diagram for the example
lattice (shows the transitive reduction of
the corresponding partial order relation)
{0} {1} {2}

\\/

@ = 1 (bottom element)

What is a Fixpoint (aka, Fixed Point)

Given a function
F:D—=D

x € D is a fixpoint of ‘F if and only if F(x)=x

Reachability

Let RS(l) denote the set of states reachable from the initial
states | of the transition system T = (S, |, R)

In general, given a set of states P C S, we can define the
reachability function as follows:

RS(P)={s,| s,& P, orthere exists sgs,...5, €E S,
where for all Osi<n (s,,s;,4) €ER,and s, € P}

We can also define the backward reachability function BRS as
follows:

BRS(P) = {s, | s € P, or there exists s;s,...5, € S,
where for all Osi<n (s,s;,4) ER,ands, € P}

Reachability = Fixpoints

Here is an interesting property
RS(P) =P U post(RS(P))

we observe that RS(P) is a fixpoint of the following function:
Fy=PU post(y) (we can also writeitas Ay . P U post(y))
F (RS(P)) = RS(P)

In fact, RS(P) is the least fixpoint of ‘F, which is written as:

RS(P)=uy.Jy =uy.PUpost(y)
(u means least fixpoint)

Reachability = Fixpoints

We have the same property for backward reachability
BRS(P) =P U pre(RS(P))

l.e., BRS(P) is a fixpoint of the following function:
Fy=PUpre(y) (we can also writeitas Ay . P U pre(y))
F (RS(P)) = RS(P)

In fact, BRS(P) is the least fixpoint of ‘F, which is written as:

BRS(P)=uy.Fy =uy.PUpre(y)

RS(P)=uny.P URS(y)

* Let's prove this.

* First we have the equivalence RS(P) = P U post(RS(P))

« Why? Because according to the definition of RS(P), a
state is in RS(P) if that state is in P, or if that state has a
previous state which is in RS(P).

* From this equivalence we know that RS(P) is a fixpoint
of the function Ay . P U post(y) and since the least
fixpoint is the smallest fixpoint we have:

uy.P U post(y) € RS(P)

RS(P)=uny.P URS(y)

* Next we need to prove that RS(P) C uy.P URS(y) to
complete the proof.

« Suppose zis a fixpoint of Ay . P U RS(y), then we know
that z = P U RS(z) which means that RS(z) C z and this
means that no state that is reachable from z is outside of z.

« Since we also have P C z, any path that is reachable from
P must be in z.

Hence, we can conclude that RS(P) C z.

Since we showed that RS(P) is contained in any fixpoint of the
function Ay . P U RS(y), we get

RS(P)Cuy.P URS(y)
which completes the proof.

Monotonicity

* Function Fis monotonic if and only if, for any x and vy,
XCy= TFxCTFy

Note that,

Ay . P U post(y)
Ay.P U pre(y)
are monotonic.

For both these functions, if you give a bigger y as input you
will get a bigger result as output.

Monotonicity

 One can define non-monotonic functions:
For example: A y. P U post(S -vy)

This function is not monotonic. If you give a bigger y as input
you will get a smaller result.

* For the functions that are non-monotonic the fixpoint
computation techniques we are going to discuss will not
work. For such functions a fixpoint may not even exist.

« The functions we defined for reachability are monotonic
because we are applying monotonic operations (like post
and U) to the input variable vy.

« Set complement — is not monotonic. However, if you have
an even number of negations in front of the input variable v,
then you will get a monotonic function.

Least Fixpoint

Given a monotonic function ‘F, its least fixpoint exists, and it is
the greatest lower bound (glb) of all the reductive
elements :

wy.Ffy=nN{y|FyCy}

wy. Ffy=n{yl|FyCy}

» Let’s prove this property.
« Letusdefinezasz=N{y|FyCy}

We will first show that z is a fixpoint of F and then we will
show that it is the least fixpoint which will complete the proof.

« Based on the definition of z, we know that:
foranyy, TyCy,wehavezCly.

Since ‘Fis monotonic,zCy= FzC Fy.

But since FyCy, then FzCvy.

l.e., forally, FyCy,wehave FzCly.

This implies that, TzCN{y| FyCy},

and based on the definition of z, we get FzC z

wy. Ffy=n{yl|FyCy}

« Since ‘fis monotonic and since F z C z, we have

F(Fz)C Fzwhichmeansthat Fze{y| fyCy}.
Then by definition of z we get, zC Fz

« Since we showed that 7z C z and z C J z, we conclude
that Fz =2z, i.e., zis a fixpoint of the function f.

* For any fixpoint of J we have F'y =y which implies FyCy
So any fixpoint of Fis a member of the set{y | FyCy}and

z is smaller than any member of the set{y | Fy C vy} since it
IS the greatest lower bound of all the elements in that set.

Hence, z is the least fixpoint of ‘.

Computing the Least Fixpoint

The least fixpoint uwy . ‘Fy is the limit of the following
sequence (assuming ‘Fis U-continuous):

g, FO, 290, P, ..

‘F'is U-continuous if and only if
Pt &P, S ps & ... implies that F (U p) =U; F (p)

If S is finite, then we can compute the least fixpoint using the
sequence &, FJ, 2, F O, ... This sequence is
guaranteed to converge if S is finite and it will converge to
the least fixpoint.

Computing the Least Fixpoint

Given a monotonic and union continuous function ‘F
wy . Fy=U; F' (D)

We can prove this as follows:

« First, we can show that forall i, 7' (J)Cuy. Fyusing
iInduction

fori=0, we have FO (J)=Cuy. Fy

Assuming F'(D)Cuy. Fy

and applying the function ‘F to both sides and using
monotonicity of Fwe get: F(F' (D) F(uy. Fy)
and since uy . Fyis afixpoint of F we get:
Fr(@)Cuy. Fy

which completes the induction.

Computing the Least Fixpoint

« So, we showed that foralli, F' (Z)Cuy. Fy

 If we take the least upper bound of all the elements in the
sequence T' () we get U, F' () and using above result,
we have:

U F (@)Cuy.Fy

* Now, using union-continuity we can conclude that
FUF (D) =U F(F (9) =V F*' (D)
=0 U FH ()= VY, T (D)

» So, we showed that U; F' (<) is a fixpoint of F and U; F'
(D)YCuy. Fy, thenwe conclude thatuy. Fy=U F' (D)

Computing the Least Fixpoint

If there exists a j, where F! (&) = Fi*1 (&), then
wy . Fy=F(9)

« We have proved earlier that for all i, F' () Cuy. Fy

o If FI (D)= F* (D), then Fi (D) is a fixpoint of F and since
we know that 1 (J) Cuy . Fy then we conclude that

wy. Fy=7F1 (D)

RS(P) Fixpoint Computation

RS(P)=uy.P URS(y) is the limit of the sequence:
&,
P U post(9),

P U post(P U post(©)) ,
P U post(P U post (p U post(©)))

which is equivalent to

<, P, P U post(P) , P U post(P U post(P)), ...

RS(P) Fixpoint Computation

RS(P) = states that are reachable from P = P U post(P) U post(post(P)) U ...

==y

