Difficulty of String Analysis, Reachability & Fixpoints

292C Tevfik Bultan

A simple string manipulation language

Language syntax

```
prog \rightarrow (lstmt)^+
                                                      1: read x1;
                                                      2: read x2;
lstmt \rightarrow l: stmt
                                                      3: x1 := x1 . "a";
stmt \rightarrow v := sexp;
                                                      4: x2 := x2 . "a";
        if bexp then goto l;
                                                      3: if (x1 = x2) goto 7;
     goto l;
                                                      5: print x1 . x2;
     read v;
                                                      6: halt;
                                                      7: print x1;
       print sexp;
     assert bexp;
        halt;
bexp \rightarrow v = sexp \mid bexp \land bexp \mid bexp \lor bexp \mid \neg bexp
sexp \rightarrow v \mid "c" \mid sexp.sexp
```

Example code

Reachability problem

- Reachability problem in string programs:
 - Given a string program P and a program state s
 - where a program state s is defined with the instruction label of an instruction in the program and the values of all the variables,
 - determine if at some point during the execution of the program P, the program state s will be reached.
- Reachability problem for string programs is undecidable (even if we allow only 3 string variables)

Counter machines

- Counter machines are a simple and powerful computational model that can simulate Turing Machines.
- A counter machine consists of a finite number of counters (unbounded integer variables) and a finite set of instructions.
- Counter machines have a very small instruction set that includes an increment, a decrement, a conditional branch instruction that tests if a counter value is equal to zero, and a halt instruction.
- The counters can only assume nonnegative values.
- It is well-known that the halting problem for two-counter machines, where both counters are initialized to 0, is undecidable.
- Two counter machines can simulate Turing Machines.

String programs can simulate counter machines

- A string program P with three string variables (X1, X2, X3)
 can simulate a counter machine M with two counters (C1,
 C2)
- We will use the lengths of the strings X1, X2 and X3 to simulate the values of the counters C1 and C2

Where

$$C1 = |X1| - |X3|$$

$$C2 = |X2| - |X3|$$

String programs can simulate counter machines

- M starts from the initial configuration (q0, 0, 0) where q0 denotes the initial instruction and the two integer values represent the initial values of counters C1 and C2, respectively.
- The initial state of the string program P will be (q0, ε, ε, ε) where q0 is the label of the first instruction, and the string variables X1, X2, and X3, are initialized to empty string: ε

Translation of counter-machine instructions to string program instructions

Counter machine instruction	String program simulation
inc C_1	$X_1 := X_1.a;$
inc C_2	$X_2 := X_2.a;$
$\operatorname{\mathbf{dec}} C_1$	$X_2 := X_2.a; X_3 := X_3.a;$
$\operatorname{\mathbf{dec}} C_2$	$X_1 := X_1.a; X_3 := X_3.a;$
$\mathbf{if}\left(C_{1}=0\right)$	$\mathtt{if}\;(\mathtt{X}_1=\mathtt{X}_3)$
$\mathbf{if}\left(C_{2}=0\right)$	$\mathtt{if}\;(\mathtt{X}_2=\mathtt{X}_3)$
halt	halt;

Reachability problem

- Halting problem for counter machines is undecidable
- String programs can simulate counter machines
- Hence, halting problem for string programs is undecidable.
- Hence, reachability problem for string programs is undecidable.

A richer string manipulating language

```
prog \rightarrow block
block \rightarrow lstmt^+
lstmt \rightarrow l: stmt
stmt \rightarrow v := exp;
       read v;
       print exp;
       assert bexp;
       halt;
       if (bexp) then {block}
        if (bexp) then {block} else {block}
         while (bexp) {block}
exp \rightarrow sexp \mid iexp
bexp \rightarrow sexp = sexp
       match(sexp, sexp)
        contains(sexp, sexp)
        begins(sexp, sexp)
        ends(sexp, sexp)
        iexp = iexp \mid iexp < iexp \mid iexp > iexp
        bexp \land bexp \mid bexp \lor bexp \mid \neg bexp
iexp \rightarrow v \mid n \mid iexp + iexp \mid iexp - iexp
      | length(sexp)
       indexof(sexp, sexp)
sexp \rightarrow v \mid "c" \mid sexp.sexp \mid sexp* \mid sexp|sexp
         replace(sexp, sexp, sexp)
       substring(sexp, iexp, iexp)
        charat(sexp, iexp)
         reverse(sexp)
```

$$\mathtt{match}(s,r) \Leftrightarrow s \in \mathcal{L}(r)$$

$$contains(s,t) \Leftrightarrow \exists s_1, s_2 \in \Sigma^* : s = s_1 t s_2$$

$$\mathtt{begins}(s,t) \Leftrightarrow \exists s_1 \in \Sigma^* : s = ts_1$$

$$ends(s,t) \Leftrightarrow \exists s_1 \in \Sigma^* : s = s_1 t$$

$$t = \mathtt{substring}(s,i,j) \Leftrightarrow \exists s_1,s_2 \in \varSigma^* : s = s_1 t s_2 \land |s_1| = i \land |t| = j-i$$

$$t = \mathtt{charat}(\mathtt{s},\mathtt{i}) \Leftrightarrow \exists s_0, s_1, \dots, s_n \in \Sigma : s = s_0 s_1 \dots s_n \land 0 \le i \le n \land t = s_i$$

$$t = \mathtt{reverse}(s) \Leftrightarrow \exists s_0, s_1, \dots, s_i \in \Sigma : s = s_0 s_1 \dots s_i \land t = s_i \dots s_1 s_0$$

```
(\texttt{length}(s) = 0 \Leftrightarrow s = \epsilon) \land (\texttt{length}(s) = n \Leftrightarrow \exists c_1, c_2, \dots, c_n \in \Sigma : s = c_1 c_2 \dots c_n)
```

```
r = \mathtt{replace}(s, p, t) \Leftrightarrow ((\neg \mathtt{contains}(s, p) \land r = s) \lor (\exists s_3, s_4, s_5 \in \Sigma^* : s = s_3 p s_4 \land r = s_3 t s_5 \land s_5 = \mathtt{replace}(s_4, p, t) \land (\forall s_6, s_7 \in \Sigma^* : s = s_6 p s_7 \Rightarrow |s_6| \ge |s_3|)))
```

Semantics of a string program

Semantics of a string program can be defined as a transition system

• A *transition system* T = (S, I, R) consists of

a set of states

– a set of initial states $I \subseteq S$

– and a transition relation $R \subseteq S \times S$

Semantics of a string program

 Let L denote the labels of program statements, and assume n string and m integer variables, then the set of states of the string program can be defined as:

$$S = L \times (\Sigma^*)^n \times (\mathbb{Z})^m$$

and the initial state is (where I_1 is the label of the first statement):

$$I = \{\langle l_1, \epsilon, \dots, \epsilon, 0, \dots, 0 \rangle\}$$

Semantics of a string program

 Given a statement labeled I, its transition relation can be defined as a set of tuples:

$$r_l \subseteq S \times S$$

where $(s_1, s_2) \in r_l$

means that executing statement *I* in state s₁ results in state in s₂

 Then, the transition relation of the whole program can be defined as:

$$R = \bigcup_{l \in L} r_l$$

Post condition function

 Using the transition relation, we can define the post condition function that identifies, given a state which state the program will transition.

$$s_2 = \operatorname{post}(s_1, l) \Leftrightarrow (s_1, s_2) \in r_l$$

 $s_2 = \operatorname{post}(s_1) \Leftrightarrow \exists l \in L : s_2 = \operatorname{post}(s_1, r_l)$
 $s_2 = \operatorname{post}(s_1) \Leftrightarrow (s_1, s_2) \in R$

Computing reachable states

 The set of states that are reachable from the initial states of the program can be defined as:

$$RS = \{s \mid \exists s_0, s_1, \dots, s_n : \forall i < n : (s_i, s_{i+1}) \in R \land s_0 \in I \land s_n = s\}$$

 Reachable states can be computed using a simple depthfirst-search

Computing reachable states with DFS

Algorithm 1 REACHABILITYDFS

Pre-condition function

$$s_2 \in \text{PRE}(s_1, l) \Leftrightarrow (s_2, s_1) \in r_l$$

 $s_2 \in \text{PRE}(s_1) \Leftrightarrow \exists l \in L : s_2 \in \text{PRE}(s_1, r_l)$
 $s_2 \in \text{PRE}(s_1) \Leftrightarrow (s_2, s_1) \in R$

Backward reachability using DFS

Algorithm 2 BACKWARDREACHABILITYDFS(P)

```
1: Stack := P;
2: BRS := P;
3: while Stack \neq \emptyset do
       s := POP(Stack);
4:
       for s' \in PRE(s) do
5:
           if s' \not\in BRS then
6:
               BRS := BRS \cup \{s'\};
               PUSH(Stack, s');
9:
           end if
10:
       end for
11: end while
12: return BRS;
```

Explicit vs. Symbolic reachability analysis

- The DFS algorithms that we showed work on one state at a time. This is called explicit state (or enumerative, or concrete) reachability analysis
- It is not feasible to enumerate each state since state space of a program is exponential in the number of variables
- Symbolic reachability analysis works on sets of states, rather than a single state at a time
- We need to generalize pre and post condition functions so that they work on sets of states

Post and pre condition

$$\begin{aligned} & \text{Post}(P, l) = \{ s \mid \exists s' \in P \ : \ (s', s) \in r_l \} \\ & \text{Post}(P) = \{ s \mid \exists s' \in P \ : \ (s', s) \in R \} \\ & \text{Pre}(P, l) = \{ s \mid \exists s' \in P \ : \ (s, s') \in r_l \} \\ & \text{Pre}(P) = \{ s \mid \exists s' \in P \ : \ (s, s') \in R \} \end{aligned}$$

Symbolic Reachability Analysis

Algorithm 3 REACHABILITYFIXPOINT

```
1: RS := I;

2: repeat

3: RS' := RS;

4: RS := RS \cup POST(RS);

5: until RS = RS'

6: return RS;
```

Algorithm 4 BACKWARDREACHABILITYFIXPOINT(P)

```
1: BRS := P;

2: repeat

3: BRS' := BRS;

4: BRS := BRS ∪ PRE(BRS);

5: until BRS = BRS'

6: return BRS;
```

Reachability and fixpoints

- We will demonstrate that reachability analysis corresponds to computing the least fixpoint of a function.
- In order to do that we need to introduce the concept of a lattice

Pre and post condition functions on sets of states

 Given a transition system T=(S, I, R), we define functions from sets of states to sets of states

$$-\mathcal{F}: 2^{\mathbb{S}} \to 2^{\mathbb{S}}$$

 For example, one such function is the post function (which computes the post-condition of a set of states)

```
- post : 2^S → 2^S
which can be defined as (where P \subseteq S):
Post(P) = { s' | (s,s') ∈ R and s ∈ P }
```

 We can similarly define the pre function (which computes the pre-condition of a set of states)

```
- pre : 2^S → 2^S
which can be defined as:
Pre(P) = { s | (s,s') ∈ R and s' ∈ P }
```

Lattices

The set of states of the transition system forms a lattice:

- lattice 2^S
- partial order ⊆
- bottom element
 ∅ (alternative notation: ⊥)
- top element
 S (alternative notation: T)
- Least upper bound (lub) ∪
 (aka join) operator
- Greatest lower bound (glb) ∩
 (aka meet) operator

Lattices

In general, a lattice is a partially ordered set with a least upper bound operation and a greatest lower bound operation.

- Least upper bound a ∪ b is the smallest element where
 a ⊆ a ∪ b and b ⊆ a ∪ b
- Greatest lower bound a ∩ b is the biggest element where
 a ∩ b ⊆ a and a ∩ b ⊆ b

A partial order is a

- reflexive (for all $x, x \subseteq x$),
- transitive (for all x, y, z, $x \subseteq y \land y \subseteq z \Rightarrow x \subseteq z$), and
- antisymmetric (for all x, y, $x \subseteq y \land y \subseteq x \Rightarrow x = y$) relation.

Complete Lattices

2^S forms a lattice with the partial order defined as the subsetor-equal relation and the least upper bound operation defined as the set union and the greatest lower bound operation defined as the set intersection.

In fact, $(2^S, \subseteq, \emptyset, S, \cup, \cap)$ is a complete lattice since for each set of elements from this lattice there is a least upper bound and a greatest lower bound.

Also, note that the top and bottom elements can be defined as:

$$\perp = \varnothing = \cap \{ y \mid y \in 2^{S} \}$$

$$T = S = \bigcup \{ y \mid y \in 2^S \}$$

This definition is valid for any complete lattice.

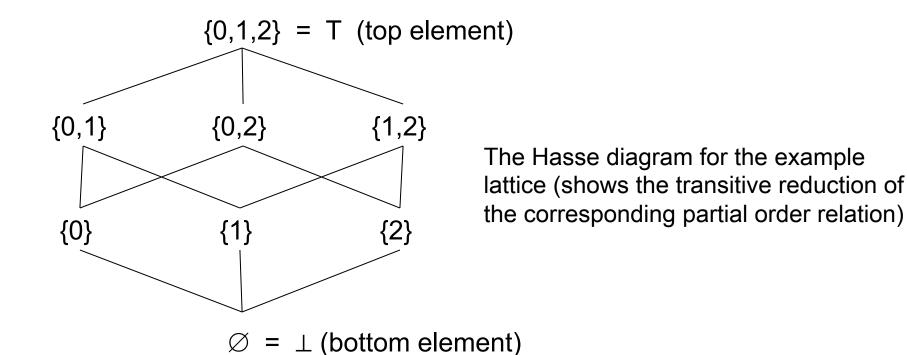
An Example Lattice

 $\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$

partial order: ⊆ (subset relation)

bottom element: $\emptyset = \bot$ top element: $\{0,1,2\} = T$

lub: ∪ (union) glb: ∩ (intersection)



What is a Fixpoint (aka, Fixed Point)

Given a function

$$\mathcal{F}: \mathsf{D} \to \mathsf{D}$$

$$x \in D$$
 is a fixpoint of \mathcal{F}

if and only if $\mathcal{F}(x) = x$

$$\mathcal{F}(\mathsf{x}) = \mathsf{x}$$

Reachability

Let RS(I) denote the set of states reachable from the initial states I of the transition system T = (S, I, R)

In general, given a set of states $P \subseteq S$, we can define the reachability function as follows:

RS(P) = {
$$s_n | s_n \in P$$
, or there exists $s_0 s_1 ... s_n \in S$,
where for all $0 \le i < n (s_i, s_{i+1}) \in R$, and $s_0 \in P$ }

We can also define the backward reachability function BRS as follows:

BRS(P) =
$$\{s_0 \mid s_0 \in P, \text{ or there exists } s_0 s_1 ... s_n \in S, \text{ where for all } 0 \le i < n \ (s_i, s_{i+1}) \in R, \text{ and } s_n \in P \}$$

Reachability **=** Fixpoints

Here is an interesting property

$$RS(P) = P \cup post(RS(P))$$

we observe that RS(P) is a fixpoint of the following function:

 $\mathcal{F}y = P \cup post(y)$ (we can also write it as $\lambda y \cdot P \cup post(y)$)

$$\mathcal{F}(RS(P)) = RS(P)$$

In fact, RS(P) is the least fixpoint of \mathcal{F} , which is written as:

RS(P) =
$$\mu$$
 y . \mathcal{F} y = μ y . P \cup post(y)
(μ means least fixpoint)

Reachability = Fixpoints

We have the same property for backward reachability

$$BRS(P) = P \cup pre(RS(P))$$

i.e., BRS(P) is a fixpoint of the following function:

 $\mathcal{F}y = P \cup pre(y)$ (we can also write it as $\lambda y \cdot P \cup pre(y)$)

$$\mathcal{F}(RS(P)) = RS(P)$$

In fact, BRS(P) is the least fixpoint of \mathcal{F} , which is written as:

BRS(P) =
$$\mu$$
 y . \mathcal{F} y = μ y . P \cup pre(y)

$RS(P) = \mu y . P \cup RS(y)$

- Let's prove this.
- First we have the equivalence RS(P) = P ∪ post(RS(P))
 - Why? Because according to the definition of RS(P), a state is in RS(P) if that state is in P, or if that state has a previous state which is in RS(P).
 - From this equivalence we know that RS(P) is a fixpoint of the function λ y . P \cup post(y) and since the least fixpoint is the smallest fixpoint we have:

$$\mu y . P \cup post(y) \subseteq RS(P)$$

$RS(P) = \mu y . P \cup RS(y)$

- Next we need to prove that RS(P) $\subseteq \mu$ y . P \cup RS(y) to complete the proof.
- Suppose z is a fixpoint of λ y . P \cup RS(y), then we know that $z = P \cup RS(z)$ which means that RS(z) \subseteq z and this means that no state that is reachable from z is outside of z.
- Since we also have $P \subseteq z$, any path that is reachable from P must be in z.

Hence, we can conclude that $RS(P) \subseteq z$.

Since we showed that RS(P) is contained in any fixpoint of the function λ y . P \cup RS(y), we get

 $RS(P) \subseteq \mu y . P \cup RS(y)$

which completes the proof.

Monotonicity

Function F is monotonic if and only if, for any x and y,
 x ⊆ y ⇒ F x ⊆ F y

Note that,

 $\lambda y . P \cup post(y)$

 $\lambda y . P \cup pre(y)$

are monotonic.

For both these functions, if you give a bigger y as input you will get a bigger result as output.

Monotonicity

One can define non-monotonic functions:

For example: $\lambda y . P \cup post(S - y)$

This function is not monotonic. If you give a bigger y as input you will get a smaller result.

- For the functions that are non-monotonic the fixpoint computation techniques we are going to discuss will not work. For such functions a fixpoint may not even exist.
- The functions we defined for reachability are monotonic because we are applying monotonic operations (like post and ∪) to the input variable y.
- Set complement is not monotonic. However, if you have an even number of negations in front of the input variable y, then you will get a monotonic function.

Least Fixpoint

Given a monotonic function \mathcal{F} , its least fixpoint exists, and it is the greatest lower bound (glb) of all the reductive elements :

$$\mu y \cdot \mathcal{F} y = \bigcap \{ y \mid \mathcal{F} y \subseteq y \}$$

$\mu y \cdot \mathcal{F} y = \bigcap \{ y \mid \mathcal{F} y \subseteq y \}$

- Let's prove this property.
- Let us define z as $z = \bigcap \{ y \mid \mathcal{F} y \subseteq y \}$

We will first show that z is a fixpoint of \mathcal{F} and then we will show that it is the least fixpoint which will complete the proof.

Based on the definition of z, we know that:

for any y, \mathcal{F} y \subseteq y, we have z \subseteq y.

Since \mathcal{F} is monotonic, $z \subseteq y \Rightarrow \mathcal{F} z \subseteq \mathcal{F} y$.

But since \mathcal{F} y \subseteq y, then \mathcal{F} z \subseteq y.

I.e., for all y, \mathcal{F} y \subseteq y, we have \mathcal{F} z \subseteq y.

This implies that, $\mathcal{F} z \subseteq \cap \{ y \mid \mathcal{F} y \subseteq y \}$,

and based on the definition of z, we get \mathcal{F} z \subseteq z

$\mu y \cdot \mathcal{F} y = \bigcap \{ y \mid \mathcal{F} y \subseteq y \}$

- Since \mathcal{F} is monotonic and since \mathcal{F} z \subseteq z, we have \mathcal{F} (\mathcal{F} z) \subseteq \mathcal{F} z which means that \mathcal{F} z \in { y | \mathcal{F} y \subseteq y }. Then by definition of z we get, z \subseteq \mathcal{F} z
- Since we showed that $\mathcal{F} z \subseteq z$ and $z \subseteq \mathcal{F} z$, we conclude that $\mathcal{F} z = z$, i.e., z is a fixpoint of the function \mathcal{F} .
- For any fixpoint of \mathcal{F} we have \mathcal{F} y = y which implies \mathcal{F} y \subseteq y So any fixpoint of \mathcal{F} is a member of the set { y | \mathcal{F} y \subseteq y } and z is smaller than any member of the set { y | \mathcal{F} y \subseteq y } since it is the greatest lower bound of all the elements in that set. Hence, z is the least fixpoint of \mathcal{F} .

The least fixpoint μ y . \mathcal{F} y is the limit of the following sequence (assuming \mathcal{F} is \cup -continuous):

$$\varnothing$$
, $\mathcal{F}\varnothing$, $\mathcal{F}^2\varnothing$, $\mathcal{F}^3\varnothing$, ...

 \mathcal{F} is \cup -continuous if and only if $p_1 \subseteq p_2 \subseteq p_3 \subseteq \dots$ implies that $\mathcal{F}(\cup_i p_i) = \cup_i \mathcal{F}(p_i)$

If S is finite, then we can compute the least fixpoint using the sequence \emptyset , $\mathcal{F}\emptyset$, $\mathcal{F}^2\emptyset$, $\mathcal{F}^3\emptyset$, ... This sequence is guaranteed to converge if S is finite and it will converge to the least fixpoint.

Given a monotonic and union continuous function \mathcal{F} μ y . \mathcal{F} y = $\bigcup_{i} \mathcal{F}^{i}$ (\emptyset)

We can prove this as follows:

which completes the induction.

• First, we can show that for all i, \mathcal{F}^i (\varnothing) $\subseteq \mu$ y . \mathcal{F} y using induction

for i=0, we have $\mathcal{F}^0\left(\varnothing\right)=\varnothing\subseteq\mu\,y$. $\mathcal{F}\,y$ Assuming $\mathcal{F}^i\left(\varnothing\right)\subseteq\mu\,y$. $\mathcal{F}\,y$ and applying the function \mathcal{F} to both sides and using monotonicity of \mathcal{F} we get: $\mathcal{F}\left(\mathcal{F}^i\left(\varnothing\right)\right)\subseteq\mathcal{F}\left(\mu\,y$. $\mathcal{F}\,y$) and since $\mu\,y$. $\mathcal{F}\,y$ is a fixpoint of \mathcal{F} we get: $\mathcal{F}^{i+1}\left(\varnothing\right)\subseteq\mu\,y$. $\mathcal{F}\,y$

- So, we showed that for all i, \mathcal{F}^{i} (\varnothing) $\subseteq \mu$ y . \mathcal{F} y
- If we take the least upper bound of all the elements in the sequence \mathcal{F}^i (\varnothing) we get $\cup_i \mathcal{F}^i$ (\varnothing) and using above result, we have:

$$\cup_{\mathsf{i}} \mathcal{F}^{\mathsf{i}} (\varnothing) \subseteq \mu \mathsf{ y} . \mathcal{F} \mathsf{ y}$$

Now, using union-continuity we can conclude that

$$\mathcal{F}(\cup_{i} \mathcal{F}^{i}(\varnothing)) = \cup_{i} \mathcal{F}(\mathcal{F}^{i}(\varnothing)) = \cup_{i} \mathcal{F}^{i+1}(\varnothing)$$
$$= \varnothing \cup_{i} \mathcal{F}^{i+1}(\varnothing) = \cup_{i} \mathcal{F}^{i}(\varnothing)$$

• So, we showed that $\bigcup_{i} \mathcal{F}^{i}(\emptyset)$ is a fixpoint of \mathcal{F} and $\bigcup_{i} \mathcal{F}^{i}(\emptyset) \subseteq \mu$ y . \mathcal{F} y, then we conclude that μ y . \mathcal{F} y = $\bigcup_{i} \mathcal{F}^{i}(\emptyset)$

If there exists a j, where
$$\mathcal{F}^{j}$$
 (\varnothing) = \mathcal{F}^{j+1} (\varnothing), then μ y . \mathcal{F} y = \mathcal{F}^{j} (\varnothing)

- We have proved earlier that for all i, $\mathcal{F}^{\scriptscriptstyle \dag}$ (arnothing) \subseteq μ y . \mathcal{F} y
- If $\mathcal{F}^{j}(\varnothing) = \mathcal{F}^{j+1}(\varnothing)$, then $\mathcal{F}^{j}(\varnothing)$ is a fixpoint of \mathcal{F} and since we know that $\mathcal{F}^{j}(\varnothing) \subseteq \mu$ y . \mathcal{F} y then we conclude that μ y . \mathcal{F} y = $\mathcal{F}^{j}(\varnothing)$

RS(P) Fixpoint Computation

 $RS(P) = \mu y . P \cup RS(y)$ is the limit of the sequence:

```
\emptyset,
P \cup post(\emptyset),
P \cup post(P \cup post(\emptyset)),
P \cup post(P \cup post(p \cup post(\emptyset)))
which is equivalent to
\emptyset, P, P \cup post(P), P \cup post(P \cup post(P)), ...
```

RS(P) Fixpoint Computation

 $RS(P) \equiv \text{states that are reachable from } P \equiv P \cup \text{post}(P) \cup \text{post}(\text{post}(P)) \cup \dots$

