
Difficulty of String Analysis, Reachability &
Fixpoints

292C
Tevfik Bultan

A simple string manipulation language

•  Language syntax •  Example code

Reachability problem

•  Reachability problem in string programs:
–  Given a string program P and a program state s

•  where a program state s is defined with the instruction
label of an instruction in the program and the values
of all the variables,

•  determine if at some point during the execution of the
program P, the program state s will be reached.

•  Reachability problem for string programs is undecidable
(even if we allow only 3 string variables)

Counter machines

•  Counter machines are a simple and powerful computational
model that can simulate Turing Machines.

•  A counter machine consists of a finite number of counters
(unbounded integer variables) and a finite set of
instructions.

•  Counter machines have a very small instruction set that
includes an increment, a decrement, a conditional branch
instruction that tests if a counter value is equal to zero, and
a halt instruction.

•  The counters can only assume nonnegative values.
•  It is well-known that the halting problem for two-counter

machines, where both counters are initialized to 0, is
undecidable.

•  Two counter machines can simulate Turing Machines.

String programs can simulate counter machines

•  A string program P with three string variables (X1, X2, X3)
can simulate a counter machine M with two counters (C1,
C2)

•  We will use the lengths of the strings X1, X2 and X3 to
simulate the values of the counters C1 and C2

Where
 C1 = |X1| - |X3|
 C2 = |X2| - |X3|

String programs can simulate counter machines

•  M starts from the initial configuration (q0, 0, 0) where q0
denotes the initial instruction and the two integer values
represent the initial values of counters C1 and C2,
respectively.

•  The initial state of the string program P will be (q0, ε, ε, ε)
where q0 is the label of the first instruction, and the string
variables X1, X2, and X3, are initialized to empty string: ε

Translation of counter-machine instructions to string
program instructions

Reachability problem

•  Halting problem for counter machines is undecidable

•  String programs can simulate counter machines

•  Hence, halting problem for string programs is undecidable.

•  Hence, reachability problem for string programs is
undecidable.

A richer string manipulating language

Semantics

Semantics

Semantics

Semantics

Semantics of a string program

•  Semantics of a string program can be defined as a
transition system

•  A transition system T = (S, I, R) consists of

–  a set of states S
–  a set of initial states I ⊆ S
–  and a transition relation R ⊆ S × S

Semantics of a string program

•  Let L denote the labels of program statements, and
assume n string and m integer variables, then the set of
states of the string program can be defined as:

and the initial state is (where l1 is the label of the first
statement):

Semantics of a string program

•  Given a statement labeled l, its transition relation can be
defined as a set of tuples:

where
means that executing statement l in state s1 results in state in
s2

•  Then, the transition relation of the whole program can be
defined as:

Post condition function

•  Using the transition relation, we can define the post
condition function that identifies, given a state which state
the program will transition.

Computing reachable states

•  The set of states that are reachable from the initial states of
the program can be defined as:

•  Reachable states can be computed using a simple depth-
first-search

Computing reachable states with DFS

Pre-condition function

Backward reachability using DFS

Explicit vs. Symbolic reachability analysis

•  The DFS algorithms that we showed work on one state at a
time. This is called explicit state (or enumerative, or
concrete) reachability analysis

•  It is not feasible to enumerate each state since state space
of a program is exponential in the number of variables

•  Symbolic reachability analysis works on sets of states,
rather than a single state at a time

•  We need to generalize pre and post condition functions so
that they work on sets of states

Post and pre condition

Symbolic Reachability Analysis

Reachability and fixpoints

•  We will demonstrate that reachability analysis corresponds
to computing the least fixpoint of a function.

•  In order to do that we need to introduce the concept of a
lattice

Pre and post condition functions on sets of states

•  Given a transition system T=(S, I, R), we define functions
from sets of states to sets of states
– F : 2S → 2S

•  For example, one such function is the post function (which
computes the post-condition of a set of states)
–  post : 2S → 2S

which can be defined as (where P ⊆ S):

Post(P) = { s’ | (s,s’) ∈ R and s ∈ P }

•  We can similarly define the pre function (which computes
the pre-condition of a set of states)
–  pre : 2S → 2S

which can be defined as:

Pre(P) = { s | (s,s’) ∈ R and s’ ∈ P }

Lattices

The set of states of the transition system forms a lattice:
•  lattice 2S
•  partial order ⊆
•  bottom element ∅ (alternative notation: ⊥)
•  top element S (alternative notation: T)
•  Least upper bound (lub) ∪
 (aka join) operator
•  Greatest lower bound (glb) ∩
 (aka meet) operator

Lattices

In general, a lattice is a partially ordered set with a least upper
bound operation and a greatest lower bound operation.

•  Least upper bound a ∪ b is the smallest element where

 a ⊆ a ∪ b and b ⊆ a ∪ b
•  Greatest lower bound a ∩ b is the biggest element where

 a ∩ b ⊆ a and a ∩ b ⊆ b

A partial order is a
•  reflexive (for all x, x ⊆ x),
•  transitive (for all x, y, z, x ⊆ y ∧ y ⊆ z ⇒ x ⊆ z), and
•  antisymmetric (for all x, y, x ⊆ y ∧ y ⊆ x ⇒ x = y)
relation.

Complete Lattices

2S forms a lattice with the partial order defined as the subset-
or-equal relation and the least upper bound operation
defined as the set union and the greatest lower bound
operation defined as the set intersection.

In fact, (2S, ⊆, ∅, S, ∪, ∩) is a complete lattice since for each

set of elements from this lattice there is a least upper bound
and a greatest lower bound.

Also, note that the top and bottom elements can be defined

as:
⊥  = ∅ = ∩ { y | y ∈ 2S }
T = S = ∪ { y | y ∈ 2S }
This definition is valid for any complete lattice.

An Example Lattice

{∅, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}}
partial order: ⊆ (subset relation)
bottom element: ∅ = ⊥ top element: {0,1,2} = T
lub: ∪ (union) glb: ∩ (intersection)

 {0,1,2} = T (top element)

∅ = ⊥ (bottom element)

{0}

{0,1} {1,2} {0,2}

{2} {1}

The Hasse diagram for the example
lattice (shows the transitive reduction of
the corresponding partial order relation)

What is a Fixpoint (aka, Fixed Point)

Given a function

 F : D → D

x ∈ D is a fixpoint of F if and only if F (x) = x

Reachability

Let RS(I) denote the set of states reachable from the initial
states I of the transition system T = (S, I, R)

In general, given a set of states P ⊆ S , we can define the

reachability function as follows:
RS(P) = {sn | sn ∈ P, or there exists s0s1…sn ∈ S,

 where for all 0≤i<n (si,si+1) ∈ R, and s0 ∈ P }

We can also define the backward reachability function BRS as

follows:
BRS(P) = {s0 | s0 ∈ P, or there exists s0s1…sn ∈ S,

 where for all 0≤i<n (si,si+1) ∈ R, and sn ∈ P }

Reachability ≡ Fixpoints

Here is an interesting property

RS(P) = P ∪ post(RS(P))

we observe that RS(P) is a fixpoint of the following function:

 F y = P ∪ post(y) (we can also write it as λ y . P ∪ post(y))

 F (RS(P)) = RS(P)

In fact, RS(P) is the least fixpoint of F, which is written as:

 RS(P) = µ y . F y = µ y . P ∪ post(y)
 (µ means least fixpoint)

Reachability ≡ Fixpoints

We have the same property for backward reachability

BRS(P) = P ∪ pre(RS(P))

i.e., BRS(P) is a fixpoint of the following function:

 F y = P ∪ pre(y) (we can also write it as λ y . P ∪ pre(y))

 F (RS(P)) = RS(P)

In fact, BRS(P) is the least fixpoint of F, which is written as:

 BRS(P) = µ y . F y = µ y . P ∪ pre(y)

RS(P) = µ y . P ∪ RS(y)

•  Let’s prove this.

•  First we have the equivalence RS(P) = P ∪ post(RS(P))
•  Why? Because according to the definition of RS(P), a

state is in RS(P) if that state is in P, or if that state has a
previous state which is in RS(P).

•  From this equivalence we know that RS(P) is a fixpoint
of the function λ y . P ∪ post(y) and since the least
fixpoint is the smallest fixpoint we have:

 µ y . P ∪ post(y) ⊆ RS(P)

RS(P) = µ y . P ∪ RS(y)

•  Next we need to prove that RS(P) ⊆ µ y . P ∪ RS(y) to
complete the proof.
•  Suppose z is a fixpoint of λ y . P ∪ RS(y), then we know
that z = P ∪ RS(z) which means that RS(z) ⊆ z and this
means that no state that is reachable from z is outside of z.
•  Since we also have P ⊆ z, any path that is reachable from
P must be in z.
Hence, we can conclude that RS(P) ⊆ z.
Since we showed that RS(P) is contained in any fixpoint of the
function λ y . P ∪ RS(y), we get
RS(P) ⊆ µ y . P ∪ RS(y)
which completes the proof.

Monotonicity

•  Function F is monotonic if and only if, for any x and y,
 x ⊆ y ⇒ F x ⊆ F y

Note that,
λ y . P ∪ post(y)
λ y . P ∪ pre(y)
are monotonic.

For both these functions, if you give a bigger y as input you

will get a bigger result as output.

Monotonicity

•  One can define non-monotonic functions:
For example: λ y . P ∪ post(S - y)
This function is not monotonic. If you give a bigger y as input
you will get a smaller result.

•  For the functions that are non-monotonic the fixpoint

computation techniques we are going to discuss will not
work. For such functions a fixpoint may not even exist.

•  The functions we defined for reachability are monotonic
because we are applying monotonic operations (like post
and ∪) to the input variable y.

•  Set complement – is not monotonic. However, if you have
an even number of negations in front of the input variable y,
then you will get a monotonic function.

Least Fixpoint

Given a monotonic function F, its least fixpoint exists, and it is
the greatest lower bound (glb) of all the reductive
elements :

 µ y . F y = ∩ { y | F y ⊆ y }

µ y . F y = ∩ { y | F y ⊆ y }

•  Let’s prove this property.
•  Let us define z as z = ∩ { y | F y ⊆ y }
We will first show that z is a fixpoint of F and then we will
show that it is the least fixpoint which will complete the proof.

•  Based on the definition of z, we know that:

 for any y, F y ⊆ y, we have z ⊆ y.
Since F is monotonic, z ⊆ y ⇒ F z ⊆ F y.
But since F y ⊆ y, then F z ⊆ y.
I.e., for all y, F y ⊆ y, we have F z ⊆ y.
This implies that, F z ⊆ ∩ { y | F y ⊆ y },
and based on the definition of z, we get F z ⊆ z

µ y . F y = ∩ { y | F y ⊆ y }

•  Since F is monotonic and since F z ⊆ z, we have
F (F z) ⊆ F z which means that F z ∈ { y | F y ⊆ y }.
Then by definition of z we get, z ⊆ F z

•  Since we showed that F z ⊆ z and z ⊆ F z, we conclude

that F z = z, i.e., z is a fixpoint of the function F.

•  For any fixpoint of F we have F y = y which implies F y ⊆ y
So any fixpoint of F is a member of the set { y | F y ⊆ y } and
z is smaller than any member of the set { y | F y ⊆ y } since it
is the greatest lower bound of all the elements in that set.
Hence, z is the least fixpoint of F.

Computing the Least Fixpoint

The least fixpoint µ y . F y is the limit of the following
sequence (assuming F is ∪-continuous):

 ∅, F ∅, F2 ∅, F3 ∅, ...

F is ∪-continuous if and only if
p1 ⊆ p2 ⊆ p3 ⊆ … implies that F (∪i pi) = ∪i F (pi)

If S is finite, then we can compute the least fixpoint using the

sequence ∅, F ∅, F2 ∅, F3 ∅, ... This sequence is
guaranteed to converge if S is finite and it will converge to
the least fixpoint.

Computing the Least Fixpoint

Given a monotonic and union continuous function F
 µ y . F y = ∪i F i (∅)

We can prove this as follows:
•  First, we can show that for all i, F i (∅) ⊆ µ y . F y using

induction
for i=0, we have F 0 (∅) = ∅ ⊆ µ y . F y
Assuming F i (∅) ⊆ µ y . F y
and applying the function F to both sides and using
monotonicity of F we get: F (F i (∅)) ⊆ F (µ y . F y)
and since µ y . F y is a fixpoint of F we get:
F i+1 (∅) ⊆ µ y . F y
which completes the induction.

Computing the Least Fixpoint

•  So, we showed that for all i, F i (∅) ⊆ µ y . F y

•  If we take the least upper bound of all the elements in the
sequence F i (∅) we get ∪i F i (∅) and using above result,
we have:

 ∪i F i (∅) ⊆ µ y . F y

•  Now, using union-continuity we can conclude that
F (∪i F i (∅)) = ∪i F (F i (∅)) = ∪i F i+1 (∅)
= ∅ ∪i F i+1 (∅) = ∪i F i (∅)

•  So, we showed that ∪i F i (∅) is a fixpoint of F and ∪i F i

(∅) ⊆ µ y . F y, then we conclude that µ y . F y = ∪i F i (∅)

Computing the Least Fixpoint

If there exists a j, where F j (∅) = F j+1 (∅), then
 µ y . F y = F j (∅)

•  We have proved earlier that for all i, F i (∅) ⊆ µ y . F y

•  If F j (∅) = F j+1 (∅), then F j (∅) is a fixpoint of F and since
we know that F j (∅) ⊆ µ y . F y then we conclude that

 µ y . F y = F j (∅)

RS(P) Fixpoint Computation

RS(P) = µ y . P ∪ RS(y) is the limit of the sequence:

∅,
P ∪ post(∅),
P ∪ post(P ∪ post(∅)) ,
P ∪ post(P ∪ post (p ∪ post(∅)))
, ...

which is equivalent to

∅, P, P ∪ post(P) , P ∪ post(P ∪ post(P)) , ...

RS(P) Fixpoint Computation

• • • p

RS(P) ≡ states that are reachable from P ≡ P ∪ post(P) ∪ post(post(P)) ∪ ...

RS(p)

