AN INFORMATION-THEORETIC MODEL FOR ADAPTIVE SIDE-CHANNEL ATTACKS

Boris Köpf, David Basin

ETH Zurich, Switzerland

• Attacker must be able to extract information about the key through side-channel measurements.

- Attacker must be able to extract information about the key through side-channel measurements.
- Attacker must be able to effectively recover the key from this information.

• A model to express the quantity of information that an adaptive attacker can extract from a system

- A model to express the quantity of information that an adaptive attacker can extract from a system
- Based on a definition of attack strategies, which are explicit representations of the adaptive decisions made by an attacker

- A model to express the quantity of information that an adaptive attacker can extract from a system
- Based on a definition of attack strategies, which are explicit representations of the adaptive decisions made by an attacker
- Expresses the attacker's expected uncertainty about the secret after they have performed a side-channel attack following a given strategy

 $\cdot\,$ We have a function F which operates on a long-term constant secret key k

- $\cdot\,$ We have a function F which operates on a long-term constant secret key k
- $\cdot\,$ The malicious agent performs a series of attack steps in order to gather information for deducing k

- $\cdot\,$ We have a function F which operates on a long-term constant secret key k
- $\cdot\,$ The malicious agent performs a series of attack steps in order to gather information for deducing k
- · The attack is adaptive if the observations used in the first n steps are used for calculating the n + 1-th step

ATTACK STRATEGIES

• Use trees to define attack strategies, which capture the adaptive choices of the attacker

- Use trees to define attack strategies, which capture the adaptive choices of the attacker
- Two attack phases: query and response

Query phase

· Decide on message $m \in M$ with which to query the system

Response phase

- System responds with f(k, m)
- k isn't directly deducible

A system under attack can be formalized as $f_I: K \times M \to O$, where K is the set of possible keys, M is the set of messages to which the system will respond and O is the set of observations the attacker can make. As the implementation I is constant, $f_I \sim f$.

Assuming full knowledge of the implementation of *f* and unbounded computing power...

· it is possible to deduce a set of keys that are **coherent** with the observation f(k, m)

A system under attack can be formalized as $f_I: K \times M \to O$, where K is the set of possible keys, M is the set of messages to which the system will respond and O is the set of observations the attacker can make. As the implementation I is constant, $f_I \sim f$.

Assuming full knowledge of the implementation of *f* and unbounded computing power...

- · it is possible to deduce a set of keys that are **coherent** with the observation f(k, m)
- · A key $k \in K$ is **coherent** with $o \in O$ under $m \in M$ iff f(k, m) = o

A system under attack can be formalized as $f_I: K \times M \to O$, where K is the set of possible keys, M is the set of messages to which the system will respond and O is the set of observations the attacker can make. As the implementation I is constant, $f_I \sim f$.

Assuming full knowledge of the implementation of *f* and unbounded computing power...

- · it is possible to deduce a set of keys that are **coherent** with the observation f(k, m)
- · A key $k \in K$ is **coherent** with $o \in O$ under $m \in M$ iff f(k, m) = o
- Two keys $k_1, k_2 \in K$ are **indistinguishable** under $m \in M$ iff $f(k_1, m) = f(k_2, m)$

• **Key fact**: the set of keys coherent with the attacker's observation is the set that could have possibly led to this observation.

FORMAL MODEL FOR ATTACK STRATEGIES

- **Key fact**: the set of keys coherent with the attacker's observation is the set that could have possibly led to this observation.
- For every $m \in M$, **indistinguishability** under m is an equivalence relation on K.

- **Key fact**: the set of keys coherent with the attacker's observation is the set that could have possibly led to this observation.
- For every $m \in M$, **indistinguishability** under m is an equivalence relation on K.
- Every equivalence relation R on K corresponds to a partition P_R , and the equivalence classes of P_R are pairwise disjoint blocks B_i , such that $\bigcup_{i=1}^r B_i = K$

- **Key fact**: the set of keys coherent with the attacker's observation is the set that could have possibly led to this observation.
- For every $m \in M$, **indistinguishability** under m is an equivalence relation on K.
- Every equivalence relation R on K corresponds to a partition P_R , and the equivalence classes of P_R are pairwise disjoint blocks B_i , such that $\bigcup_{i=1}^r B_i = K$
- · Taking f into account, $P_f = \{P_m \mid m \in M\}$, where P_m is induced by indistinguishability under m.

Query phase

• Decide on message $m \in M$ with which to query the system

Response phase

- System responds with f(k, m)
- $\cdot k$ isn't directly deducible

Query phase

· Decide on a partition $P \in P_f$

Response phase

• The system reveals the block $B \in P$ that contains k

FORMALIZING ATTACK STRATEGIES, AN EXAMPLE

• Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations

- Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations
- $\cdot \ \, {\it K} \,{=}\, \{1,2,3,4\}$

- Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations
- $\cdot \ \, K = \{1,2,3,4\}$
- $\cdot P_R = \{\{\{1\}, \{2, 3, 4\}\}, \{\{1, 2\}, \{3, 4\}\}, \{\{\{1, 2, 3\}, \{4\}\}\}$

- · Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations
- $\cdot \ K = \{1, 2, 3, 4\}$
- $\cdot \ P_R = \{\{\{1\},\{2,3,4\}\},\{\{1,2\},\{3,4\}\},\{\{\{1,2,3\},\{4\}\}\}$
- $\cdot \,$ Suppose the attacker picks $\{\{1,2\},\{3,4\}\}$ as their first query

- · Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations
- $\cdot \ \, K = \{1,2,3,4\}$
- $\cdot \ P_R = \{\{\{1\}, \{2,3,4\}\}, \{\{1,2\}, \{3,4\}\}, \{\{\{1,2,3\}, \{4\}\}\}$
- $\cdot \,$ Suppose the attacker picks $\{\{1,2\},\{3,4\}\}$ as their first query
- $\cdot\,$ If the system responds with $\{1,2\},$ the attacker chooses $\{\{1\},\{2,3,4\}\}$ as their next query

- · Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations
- $\cdot \ \, K = \{1,2,3,4\}$
- $\cdot \ P_R = \{\{\{1\}, \{2, 3, 4\}\}, \{\{1, 2\}, \{3, 4\}\}, \{\{\{1, 2, 3\}, \{4\}\}\}$
- $\cdot \,$ Suppose the attacker picks $\{\{1,2\},\{3,4\}\}$ as their first query
- $\cdot\,$ If the system responds with $\{1,2\},$ the attacker chooses $\{\{1\},\{2,3,4\}\}$ as their next query
- $\cdot \,$ Otherwise, they choose $\{\{1,2,3\},\{4\}\}.$

- Assuming a fixed set of partitions \mathbb{P} on K, produce a tree of nodes labelled with subsets of K: the attacker's decisions with respect to the observations
- $\cdot \ \, K = \{1,2,3,4\}$
- $\cdot P_R = \{\{\{1\}, \{2, 3, 4\}\}, \{\{1, 2\}, \{3, 4\}\}, \{\{\{1, 2, 3\}, \{4\}\}\}$
- $\cdot \,$ Suppose the attacker picks $\{\{1,2\},\{3,4\}\}$ as their first query
- $\cdot\,$ If the system responds with $\{1,2\},$ the attacker chooses $\{\{1\},\{2,3,4\}\}$ as their next query
- $\cdot \,$ Otherwise, they choose $\{\{1,2,3\},\{4\}\}.$
- \cdot This way, they can determine any key in two steps.

QUANTITATIVE EVALUATION OF ATTACK STRATEGIES

• The attacker gains more information (reduces the uncertainty) about the key as the attack strategy is refined

- The attacker gains more information (reduces the uncertainty) about the key as the attack strategy is refined
- Different measures of entropy correspond to different notions of resistance against brute-force guessing of the key, therefore, also attack strategy generation

- The attacker gains more information (reduces the uncertainty) about the key as the attack strategy is refined
- Different measures of entropy correspond to different notions of resistance against brute-force guessing of the key, therefore, also attack strategy generation
- The paper presents Shannon entropy *H*, guessing entropy *G*, and marginal guesswork W_{α} and builds a model of quantitative evaluation on top of them

 $\cdot\,$ The attacker assumes a probability measure p on K

- $\cdot\,$ The attacker assumes a probability measure p on K
- The Shannon entropy of a random variable $X: K \to \mathcal{X}$, given $p \sim p_X$, is defined as:

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

- $\cdot\,$ The attacker assumes a probability measure p on K
- The Shannon entropy of a random variable $X : K \to \mathcal{X}$, given $p \sim p_X$, is defined as:

$$\mathit{H}(\mathit{X}) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

• Formally, it is a lower bound for the average number of bits required for representing the results of independent repetitions of the experiment associated with *X*
- $\cdot\,$ The attacker assumes a probability measure p on K
- The Shannon entropy of a random variable $X : K \to \mathcal{X}$, given $p \sim p_X$, is defined as:

$$\mathit{H}(\mathit{X}) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

- Formally, it is a lower bound for the average number of bits required for representing the results of independent repetitions of the experiment associated with *X*
- Informally, it measures how surprised you expect to be on average after sampling the random variable *X*

• Given another random variable, $Y: K \to \mathcal{Y}$, conditional entropy $H(X \mid Y)$ is defined as the expected value of $H(X \mid Y = y)$, for all $y \in \mathcal{Y}$.

- Given another random variable, $Y: K \to \mathcal{Y}$, conditional entropy $H(X \mid Y)$ is defined as the expected value of $H(X \mid Y = y)$, for all $y \in \mathcal{Y}$.
- · Formally,

$$H(X \mid Y) = \sum_{y \in \mathcal{Y}} p_Y(y) H(X \mid Y = y)$$

• Consider now an attack strategy **a** and the corresponding variables U (random choice of a key in K) and V_a (random choice of the enclosing block $B \in P_a$).

- Consider now an attack strategy **a** and the corresponding variables U (random choice of a key in K) and V_a (random choice of the enclosing block $B \in P_a$).
- \cdot The initial uncertainty about the key can be written as H(U)

- Consider now an attack strategy **a** and the corresponding variables U (random choice of a key in K) and V_a (random choice of the enclosing block $B \in P_a$).
- \cdot The initial uncertainty about the key can be written as H(U)
- · After getting the system's response, that is, the block $B \in P_a$ which encloses the key, the remaining uncertainty is:

$$H(U \mid V_a = B)$$

- Consider now an attack strategy **a** and the corresponding variables U (random choice of a key in K) and V_a (random choice of the enclosing block $B \in P_a$).
- \cdot The initial uncertainty about the key can be written as H(U)
- · After getting the system's response, that is, the block $B \in P_a$ which encloses the key, the remaining uncertainty is:

$$H(U \mid V_a = B)$$

· Neat!

• The guessing entropy of a random variable X is the average number of questions of the kind "does X = x hold?" that must be asked to guess the value of X correctly

GUESSING ENTROPY

- The guessing entropy of a random variable X is the average number of questions of the kind "does X = x hold?" that must be asked to guess the value of X correctly
- The guessing entropy is:

$$G(X) = \sum_{1 \le i \le |\mathcal{X}|} i \, p(x_i)$$

- The guessing entropy of a random variable X is the average number of questions of the kind "does X = x hold?" that must be asked to guess the value of X correctly
- The guessing entropy is:

$$G(X) = \sum_{1 \le i \le |\mathcal{X}|} i \, p(x_i)$$

• The conditional guessing entropy is the expected number of optimal guesses needed to determine *X* when *Y* is known

- The guessing entropy of a random variable X is the average number of questions of the kind "does X = x hold?" that must be asked to guess the value of X correctly
- · The guessing entropy is:

$$G(X) = \sum_{1 \le i \le |\mathcal{X}|} i \, p(x_i)$$

- The conditional guessing entropy is the expected number of optimal guesses needed to determine *X* when *Y* is known
- · The conditional guessing entropy is:

$$G(X \mid Y) = \sum_{y \in \mathcal{Y}} p_Y(y) G(X \mid Y = y)$$

The guessing entropy $G(U \mid V_a)$ is a lower bound on the expected number of off-line guesses that an attacker must perform for key recovery after carrying out a side-channel attack using the strategy **a**.

• For some fixed $\alpha \in [0, 1]$, the marginal guesswork of a random variable X quantifies the number of questions of the kind "does X = x hold?" that must be asked to determine X with an α chance of success.

- For some fixed $\alpha \in [0, 1]$, the marginal guesswork of a random variable X quantifies the number of questions of the kind "does X = x hold?" that must be asked to determine X with an α chance of success.
- · Formally, the α -marginal guesswork of X is:

$$W_{\alpha}(X) = \min\{j \mid \sum_{1 \le i \le j} p(x_i) \ge \alpha\}$$

- For some fixed $\alpha \in [0, 1]$, the marginal guesswork of a random variable X quantifies the number of questions of the kind "does X = x hold?" that must be asked to determine X with an α chance of success.
- · Formally, the α -marginal guesswork of X is:

$$W_{\alpha}(X) = \min\{j \mid \sum_{1 \le i \le j} p(x_i) \ge \alpha\}$$

· Completely analogously to the guessing entropy, we can define the $W_{\alpha}(X|Y)$ as the **conditional** α -marginal guesswork The conditional α -marginal guesswork, $W_{\alpha}(U \mid V_a)$ is a lower-bound on the expected number of guesses that an attacker needs to perform in order to determine the key with an α chance of success, after having carried out a side-channel attack using strategy **a**. • These average case measurements can be extended into worst-case measurements by quantifying the guessing effort for the keys in *K* that are easiest to guess

- These average case measurements can be extended into worst-case measurements by quantifying the guessing effort for the keys in *K* that are easiest to guess
- The **minimal guessing entropy** is defined as:

$$\hat{G}(U \mid V_a) = \min\{G(U \mid V_a = B) \mid B \in P_a\}$$

- These average case measurements can be extended into worst-case measurements by quantifying the guessing effort for the keys in *K* that are easiest to guess
- The **minimal guessing entropy** is defined as:

$$\hat{G}(U \mid V_a) = \min\{G(U \mid V_a = B) \mid B \in P_a\}$$

• Average case measurements are better suited for distinguishing between partiitons

MEASURING THE RESISTANCE TO OPTIMAL ATTACKS

• There is a trade-off between the number of attack steps taken and the attacker's uncertainty about the key

- There is a trade-off between the number of attack steps taken and the attacker's uncertainty about the key
- · Using the different entropy measurements, let's define $\Phi_{\mathcal{E}}(n)$, parametrized by $\mathcal{E} \in \{H, G, W_{\alpha}\}$, whose value is the expected remaining uncertainty after *n* steps of an optimal attack strategy.

- There is a trade-off between the number of attack steps taken and the attacker's uncertainty about the key
- · Using the different entropy measurements, let's define $\Phi_{\mathcal{E}}(n)$, parametrized by $\mathcal{E} \in \{H, G, W_{\alpha}\}$, whose value is the expected remaining uncertainty after *n* steps of an optimal attack strategy.
- $\Phi_{\mathcal{E}}(n)$ can be used for assessing the implementation's vulnerability to side-channel attacks

· Worst case: the attacker is proceeding optimally

- $\cdot\,$ Worst case: the attacker is proceeding optimally
- A strategy **a** is optimal with respect to $\mathcal{E} \in \{H, G, W_{\alpha}\}$ iff $\mathcal{E}(U \mid V_a) \leq \mathcal{E}(U \mid V_b)$, for all strategies **b**, of the same length as **a**

- \cdot Worst case: the attacker is proceeding optimally
- A strategy **a** is optimal with respect to $\mathcal{E} \in \{H, G, W_{\alpha}\}$ iff $\mathcal{E}(U \mid V_a) \leq \mathcal{E}(U \mid V_b)$, for all strategies **b**, of the same length as **a**
- · The resistance to an optimal attack, $\Phi_{\mathcal{E}}(n)$ is then:

$$\Phi_{\mathcal{E}}(n) = \mathcal{E}(U \mid V_o)$$

where **o** is the optimal attack of length n with respect to \mathcal{E} .

- \cdot Worst case: the attacker is proceeding optimally
- A strategy **a** is optimal with respect to $\mathcal{E} \in \{H, G, W_{\alpha}\}$ iff $\mathcal{E}(U \mid V_a) \leq \mathcal{E}(U \mid V_b)$, for all strategies **b**, of the same length as **a**
- \cdot The **resistance to an optimal attack**, $\Phi_{\mathcal{E}}(n)$ is then:

$$\Phi_{\mathcal{E}}(n) = \mathcal{E}(U \mid V_o)$$

where \mathbf{o} is the optimal attack of length n with respect to \mathcal{E} .

• The paper formally justifies the intuition that more attack steps lead to less uncertainty about the key by proving that $\Phi_{\mathcal{E}}$ decreases monotonously with *n*.

AUTOMATED VULNERABILITY ANALYSIS

 $\cdot \ \mbox{Let } \mathbb{P}$ be a set of partitions over $K \mbox{ and } r \geq 2$ be the maximum number of blocks of a partition

- $\cdot \ \mbox{Let } \mathbb{P}$ be a set of partitions over $K \mbox{ and } r \geq 2$ be the maximum number of blocks of a partition
- \cdot The sets O and K are ordered, and comparing elements within them costs $\mathcal{O}(1)$

• Given $f: K \times M \to O$, one can build the partitions (as disjoint-set data structures) for \mathbb{P}_f in

 $\mathcal{O}(|\mathit{M}||\mathit{K}|\mathit{log}|\mathit{K}|)$

time, assuming that $f \operatorname{can}$ be computed in $\mathcal{O}(1)$

• Given $f: K \times M \to O$, one can build the partitions (as disjoint-set data structures) for \mathbb{P}_f in

 $\mathcal{O}(|\textit{M}||\textit{K}|\textit{log}|\textit{K}|)$

time, assuming that f can be computed in $\mathcal{O}(1)$

 \cdot Using brute-force optimal attack searching, $\Phi_{\mathcal{E}}(\mathbf{n})$ can be computed in

 $\mathcal{O}(n|M|^{r^n}|K|\log|K|)$

under the assumption that \mathcal{E} can be computed in $\mathcal{O}(|K|)$

• Given $f: K \times M \to O$, one can build the partitions (as disjoint-set data structures) for \mathbb{P}_f in

 $\mathcal{O}(|\textit{M}||\textit{K}|\textit{log}|\textit{K}|)$

time, assuming that f can be computed in $\mathcal{O}(1)$

 \cdot Using brute-force optimal attack searching, $\Phi_{\mathcal{E}}(\mathbf{n})$ can be computed in

 $\mathcal{O}(n|M|^{r^n}|K|\log|K|)$

under the assumption that $\mathcal E$ can be computed in $\mathcal O(|K|)$

· This is useless.

GREEDY HEURISTIC

• Consider an attacker who has performed a number of attack steps against a set of partitions \mathbb{P} and has narrowed down the set of possible keys to a subset $A \subseteq K$.

GREEDY HEURISTIC

- Consider an attacker who has performed a number of attack steps against a set of partitions \mathbb{P} and has narrowed down the set of possible keys to a subset $A \subseteq K$.
- A greedy choice for the next query is a partition $P \in \mathbb{P}$ that minimizes the remaining entropy, similar to what was done to get the minimal guessing entropy.

GREEDY HEURISTIC

- Consider an attacker who has performed a number of attack steps against a set of partitions \mathbb{P} and has narrowed down the set of possible keys to a subset $A \subseteq K$.
- A greedy choice for the next query is a partition $P \in \mathbb{P}$ that minimizes the remaining entropy, similar to what was done to get the minimal guessing entropy.
- The greedy $\hat{\Phi}_{\mathcal{E}}(n)$ is an approximation, thus it will not have the same entropy as $\Phi_{\mathcal{E}}(n)$, but will, in general, converge.
GREEDY HEURISTIC

- Consider an attacker who has performed a number of attack steps against a set of partitions \mathbb{P} and has narrowed down the set of possible keys to a subset $A \subseteq K$.
- A greedy choice for the next query is a partition $P \in \mathbb{P}$ that minimizes the remaining entropy, similar to what was done to get the minimal guessing entropy.
- The greedy $\hat{\Phi}_{\mathcal{E}}(n)$ is an approximation, thus it will not have the same entropy as $\Phi_{\mathcal{E}}(n)$, but will, in general, converge.
- \cdot The value $\hat{\Phi}_{\mathcal{E}}(n)$ can be computed in

 $\mathcal{O}(n\,r\,|M|\,|K|^2)$

under the assumption that \mathcal{E} can be computed in $\mathcal{O}(|K|)$.

```
greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]
```

```
greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)
where refine b = minimumBy order (restrict b f)
```

EXPERIMENTS

 $\cdot\,$ Circuits for multiplying integers

- $\cdot\,$ Circuits for multiplying integers
- $\cdot\,$ Circuits for multiplication and exponentiation in finite fields \mathbb{F}_{2^w}

- $\cdot\,$ Circuits for multiplying integers
- $\cdot\,$ Circuits for multiplication and exponentiation in finite fields \mathbb{F}_{2^w}
- Useful in many encryption schemes, decryption usually consists of exponentiation followed by multiplication

· The chosen entropy is the guessing entropy $\mathcal{E} = G$, and the approximation $\hat{\Phi}_{\mathcal{E}}$ is used, with a further parameterization:

- · The chosen entropy is the guessing entropy $\mathcal{E} = G$, and the approximation $\hat{\Phi}_{\mathcal{E}}$ is used, with a further parameterization:
- the bit-width w of the operands of each algorithm is proposed, as bit-regularity in the values of Φ for $w \in \{2, \ldots, w_{max}\}$ is assumed to show structural similarities of the algorithms

- · The chosen entropy is the guessing entropy $\mathcal{E} = G$, and the approximation $\hat{\Phi}_{\mathcal{E}}$ is used, with a further parameterization:
- the bit-width w of the operands of each algorithm is proposed, as bit-regularity in the values of Φ for $w \in \{2, \ldots, w_{max}\}$ is assumed to show structural similarities of the algorithms
- The approximation $\hat{\Phi}^w_{\mathcal{E}}$ can now be extrapolated for $w \ge w_{max}$ which would have been infeasible otherwise.

• For each bit-width $w \in \{2, ..., 8\}$, the circuit simulator built value tables for the side-channel $f \colon \{0, 1\}^w \times \{0, 1\}^w \to O$, with $O \equiv \mathbb{N}$ representing the observation of the number of clock-ticks until termination

- For each bit-width $w \in \{2, ..., 8\}$, the circuit simulator built value tables for the side-channel $f: \{0, 1\}^w \times \{0, 1\}^w \to O$, with $O \equiv \mathbb{N}$ representing the observation of the number of clock-ticks until termination
- The doubling and addition operations used in the implementation of integer multiplication each take one clock cycle

- For each bit-width $w \in \{2, ..., 8\}$, the circuit simulator built value tables for the side-channel $f: \{0, 1\}^w \times \{0, 1\}^w \to O$, with $O \equiv \mathbb{N}$ representing the observation of the number of clock-ticks until termination
- The doubling and addition operations used in the implementation of integer multiplication each take one clock cycle
- As the algorithm does work only if a bit is 1, the running time reflects the number of 1-bits in *k*, that is, *k*'s Hamming weight.

- For each bit-width $w \in \{2, ..., 8\}$, the circuit simulator built value tables for the side-channel $f \colon \{0, 1\}^w \times \{0, 1\}^w \to O$, with $O \equiv \mathbb{N}$ representing the observation of the number of clock-ticks until termination
- The doubling and addition operations used in the implementation of integer multiplication each take one clock cycle
- As the algorithm does work only if a bit is 1, the running time reflects the number of 1-bits in *k*, that is, *k*'s Hamming weight.
- \cdot The Hamming weight defines the equivalence relation over K

- For each bit-width $w \in \{2, ..., 8\}$, the circuit simulator built value tables for the side-channel $f: \{0, 1\}^w \times \{0, 1\}^w \to O$, with $O \equiv \mathbb{N}$ representing the observation of the number of clock-ticks until termination
- The doubling and addition operations used in the implementation of integer multiplication each take one clock cycle
- As the algorithm does work only if a bit is 1, the running time reflects the number of 1-bits in *k*, that is, *k*'s Hamming weight.
- $\cdot\,$ The Hamming weight defines the equivalence relation over K
- \cdot Operations in \mathbb{F}_{2^w} more complicated due to nested loops

...

One timing measurement reveals a quantity of information larger than that contained in the Hamming weight, but it does not completely determine the key. A second measurement, however, can reveal all remaining key information. • The solution depends on enumerating the keyspace, thus does not scale

- The solution depends on enumerating the keyspace, thus does not scale
- Extrapolation is possible, but the approximation is very limited, and generally doesn't work

- The solution depends on enumerating the keyspace, thus does not scale
- Extrapolation is possible, but the approximation is very limited, and generally doesn't work
- $\cdot\,$ Structural regularity is useful for parameterized algorithms

- The solution depends on enumerating the keyspace, thus does not scale
- Extrapolation is possible, but the approximation is very limited, and generally doesn't work
- \cdot Structural regularity is useful for parameterized algorithms
- Noise can be taken care of by increasing the number of measurements, or introducing noise models

QUESTIONS?