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∙ Attacker must be able to effectively recover the key from this
information.
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∙ A model to express the quantity of information that an adaptive
attacker can extract from a system

∙ Based on a definition of attack strategies, which are explicit
representations of the adaptive decisions made by an attacker

∙ Expresses the attacker’s expected uncertainty about the secret
after they have performed a side-channel attack following a
given strategy
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attack

∙ We have a function F which operates on a long-term constant
secret key k

∙ The malicious agent performs a series of attack steps in order to
gather information for deducing k

∙ The attack is adaptive if the observations used in the first n
steps are used for calculating the n + 1-th step
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model for attack strategies

∙ Use trees to define attack strategies, which capture the adaptive
choices of the attacker

∙ Two attack phases: query and response



attack phases

Query phase
∙ Decide on message

m ∈ M with which to
query the system

Response phase
∙ System responds with

f(k,m)

∙ k isn’t directly
deducible



formal model for attack strategies

A system under attack can be formalized as fI : K × M → O, where K
is the set of possible keys, M is the set of messages to which the
system will respond and O is the set of observations the attacker
can make. As the implementation I is constant, fI ∼ f.

Assuming full knowledge of the implementation of f and unbounded
computing power...

∙ it is possible to deduce a set of keys that are coherent with the
observation f(k,m)

∙ A key k ∈ K is coherent with o ∈ O under m ∈ M iff f(k,m) = o
∙ Two keys k1, k2 ∈ K are indistinguishable under m ∈ M iff

f(k1,m) = f(k2,m)
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formal model for attack strategies

∙ Key fact: the set of keys coherent with the attacker’s observation
is the set that could have possibly led to this observation.

∙ For every m ∈ M, indistinguishability under m is an equivalence
relation on K.

∙ Every equivalence relation R on K corresponds to a partition
PR, and the equivalence classes of PR are pairwise disjoint
blocks Bi, such that

r∪
i=1

Bi = K

∙ Taking f into account, Pf = {Pm | m ∈ M}, where Pm is induced
by indistinguishability under m.
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attack phases, formally

Query phase
∙ Decide on a partition P ∈ Pf

Response phase
∙ The system reveals the block

B ∈ P that contains k



formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.
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∙ The attacker gains more information (reduces the uncertainty)
about the key as the attack strategy is refined

∙ Different measures of entropy correspond to different notions
of resistance against brute-force guessing of the key, therefore,
also attack strategy generation

∙ The paper presents Shannon entropy H, guessing entropy G,
and marginal guesswork Wα and builds a model of quantitative
evaluation on top of them
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entropy 101

∙ The attacker assumes a probability measure p on K

∙ The Shannon entropy of a random variable X : K → X , given
p ∼ pX, is defined as:

H(X) = −
∑
x∈X

p(x)log
2
p(x)

∙ Formally, it is a lower bound for the average number of bits
required for representing the results of independent repetitions
of the experiment associated with X

∙ Informally, it measures how surprised you expect to be on
average after sampling the random variable X
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H(X | Y) is defined as the expected value of H(X | Y = y), for all
y ∈ Y .
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shannon entropy: how do we use this?

∙ Consider now an attack strategy a and the corresponding
variables U (random choice of a key in K) and Va (random
choice of the enclosing block B ∈ Pa).

∙ The initial uncertainty about the key can be written as H(U)

∙ After getting the system’s response, that is, the block B ∈ Pa
which encloses the key, the remaining uncertainty is:

H(U | Va = B)

∙ Neat!
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∙ The guessing entropy of a random variable X is the average
number of questions of the kind ”does X = x hold?” that must
be asked to guess the value of X correctly

∙ The guessing entropy is:

G(X) =
∑

1≤i≤|X|

i p(xi)

∙ The conditional guessing entropy is the expected number of
optimal guesses needed to determine X when Y is known

∙ The conditional guessing entropy is:

G(X | Y) =
∑
y∈Y

pY(y)G(X | Y = y)
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guessing entropy: how do we use this?

The guessing entropy G(U | Va) is a lower bound on the expected
number of off-line guesses that an attacker must perform for key
recovery after carrying out a side-channel attack using the strategy
a .



marginal guesswork

∙ For some fixed α ∈ [0, 1], the marginal guesswork of a random
variable X quantifies the number of questions of the kind ”does
X = x hold?” that must be asked to determine X with an α

chance of success.

∙ Formally, the α-marginal guesswork of X is:

Wα(X) = min{j |
∑

1≤i≤j
p(xi) ≥ α}

∙ Completely analogously to the guessing entropy, we can define
the Wα(X|Y) as the conditional α-marginal guesswork
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marginal guesswork: how do we use this?

The conditional α-marginal guesswork, Wα(U | Va) is a lower-bound
on the expected number of guesses that an attacker needs to
perform in order to determine the key with an α chance of success,
after having carried out a side-channel attack using strategy a .



worst-case entropy measures

∙ These average case measurements can be extended into
worst-case measurements by quantifying the guessing effort for
the keys in K that are easiest to guess

∙ The minimal guessing entropy is defined as:

Ĝ(U | Va) = min{G(U | Va = B) | B ∈ Pa}

∙ Average case measurements are better suited for distinguishing
between partiitons
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resistance to attacks

∙ There is a trade-off between the number of attack steps taken
and the attacker’s uncertainty about the key

∙ Using the different entropy measurements, let’s define ΦE(n),
parametrized by E ∈ {H,G,Wα}, whose value is the expected
remaining uncertainty after n steps of an optimal attack strategy.

∙ ΦE(n) can be used for assessing the implementation’s
vulnerability to side-channel attacks
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assessing vulnerability

∙ Worst case: the attacker is proceeding optimally

∙ A strategy a is optimal with respect to E ∈ {H,G,Wα} iff
E(U | Va) ≤ E(U|Vb), for all strategies b , of the same length as a

∙ The resistance to an optimal attack, ΦE(n) is then:

ΦE(n) = E(U | Vo)

where o is the optimal attack of length n with respect to E .
∙ The paper formally justifies the intuition that more attack steps
lead to less uncertainty about the key by proving that ΦE

decreases monotonously with n.
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automated vulnerability analysis



computability of resistance to attacks, assumptions

∙ Let P be a set of partitions over K and r ≥ 2 be the maximum
number of blocks of a partition

∙ The sets O and K are ordered, and comparing elements within
them costs O(1)
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computability of resistance to attacks

∙ Given f : K × M → O, one can build the partitions (as
disjoint-set data structures) for Pf in

O(|M||K| log|K|)

time, assuming that f can be computed in O(1)

∙ Using brute-force optimal attack searching, ΦE(n) can be
computed in

O(n|M|r
n
|K| log|K|)

under the assumption that E can be computed in O(|K|)
∙ This is useless.
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greedy heuristic

∙ Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the
set of possible keys to a subset A ⊆ K.

∙ A greedy choice for the next query is a partition P ∈ P that
minimizes the remaining entropy, similar to what was done to
get the minimal guessing entropy.

∙ The greedy Φ̂E(n) is an approximation, thus it will not have the
same entropy as ΦE(n), but will, in general, converge.

∙ The value Φ̂E(n) can be computed in

O(n r |M| |K|2)

under the assumption that E can be computed in O(|K|).
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greedy heuristic implementation

greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]

greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)
where refine b = minimumBy order (restrict b f)



experiments
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∙ Circuits for multiplying integers

∙ Circuits for multiplication and exponentiation in finite fields F2w
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a feasible approximation

∙ The chosen entropy is the guessing entropy E = G, and the
approximation Φ̂E is used, with a further parameterization:

∙ the bit-width w of the operands of each algorithm is proposed,
as bit-regularity in the values of Φ for w ∈ {2, . . . ,wmax} is
assumed to show structural similarities of the algorithms

∙ The approximation Φ̂w
E can now be extrapolated for w ≥ wmax

which would have been infeasible otherwise.
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setup

∙ For each bit-width w ∈ {2, . . . , 8}, the circuit simulator built
value tables for the side-channel f : {0, 1}w × {0, 1}w → O, with
O ≡ N representing the observation of the number of
clock-ticks until termination

∙ The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

∙ As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in k, that is, k’s Hamming weight.

∙ The Hamming weight defines the equivalence relation over K
∙ Operations in F2w more complicated due to nested loops
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...



experiment conclusion

One timing measurement reveals a quantity of information larger
than that contained in the Hamming weight, but it does not
completely determine the key. A second measurement, however, can
reveal all remaining key information.



conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms
∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models



conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms
∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models



conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms

∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models



conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms
∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models



questions?


