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- Attacker must be able to effectively recover the from this
information.
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- A model to express the quantity of information that an adaptive
attacker can extract from a system

- Based on a definition of attack strategies, which are explicit
representations of the adaptive decisions made by an attacker
- Expresses the attacker’s expected uncertainty about the secret

after they have performed a side-channel attack following a
given strategy
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ATTACK

- We have a function F which operates on a long-term constant
secret key k

- The malicious agent performs a series of attack steps in order to
gather information for deducing k

- The attack is adaptive if the observations used in the first n
steps are used for calculating the n + 1-th step
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- Use trees to define attack strategies, which capture the adaptive
choices of the attacker

- Two attack phases: and



ATTACK PHASES

Response phase
Query phase .
- System responds with

f(k, m)
- kisn't directly
deducible

- Decide on message
m € M with which to
query the system
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A system under attack can be formalized as f;: K x M — O, where K
is the set of possible keys, M is the set of messages to which the
system will respond and O is the set of observations the attacker
can make. As the implementation I'is constant, f; ~ f.

Assuming full knowledge of the implementation of fand unbounded
computing power...

- itis possible to deduce a set of keys that are coherent with the
observation f(k, m)

- Akey ke K is coherent with o € O under m € Miff f(k,m) = o

- Two keys ki, k» € K are indistinguishable under m € M iff
f(k1, m) = flka, m)



FORMAL MODEL FOR ATTACK STRATEGIES

- Key fact: the set of keys coherent with the attacker’'s observation
is the set that could have possibly led to this observation.



FORMAL MODEL FOR ATTACK STRATEGIES

- Key fact: the set of keys coherent with the attacker’'s observation
is the set that could have possibly led to this observation.

- For every m € M, indistinguishability under m is an equivalence
relation on K.



FORMAL MODEL FOR ATTACK STRATEGIES

- Key fact: the set of keys coherent with the attacker’'s observation
is the set that could have possibly led to this observation.

- For every m € M, indistinguishability under m is an equivalence
relation on K.

- Every equivalence relation R on K corresponds to a partition
Pg, and the equivalence classes of Py are pairwise disjoint

blocks B;, such that |J B;= K

=1
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- Key fact: the set of keys coherent with the attacker’'s observation
is the set that could have possibly led to this observation.

- For every m € M, indistinguishability under m is an equivalence
relation on K.

- Every equivalence relation R on K corresponds to a partition
Pg, and the equivalence classes of Py are pairwise disjoint

blocks B;, such that |J B;= K
=1l
- Taking finto account, Py = {P,, | m € M}, where P,, is induced
by indistinguishability under m.
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ATTACK PHASES, FORMALLY

Query phase Response phase

- The system reveals the block

- Decide on a partition P € Py )
B e Pthat contains k
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- Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’'s decisions with
respect to the observations

- K={1,2,3,4}
- Pr={{{1},{2,3,4}}, {{1,2},{3,4}}, {{{1,2,3}, {4}}}
- Suppose the attacker picks {{1,2},{3,4}} as their first query

- If the system responds with {1, 2}, the attacker chooses
{{1},{2,3,4}} as their next query

- Otherwise, they choose {{1, 2,3}, {4}}.
- This way, they can determine any key in two steps.
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INTUITION

- The attacker gains more information (reduces the uncertainty)
about the key as the attack strategy is refined

- Different measures of entropy correspond to different notions
of resistance against brute-force guessing of the key, therefore,
also attack strategy generation

- The paper presents Shannon entropy H, guessing entropy G,
and marginal guesswork W, and builds a model of quantitative
evaluation on top of them
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- The attacker assumes a probability measure p on K

- The Shannon entropy of a random variable X : K — X, given
p ~ px, is defined as:

H(X) = =) p(a)log,p(«)
zeX
- Formally, it is a lower bound for the average number of bits
required for representing the results of independent repetitions
of the experiment associated with X

- Informally, it measures how surprised you expect to be on
average after sampling the random variable X
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- Given another random variable, Y: K — Y, conditional entropy
H(X | Y) is defined as the expected value of H(X | Y = y), for all
ye .

- Formally,

HX|Y) =) py(pHX|Y=y)

yey
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SHANNON ENTROPY: HOW DO WE USE THIS?

- Consider now an attack strategy a and the corresponding
variables U (random choice of a key in K) and V, (random
choice of the enclosing block B € P,).

- The initial uncertainty about the key can be written as H(U)

- After getting the system'’s response, that is, the block B € P,
which encloses the key, the remaining uncertainty is:

H(U| V, = B)

- Neat!
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GUESSING ENTROPY

- The guessing entropy of a random variable X is the average
number of questions of the kind "does X = z hold?” that must
be asked to guess the value of X correctly

- The guessing entropy is:

GX)= )

1<i<|X|

- The conditional guessing entropy is the expected number of
optimal guesses needed to determine X when Y'is known

- The conditional guessing entropy is:

GX| V)= pr(y)GX| Y=y)

yey



GUESSING ENTROPY: HOW DO WE USE THIS?

The guessing entropy G(U| V,) is a lower bound on the expected
number of off-line guesses that an attacker must perform for key

recovery after carrying out a side-channel attack using the strategy
a.
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MARGINAL GUESSWORK

- For some fixed a € [0, 1], the marginal guesswork of a random
variable X quantifies the number of questions of the kind "does
X = z hold?” that must be asked to determine X with an «
chance of success.

- Formally, the a-marginal guesswork of X is:

Wa(X) = minfj| 3 pla) > a}

1<i<j

- Completely analogously to the guessing entropy, we can define
the W, (X]Y) as the conditional «-marginal guesswork



MARGINAL GUESSWORK: HOW DO WE USE THIS?

The conditional a-marginal guesswork, W, (U| V,) is a lower-bound
on the expected number of guesses that an attacker needs to
perform in order to determine the key with an « chance of success,
after having carried out a side-channel attack using strategy a .
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WORST-CASE ENTROPY MEASURES

- These average case measurements can be extended into
worst-case measurements by quantifying the guessing effort for
the keys in K that are easiest to guess

- The minimal guessing entropy is defined as:
G(U| V,) = min{G(U| V, = B) | Be P}

- Average case measurements are better suited for distinguishing
between partiitons
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RESISTANCE TO ATTACKS

- There is a trade-off between the number of attack steps taken
and the attacker’'s uncertainty about the key

- Using the different entropy measurements, let's define ®¢(n),
parametrized by £ € {H, G, W, }, whose value is the expected
remaining uncertainty after n steps of an optimal attack strategy.

- ®g(n) can be used for assessing the implementation’s
vulnerability to side-channel attacks
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ASSESSING VULNERABILITY

- Worst case: the attacker is proceeding optimally

- A strategy a is optimal with respect to € € {H, G, W, } iff
E(U| V,) <E(UVy), for all strategies b, of the same length as a

- The resistance to an optimal attack, ®¢(n) is then:
Pe(n) =E(U| Vo)

where o is the optimal attack of length n with respect to &.

- The paper formally justifies the intuition that more attack steps
lead to less uncertainty about the key by proving that ®¢
decreases monotonously with n.



AUTOMATED VULNERABILITY ANALYSIS
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- The sets O and K are ordered, and comparing elements within
them costs O(1)
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COMPUTABILITY OF RESISTANCE TO ATTACKS

- Given f: K x M — O, one can build the partitions (as
disjoint-set data structures) for Py in

O(|M]| K] log| K])

time, assuming that fcan be computed in O(1)
- Using brute-force optimal attack searching, ®¢(n) can be
computed in
O(n|M|" |K] log|K])
under the assumption that £ can be computed in O(|K))
- This is useless.
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GREEDY HEURISTIC

- Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the
set of possible keys to a subset A C K.

- A greedy choice for the next query is a partition P € P that
minimizes the remaining entropy, similar to what was done to
get the minimal guessing entropy.

- The greedy ®¢(n) is an approximation, thus it will not have the
same entropy as ®¢(n), but will, in general, converge.

- The value &¢(n) can be computed in
O(nr|M||K)

under the assumption that £ can be computed in O(|K)).



GREEDY HEURISTIC IMPLEMENTATION

greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]

greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)
where refine b = minimumBy order (restrict b f)
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TIMING BEHAVIOUR OF ARITHMETIC CIRCUITS

- Circuits for multiplying integers
- Circuits for multiplication and exponentiation in finite fields Faou

- Useful in many encryption schemes, decryption usually consists
of exponentiation followed by multiplication
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A FEASIBLE APPROXIMATION

- The chosen entropy is the guessing entropy £ = G, and the
approximation &g is used, with a further parameterization:

- the bit-width w of the operands of each algorithm is proposed,
as bit-regularity in the values of ® for w € {2,..., Wpnas} IS
assumed to show structural similarities of the algorithms

- The approximation ég’ can now be extrapolated for w > wy,qq
which would have been infeasible otherwise.
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SETUP

- For each bit-width w € {2,...,8}, the circuit simulator built
value tables for the side-channel f: {0,1}" x {0,1}* — O, with
O = N representing the observation of the number of
clock-ticks until termination

- The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

- As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in &, that is, s Hamming weight.

- The Hamming weight defines the equivalence relation over K

- Operations in Fow more complicated due to nested loops






EXPERIMENT CONCLUSION

One timing measurement reveals a quantity of information larger
than that contained in the Hamming weight, but it does not
completely determine the key. A second measurement, however, can
reveal all remaining key information.
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CONCLUSION

- The solution depends on enumerating the keyspace, thus does
not scale

- Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

- Structural regularity is useful for parameterized algorithms

- Noise can be taken care of by increasing the number of
measurements, or introducing noise models



QUESTIONS?



