
an information-theoretic model for adaptive
side-channel attacks

Boris Köpf, David Basin

ETH Zurich, Switzerland

successful side-channel attacks

∙ Attacker must be able to extract information about the key
through side-channel measurements.

successful side-channel attacks

∙ Attacker must be able to extract information about the key
through side-channel measurements.

∙ Attacker must be able to effectively recover the key from this
information.

proposal

∙ A model to express the quantity of information that an adaptive
attacker can extract from a system

proposal

∙ A model to express the quantity of information that an adaptive
attacker can extract from a system

∙ Based on a definition of attack strategies, which are explicit
representations of the adaptive decisions made by an attacker

proposal

∙ A model to express the quantity of information that an adaptive
attacker can extract from a system

∙ Based on a definition of attack strategies, which are explicit
representations of the adaptive decisions made by an attacker

∙ Expresses the attacker’s expected uncertainty about the secret
after they have performed a side-channel attack following a
given strategy

attack

∙ We have a function F which operates on a long-term constant
secret key k

attack

∙ We have a function F which operates on a long-term constant
secret key k

∙ The malicious agent performs a series of attack steps in order to
gather information for deducing k

attack

∙ We have a function F which operates on a long-term constant
secret key k

∙ The malicious agent performs a series of attack steps in order to
gather information for deducing k

∙ The attack is adaptive if the observations used in the first n
steps are used for calculating the n + 1-th step

attack strategies

model for attack strategies

∙ Use trees to define attack strategies, which capture the adaptive
choices of the attacker

model for attack strategies

∙ Use trees to define attack strategies, which capture the adaptive
choices of the attacker

∙ Two attack phases: query and response

attack phases

Query phase
∙ Decide on message

m ∈ M with which to
query the system

Response phase
∙ System responds with

f(k,m)

∙ k isn’t directly
deducible

formal model for attack strategies

A system under attack can be formalized as fI : K × M → O, where K
is the set of possible keys, M is the set of messages to which the
system will respond and O is the set of observations the attacker
can make. As the implementation I is constant, fI ∼ f.

Assuming full knowledge of the implementation of f and unbounded
computing power...

∙ it is possible to deduce a set of keys that are coherent with the
observation f(k,m)

∙ A key k ∈ K is coherent with o ∈ O under m ∈ M iff f(k,m) = o
∙ Two keys k1, k2 ∈ K are indistinguishable under m ∈ M iff

f(k1,m) = f(k2,m)

formal model for attack strategies

A system under attack can be formalized as fI : K × M → O, where K
is the set of possible keys, M is the set of messages to which the
system will respond and O is the set of observations the attacker
can make. As the implementation I is constant, fI ∼ f.

Assuming full knowledge of the implementation of f and unbounded
computing power...

∙ it is possible to deduce a set of keys that are coherent with the
observation f(k,m)

∙ A key k ∈ K is coherent with o ∈ O under m ∈ M iff f(k,m) = o

∙ Two keys k1, k2 ∈ K are indistinguishable under m ∈ M iff
f(k1,m) = f(k2,m)

formal model for attack strategies

A system under attack can be formalized as fI : K × M → O, where K
is the set of possible keys, M is the set of messages to which the
system will respond and O is the set of observations the attacker
can make. As the implementation I is constant, fI ∼ f.

Assuming full knowledge of the implementation of f and unbounded
computing power...

∙ it is possible to deduce a set of keys that are coherent with the
observation f(k,m)

∙ A key k ∈ K is coherent with o ∈ O under m ∈ M iff f(k,m) = o
∙ Two keys k1, k2 ∈ K are indistinguishable under m ∈ M iff

f(k1,m) = f(k2,m)

formal model for attack strategies

∙ Key fact: the set of keys coherent with the attacker’s observation
is the set that could have possibly led to this observation.

∙ For every m ∈ M, indistinguishability under m is an equivalence
relation on K.

∙ Every equivalence relation R on K corresponds to a partition
PR, and the equivalence classes of PR are pairwise disjoint
blocks Bi, such that

r∪
i=1

Bi = K

∙ Taking f into account, Pf = {Pm | m ∈ M}, where Pm is induced
by indistinguishability under m.

formal model for attack strategies

∙ Key fact: the set of keys coherent with the attacker’s observation
is the set that could have possibly led to this observation.

∙ For every m ∈ M, indistinguishability under m is an equivalence
relation on K.

∙ Every equivalence relation R on K corresponds to a partition
PR, and the equivalence classes of PR are pairwise disjoint
blocks Bi, such that

r∪
i=1

Bi = K

∙ Taking f into account, Pf = {Pm | m ∈ M}, where Pm is induced
by indistinguishability under m.

formal model for attack strategies

∙ Key fact: the set of keys coherent with the attacker’s observation
is the set that could have possibly led to this observation.

∙ For every m ∈ M, indistinguishability under m is an equivalence
relation on K.

∙ Every equivalence relation R on K corresponds to a partition
PR, and the equivalence classes of PR are pairwise disjoint
blocks Bi, such that

r∪
i=1

Bi = K

∙ Taking f into account, Pf = {Pm | m ∈ M}, where Pm is induced
by indistinguishability under m.

formal model for attack strategies

∙ Key fact: the set of keys coherent with the attacker’s observation
is the set that could have possibly led to this observation.

∙ For every m ∈ M, indistinguishability under m is an equivalence
relation on K.

∙ Every equivalence relation R on K corresponds to a partition
PR, and the equivalence classes of PR are pairwise disjoint
blocks Bi, such that

r∪
i=1

Bi = K

∙ Taking f into account, Pf = {Pm | m ∈ M}, where Pm is induced
by indistinguishability under m.

attack phases, formally

Query phase
∙ Decide on message m ∈ M
with which to query the
system

Response phase
∙ System responds with f(k,m)

∙ k isn’t directly deducible

attack phases, formally

Query phase
∙ Decide on a partition P ∈ Pf

Response phase
∙ The system reveals the block

B ∈ P that contains k

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}

∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}

∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query

∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.

∙ This way, they can determine any key in two steps.

formalizing attack strategies, an example

∙ Assuming a fixed set of partitions P on K, produce a tree of
nodes labelled with subsets of K: the attacker’s decisions with
respect to the observations

∙ K = {1, 2, 3, 4}
∙ PR = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{{1, 2, 3}, {4}}}
∙ Suppose the attacker picks {{1, 2}, {3, 4}} as their first query
∙ If the system responds with {1, 2}, the attacker chooses
{{1}, {2, 3, 4}} as their next query

∙ Otherwise, they choose {{1, 2, 3}, {4}}.
∙ This way, they can determine any key in two steps.

quantitative evaluation of attack strategies

intuition

∙ The attacker gains more information (reduces the uncertainty)
about the key as the attack strategy is refined

∙ Different measures of entropy correspond to different notions
of resistance against brute-force guessing of the key, therefore,
also attack strategy generation

∙ The paper presents Shannon entropy H, guessing entropy G,
and marginal guesswork Wα and builds a model of quantitative
evaluation on top of them

intuition

∙ The attacker gains more information (reduces the uncertainty)
about the key as the attack strategy is refined

∙ Different measures of entropy correspond to different notions
of resistance against brute-force guessing of the key, therefore,
also attack strategy generation

∙ The paper presents Shannon entropy H, guessing entropy G,
and marginal guesswork Wα and builds a model of quantitative
evaluation on top of them

intuition

∙ The attacker gains more information (reduces the uncertainty)
about the key as the attack strategy is refined

∙ Different measures of entropy correspond to different notions
of resistance against brute-force guessing of the key, therefore,
also attack strategy generation

∙ The paper presents Shannon entropy H, guessing entropy G,
and marginal guesswork Wα and builds a model of quantitative
evaluation on top of them

entropy 101

∙ The attacker assumes a probability measure p on K

∙ The Shannon entropy of a random variable X : K → X , given
p ∼ pX, is defined as:

H(X) = −
∑
x∈X

p(x)log
2
p(x)

∙ Formally, it is a lower bound for the average number of bits
required for representing the results of independent repetitions
of the experiment associated with X

∙ Informally, it measures how surprised you expect to be on
average after sampling the random variable X

entropy 101

∙ The attacker assumes a probability measure p on K
∙ The Shannon entropy of a random variable X : K → X , given

p ∼ pX, is defined as:

H(X) = −
∑
x∈X

p(x)log
2
p(x)

∙ Formally, it is a lower bound for the average number of bits
required for representing the results of independent repetitions
of the experiment associated with X

∙ Informally, it measures how surprised you expect to be on
average after sampling the random variable X

entropy 101

∙ The attacker assumes a probability measure p on K
∙ The Shannon entropy of a random variable X : K → X , given

p ∼ pX, is defined as:

H(X) = −
∑
x∈X

p(x)log
2
p(x)

∙ Formally, it is a lower bound for the average number of bits
required for representing the results of independent repetitions
of the experiment associated with X

∙ Informally, it measures how surprised you expect to be on
average after sampling the random variable X

entropy 101

∙ The attacker assumes a probability measure p on K
∙ The Shannon entropy of a random variable X : K → X , given

p ∼ pX, is defined as:

H(X) = −
∑
x∈X

p(x)log
2
p(x)

∙ Formally, it is a lower bound for the average number of bits
required for representing the results of independent repetitions
of the experiment associated with X

∙ Informally, it measures how surprised you expect to be on
average after sampling the random variable X

entropy 101

∙ Given another random variable, Y : K → Y , conditional entropy
H(X | Y) is defined as the expected value of H(X | Y = y), for all
y ∈ Y .

∙ Formally,
H(X | Y) =

∑
y∈Y

pY(y)H(X | Y = y)

entropy 101

∙ Given another random variable, Y : K → Y , conditional entropy
H(X | Y) is defined as the expected value of H(X | Y = y), for all
y ∈ Y .

∙ Formally,
H(X | Y) =

∑
y∈Y

pY(y)H(X | Y = y)

shannon entropy: how do we use this?

∙ Consider now an attack strategy a and the corresponding
variables U (random choice of a key in K) and Va (random
choice of the enclosing block B ∈ Pa).

∙ The initial uncertainty about the key can be written as H(U)

∙ After getting the system’s response, that is, the block B ∈ Pa
which encloses the key, the remaining uncertainty is:

H(U | Va = B)

∙ Neat!

shannon entropy: how do we use this?

∙ Consider now an attack strategy a and the corresponding
variables U (random choice of a key in K) and Va (random
choice of the enclosing block B ∈ Pa).

∙ The initial uncertainty about the key can be written as H(U)

∙ After getting the system’s response, that is, the block B ∈ Pa
which encloses the key, the remaining uncertainty is:

H(U | Va = B)

∙ Neat!

shannon entropy: how do we use this?

∙ Consider now an attack strategy a and the corresponding
variables U (random choice of a key in K) and Va (random
choice of the enclosing block B ∈ Pa).

∙ The initial uncertainty about the key can be written as H(U)

∙ After getting the system’s response, that is, the block B ∈ Pa
which encloses the key, the remaining uncertainty is:

H(U | Va = B)

∙ Neat!

shannon entropy: how do we use this?

∙ Consider now an attack strategy a and the corresponding
variables U (random choice of a key in K) and Va (random
choice of the enclosing block B ∈ Pa).

∙ The initial uncertainty about the key can be written as H(U)

∙ After getting the system’s response, that is, the block B ∈ Pa
which encloses the key, the remaining uncertainty is:

H(U | Va = B)

∙ Neat!

guessing entropy

∙ The guessing entropy of a random variable X is the average
number of questions of the kind ”does X = x hold?” that must
be asked to guess the value of X correctly

∙ The guessing entropy is:

G(X) =
∑

1≤i≤|X|

i p(xi)

∙ The conditional guessing entropy is the expected number of
optimal guesses needed to determine X when Y is known

∙ The conditional guessing entropy is:

G(X | Y) =
∑
y∈Y

pY(y)G(X | Y = y)

guessing entropy

∙ The guessing entropy of a random variable X is the average
number of questions of the kind ”does X = x hold?” that must
be asked to guess the value of X correctly

∙ The guessing entropy is:

G(X) =
∑

1≤i≤|X|

i p(xi)

∙ The conditional guessing entropy is the expected number of
optimal guesses needed to determine X when Y is known

∙ The conditional guessing entropy is:

G(X | Y) =
∑
y∈Y

pY(y)G(X | Y = y)

guessing entropy

∙ The guessing entropy of a random variable X is the average
number of questions of the kind ”does X = x hold?” that must
be asked to guess the value of X correctly

∙ The guessing entropy is:

G(X) =
∑

1≤i≤|X|

i p(xi)

∙ The conditional guessing entropy is the expected number of
optimal guesses needed to determine X when Y is known

∙ The conditional guessing entropy is:

G(X | Y) =
∑
y∈Y

pY(y)G(X | Y = y)

guessing entropy

∙ The guessing entropy of a random variable X is the average
number of questions of the kind ”does X = x hold?” that must
be asked to guess the value of X correctly

∙ The guessing entropy is:

G(X) =
∑

1≤i≤|X|

i p(xi)

∙ The conditional guessing entropy is the expected number of
optimal guesses needed to determine X when Y is known

∙ The conditional guessing entropy is:

G(X | Y) =
∑
y∈Y

pY(y)G(X | Y = y)

guessing entropy: how do we use this?

The guessing entropy G(U | Va) is a lower bound on the expected
number of off-line guesses that an attacker must perform for key
recovery after carrying out a side-channel attack using the strategy
a .

marginal guesswork

∙ For some fixed α ∈ [0, 1], the marginal guesswork of a random
variable X quantifies the number of questions of the kind ”does
X = x hold?” that must be asked to determine X with an α

chance of success.

∙ Formally, the α-marginal guesswork of X is:

Wα(X) = min{j |
∑

1≤i≤j
p(xi) ≥ α}

∙ Completely analogously to the guessing entropy, we can define
the Wα(X|Y) as the conditional α-marginal guesswork

marginal guesswork

∙ For some fixed α ∈ [0, 1], the marginal guesswork of a random
variable X quantifies the number of questions of the kind ”does
X = x hold?” that must be asked to determine X with an α

chance of success.
∙ Formally, the α-marginal guesswork of X is:

Wα(X) = min{j |
∑

1≤i≤j
p(xi) ≥ α}

∙ Completely analogously to the guessing entropy, we can define
the Wα(X|Y) as the conditional α-marginal guesswork

marginal guesswork

∙ For some fixed α ∈ [0, 1], the marginal guesswork of a random
variable X quantifies the number of questions of the kind ”does
X = x hold?” that must be asked to determine X with an α

chance of success.
∙ Formally, the α-marginal guesswork of X is:

Wα(X) = min{j |
∑

1≤i≤j
p(xi) ≥ α}

∙ Completely analogously to the guessing entropy, we can define
the Wα(X|Y) as the conditional α-marginal guesswork

marginal guesswork: how do we use this?

The conditional α-marginal guesswork, Wα(U | Va) is a lower-bound
on the expected number of guesses that an attacker needs to
perform in order to determine the key with an α chance of success,
after having carried out a side-channel attack using strategy a .

worst-case entropy measures

∙ These average case measurements can be extended into
worst-case measurements by quantifying the guessing effort for
the keys in K that are easiest to guess

∙ The minimal guessing entropy is defined as:

Ĝ(U | Va) = min{G(U | Va = B) | B ∈ Pa}

∙ Average case measurements are better suited for distinguishing
between partiitons

worst-case entropy measures

∙ These average case measurements can be extended into
worst-case measurements by quantifying the guessing effort for
the keys in K that are easiest to guess

∙ The minimal guessing entropy is defined as:

Ĝ(U | Va) = min{G(U | Va = B) | B ∈ Pa}

∙ Average case measurements are better suited for distinguishing
between partiitons

worst-case entropy measures

∙ These average case measurements can be extended into
worst-case measurements by quantifying the guessing effort for
the keys in K that are easiest to guess

∙ The minimal guessing entropy is defined as:

Ĝ(U | Va) = min{G(U | Va = B) | B ∈ Pa}

∙ Average case measurements are better suited for distinguishing
between partiitons

measuring the resistance to optimal attacks

resistance to attacks

∙ There is a trade-off between the number of attack steps taken
and the attacker’s uncertainty about the key

∙ Using the different entropy measurements, let’s define ΦE(n),
parametrized by E ∈ {H,G,Wα}, whose value is the expected
remaining uncertainty after n steps of an optimal attack strategy.

∙ ΦE(n) can be used for assessing the implementation’s
vulnerability to side-channel attacks

resistance to attacks

∙ There is a trade-off between the number of attack steps taken
and the attacker’s uncertainty about the key

∙ Using the different entropy measurements, let’s define ΦE(n),
parametrized by E ∈ {H,G,Wα}, whose value is the expected
remaining uncertainty after n steps of an optimal attack strategy.

∙ ΦE(n) can be used for assessing the implementation’s
vulnerability to side-channel attacks

resistance to attacks

∙ There is a trade-off between the number of attack steps taken
and the attacker’s uncertainty about the key

∙ Using the different entropy measurements, let’s define ΦE(n),
parametrized by E ∈ {H,G,Wα}, whose value is the expected
remaining uncertainty after n steps of an optimal attack strategy.

∙ ΦE(n) can be used for assessing the implementation’s
vulnerability to side-channel attacks

assessing vulnerability

∙ Worst case: the attacker is proceeding optimally

∙ A strategy a is optimal with respect to E ∈ {H,G,Wα} iff
E(U | Va) ≤ E(U|Vb), for all strategies b , of the same length as a

∙ The resistance to an optimal attack, ΦE(n) is then:

ΦE(n) = E(U | Vo)

where o is the optimal attack of length n with respect to E .
∙ The paper formally justifies the intuition that more attack steps
lead to less uncertainty about the key by proving that ΦE

decreases monotonously with n.

assessing vulnerability

∙ Worst case: the attacker is proceeding optimally
∙ A strategy a is optimal with respect to E ∈ {H,G,Wα} iff
E(U | Va) ≤ E(U|Vb), for all strategies b , of the same length as a

∙ The resistance to an optimal attack, ΦE(n) is then:

ΦE(n) = E(U | Vo)

where o is the optimal attack of length n with respect to E .
∙ The paper formally justifies the intuition that more attack steps
lead to less uncertainty about the key by proving that ΦE

decreases monotonously with n.

assessing vulnerability

∙ Worst case: the attacker is proceeding optimally
∙ A strategy a is optimal with respect to E ∈ {H,G,Wα} iff
E(U | Va) ≤ E(U|Vb), for all strategies b , of the same length as a

∙ The resistance to an optimal attack, ΦE(n) is then:

ΦE(n) = E(U | Vo)

where o is the optimal attack of length n with respect to E .

∙ The paper formally justifies the intuition that more attack steps
lead to less uncertainty about the key by proving that ΦE

decreases monotonously with n.

assessing vulnerability

∙ Worst case: the attacker is proceeding optimally
∙ A strategy a is optimal with respect to E ∈ {H,G,Wα} iff
E(U | Va) ≤ E(U|Vb), for all strategies b , of the same length as a

∙ The resistance to an optimal attack, ΦE(n) is then:

ΦE(n) = E(U | Vo)

where o is the optimal attack of length n with respect to E .
∙ The paper formally justifies the intuition that more attack steps
lead to less uncertainty about the key by proving that ΦE

decreases monotonously with n.

automated vulnerability analysis

computability of resistance to attacks, assumptions

∙ Let P be a set of partitions over K and r ≥ 2 be the maximum
number of blocks of a partition

∙ The sets O and K are ordered, and comparing elements within
them costs O(1)

computability of resistance to attacks, assumptions

∙ Let P be a set of partitions over K and r ≥ 2 be the maximum
number of blocks of a partition

∙ The sets O and K are ordered, and comparing elements within
them costs O(1)

computability of resistance to attacks

∙ Given f : K × M → O, one can build the partitions (as
disjoint-set data structures) for Pf in

O(|M||K| log|K|)

time, assuming that f can be computed in O(1)

∙ Using brute-force optimal attack searching, ΦE(n) can be
computed in

O(n|M|r
n
|K| log|K|)

under the assumption that E can be computed in O(|K|)
∙ This is useless.

computability of resistance to attacks

∙ Given f : K × M → O, one can build the partitions (as
disjoint-set data structures) for Pf in

O(|M||K| log|K|)

time, assuming that f can be computed in O(1)
∙ Using brute-force optimal attack searching, ΦE(n) can be
computed in

O(n|M|r
n
|K| log|K|)

under the assumption that E can be computed in O(|K|)

∙ This is useless.

computability of resistance to attacks

∙ Given f : K × M → O, one can build the partitions (as
disjoint-set data structures) for Pf in

O(|M||K| log|K|)

time, assuming that f can be computed in O(1)
∙ Using brute-force optimal attack searching, ΦE(n) can be
computed in

O(n|M|r
n
|K| log|K|)

under the assumption that E can be computed in O(|K|)
∙ This is useless.

greedy heuristic

∙ Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the
set of possible keys to a subset A ⊆ K.

∙ A greedy choice for the next query is a partition P ∈ P that
minimizes the remaining entropy, similar to what was done to
get the minimal guessing entropy.

∙ The greedy Φ̂E(n) is an approximation, thus it will not have the
same entropy as ΦE(n), but will, in general, converge.

∙ The value Φ̂E(n) can be computed in

O(n r |M| |K|2)

under the assumption that E can be computed in O(|K|).

greedy heuristic

∙ Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the
set of possible keys to a subset A ⊆ K.

∙ A greedy choice for the next query is a partition P ∈ P that
minimizes the remaining entropy, similar to what was done to
get the minimal guessing entropy.

∙ The greedy Φ̂E(n) is an approximation, thus it will not have the
same entropy as ΦE(n), but will, in general, converge.

∙ The value Φ̂E(n) can be computed in

O(n r |M| |K|2)

under the assumption that E can be computed in O(|K|).

greedy heuristic

∙ Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the
set of possible keys to a subset A ⊆ K.

∙ A greedy choice for the next query is a partition P ∈ P that
minimizes the remaining entropy, similar to what was done to
get the minimal guessing entropy.

∙ The greedy Φ̂E(n) is an approximation, thus it will not have the
same entropy as ΦE(n), but will, in general, converge.

∙ The value Φ̂E(n) can be computed in

O(n r |M| |K|2)

under the assumption that E can be computed in O(|K|).

greedy heuristic

∙ Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the
set of possible keys to a subset A ⊆ K.

∙ A greedy choice for the next query is a partition P ∈ P that
minimizes the remaining entropy, similar to what was done to
get the minimal guessing entropy.

∙ The greedy Φ̂E(n) is an approximation, thus it will not have the
same entropy as ΦE(n), but will, in general, converge.

∙ The value Φ̂E(n) can be computed in

O(n r |M| |K|2)

under the assumption that E can be computed in O(|K|).

greedy heuristic implementation

greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]

greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)
where refine b = minimumBy order (restrict b f)

experiments

timing behaviour of arithmetic circuits

∙ Circuits for multiplying integers

∙ Circuits for multiplication and exponentiation in finite fields F2w

∙ Useful in many encryption schemes, decryption usually consists
of exponentiation followed by multiplication

timing behaviour of arithmetic circuits

∙ Circuits for multiplying integers
∙ Circuits for multiplication and exponentiation in finite fields F2w

∙ Useful in many encryption schemes, decryption usually consists
of exponentiation followed by multiplication

timing behaviour of arithmetic circuits

∙ Circuits for multiplying integers
∙ Circuits for multiplication and exponentiation in finite fields F2w

∙ Useful in many encryption schemes, decryption usually consists
of exponentiation followed by multiplication

a feasible approximation

∙ The chosen entropy is the guessing entropy E = G, and the
approximation Φ̂E is used, with a further parameterization:

∙ the bit-width w of the operands of each algorithm is proposed,
as bit-regularity in the values of Φ for w ∈ {2, . . . ,wmax} is
assumed to show structural similarities of the algorithms

∙ The approximation Φ̂w
E can now be extrapolated for w ≥ wmax

which would have been infeasible otherwise.

a feasible approximation

∙ The chosen entropy is the guessing entropy E = G, and the
approximation Φ̂E is used, with a further parameterization:

∙ the bit-width w of the operands of each algorithm is proposed,
as bit-regularity in the values of Φ for w ∈ {2, . . . ,wmax} is
assumed to show structural similarities of the algorithms

∙ The approximation Φ̂w
E can now be extrapolated for w ≥ wmax

which would have been infeasible otherwise.

a feasible approximation

∙ The chosen entropy is the guessing entropy E = G, and the
approximation Φ̂E is used, with a further parameterization:

∙ the bit-width w of the operands of each algorithm is proposed,
as bit-regularity in the values of Φ for w ∈ {2, . . . ,wmax} is
assumed to show structural similarities of the algorithms

∙ The approximation Φ̂w
E can now be extrapolated for w ≥ wmax

which would have been infeasible otherwise.

setup

∙ For each bit-width w ∈ {2, . . . , 8}, the circuit simulator built
value tables for the side-channel f : {0, 1}w × {0, 1}w → O, with
O ≡ N representing the observation of the number of
clock-ticks until termination

∙ The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

∙ As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in k, that is, k’s Hamming weight.

∙ The Hamming weight defines the equivalence relation over K
∙ Operations in F2w more complicated due to nested loops

setup

∙ For each bit-width w ∈ {2, . . . , 8}, the circuit simulator built
value tables for the side-channel f : {0, 1}w × {0, 1}w → O, with
O ≡ N representing the observation of the number of
clock-ticks until termination

∙ The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

∙ As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in k, that is, k’s Hamming weight.

∙ The Hamming weight defines the equivalence relation over K
∙ Operations in F2w more complicated due to nested loops

setup

∙ For each bit-width w ∈ {2, . . . , 8}, the circuit simulator built
value tables for the side-channel f : {0, 1}w × {0, 1}w → O, with
O ≡ N representing the observation of the number of
clock-ticks until termination

∙ The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

∙ As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in k, that is, k’s Hamming weight.

∙ The Hamming weight defines the equivalence relation over K
∙ Operations in F2w more complicated due to nested loops

setup

∙ For each bit-width w ∈ {2, . . . , 8}, the circuit simulator built
value tables for the side-channel f : {0, 1}w × {0, 1}w → O, with
O ≡ N representing the observation of the number of
clock-ticks until termination

∙ The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

∙ As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in k, that is, k’s Hamming weight.

∙ The Hamming weight defines the equivalence relation over K

∙ Operations in F2w more complicated due to nested loops

setup

∙ For each bit-width w ∈ {2, . . . , 8}, the circuit simulator built
value tables for the side-channel f : {0, 1}w × {0, 1}w → O, with
O ≡ N representing the observation of the number of
clock-ticks until termination

∙ The doubling and addition operations used in the
implementation of integer multiplication each take one clock
cycle

∙ As the algorithm does work only if a bit is 1, the running time
reflects the number of 1-bits in k, that is, k’s Hamming weight.

∙ The Hamming weight defines the equivalence relation over K
∙ Operations in F2w more complicated due to nested loops

...

experiment conclusion

One timing measurement reveals a quantity of information larger
than that contained in the Hamming weight, but it does not
completely determine the key. A second measurement, however, can
reveal all remaining key information.

conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms
∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models

conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms
∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models

conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms

∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models

conclusion

∙ The solution depends on enumerating the keyspace, thus does
not scale

∙ Extrapolation is possible, but the approximation is very limited,
and generally doesn’t work

∙ Structural regularity is useful for parameterized algorithms
∙ Noise can be taken care of by increasing the number of
measurements, or introducing noise models

questions?

