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Motivation



Motivation

Protecting confidentiality of secret information is a fundamental

issue.

However, non-interference is often too strong a condition →
interest in theories that allow information leakage to be quantified

so that a small amount of leakage is tolerable.
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Min Entropy Leakage

Leakage measure based on how much a channel increases the

vulnerability of a secret to being correctly guessed in one try.

Question - how applicable in this across various scenarios?

• What if an adversary benefits by guessing part of the secret?

• Guessing the secret approximately?

• Is allowed multiple guesses?

• Penalized for guessing incorrectly?
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Motivating Example

X is an array containing 10-bit uniformly distributed passwords for

1000 users.

Consider the channel:

u
?←− {0 . . . 999}

Y = (u,X [u])

Some user’s password is always leaked!! Would this threat be

captured using min entropy?
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Motivating Example

Using X as the secret, we compute the prior vulnerability, posterior

vulnerability and min entropy leakage:

• V (π) = 1/210000

• V (π,C ) = 1/29990

• L = log 2−9990

2−10000 = 10 bits
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Motivating Example

Using any specific user’s password as the secret, we compute the

prior vulnerability, posterior vulnerability and min entropy leakage:

• V (π) = 1/210

• V (π,C ) = 1
1000 ∗ 1 + 999

1000
1
210
≈ .00198

• L ≈ log .00198
2−10 ≈ 1.106 bits

Do these results capture the vulnerability of this channel?
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Proposed Solution

• Introduce a generalization of min-entropy leakage, g-leakage.

• Parametrize leakage by a gain function that models the

benefit an adversary gets by making a guess.

• Goal - model a wide range of scenarios.
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Preliminaries



Preliminaries

Definition

Channel A channel is a triple (X ,Y,C ), where X is a finite set of

secret input values, Y a finite set of observable output values and

C is an |X | × |Y| matrix where C [x , y ] is the probability of getting

output y when the input is x .

• Rows sum to 1

• Each entry is between 0 and 1
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Vulnerability

Definition

Given a prior distribution π distribution on X and channel C , the

prior vulnerability is

V (π) = max
x∈X

π[x ]

and the posterior vulnerability is

V (π,C ) =
∑
y∈Y

max
x∈X

π[x ]C [x , y ]

=
∑
y∈Y

p(y)V (pX |y )

Vulnerability is a probability.
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Entropy

Definition

H∞(π) = − logV (π)

H∞(π,C ) = − logV (π,C )

Entropy is a measure of bits of uncertainty.
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Entropy

Note this this is not Shannon entropy, which measures the average

unpredictability of the output.

Why don’t we use Shannon entropy? Because it’s operational

significance can be quite weak:

π = (
1

2
, 2−1000, 2−1000, . . . , 2−1000)

Here the Shannon entropy is 500.5 bits, but the adversary can

correctly guess the secret half the time.
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Leakage

Definition

L(π,C ) = H∞(π)− H∞(π,C ) = log
V (π,C )

V (π)

Leakage is the amount by which C decreases the uncertainty about

the secret.
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Min Capacity

Definition

ML(C ) = sup
π
L(π,C )

Min-capacity is the maximum min-entropy leakage over all priors.

Can be thought of as a worst-case leakage of C .
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Gain Functions



Gain Functions

Min entropy operates under the assumption that the adversary

only benefits by guessing the exact value of the secret.

Generalize min entropy leakage by introducing gain functions to

model the operational scenario.
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Gain Functions

Definition

Given a set X of possible secrets and a set W of allowable guesses,

a gain function specifies the gain that the adversary gets by

choosing w ∈ W when the secret is x ∈ X .

g :W × X → [0, 1]

Note that W does not have to be X .
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Gain Functions

Example: The identity gain function gid : X × X → [0, 1] is given

by

gid(w , x) =

1 w = x

0 w 6= x
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Gain Functions

Definition

Given a gain function g and a prior π, the prior g-vulnerability is

Vg (π) = max
w∈W

∑
x∈X

π[x ]g(w , x)

Intuitive is that adversary should make a guess w that maximizes

the expected gain.
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Gain Functions

Definition

Given a gain function g , prior π, and a channel C the posterior

g-vulnerability is

Vg (π,C ) =
∑
y∈Y

max
w∈W

∑
x∈X

π[x ]C [x , y ]g(w , x)

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x , y)g(w , x)

=
∑
y∈Y

max
w∈W

p(y)
∑
x∈X

p(x |y)g(w , x)

=
∑
y∈Y

p(y)Vg (pX |y )

The posterior g-vulnerability is the weighted average of the

g-vulnerabilities of the posterior distributions pX |y 18



Gain Functions

Definition

Hg (π) = −logVg (π)

Hg (π,C ) = −logVg (π,C )

Lg (π,C ) = Hg (π)− Hg (π,C ) = log
Vg (π,C )

Vg (π)

ML(C ) = supLg (π,C )
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Gain Functions

Given these definitions, we can make the following observation.

Proposition

Vulnerability under gid coincides with vulnerability.

Proof.

For any w ,
∑

X π[x ]gid(w , x) = π[w ]. Hence

Vgid (π) = maxw π[w ] = V (π)
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Examples of Gain Functions



Distance-based gain functions

Given a metric d on X , first divide all distances by the maximum

value of d to obtain a normalized metric, d̄ .

Then the gain function gd can be defined

gd(w , x) = 1− d̄(w , x)

The gain is based on the distance between the guess and the

secret. Allows us to model the case where guessing the secret

approximately benefits the adversary.
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Binary Gain Functions

The family of gain functions that return either 0 or 1 are called

binary gain functions.

In this case, each guess corresponds to the subset of X for which

that guess gives 1. This means that we can use think of the

subsets themselves as guesses.

Definition

Given W ⊆ 2X , W nonempty, the binary gain function gW is

gW(W , x) =

1 if x ∈W

0 otherwise
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Binary Gain Functions

Different choices for W can lead to interesting gain functions.

Examples: W = {W ,X\W },
W = X\∼,

Wk = {W ∈ 2X | |W | ≤ k}
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Return to Motivating Example

Recall the channel:

u
?←− {0 . . . 999}

Y = (u,X [u])
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Return to Motivating Example

The intuition is that the adversary just wants to guess some user’s

password with no preference as to whose.

Let

W = {(u, x)| 0 ≤ u ≤ 999 and 0 ≤ x ≤ 1023}

and define

g((u, x),X ) =

1 if X [u] = x

0 otherwise
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Return to Motivating Examples

Vg (π) = max
w∈W

∑
x∈X

π[x ]g(w , x) = 2−10

Vg (π,C ) = 1

L(π,C ) = log
Vg (π,C )

Vg (π)
= 10

So we get 10 bits again! But is the meaning any different?
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Return to Motivating Example

Converting to entropy,

Hg (π) = 10 Hgid (π) = 10000

The channel leaks 10 out of 10 bits of information under g as

compared with 10 out of 10000 under gid .

More accurately models the threat to a structured secret
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One More Example

Consider these two channels:

if (X % 8 == 0) Y = X ; else Y = 1

Z = X |07

Both channels have a min-entropy leakage of 61 bits.

They can be distinguished by gain functions!
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Properties of g-leakage



Comparing min-entropy leakage and g-leakage

Observation No general relation between min-entropy leakage and

g-leakage holds. Each may be greater than the other.

Theorem

For any channel C and gain function g, MLg (C ) ≤ML(C )

Min-capacity is an upper bound on g-capacity for every gain

function g.
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Comparing min-entropy leakage and g-leakage

This means that if the min-capacity of C is small, then the leakage

under any gain function and under any prior is also small.

However, g can affect the prior vulnerability..... Leakage bounds

only address the conservation of confidentiality.

Corollary: The capacity of C under the k-tries scenario is no

greater than under the 1-try scenario.

30



Calculating G-capacity

Min-capacity is always realized on a uniform prior and hence easy

to calculate.

The same does not hold for g -capacity.

Cited as an area for future study.
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Comparing Channels



Comparing Channels

Say we have two channel C1 and C2 with the same input space X .

An interesting question to ask is whether the leakage of C1 is less

than or equal to that of C2 on every prior.

Definition

Given C1 from X to Z and C2 from X to Y and a leakage measure

m, we write C1 ≤m C2 if the m-leakage of C1 never exceeds that of

C2 for any prior.
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Comparing Channels

How does this ordering depend on m?
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Comparing Channels

A deterministic channel C from X to Y induces a partition on X .

x1 and x2 are in the same partition iff they map to the same

output (C (x1) = C (x2))

We can order these equivalence relations by partial refinement!
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Lattice of Information

Definition

Partial Refinement Given deterministic channels C1 and C2, write

C1 v C2 if the partition of C1 is refined by the partition of C2,

meaning that each equivalence class of C2 is contained within

some equivalence class of C1.

For deterministic channels, ≤m coincides with v for Shannon,

min-entropy and guessing entropy!

This means that C1 v C2 iff C1 never leaks more than C2 on any

prior under any of the usual measures.
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Comparing Probabilistic Channels

Can this be generalized to probabilistic channels?
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Theorem

Let C1 from X to Z and C2 from X to Y be deterministic

channels. Then C1 v C2 iff there exists a deterministic channel C3

from Y to Z such that C1 = C2C3

Proof.

Assume C1 = C2C3. Then C2(x1) = C2(x2) implies that

C1(x1) = C3(C2(x1)) = C3(C2(x2)) = C1(x2). Conversely, assume

C1 v C2. For every y ∈ Y, C1 maps all x ∈ C−12 (y) to the same

value, say zy . Define C3 to map each y ∈ Y to zy .
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Comparing Probabilistic Channels

Can we general partition refinement to probabilistic channels?

Definition

Given C1 from X to Z and C2 from X to Y, we say C1 v0 C2 (C1

is composition refined by C2) if there exists C3 from Y to Z such

that C1 = C2C3

On deterministic channels, v0 coincides with v
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Theorem

If C1 v0 C2, then C1 ≤G C2.

The converse, if C1 ≤G C2, then C1 v0 C2, is conjectured. (later

resolved)

So we have a partial order on probabilistic channels, with both

structural and leakage-testing significance.
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Summary

Introduce the idea of gain functions, which allow us to model

operational scenarios more precisely.

Give some nice results about how channels can be ordering based

on their leakage.
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