Quantifying Information Leaks in Software

Jonathan Heusser, Pasquale Malacaria
Queen Mary University of London

11.10.2016

Introduction

» High complexity associated with quantifying precise leakage
quantities

» Technique to decide if a program conforms to a quantitative
policy

» Applied to a number of officially reported information leak

vulnerabilities in Linux Kernel and authentication routines in
SRP and IMSP

» 'When is there an unacceptable leakage?' and 'Does the
applied software patch solve it?’

» First demonstration of QIF addressing real world industrial
programs

>

>

Tools able to quantify leakage of confidential information

Example:

if (password==guess) access=1 else access=0

>

>

Unavoidable leakage - Attacker observing value of access

If leakage is unavoidable, the real question is not whether or
not the programs leak, but How much?’

For example, how much information about password can be
obtained by the attacker who can read/write guess

If the amount leaked is very small, the program might as well
be considered secure

v

A precise QIF analysis for secret > few bits is computationally
infeasible

Involves computation of entropy of a random variable whose
complexity is the same as computing all possible runs of the
program

Even when abstraction techniques and statistical sampling are
used, useful analysis of real code through this method is
problematic

Hence to address computational feasibility, shift the focus
from How much does it leak? to Does it leak more than k?
Off-the-shelf symbolic model checkers like CBMC are able to
efficiently answer the second question

CBMC

Makes it easy to parse and analyse large ANSI C based

projects

It models bit vector semantics of C accurately - detect

arithmetic overflows

Nondeterministic choice functions to model user input -
efficient solving due to the symbolic nature

Though bounded, can check whether enough unwinding of the
transition system was done - no deeper counterexamples

v

v

v

v

Quantification + nature of leak
Counter examples — causes of leak

For example, we can extract a public user input from the
counter example that triggers a violation

Prove whether official patch eliminated the information leak

Four main technical contributions

Model of Programs and Distinctions

v

C function where inputs are formal arguments and outputs are
either return values or pointer arguments

v

P is the function taking inputs h, ¢
Consider o=(h%4)+1

» h — 4 bits, 1 — 1 bit, observable o takes values from 0..4
and / is the low input

P is modelled as transition system TS=(S,T,I,F)

v

v

v

v

v

v

v

Successor function fors € S :

Post(s) = {s' € S|(s,s') € T}

A state s is in F if Post(s) = ()

A path is a finite sequence of states m = sps;s...5, where
sp€lands, e F

A state is a tuple S = Sy x S,

Input/output pairs of states of a path denoted as ((h,1),0)

where o is produced by final state drawn from some output
alphabet O

(1)

v

A distinction on the confidential input through observations O
exists when at least two paths through P, that leads to
different o for different h but constant ¢

An equivalence relation ~p, on the values of the high
variables is defined as follows: h ~p, h iff :

if ((h,0),0),{(H,¥),0) are input/output pairs in P, then
o=0

That is, two high values are equivalent if they cannot be
distinguished by any observable

For the modulo program example, and equivalence class in
~py would be {1,5,9,13}

v

Let Z(X) be the set of all possible equivalence relations on a
set X

Define on Z(X) the order:
L~ Vsp, s(s1 ~ 2 = 51~ 52) (2)
~, ~ € I(X)
51,5 € X
C defines a complete lattice over X (Lattice of Information)

Characterization of Non-Leaking Programs

PROPOSITION 1: P is non-interfering iff for all £, ~p, is the
least element in Z(Sy)

PROPOSITION 2: ~, C =~ iff for all probability distributions
H(Rp) < H(Rp)

PROPOSITION 3:

1. P is non-interfering iff logx(|~p|) =0

2. The channel capacity of P is logx(|~p|)

3. If for all probability distributions H(Rp) < H(Rp:) then
| ~p | <|=~p|

Encoding Distinction-Based Policies

» A program violates a policy if it makes more distinctions than
what is allowed by the policy

> Use assume-guarantee reasoning to encode such a policy in
driver function

» Triggers violation producing a counterexample of the policy

int h1,h2,h3;

int o01,02,03;

hi=input(); h2=input(); h3=input();
ol=func(hl);

o2=func(h2);

assume(ol1!=02); //(A)

03=func(h3);

assert(o3 == ol || 03 == 02); //(B)

Bounded Model Checking

» ANSI-C program into propositional formula

» Tool can check if unwinding bound is sufficient and ensure
that no longer counterexample exists

» C A =P where C is constraint and P is accumulation of
assumptions

» If E; and E, are two assume statements and @ is expression
of assert statement, then PisP=E ANE — Q

Driver

» Template to syntactically generate a driver for N distinction
policy has been given

> If the driver template is successfully verified upto bound k,
then func does not make more than N distinctions on the
output within k

> It implies the validity of the following implication:

01 F0NO0LF#03N... \Op_1F Op
= Opt1 =01V ...V Opy1 = 0y

» Three claims on the result of model checking process

Checking Quantitative Policies: 4 steps

Modelling Low Input

typedef long long loff_t;
typedef unsigned int size_t;

int underflow(int h, loff_t ppos) {
int bufsz;

size_t nbytes;

bufsz=1024;

nbytes=20;

if (ppos + nbytes > bufsz) //(A)
nbytes = bufsz - ppos; //(B)
if (ppos + nbytes > bufsz) {
return h; //(C)
} else{
return O;
}
}

Environment

» Library functions or data structures that have no
implementation, need to be modelled in a way for the
property to be verified

» CBMC replaces function calls with no implementations with
non-deterministic values

» Example: strcmp and memcmp returning 0 or non-zero

int memcmp(char *s1, char *s2, unsigned int n){
int i;
for(i=0;i<n;i++){
if(s1[i] '= s2[i]) return -1;
}

return O;

Experimental Results

Linux Kernel

> Parts of kernel memory gets mistakenly copied to user space
> Kernel memory modelled as non-deterministic values

» Syscalls - arguments and return value (Data structure and
single values)

AppleTalk

struct sockaddr_at {
u_char sat_len, sat_family, sat_port;

struct at_addr sat_addr;

union{

struct netrange r_netrange;
char r_zero[8];

}sat_range;

};

#define sat_zero sat_range.r_zero

int atalk_getname(struct socket *sock,
struct sockaddr *uaddr, int *uaddr_len, int peer) {
struct sockaddr_at sat;

//0fficial Patch. Comment out to trigger leak
//memset (&sat.sat_zero, 0, sizeof(sat.sat_zero));

//sat structure gets filled
memcpy (uaddr, &sat,sizeof(sat));
return O;

}

tcf_fill_node:

struct tcmsg *tcm;

nlh=NLMSG_NEW(skb, pid, seq, event, sizeof (xtcm), flags);
tcm=NLMSG_DATA (nlh);

tcm—->tcm_familu = AF_UNSPEC;

tem->tem__padl = O;

tcm->tcm__padl = 0; // typo, should be tcm__pad2 instead.

sigaltstack.

Structure with padding:

typedef struct sigaltstack{

void __user *ss_sp;
int ss_flags; //4 bytes padding on 64-bit
size_t ss_size;

} stack_t;

Copying whole structures:

int do_sigaltstack (const stack_t __user *uss,
stack_t __user *uoss, unsigned long sp){
stack_t oss;
. // oss fields get filled
if (copy_to_user(uoss, &oss, sizeof(oss)))
goto out;...

Calculation:

pad = ALIGN - (sizeof(oss) % ALIGN);

if (pad==ALIGN)

padding=0;

else

padding = ((unsigned int) nondet_int())%
(1 << (pad*8))

cpuset.

if (*ppos + nbytes > ctr->bufsz)

nbytes = ctr->bufsz - *ppos;

if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
return -EFAULT,;

» Way out of actual buffer and thus disclose kernel memory
» Requires too much manual intervention

» Modify CBMC to return non-deterministic values for
out-of-bound memory accesses

Authentication Checks

SRP

_TYPE(int) t_getpass (charx buf, unsigned maxlen,

const char* prompt) {
DWORD mode;

GetConsoleMode(handle, &mode);
SetConsoleMode(handle, mode & ~ENABLE_ECHO_INPUT);
if (fputs(prompt, stdout) == EOF ||
fgets(buf, maxlen, stdin) == NULL) {
SetConsoleMode (handle,mode) ;
return -1;

Yoo

IMPSD

int login_plaintext(char* user, char* pass,
char* reply
struct passwd* pwd = getpwname (user);
if (!pwd) return 1;
if (strcmp(pwd->pw_passwd, crypt(pass,
pwd->pw_passwd)) !'=0){
*reply = "wrong password"
return 1;

¥

return O;

Description CVEBulletin LOC ~ k Proof logx(N) Time
appletalk 2009-3002 237 64 v >6bit 1.39h
tcffillnode 2009-3612 146 64 v >6bit 3.34m
sigaltstack ~ 2009-3612 199 128 v >7bit 49.5m

cpuset 2007-2875 63 64 X >6bit 1.32m

SRP - 93 8 v < 1bit 0.128s
login_unix - 128 8 - < 2 bit 8.364s

Conclusion

v

Combined model checking with theoretical work on
Quantitative Information Flow

v

Proof for whether official patches fix the problem

v

Leaks are not synonymous with security breach

v

Quantitative is better equipped than qualitative

	Experimental Results

