
Quantifying Information Leaks in Software

Jonathan Heusser, Pasquale Malacaria

Queen Mary University of London

11. 10. 2016

Introduction

I High complexity associated with quantifying precise leakage
quantities

I Technique to decide if a program conforms to a quantitative
policy

I Applied to a number of officially reported information leak
vulnerabilities in Linux Kernel and authentication routines in
SRP and IMSP

I ’When is there an unacceptable leakage?’ and ’Does the
applied software patch solve it?’

I First demonstration of QIF addressing real world industrial
programs

I Tools able to quantify leakage of confidential information
I Example:

if(password==guess) access=1 else access=0
I Unavoidable leakage - Attacker observing value of access
I If leakage is unavoidable, the real question is not whether or

not the programs leak, but ’How much?’
I For example, how much information about password can be

obtained by the attacker who can read/write guess
I If the amount leaked is very small, the program might as well

be considered secure

I A precise QIF analysis for secret > few bits is computationally
infeasible

I Involves computation of entropy of a random variable whose
complexity is the same as computing all possible runs of the
program

I Even when abstraction techniques and statistical sampling are
used, useful analysis of real code through this method is
problematic

I Hence to address computational feasibility, shift the focus
from How much does it leak? to Does it leak more than k?

I Off-the-shelf symbolic model checkers like CBMC are able to
efficiently answer the second question

CBMC

I Makes it easy to parse and analyse large ANSI C based
projects

I It models bit vector semantics of C accurately - detect
arithmetic overflows

I Nondeterministic choice functions to model user input -
efficient solving due to the symbolic nature

I Though bounded, can check whether enough unwinding of the
transition system was done - no deeper counterexamples

I Quantification + nature of leak
I Counter examples → causes of leak
I For example, we can extract a public user input from the

counter example that triggers a violation
I Prove whether official patch eliminated the information leak
I Four main technical contributions

Model of Programs and Distinctions

I C function where inputs are formal arguments and outputs are
either return values or pointer arguments

I P is the function taking inputs h, `
I Consider o=(h%4)+l
I h → 4 bits, l → 1 bit, observable o takes values from 0..4

and ` is the low input
I P is modelled as transition system TS=(S,T,I,F)

I Successor function for s ∈ S :

Post(s) = {s ′ ∈ S|(s, s ′) ∈ T} (1)

I A state s is in F if Post(s) = ∅
I A path is a finite sequence of states π = s0 s1 s2 ...sn where

s0 ∈ I and sn ∈ F
I A state is a tuple S = SH × SL
I Input/output pairs of states of a path denoted as 〈(h, l), o〉

where o is produced by final state drawn from some output
alphabet O

I A distinction on the confidential input through observations O
exists when at least two paths through P, that leads to
different o for different h but constant `

I An equivalence relation 'P,` on the values of the high
variables is defined as follows: h 'P,` h′ iff :

if 〈(h, `), o〉, 〈(h′, `), o′〉 are input/output pairs in P, then
o = o′

I That is, two high values are equivalent if they cannot be
distinguished by any observable

I For the modulo program example, and equivalence class in
'P,` would be {1, 5, 9, 13}

I Let I(X) be the set of all possible equivalence relations on a
set X

I Define on I(X) the order:

≈v∼↔ ∀s1, s2(s1 ∼ s2 ⇒ s1 ≈ s2) (2)

I ≈, ∼ ∈ I(X)
I s1, s2 ∈ X
I v defines a complete lattice over X (Lattice of Information)

Characterization of Non-Leaking Programs

PROPOSITION 1: P is non-interfering iff for all `, 'P,` is the
least element in I(SH)

PROPOSITION 2: 'p v 'p′ iff for all probability distributions
H(RP) ≤ H(RP′)

PROPOSITION 3:
1. P is non-interfering iff log2(|'P |) = 0
2. The channel capacity of P is log2(|'P |)
3. If for all probability distributions H(RP) ≤ H(RP′) then
| 'P | ≤ | 'P′ |

Encoding Distinction-Based Policies

I A program violates a policy if it makes more distinctions than
what is allowed by the policy

I Use assume-guarantee reasoning to encode such a policy in
driver function

I Triggers violation producing a counterexample of the policy

int h1,h2,h3;
int o1,o2,o3;
h1=input(); h2=input(); h3=input();
o1=func(h1);
o2=func(h2);
assume(o1!=o2); //(A)
o3=func(h3);
assert(o3 == o1 || o3 == o2); //(B)

Bounded Model Checking

I ANSI-C program into propositional formula
I Tool can check if unwinding bound is sufficient and ensure

that no longer counterexample exists
I C ∧ ¬P where C is constraint and P is accumulation of

assumptions
I If E1 and E2 are two assume statements and Q is expression

of assert statement, then P is P ≡ E1 ∧ E2 =⇒ Q

Driver

I Template to syntactically generate a driver for N distinction
policy has been given

I If the driver template is successfully verified upto bound k,
then func does not make more than N distinctions on the
output within k

I It implies the validity of the following implication:
o1 6= o2 ∧ o1 6= o3 ∧ ... ∧ on−1 6= on
=⇒ on+1 = o1 ∨ ... ∨ on+1 = on

I Three claims on the result of model checking process

Checking Quantitative Policies: 4 steps

Modelling Low Input
typedef long long loff_t;
typedef unsigned int size_t;
int underflow(int h, loff_t ppos) {
int bufsz;
size_t nbytes;
bufsz=1024;
nbytes=20;

if(ppos + nbytes > bufsz) //(A)
nbytes = bufsz - ppos; //(B)
if(ppos + nbytes > bufsz) {
return h; //(C)

} else{
return 0;
}

}

Environment

I Library functions or data structures that have no
implementation, need to be modelled in a way for the
property to be verified

I CBMC replaces function calls with no implementations with
non-deterministic values

I Example: strcmp and memcmp returning 0 or non-zero

int memcmp(char *s1, char *s2, unsigned int n){
int i;
for(i=0;i<n;i++){
if(s1[i] != s2[i]) return -1;

}
return 0;

}

Experimental Results

Linux Kernel

I Parts of kernel memory gets mistakenly copied to user space
I Kernel memory modelled as non-deterministic values
I Syscalls - arguments and return value (Data structure and

single values)

AppleTalk

struct sockaddr_at {
u_char sat_len, sat_family, sat_port;

struct at_addr sat_addr;
union{
struct netrange r_netrange;

char r_zero[8];
}sat_range;

};
#define sat_zero sat_range.r_zero

int atalk_getname(struct socket *sock,
struct sockaddr *uaddr, int *uaddr_len, int peer) {

struct sockaddr_at sat;

//Official Patch. Comment out to trigger leak
//memset(&sat.sat_zero, 0, sizeof(sat.sat_zero));
.
.
//sat structure gets filled
memcpy(uaddr, &sat,sizeof(sat));
return 0;
}

tcf_fill_node:

struct tcmsg *tcm;
...
nlh=NLMSG_NEW(skb, pid, seq, event, sizeof(*tcm), flags);
tcm=NLMSG_DATA(nlh);
tcm->tcm_familu = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad1 = 0; // typo, should be tcm__pad2 instead.

sigaltstack.

Structure with padding:

typedef struct sigaltstack{
void __user *ss_sp;

int ss_flags; //4 bytes padding on 64-bit
size_t ss_size;

} stack_t;

Copying whole structures:

int do_sigaltstack (const stack_t __user *uss,
stack_t __user *uoss, unsigned long sp){
stack_t oss;

... // oss fields get filled
if (copy_to_user(uoss, &oss, sizeof(oss)))
goto out;...

Calculation:

pad = ALIGN - (sizeof(oss) % ALIGN);
if(pad==ALIGN)
padding=0;
else
padding = ((unsigned int) nondet_int())%

(1 << (pad*8))

cpuset.

if (*ppos + nbytes > ctr->bufsz)
nbytes = ctr->bufsz - *ppos;
if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
return -EFAULT;

I Way out of actual buffer and thus disclose kernel memory
I Requires too much manual intervention
I Modify CBMC to return non-deterministic values for

out-of-bound memory accesses

Authentication Checks

SRP

_TYPE(int) t_getpass (char* buf, unsigned maxlen,
const char* prompt) {

DWORD mode;

GetConsoleMode(handle, &mode);
SetConsoleMode(handle, mode & ~ENABLE_ECHO_INPUT);
if(fputs(prompt, stdout) == EOF ||
fgets(buf, maxlen, stdin) == NULL) {

SetConsoleMode(handle,mode);
return -1;

}...

IMPSD

int login_plaintext(char* user, char* pass,
char* reply

struct passwd* pwd = getpwname(user);
if (!pwd) return 1;
if (strcmp(pwd->pw_passwd, crypt(pass,

pwd->pw_passwd))!=0){
*reply = "wrong password"

return 1;
}
return 0;

Description CVEBulletin LOC k Proof log2(N) Time
appletalk 2009-3002 237 64 X >6bit 1.39h
tcffillnode 2009-3612 146 64 X >6bit 3.34m
sigaltstack 2009-3612 199 128 X >7bit 49.5m
cpuset 2007-2875 63 64 x >6bit 1.32m
SRP - 93 8 X ≤ 1bit 0.128s

login_unix - 128 8 - ≤ 2 bit 8.364s

Conclusion

I Combined model checking with theoretical work on
Quantitative Information Flow

I Proof for whether official patches fix the problem
I Leaks are not synonymous with security breach
I Quantitative is better equipped than qualitative

	Experimental Results

