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Abstract

Automatic Detection and Repair of Input Validation and
Sanitization Bugs

Muath Abdullah Alkhalaf

A crucial problem in developing dependable web applications is the correctness of the input

validation and sanitization. Bugs in string manipulation operations used for validation and

sanitization are common, resulting in erroneous application behavior and vulnerabilities that

are exploitable by malicious users. In this dissertation, we investigate the problem of automatic

detection and repair of validation and sanitization bugs both at the client-side (JavaScript) and

the server-side (PHP or Java) code.

We first present a formal model for input validation and sanitization functions along with

a new domain specific intermediate language to represent them. Then, we show how to ex-

tract input validation and sanitization functions in our intermediate language from both client

and server-side code in web applications. After the extraction phase, we use automata-based

static string-analysis techniques to automatically verify and fix the extracted functions. One of

our contributions is the development of efficient automata-based string analysis techniques for

frequently used, complex string operations.

We developed two basic approaches to bug detection and repair: 1) policy-based, and 2)

differential. In the policy-based approach, input validation and sanitization policies are ex-

pressed using two regular expressions, one specifying the maximum policy (the upper bound

xi



for the set of strings that should be allowed) and the other specifying the minimum policy (the

lower bound for the set of strings that should be allowed). Using our string analysis techniques

we can identify two types of errors in an input validation and sanitization function: 1) it accepts

a set of strings that is not permitted by the maximum policy (i.e., it is under-constrained), or 2)

it rejects a set of strings that is permitted by the minimum policy (i.e., it is over-constrained).

Our differential bug detection and repair approach does not require any policy specifica-

tions. It exploits the fact that, in web applications, developers typically perform redundant in-

put validation and sanitization in both the client and the server-side since client-side checks can

be by-passed. Using automata-based string analysis, we compare the input validation and san-

itization functions extracted from the client- and server-side code, and identify and report the

inconsistencies between them. Finally, we present an automated differential repair technique

that can repair client and server-side code with respect to each other, or across applications in

order to strengthen the validation and sanitization checks. Given a reference and a target func-

tion, our differential repair technique strengthens the validation and sanitization operations in

the target function based on the reference function by automatically generating a set of patches.

We experimented with a number of real world web applications and found many bugs and

vulnerabilities. Our analysis generates counter-example behaviors demonstrating the detected

bugs and vulnerabilities to help the developers with the debugging process. Moreover, we

automatically generate patches that can be used to mitigate the detected bugs and vulnerabilities

until developers write their own patches.
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Chapter 1

Introduction

Web applications have become a crucial part of commerce, entertainment and social in-

teraction. They are rapidly replacing desktop applications. In the near future, they are likely

to play critical roles in national infrastructures such as healthcare, national security, and the

power grid. At the early days of web application development, most of the application logic

was implemented at the server side. The client side consisted merely of an HTML web page

that was rendered on the web browser. In the case where the application needed some data from

the user, an HTML form was used where the data would be sent immediately to the server side

without any processing or validation. In recent years, in order to improve efficiency and usabil-

ity, web applications have started to migrate many of the computational tasks to the client-side

code using new JavaScript-based development frameworks such as Ajax. This makes applica-

tions more responsive by reducing the need to send a request to the web server from the user’s

machine and wait for the response.
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Request
http://site.com/unsubscribe.jsp?email=john.doe@mail.com

Internet 

Confirmation Page

Congratulations!

Your account has been unsubscribed
...

HTML page

Web application
(server side)

public class FieldChecks {
  ...
  public boolean validateRequired
(Object bean, 
      Field field, ..){
    String value = evaluateBean(bean, 
field);
    if( (value==null) || (value.trim
().length()==0) ){
      return false;
    }
    else{
      return true;
    }
  }
  ...
}

Java servlet
unsubscribe.jsp

Web server

1"

2"

3" 4"

5"

DB"

7"

6"

Figure 1.1: Interaction between a user and a three-tier architectured web application.

1.1 Three-Tier Architecture of Web Applications

Figure 1.1 shows a high-level view of the way web applications work by showing the typical

scenario for an interaction between a user and a web application to unsubscribe from a mailing

list. The web application has a three-tier architecture which consists of front-end client-side

code (executing at the user’s machine that is running the browser), back-end server-side code

(executing at the web server) and the backend database (storing the persistent data on a separate

database server). (1) First, the user opens a web page in his browser and enters his email address

in the HTML form field labeled “Email”. Filling out text fields in HTML forms is one of the

main forms of interaction between a user and a web application. (2) Then, the user clicks the

submit button to send the input email to the web application. (3) The input is checked and

processed by the client-side JavaScript code and prepared to be sent to the server. (4) After

that, the browser packages the input into an HTML request and sends it to the server-side of

2
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the web application (written using Java Servlet Framework in our example). (5) The server-

side logic checks the input data again, processes it and (6) then sends a query to the database

to delete the user’s email from the mailing list stored their. (7) Finally, the server-side replies

back to the user that his email address has been removed.

A web application, such as our example, typically expects the user input to be in a certain

format for many text fields (such as username, email, zip code, etc.). Since the user input

can contain typing errors, or may be purposefully written (by a malicious user) to violate

the expected format, the web application has to validate the user input using input valida-

tion operations such as regular expression matching. Furthermore, the web application may

need to modify the input to put it in the expected format using sanitization operations such

as trimming white spaces from the beginning and the end of an input or escaping problem-

atic characters. Figure 1.2 shows an example of a validation and sanitization function writ-

ten in Java to validate and sanitize email addresses in a real web application called JGOSSIP

(http://sourceforge.net/projects/jgossipforum/). Line 5 checks that the email

address value is not null or empty after trimming space characters. Lines 6 and 7 validate the

input by matching against some regular expression.

1.2 Input Validation and Sanitization in Web Applications

Web application developers often introduce redundant input validation and sanitization

code in the client and server-side code of a web application as is the case with our example

3

http://sourceforge.net/projects/jgossipforum/


Chapter 1. Introduction

1 public class Validator {
2 public boolean validateEmail(Object bean, Field f, ..) {
3 String val = ValidatorUtils.getValueAsString(bean, f);
4 Perl5Util u = new Perl5Util();
5 if (!(val == null || val.trim().length == 0)) {
6 if ((!u.match("/( )|(@.*@)|(@\\.)/", val))
7 && u.match("/^[\\w]+@([\\w]+\\.[\\w]{2,4})$/",
8 val)) {
9 return true;

10 } else {
11 return false;
12 }
13 }
14 return true;
15 }
16 ...
17 }

Figure 1.2: Java server-side validation code snippet.

application. In step (3) in our example application, the entered email address gets validated

and/or sanitized by the client-side code (written usually in JavaScript) that is executing on the

user’s machine to make sure it is in the correct format. One of the benefits of validating user

input on the client-side (instead of doing it exclusively on the server-side) is that it improves

usability and responsiveness of the application by preventing unnecessary communication with

the server and reduces the server load at the same time. In step (5) in our example, the server-

side code validates and/or sanitizes the input email address again. One of the reasons for

redundant validation is that a malicious user can bypass the client-side validation as shown in

Figure 1.3 by manually crafting the HTML request with malicious input.

If input validation or sanitization is not used, inputs that violate the expected format can

easily cause an application to crash since the user input becomes the input parameter of the

action that is executed based on the user request. Moreover, during action execution, user input

can be passed as a parameter to security sensitive operations such as sending a query to the

4
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Request
http://site.com/unsubscribe.jsp?email=john.doe@mail.com

Internet 

Web application
(server side)

public class FieldChecks {
  ...
  public boolean validateRequired
(Object bean, 
      Field field, ..){
    String value = evaluateBean(bean, 
field);
    if( (value==null) || (value.trim
().length()==0) ){
      return false;
    }
    else{
      return true;
    }
  }
  ...
}

Java servlet
unsubscribe.jsp

Web server

Submit'

…<script…>… 

Figure 1.3: Malicious user can bypass the client-side validation code.

back-end database. In order to ensure the security of the application, the user inputs that flow

into sensitive functions must be correctly validated and sanitized.

Due to global accessibility of web applications, malicious users all around the world can

exploit a vulnerable application, so any existing vulnerability in a web application is likely

to be exploited by some malicious user somewhere. Given the significance of this security

threat, one would expect web application developers to be extremely careful in writing input

validation and sanitization functions. Unfortunately, web applications are notorious for security

vulnerabilities such as SQL injection and cross-site scripting (XSS) that are due to improper

input validation and sanitization. In fact, according to IBM X-Force Trend and Risk Report [51]

(which provides statistical information about all aspects of threats that affect Internet security),

around 40% of disclosed vulnerabilities in years 2010-2014 are found in web applications (see

Figure 1.4).

In this dissertation, we introduce new techniques to automatically detect and repair bugs

and vulnerabilities in input validation and sanitization code in web applications. These tech-
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Figure 1.4: The percentages of vulnerabilities in web applications among all disclosed vulner-
abilities in 2010-2013 [51].

niques are based on the automata-based symbolic static string analysis that we discuss in Chap-

ter 3.

1.3 Overview of the Modular Verification Process

A big obstacle when analyzing input validation and sanitization code is its complexity.

Figure 1.5 shows part of a typical input validation and sanitization code used to validate a form

in a google website. The reader may observe that this code (1) mixes the input validation and

sanitization of multiple HTML form fields at the same time, (2) mixes the actual code that does

the input validation and sanitization with other parts of the program that do error reporting and

6



Chapter 1. Introduction

function validate() {
...

switch(type) {
case "time":

var highlight = true;
var default_msg = "Please enter a valid time.";
time_pattern = /^[1-9]\:[0-5][0-9]\s*(\AM|PM|am|pm?)\s*$/;
time_pattern2 = /^[1-1][0-2]\:[0-5][0-9]\s*(\AM|PM|am|pm?)\s*$/;
time_pattern3 = /^[1-1][0-2]\:[0-5][0-9]\:[0-5][0-9]\s*(\AM|PM|

am|pm?)\s*$/;
time_pattern4 = /^[1-9]\:[0-5][0-9]\:[0-5][0-9]\s*(\AM|PM|

am|pm?)\s*$/;
if (field.value != "") {

if (!time_pattern.test(field.value)
&& !time_pattern2.test(field.value)
&& !time_pattern3.test(field.value)
&& !time_pattern4.test(field.value)) {

error = true;
}

}
break;

case "email":
error = isEmailInvalid(field);
var highlight = true;
var default_msg = "Please enter a valid email address.";
break;

case "date":
var highlight = true;
var default_msg = "Please enter a valid date.";
date_pattern = /^(\d{1}|\d{2})\/(\d{1}|\d{2})\/(\d{2}|\d{4})\s*$/;
if (field.value != "")

if (!date_pattern.test(field.value)||!isDateValid(field.value))
error = true;

break;
...

if (alert_msg == "" || alert_msg == null) alert_msg = default_msg;
if (error) {

any_error = true;
total_msg = total_msg + alert_msg + "|";

}
if (error && highlight) {

field.setAttribute("class","error");
field.setAttribute("className","error"); // For IE

}
...

}

Figure 1.5: An example of the complexity of input validation and sanitization code.
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1 <?php
2 $www = $_GET["www"];
3 $l_otherinfo = "URL";
4 $www = preg_replace( "/[^A-Za-z0-9 .-@://]/", "", $www );
5 echo $l_otherinfo . ": " . $www ;
6 ?>

Figure 1.6: A server-side PHP sanitization code snippet.

event handling. To deal with this complexity, we divide the problem of detecting and repairing

bugs in input validation and sanitization code into three phases [2–4, 103]. In the first phase

(Chapter 2), given a web application, we extract the relevant input validation and sanitization

code into individual functions. In the second phase (Chapter 3), we analyze these functions

using automata-based static string analysis. In the third phase (Chapters 4 and 5), we use the

result from string analysis to find and repair bugs and vulnerabilities in input validation and

sanitization functions.

1.3.1 Extraction of Input Validation and Sanitization Functions

In Chapter 2, we start explaining the extraction phase by formally specifying what we

mean by input validation and sanitization functions. Then, we introduce a new intermediate

language called Input Validation and Sanitization Language (IVSL) that allows us to have a

unified framework for analyzing different input validation and sanitization functions extracted

from different programming languages. After that, we explain static and dynamic techniques

that we developed to extract input validation and sanitization code into an IVSL function.

8
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1.3.2 Policy-Based Detection and Repair of Vulnerabilities

Let us give some examples of erroneous input validation and sanitization code to give a

high level idea of what kind of bugs we deal with and how we deal with them. Figure 1.6

shows a simplified version of a vulnerable PHP sanitization code that is taken from a web

application called MyEasyMarket [9]. The code starts with assigning the user input provided

in the $_GET array to the $www variable in line 2. Then, in line 3, it assigns a string con-

stant to the $l_otherinfo variable. Next, in line 4, the user input is sanitized using the

preg_replace command. This replace command gets three arguments: the match pattern,

the replace string and the target string. It finds all the substrings of the target string that match

the match pattern and replaces them with the replace string. In the replace command shown in

line 4, the match pattern is the regular expression [^A-Za-z0-9 .-@://], the replace string

is the empty string (which corresponds to deleting all the substrings that match the match pat-

tern), and the target string is the value of the variable $www. After the sanitization step, the

PHP code outputs the concatenation of the variable $l_otherinfo, the string constant ": ",

and the variable $www.

The replace operation in line 4 contains an error that leads to a XSS vulnerability. The

error is in the match pattern of the replace operation: [^A-Za-z0-9 .-@://]. The goal

of the programmer was to eliminate all the characters that should not appear in a URL. The

programmer implements this by deleting all the characters that do not match the characters

in the regular expression [A-Za-z0-9 .-@://], i.e., eliminate everything other than alpha-

numeric characters, and the ASCII symbols ., -, @, :, and /. However, the regular expression

9
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is not correct. First, there is a harmless error. The subexpression // can be replaced with

/ since repeating the symbol / twice is unnecessary. More serious error is the following:

The expression .-@ is the union of all the ASCII symbols that are between the symbol . and

the symbol @ in the ASCII ordering. The programmer intended to specify the union of the

symbols ., -, and @ but forgot that symbol - has a special meaning in regular expressions

when it is enclosed with symbols [ and ]. The correct expression should have been .\-@.

This error leads to a vulnerability because the symbol < (which can be used to start a script

to launch a XSS attack) falls between the symbol . and the symbol @ in the ASCII ordering.

So, the sanitization operation fails to delete the < symbol from the input, leading to a XSS

vulnerability.

Using string replace operations, such as the one in this example, to sanitize user input is

common practice in web applications. However, this type of sanitization is error prone due to

complex syntax and semantics of regular expressions. In the first half of Chapter 4, we discuss

how to statically detect and remove common vulnerabilities such as XSS and SQLI from web

applications [102–105]. Briefly, we statically approximate the output of input validation and

sanitization code using static string analysis techniques from Chapter 3. Then we compare this

output against some manually written security policies called attack patterns that characterize

the set of bad and malicious strings. If we find similarities (i.e., shared values) between the two

then we report a possible vulnerability. Furthermore, we generate a patch that will either block

or sanitize bad inputs that may have caused the vulnerability but were missed by the original

validation and/or sanitization.

10
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1 function isValidEmail(emailField) {
2 var email = emailField.value.trim();
3 emailField.value = email;
5 EMAIL_REGEXP =
6 /^[a-z0-9!#$%&’*+/=?^_‘{|}~-]+
7 (?:\.[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*@
8 (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+
9 [a-z0-9](?:[a-z0-9-]*[a-z0-9])$/;
10 if(!EMAIL_REGEXP.test(email)) {
11 alert("Please enter a correct email address.");
12 emailField.focus();
13 return false;
14 }
15 return true;
16 }

Figure 1.7: A client-side JavaScript email validation code snippet.

Figure 1.7 shows a JavaScript email validation function taken from a telecommunication

company website (www.stc.co.sa). This function has a different problem than the previous

one. The previous PHP function was under constrained and accepts bad inputs while this

function is over constrained and rejects good inputs. In line 10, the input email address is

validated against the complex regular expression in lines 5-9. The problem is that the language

of this regular expression does not contain email addresses with capital letters. Although this

problem is present in the client-side of the web application, it will affect the application’s

correctness since it will prevent some valid emails with capital letters to reach the server. To

detect this type of problems, we extend the policy based verification in Chapter 4 to verify

against two manually specified input policies instead of one, a minimum policy and a maximum

policy [3]. If one of these two policies is violated, then we report this violation along with a

counter example. We use regular expressions as the specification language for the minimum

and maximum policies.

11
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1 <html>
2 ...
3 <script>
4 function validateEmail(form) {
5 var emailStr = form["email"].value;
6 if(emailStr.length == 0) {
7 return true;
8 }
9 var r1 = new RegExp("( )|(@.*@)|(@\\.)");

10 var r2 = new RegExp("^[\\w]+@([\\w]+\\.[\\w]{2,4})$");
11 if(!r1.test(emailStr) && r2.test(emailStr)) {
12 return true;
13 }
14 return false;
15 }
16 </script>
17 ...
18 <form name="subscribeForm" action="/Unsubscribe"
19 onsubmit="return validateEmail(this);">
20 Email: <input type="text" name="email" size="64" />
21 <input type="submit" value="Unsubscribe" />
22 </form>
23 ...
24 </html>

Figure 1.8: JavaScript client-side validation code snippet that corresponds to Java server-side
code in Figure 1.2.

1.3.3 Differential Bug Detection and Repair

Effectiveness of policy-based bug detection and repair depends on the correctness and pre-

cision of the written policies in characterizing good and bad string values. It is often possible,

for instance, to encode well-known attacks into security policies (in the form of attack patterns)

and write down policies for common input fields such as email address and zip code. In other

cases, however, the checks to be performed on the inputs are specific to the functionality of the

web application, and the input validation may be tightly coupled with and dependent on the ap-

plication logic. Because they are specific to individual applications, there are no pre-specified

policies that can be used to assess these types of input checks. In these cases, to make sure that
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the input validation is adequate, it would be necessary to specify a different policy for each

different application, which is a tedious and error-prone task.

In Chapter 5, we address this problem by presenting a semantic differential analysis and

repair technique that eliminates the need to write manual specifications [2, 4]. As we have

mentioned before, developers of web applications write redundant input validation and san-

itization code both on the client and server-side of a web application. Figure 1.8 shows the

JavaScript client-side input validation function in JGOSSIP web application that corresponds

to the Java server-side one in Figure 1.2. Although both functions validate the same HTML

input field that is used to input email address, they return different results for the same input.

On one hand, the client-side validation function rejects a sequence of one or more white space

characters (e.g., “ ” where means a white space character), for which the condition on line

6 evaluates to false and the regular expression check on line 11 fails, thereby resulting in the

function returning false. However, for the same input, the second condition on line 5 of the

server-side validation function (Figure 1.2) evaluates to false, due to the trim function call,

and the string is therefore accepted by the server. Accepting white spaces as email addresses

by the server might lead to failures. In Chapter 5 we show how to detect and repair this bug

by automatically finding the difference between the client and server-side functions above and

then repairing this difference.

13
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1.3.4 Tools and Related Work

In Chapter 6 we present a string analysis library called LIBSTRANGER [103] that implements

our automata-based symbolic string analysis algorithms along with two web application’s ver-

ification tools called STRANGER and SEMREP. STRANGER [103] can be used to statically and

automatically find and eliminate string-related security vulnerabilities in PHP applications.

SEMREP is a language agnostic semantic differential repair tool that, given two input validation

and sanitization functions a reference and a target, automatically repairs the target against the

reference by producing a set of patch functions.

Finally, in Chapter 7 we give an overview of other work in the areas of strings analysis and

automated program repair for input validation and sanitization code.

1.4 Summary of Contributions

The main contributions of this dissertation can be summarized as follows:

1. We present a new modular verification framework for analyzing and repairing input val-

idation and sanitization code in web applications. The framework simplifies the verifi-

cation process by separating the extraction, modeling and verification of input validation

and sanitization functions.

2. We present a new formal specification for string related input validation and sanitization

functions that are used in web applications.

14
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3. We present a new Input Validation and sSanitization Language called IVSL that is capa-

ble of capturing the semantics of string related input validation and sanitization opera-

tions in different programming languages.

4. We present a new dynamic technique to extract input validation and sanitization functions

from JavaScript into IVSL.

5. We present an automata-based symbolic string analysis framework for IVSL programs

to 1) conservatively compute all possible output values assuming any input value, 2)

conservatively compute all possible input values given a preferred set of output values

and 3) conservatively compute the set of possibly rejected inputs.

6. We present a set of novel language-based algorithms to model string-related branch con-

ditions in input validation and sanitization functions.

7. We present a set of novel language-based replace algorithms to efficiently and precisely

model specialized string replace operations that are commonly used in input sanitization

in web applications.

8. We present new policy-based techniques to automatically discover, generate counter ex-

amples and repair bugs and vulnerabilities in web applications.

9. We present a new semantic differential analysis and repair algorithm that is capable of au-

tomatically detecting and repairing differences between client-client, client-server and/or

server-server input validation and sanitization code in a web application.

15
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10. We extend LIBSTRANGER which is an efficient symbolic automata manipulation library

and present two automatic bug detection and repair tools for web applications called

STRANGER and SEMREP that are available online along with their source code.

16
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Modeling and Extraction of Sanitizer

Functions

In this chapter we explain the first phase of our verification process which is the extraction

phase. We start by formally specifying what we mean by input validation and sanitization

functions. Then, we introduce a new intermediate language called Input Validation and San-

itization Language (IVSL) that allows us to have a unified language-agnostic framework for

analyzing different input validation and sanitization functions extracted from different pro-

gramming languages. After that, we show static and dynamic techniques that we developed to

extract input validation and sanitization code, that is written in JavaScript, PHP and Java, from

web applications into IVSL functions.

17
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1 function validateEmail(inputField, helpText){
2 if (!/.+/.test(inputField.value)) {
3 return false;
4 }
5 else {
6 if (

!/^[a-zA-Z0-9\.-_\+]+@[a-zA-Z0-9-]+(\.[a-zA-Z0-9]
{2,3})+$/.test(inputField.value)) {

7 return false;
8 }
9 else {
10 return true;
11 }
12 }
13 }

Figure 2.1: An example of a JavaScript pure validator.

2.1 Formal Modeling of Sanitizer Functions

Input validation and sanitization operations in web applications can be characterized us-

ing three types of functions: 1) pure validator, 2) pure sanitizer and 3) validating-sanitizer

functions [2]. Each of these three types of functions can further be characterized as either a

single-input or multi-input functions. We first define the single-input version of each of the

three function types then generalize the definition to multi-input functions.

A single-input pure validator is a total function:

Fv : Σ∗ → {⊥,>}

that takes a string s ∈ Σ∗ and returns either > indicating that the string is valid and should be

accepted or ⊥ indicating the string is not valid and should be rejected.

A multi-input pure validator is a total function:

Fv : (Σ∗)n → {⊥,>}
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1 function escape($x){
2 $x = preg_replace(’/"/’, ’\"’, $x);
3 return $x;
4 }

Figure 2.2: An example of a PHP pure sanitizer function.

that takes a tuple of strings (s1, s2, . . . , sn) ∈ (Σ∗)n and returns either > indicating that all

these strings are valid and should be accepted or ⊥ indicating one of the strings si is not valid

and hence the tuple (s1, s2, . . . , sn) should be rejected.

Note that, a pure validator does not change the value of the input string, it either accepts

or rejects it as it is. Figure 2.1 shows a JavaScript single-input pure validator that validates

email addresses. The function makes sure that the email address is not empty (line 2) and that

it matches the regular expression for valid email addresses (line 6). If these two conditions are

satisfied then it accepts the input by returning true (line 10) otherwise it rejects it by returning

false (lines 3,7). Notice that the email address value is not modified by the function.

A single-input pure sanitizer is a total function:

Fs : Σ∗ → Σ∗

that maps an input string s ∈ Σ∗ to an output string s′ ∈ Σ∗.

A multi-input pure sanitizer is a total function:

Fs : (Σ∗)n → Σ∗

that maps an input tuple of strings (s1, s2, . . . , sn) ∈ (Σ∗)n to an output string s′ ∈ Σ∗.

Note that, a pure sanitizer does not reject any input string, however, it may modify some

of the input strings. Figure 2.2 shows a PHP single-input pure sanitizer function. The function
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1 function reference_function($x){
2 if (strlen($x) > 4)
3 exit();
4 else {
5 $x = preg_replace(’/</’, ’’, $x);
6 if ($x == ’’)
7 exit();
8 else
9 return $x;
10 }
11 }

Figure 2.3: An example of a PHP validating sanitizor function.

modifies its input by escaping each " character with a \ character (line 2) then it returns the

new modified value. Notice that the function does not reject any invalid input that contains the

character ".

A single-input validating-sanitizer is a function:

Fvs : Σ∗ → {⊥} ∪ Σ∗

that takes an input string s ∈ Σ∗ and either returns ⊥ indicating that s is invalid or maps s to

output string s′ ∈ Σ∗.

A multi-input validating-sanitizer is a function:

Fvs : (Σ∗)n → {⊥} ∪ Σ∗

that takes a tuple of strings (s1, s2, . . . , sn) ∈ (Σ∗)n and either returns ⊥ indicating that one

or more of the string values si is invalid or maps (s1, s2, . . . , sn) to output string s′ ∈ Σ∗ by

modifying and/or combining one or more of the components si of the input tuple.

Note that, a validating-sanitizer may reject some inputs and modify some others. For the

rest of the dissertation we call a validating-sanitizer function a sanitizer for short. We model
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all input validation and sanitization operations in web applications as sanitizers. Note that, one

can simulate a pure validator using a sanitizer: If an input is rejected by the validator, it is

rejected by the sanitizer and if it is accepted by the validator it is returned without modification

by the sanitizer. Obviously, any pure sanitizer is also a sanitizer that never rejects an input.

Hence, by just focusing on sanitizers we are able to analyze all three types of behavior.

Figure 2.3 shows an example of a PHP single input validating-sanitizer function. The

function validates the length of the input on line 2. Then, it sanitizes the input by deleting the

character < on line 5. Finally, the function validates the result again to make sure it is not empty

on line 6. This shows how input validation and sanitization operations are mixed together in a

validating-sanitizer.

2.1.1 Input Validation vs. Sanitization in practice

Some examples of validation operations in practice include functions such as PHP function

preg_match, JavaScript function indexof and Java function contains which are utilized usu-

ally through branch conditions. Examples of sanitization operations are JavaScript and Java

replace functions and PHP functions trim, addslashes and htmlspecialchars.

Based on our observation of input validation and sanitization in web applications, we no-

ticed a relationship between data read and write operations and the usage of either input vali-

dation or input sanitization. In case of a data read operation that will not change the backend

database, input sanitization can be used to convert malicious user inputs into benign ones.
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This should not affect the database since these sanitized values will be only used to query the

database but not to change its state.

In case of a data write operation that will change the backend database, the use of validation

vs. sanitization depends on weather or not the input value is used later to query the database.

If the value is going to be used later to query the database, then input validation is used to

make sure that the input is in a correct format that matches the format of the data type expected

by the database. For example, when signing up in a website, input fields such as username

are usually validated only and not sanitized. The reason is that, when a sanitizer modifies a

username value during signup without the user knowledge, the user may not be able to use the

original value s/he signed up with to login. Preventing attack strings that may come through

these fields is done by validation operations. On the other hand, input fields for contents, such

as messages in a forum, are only sanitized even when they are entered into the database since

they are not used to query the database later on.

2.2 Input Validation and Sanitization Language

In this section we will define an intermediate representation called Input Validation and

Sanitization Language (IVSL). This language is used to represent sanitizer functions—as de-

fined in 2.1—which are then analyzed by our string analysis algorithms in 3 in a programming

language independent way. Before analyzing input validation and sanitization code for a given

input field(s) in a web application, we first extract such code as an IVSL program.
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Sanitizer → sanitizer( Var [, Var]∗ ){ Block }
Var → <identifier>
Block → Stmt [; Stmt]∗
Stmt → Var := Exp | return Var | reject

| if( Pred ) { Block }[ else { Block } ]
| while( Pred ) {Block }

Exp → "<string-literal>" | Var | ?
| StringFunc

Pred → Pred && Pred | Pred || Pred | !Pred | ? | ( Pred ) |
| Var RelOp "<string-literal >"
| Var matches RegExp
| StringFunc RelOp "<string-literal >"
| IntFunc RelOp <integer-literal>

RelOp → < | <= | > | >= | == | !=
StringFunc → replace( RegExp,

(
"<string-literal>" | Var

)
, Var )

| concat(
(
"<string-literal>" | Var

)
,
(
"<string-literal>" | Var

)
)

| trim( Var, ’<char >’[, ’<char>’]* )
| addslashes( Var )
| htmlspecialchars( Var )
| substring( Var, [<integer-literal >], [<integer-literal >] )

IntFunc → length( Var ) RelOp <integer-literal>
| indexof( Var, "<string-literal>"[, " <string-literal >"] )

RegExp → /[ˆ] UnionExp [$]/
UnionExp → InterExp|UnionExp

| InterExp
InterExp → ConcatExp & InterExp

| ConcatExp
ConcatExp → RepeatExp ConcatExp

| RepeatExp
RepeatExp → RepeatExp ? | RepeatExp * | RepeatExp +

| RepeatExp { <integer-literal >[, <integer-literal >] }
| ComplExp

ComplExp → ~ ComplExp
| CharClassExp

CharClassExp → [CharClasses] | [ˆCharClasses]
| SimpleExp

CharClasses → CharClass CharClasses | CharClass
CharClass → <char> - <char> | <char>
SimpleExp → <char> | . | (UnionExp)| ε

Figure 2.4: The abstract grammar for IVSL, the intermediate language used to represent
sanitizers.
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Figure 2.4 shows the syntax for IVSL. Keywords and operators are written in bold, non-

terminals in italic, terminals are surrounded by < and >, and the typewriter font is used for

the built-in functions.

An IVSL program has only one single main function called sanitizer which represents one

single-input or multi-input sanitizer function as defined in 2.1. sanitizer is a function that takes

one or more string variables as input and either rejects or returns a string value as output. In

IVSL, variables can be declared and defined simply by assigning them values. Only string

variables are allowed and the ASCII encoding is the encoding that is currently supported.

<string-literal> represents a string literal (i.e., a string constant) where characters " and

\ should be escaped properly using character \. <char> represents a single ASCII character

constant that is properly escaped depending on the context. If it appears outside a regular

expression then only ’ and \ should be escaped using \. If it appears inside a regular expression

then, in addition to ’ and \, all regular expression reserved characters such as / and ? should

also be escaped. <integer-literal> represents an integer constant number along with the - sign

if the number is negative. Integer literals are allowed only as parameters to functions, in regular

expressions to allow for repetition or in predicates to represent variable length or indices within

a string variable or value. Syntax for variable <identifier> follows rules for PHP identifiers.

The language allows conditional statements, loops and assignment statements with string

operations. Assigning a variable ? represents assignment of an arbitrary string value s ∈ Σ∗.

This allows for translation into IVSL from other languages when right hand side expressions

of non-string type are present. The operator matches is the language membership operator
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which returns true if a variable string value is an element in the regular language defined by

the regular expression. The comparison operators such as < and != refer to lexicographical

ordering when applied to string expressions. We use ? to indicate non-deterministic branch

conditions. Since we only allow string expressions in the language, ? can be used to represent

non-string predicates such as predicates on boolean or integer expressions. matches and

comparison operators have the highest precedence followed by the parentheses then the logical

operators.

The language does not allow user-defined functions. It provides two types of built-in func-

tions: (1) string functions which return string values and (2) integer functions which return

integer values. There are three core built-in functions which are concat, replace and

length. These functions can be used to model a wide range of string manipulation oper-

ations in different programming languages. Table 2.1 shows some examples for translating

some PHP and JavaScript string operations into IVSL code. Notice that the translation for the

same operation may differ depending on the context where this operation has been used. In

addition, the language provides a number of specialized built-in functions which are functions

that allow for more precise modeling of builtin library string functions in PHP, JavaScript and

Java.

2.2.1 Using IVSL to Validate and Sanitize Inputs

An IVSL program has only one accepting sink which is the return Var which returns

the value of the string variable Var. The input string(s) are validated using branch conditions
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Lang. Original Operation IVSL Code
JS if (v1.match(/foo/)) if(v1 matches /foo/)
JS v2 = v1.match(/bar/) v2 = ?
JS if (/foo/.test(v1)) if (v1 matches /foo/)
JS v2 = /bar/.test(v1) v2 = ?
PHP $v2 = nl2br($v1) v2 = replace(/\\n/,"<br/>", v1);

v2 = replace(/\\r/, "<br/>", v2);
v2 = replace(/\\r\\n/, "<br/>", v2);
v2 = replace(/\\n\\r/, "<br/>", v2);

Table 2.1: Example of translation from JavaScript and PHP string operations to IVSL code.

that test if a set of validation constraints are satisfied. For example, all string values for vari-

able s of length greater than or equal to 10 will be filtered by the following branch condition:

length(s) < 10. If a string value is not valid, then it will be rejected by executing the

reject statement which halts the execution and exits the program. I.e., the reject state-

ment corresponds to the exit() statement in PHP. Unlike return Var, we allow multiple

reject statements since a string may get rejected based on many validation constraints.

Input sanitization is carried out either through core string manipulation operations concat

and replace or through specific operations such as trim, addslashes and

htmlspecialchars.

2.3 Composing Sanitizer Functions

Sanitizer functions can be composed together to produce a new sanitizer function. Here we

will consider the composition of single-input sanitizers only. We formally define the sanitizer
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composition as follows: given two single-input sanitizer functions F1 and F2, their composi-

tion, F1 ◦ F2 : Σ∗ → Σ∗ ∪ {⊥}, is a sanitizer function defined as:

F1 ◦ F2(x) =


⊥ if F2 = ⊥

F1(F2(x)) if F2(x) 6= ⊥

In IVSL, two single-input sanitizers F1 and F2 are composed as F1 ◦ F2 by inlining the

first one F1 into the second one F2 which guarantees that the first one is going to run after the

second one. The inlining is done as following:

• Replace the return Var statement in the second sanitizer F2 with all the statements from

the first sanitizer F1.

• Renaming the input variable in the first sanitizer F1 with the name of the output variable

in the second sanitizer F2.

• Renaming all other variables in the first sanitizer F1 in a way that resolves any naming

conflicts with variables in the second sanitizer F2.

2.4 Extracting Sanitizer Functions

Input validation and sanitization is used ubiquitously in all types of computational tasks.

In this dissertation, we limit the scope of our verification techniques to the domain of web

applications. The first step in the verification process is to extract the input validation and
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sanitization code in a given web application that we want to analyze and repair into an IVSL

sanitizer function. Web applications receive their input through HTML form input fields (we

will refer to them from now on as input fields) where each input field represents an input

variable. The values entered into these fields are validated and sanitized by the JavaScript code

on the client-side before they are sent in an HTTP request to the server-side where they get

validated and sanitized again.

Client-side checks are mainly introduced for performance reasons, as they can save one

network round-trip and the additional server-side processing that would be incurred when in-

valid input is sent to and subsequently rejected by the web application. Therefore, to improve

the user experience and provide instant feedback, many web applications validate inputs at the

client side before making the actual request to the server. On the other hand, since client-side

validation can often be circumvented by malicious users, the server cannot trust the inputs

coming from the client side, and all input checks performed on the client side must be repeated

on the server side before user input is processed and possibly passed to security sensitive func-

tions. In this dissertation, we consider input validation and sanitization both on the client-side

JavaScript code and the server-side PHP or Java code.

Extraction phase consists of three steps:

• Finding sources where input values come from and the corresponding sinks where output

values are sent out.
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• Extracting input validation and sanitization code that flow from sources to sinks into

IVSL sanitizer functions.

• Mapping two IVSL sanitizer functions to each other in the case of differential analysis.

We will describe how first and second steps are carried out for each language that we deal with

while leaving the discussion of the third step to Chapter 5.

The first step in extraction of input validation and sanitization code is to locate a set of

data sources and the corresponding sinks. A data source is the source where web application’s

input data come from. A sink is an output function that sends data from the web application

to a database (through an SQL query) or to a user of the web application (through an HTTP

response). A web application works by receiving input values from one or more sources,

processing these values, then outputting through one of the sinks. Based on this view of how

a web application works, we say that input values in a web application flow from one or more

sources into a sink. In our verification of input validation and sanitization in web applications,

we extract and verify all input validation and sanitization operations that are applied on the

input values while they are flowing from one or more sources into a sink.

However, due to having input validation and sanitization both on the client- and the server-

side of a web application, we need to locate sources and corresponding sinks both on the

client-side and on the server-side. On one hand, sources on the client-side are the same as the

sources of the web application itself and sinks on the server-side are the same as the sinks of

the web application itself. On the other hand, sinks on the client-side are intermediate sinks
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!!!!!!!!!!!Sink!
!
mysql_query(……)!
!

Sources!

$_POST[“email”]!
$_POST[“username”]!

Input 

return reject 

Sanitizer Sanitizer 

Input 

return reject 

!!!!!!!!!!!Sink!
!
submit!
!

Source!
Enter&email:&

Client-Side&Extrac2on& Server-Side&Extrac2on&(PHP)&

Figure 2.5: An example of how a sanitizer is extracted on the client-side and the server-side.

that send output to the server-side and sources on the server-side are intermediate sources

that receive input from client-side. In other words, each intermediate sink on the client-side

outputs (i.e., sends) one or more input values to the server-side which will result in one or more

intermediate sources on the server-side. Based on this observation, we (1) first locate sources

and corresponding sinks on the client-side. Then (2) we extract input validation and sanitization

operations between these sources and sinks. Then (3) we locate sources and corresponding

sinks on the server-side. Finally, (4) we extract input validation and sanitization operations

between server-side sources and sinks.
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On client-side, input values flow from input fields (after a user submits a form) to the

HTTP request that is generated and sent to the server. The HTTP request is generated and

sent either automatically by the browser (when a submit event is received) or manually by

the JavaScript code (through XMLHttpRequest.send()). We only extract and verify validation

and sanitization operations on the client-side that are carried out during the period between

submitting the form by the user and sending the HTTP request1. We extract one single-input

sanitizer function per each pair of an input field and a sink. The extracted function includes all

the validation and sanitization operations that are applied on that particular field before its value

reaches the sink and sent to the server. Notice that submit is not an actual sink (i.e., an output

function) but rather a browser/JavaScript DOM event. In this case, we extract operations that

are executed by the JavaScript event handler of the submit event. On the left side of Figure 2.5

we show how a sanitizer function is extracted from JavaScript code for an email input field.

On the server-side code, input values flow from HTTP request into output functions. Input

values in an HTTP request are received and stored (on the server-side) in elements of PHP

arrays $_POST and $_GET and fields of Java HttpServletRequest object. Examples of out-

put functions are functions that send queries to database such as PHP function mysql_query

and functions that send HTML response to the user such as PHP’s echo2 and Java method

HttpServletResponse.getWriter().println(). We extract one single-input sanitizer func-

1We restricted our work in this dissertation to these validation and sanitization scenarios due to limitations
of our extraction techniques. When combined with appropriate extraction techniques, our input validation and
sanitization language, along with our verification techniques that we introduce here, can be used to verify and
repair any string-related validation and sanitization code.

2Although echo looks like a function, in fact it is a construct in PHP language.
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tion per each pair of an input in an HTTP request and a sink. The extracted function includes all

the validation and sanitization operations that are applied on the value of that particular input

before it reaches the sink.

There are some verification tasks where we need to consider validation and sanitization

operations that are applied to all inputs in an HTTP request at the same time. An example of

such verification task is looking for XSS and SQLI vulnerabilities (Chapter 4). In this case, we

need to consider, simultaneously, how values from multiple inputs in an HTTP request (i.e.,

multiple sources) flow into a single output (i.e., a sink). To do this, we extract one multi-input

sanitizer function per each pair of one or more inputs in an HTTP request and a sink. The

sanitizer function is extracted such that it characterizes validation and sanitization operations

that are used to validate all sources that flow into this sink on all execution paths between these

sources and the sink. On the right side of Figure 2.5 we show how a multi-input sanitizer

function is extracted from PHP code for two input values in an HTTP request and a sink.

2.5 Dynamic Extraction of Client-Side JavaScript Code

We use dynamic analysis technique to extract sanitizer functions from JavaScript [3]. We

extract one sanitizer for a given HTML form input field so the output of the extraction technique

is a single-input sanitizer. We start with a brief discussion of validation and sanitization of

HTML forms using JavaScript, then we explain the extraction technique that we developed.
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2.5.1 How JavaScript Validates and Sanitizes Input

The first step in form validation and sanitization with JavaScript is to register an event

handler for some event of the input form or its fields. The event handler is then used to call

the JavaScript validation code for some or all of the form fields. Based on the result returned

by this validation code, either the form will be submitted or error messages will be shown

to the user. Submission of the form data is done either by the browser itself or a JavaScript

issued XHR (XMLHttpRequest) request when Ajax is used. The default event for handling

form validation code is onsubmit event of the form itself. In the basic case, the browser will

execute the onsubmit event handler (if found) when a user tries to submit an HTML form

by clicking on an HTML element of type submit. If the handler returns true (or if there is no

handler for onsubmit) then the browser will submit the form data using an ordinary HTTP

get/post request. In this approach all the validation code goes inside the onsubmit handler

and the functions it calls.

In websites that use Ajax and XHR to submit the forms, the situation is different. First of

all, the onsubmit handler should return false when the element used to submit the form is of

type submit (so that the browser does not submit the form itself). Furthermore, since the form

will be submitted from within the JavaScript code, the element the user is supposed to click to

submit the form does not have to be of type submit, and there is a large number of events

besides onsubmit that can be linked to form submission such as onclick, onmousedown,

and onmouseup. Finally, due to the capturing and bubbling of DOM events, it is possible to

do the validation in an event handler for one of the events of one of the ancestors of the element
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used to submit the form. This happens especially when the area the user clicks on to submit

the form consists of multiple elements overlaid on top of each other.

2.5.2 Why Dynamic Extraction?

It is not feasible to statically find and extract the code that does the client-side input val-

idation with acceptable precision. First, it is difficult to find the event handlers that contain

the form validation code due to the variety and complexity of the input validation process dis-

cussed above. Even in the basic case, where the onsubmit event handler is used, sometimes

this event handler is registered dynamically from within the JavaScript code that loads the page

instead of being statically linked in the HTML code of the webpage. Second, even if we suc-

ceed in statically locating and extracting the event handling code, the code itself is large and

full of event handling, error handling and error message rendering functions which are hard to

separate statically. Furthermore, the validation code contains all the validation functions for

all form fields mixed together instead of having one function per input field. Third, JavaScript

is notoriously difficult to analyze statically due to its highly dynamic and loosely-typed na-

ture [78]. Due to these reasons, we use a dynamic extraction technique in which we trade off

soundness to gain acceptable level of precision.

2.5.3 Technique Overview

We use semi-automatic crawling to find input fields and extract their validation and sani-

tization code. Given a starting page and a seed of URLs (to help with URLs that are hard to
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reach automatically within an application), the crawling process tries to find as many pages as

possible. If it hits a webpage with a form, it tries to fill out the form using a set of pre specified

profiles. A profile is a map from a set of keys of type string to a set of string values. To fill out

a field in a form, the crawling process tries to match the name of the field to one of the keys in

the profile. We also designed the crawling such that it can take a list that maps certain URLs to

form profiles to get more precision especially when filling out usernames and passwords. The

crawling process is statefull, meaning that it keeps the session when it logs into an application

and uses the session handler to crawl further through the application. The crawler is built on

top of HtmlUnit web testing framework and Rhino JavaScript interpreter which we discuss

later in this section.

During crawling, we use dynamic extraction technique in which we handle a single target

input field at a time. We only consider input fields that hold string values. In the validation

and sanitization code for a target input field i, we identify all and only the statements that

operate on i, directly or indirectly, such as string manipulation operations on i and conditional

statements affected by i’s value. The rest of the code is disregarded because it is irrelevant for

the validation and sanitization of i.

Specifically, we (1) execute all of the validation and sanitization code associated with i

and (2) extract statements that operate on i on the fly by instrumenting the execution. The

statements that operate on i are extracted into an IVSL sanitizer function. We perform these two

steps (1) and (2) several times using different values for i chosen from a pool of representative

values, generated using heuristics that are based on the type of the input field. We instrument
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the execution using a modified version of the JavaScript interpreter Rhino. In particular, the

modified interpreter converts all accesses to objects and arrays to accesses to specific memory

locations (as we explain later), which avoids imprecision due to the use of objects, arrays, and

aliasing. During the dynamic extraction, we handle internal function calls by inlining the code

of the callees,3 while external calls are either treated as uninterpreted functions or mapped to an

IVSL built-in function or to a series of function calls to replace, concat and/or length

functions. At the end of extraction, we get different sanitizer functions that result from different

runs. We combine these functions by analyzing each one of them separately using automata-

based string analysis (as described in Chapter 3) and then combining their analysis result using

the automata union operation.

2.5.4 Rhino and HtmlUnit Testing Framework

Rhino [73] is a JavaScript interperter that is written in Java. HtmlUnit [34] is a GUI-less

Java web browser that is used along with Rhino to provide a unit testing framework for web

applications. Figure 2.6 shows a simple HtmlUnit testcase. The testcase first loads a web page

with an Html form, fills out field userid in the form then submits the form.

To run JavaScript code, Rhino either: (1) transforms JavaScript code into Java bytecode

then executes the bytecode using Java Virtual Machine (JVM) or (2) compiles the JavaScript

code into its own bytecode and uses its own stack-based virtual machine, which we call Rhino

3Although inlining can be problematic in the case of recursion and in the presence of deep call graphs, vali-
dation and sanitization code tend to be simple and not affected by these issues. If this were not the case, it would
always be possible to stop the inlining at a given depth and introduce approximations.
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@Test
public void submittingForm() throws Exception {

final WebClient webClient = new WebClient();

// Get the first page
final HtmlPage page1 = webClient.getPage("http://some_url");

// Get the form that we are dealing with and within that form,
// find the submit button and the field that we want to change.
final HtmlForm form = page1.getFormByName("myform");

final HtmlSubmitInput button = form.getInputByName("submitbutton");
final HtmlTextInput textField = form.getInputByName("userid");

// Change the value of the text field
textField.setValueAttribute("root");

// Now submit the form by clicking the button and get back the second page.
final HtmlPage page2 = button.click();

webClient.closeAllWindows();
}

Figure 2.6: Example of an HtmlUnit testcase.

Virtual Machine (RVM), to execute the code4. When instrumenting JavaScript code, we always

use the second option. Figure 2.7 shows a simple JavaScript code along with the corresponding

RVM bytecode. The bytecode for each function is stored as an instruction array. The numbers

on the left of each instruction in the figure represent the index of the instruction in the bytecode

array. Note that some instructions such as BINDNAME and SETNAME correspond to complex

read and write operations that involve traversal of the prototype chain of JavaScript objects.

Rhino uses an execution (call) stack where, for each JavaScript function under execution, a

stack frame is used to store the instructions array along with the scope object and other runtime

information related to this function. Note that this stack is different than the Rhino Virtual

Machine (RVM) stack that is used to store arguments for instructions along with their results.

4We could not find an official documentation for RVM so the information provided here is based on our own
observations while working with Rhino.
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-------------------
(a) JavaScript code
-------------------

var x = "foo";
var y = x + "bar";

----------------
(b) RVM bytecode
----------------

[0] LINE : 1
[3] REG_STR_C0
[4] BINDNAME //push value of x onto stack
[5] REG_STR_C1
[6] STRING //push string "foo" onto stack
[7] REG_STR_C0
[8] SETNAME //pop value of x and "foo", store "foo" into x then push value of x
[9] POP //pop value of x
[10] LINE : 2
[13] REG_STR_C2
[14] BINDNAME //push value of y onto stack
[15] REG_STR_C0
[16] NAME //push value of x onto stack
[17] REG_STR_C3
[18] STRING //push "bar" onto stack
[19] ADD //pop value of x and "bar", concatenate them then push result
[20] REG_STR_C2
[21] SETNAME //pop result and value of y, store result into y then push value of y
[22] POP //pop value of y
[23] RETURN_RESULT

Figure 2.7: (a) JavaScript code along with (b) corresponding Rhino Virtual Machine bytecode.

2.5.5 JavaScript Memory Management in Rhino

Our extraction technique tracks memory locations dynamically during JavaScript program

execution. Tracking memory locations is done to allow our analysis to (1) extract only the

statements that operate on the input field that we are interested in, (2) to deal with aliasing and

(3) to give unique names to different memory locations. To understand how memory locations

tracking works, we need first to explain briefly how JavaScript stores values during program

execution and how Rhino implements this using Java.
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There are three classes of values that a JavaScript program reads and writes during exe-

cution: (1) primitive values which are String, Number and Boolean; (2) special values

which are Undefined which is a single-valued type that has one value undefined that is

returned when reading an uninitialized variable or a non-existent object property and Null

which is a single-valued type that has one value null assigned to variables and object proper-

ties that do not have a valid value of any of the other types; and (3) composite values which are

Array and Object. A JavaScript object is a one to one mapping from a set of strings (prop-

erty names) to a set of values (primitive, special and/or composite). JavaScript treats arrays as

objects but with a special internal length property that is updated automatically by the lan-

guage itself. JavaScript object model contains intrinsic object types such as Object (which

is the supertype of all composite types), Function, Array, Date, ... etc, along with user

defined object types. A third class of object types, called host objects, is added to JavaScript

when it runs inside a web browser. These object types are not part of the JavaScript language

specification but are provided by all modern browsers. These include the DOM tree objects

(along with DOM event model) and the Window object that represents the browser window.

Since Rhino is implemented in Java, it has to map these data types into Java data types. (1)

Rhino maps primitive types into Java types String, double and boolean. (2) Rhino maps

JavaScript object model into a Java class hierarchy with the Java class ScriptableObject

as its root (which correponds to the JavaScript type Object). HtmlUnit extends this hierarchy

by providing host objects. (3) (I) the special single-valued JavaScript type Undefined is

mapped to Java class Undefined with a singleton instance Undefined.instance that
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represents the JavaScript value undefined and (II) the special single-valued type Null is

mapped to null in Java.

During a JavaScript program execution, all memory reads and writes operate on either prim-

itive values, the two special values undefined and null or object references. These are read

from/written to either (1) variables or (2) object properties. JavaScript binds global variables

to the global scope and local variables to the scope of the function where these variables are

defined5. A JavaScript function’s scope is stored in the function frame on the execution (call)

stack. Finally, objects and their properties are stored in the heap. How does Rhino implement

this? Let us first explain how Rhino maps each JavaScript object into an instance of a Java

ScriptableObject. ScriptableObject stores properties of a JavaScript object in a

hashtable. For each property, the hash value of the property name (which is of type String) is

used as the key. Property value (which is either a primitive value, one of the two special values

or an object reference) is stored in the value field of a Slot object. Figure 2.8 shows how

Rhino stores two nested JavaScript objects into two instances of class ScriptableObject.

For example, the value of the property p1 of object obj which is the string value foo is stored

in the Java object field value of the first Slot object that is indexed by h(p1) where h is the

hash function and p1 is of type String.

In the case of values that are stored in variables, Rhino stores these values in Slot objects

in the hashtable of the special object scope (of type ScriptableObject) which repre-

sents the scope of some JavaScript function func. In this case, the hash values of the local

5In our extraction, we currently do not handle with statement.
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var obj = { p1: “foo”, p2: 3, p3: { p1: “bar”, p2: “abc” }}!
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Figure 2.8: Structure of the two Java ScriptableObjects that Rhino uses to store the two
JavaScript nested objects obj and obj.p3.

variables’ names are used as keys. The scope object for some function func is stored in

func’s stack frame in the execution stack. The top scope object (i.e., the scope object of the

top code) where global variables are stored is the Window object.

2.5.6 Tracking Memory Locations

Unlike C language where the dynamic memory (i.e., heap) is modeled as a byte array and

pointers can be used to directly access any memory location i.e., any byte in the array, in Java,

dynamic memory (i.e., heap) is modeled as a graph of objects where each object is accessible
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either through a reference stored in a local variable on the stack or through a reference stored

in a field in another object. Since Rhino is implemented in Java we should expect the smallest

unit of memory that we can track dynamically to be a Java object.

In fact, we define a memory location as a Java object of type Slot that is stored in some

ScriptableObject and has the value of some JavaScript variable or object property. We

track memory locations by keeping track of references to Slot objects. When tracking mem-

ory locations, we only track locations that store string values. Tracking Slot objects allows

us to track memory locations that store primitive values (more specifically string values) since,

as we discussed before, each JavaScript primitive value and object reference is stored in the

value field of some Slot object that corresponds to some JavaScript variable or object prop-

erty. For example, to track an HTML form input field of type text, we track the Slot object

for the text property in the JavaScript DOM object that corresponds to the input field.

As we said before, in our extraction, we extract all input validation and sanitization opera-

tions that operate on a certain HTML from input field i. This means that we need to track the

memory location that corresponds to this input field along with all other memory locations that

are assigned the value of this input field during program execution. To do this we need first

to find the memory location that stores the value of the input field itself which is done using

HtmlUnit. When filling out a form using HtmlUnit (see Figure 2.6), it allows us to access

DOM objects that store the values of the HTML input fields in this form. This in turn allows

us to intiate the memory tracking in Rhino by feeding the Slot object for target HTML input
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field to the MEMORYTRACKER component of the extraction framework as the initial memory

location.

2.5.7 Memory Tracker

MEMORYTRACKER is the first component of our instrumentation framework. MEMORY-

TRACKER tracks various memory locations and stores their information. The only type of

memory locations that are tracked are memory locations that store string values. Each memory

location that is tracked corresponds to a Slot object in Java. The information that we keep

for a memory location is an auto-generated name along with a reference to the corresponding

Slot object. We use the word mloc along with a unique integer number to get a unique

name for a memory location. MEMORYTRACKER stores memory locations’ information in

a hashtable indexed by Java hashCode of Slot objects (the reader should not confuse the

Java hashCode of the Slot object that is used by MEMORYTRACKER and the hashcode that

indexes a Slot object in a ScriptableObject). Since Rhino guarantees that two differ-

ent JavaScript memory locations (i.e., two different variables or object properties) will have

different Slot objects, indexing the hashtable with hashCode of Slot objects guarantees

different names in the output generated code for different memory locations regardless of the

identifier names and aliasing6.

Temporary Memory Locations. Some arguments of bytecode instructions are temporary

and do not correspond to any actual JavaScript variable or object property. As an example,
6We use Java default hashCode method and the current implementation of Java VM that we use guarantees

unique hashCode upto 232 objects

43



Chapter 2. Modeling and Extraction of Sanitizer Functions

instruction ADD (number 19) in Figure 2.7 stores its result in a temporary location on the

RVM stack which is then used by the instruction SETNAME. Since we generate one IVSL

statement per each assign instruction (as we explain later), we need to give unique names for

such temporary memory locations when generating the output code. The problem is further

complicated by the fact that such instruction may reside in a loop which means that we need to

remember the names that we give to temporary memory locations.

To solve this problem, MEMORYTRACKER keeps its own execution (call) stack frame for

each JavaScript function. In this frame, it keeps an information array for memory locations

where each entry in this array corresponds to an entry in the bytecode instructions array. In this

array, information about memory locations accessed by each instruction is kept. If the accessed

memory location corresponds to a Slot object, then we keep a reference to the Slot object

information in the MEMORYTRACKER hashtable. If the accessed memory location is a tempo-

rary memory location, then we keep the assigned name for this location. This array allows us

to use the same names for RVM stack temporary memory locations used by instructions when

these instructions are executed multiple times within loops. Remember that these temporary

memory locations do not have corresponding Slot objects and, thus, are not stored in the

MEMORYTRACKER hashtable.

2.5.8 Code Generation

The CODEGENERATOR component of our JavaScript extraction framework is the one re-

sponsible for generating output code. When generating the output code, we generate three
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types of IVSL statements: (1) assignment statement, (2) if/else conditional statement and (3)

while loop statement. The question is how do we generate each of these three types of IVSL

statements from the bytecode? We assume for now that we are dealing with a single JavaScript

function when generating code. Later on, we explain, given the code generated for a JavaScript

function, how to deal with interprocedural code generation (including passing arguments and

returning results) through function inlining.

Control Statements

When extracting JavaScript code, we preserve the control structure of the JavaScript func-

tion by parsing the IF/GOTO control structure of the bytecode of the function into IVSL control

statements (i.e., if/else or while loop statements). This results in an extracted code that con-

tains conditional statements and loops as opposed to a flat execution trace. Preserving control

structures such as loops allows us to avoid under-approximation that results from unrolling

loops. Before explaining how this is done, we would like to point out that JavaScript does not

allow arbitrary GOTO statements in its code. This allows our parsing algorithm to precisely

detect the control structure of the bytecode of a single JavaScript function since the bytecode

does not have arbitrary GOTO instructions. In fact, when Rhino compiles a JavaScript func-

tion code into RVM bytecode, it translates a JavaScript if/else control statement (including the

condition and the body) systematically into a list of consecutive instructions where execution

control (i.e., conditional jumps) is achieved by the two instructions IFNE and GOTO as shown

in Figure 2.9. A similar thing is done for all loop statements i.e., while, do/while, for, and for/in
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Figure 2.9: Structure of bytecode that corresponds to if/else and while loop statements.

where they are all translated into a list of consecutive instructions where execution control is

achieved through the two instructions GOTO and IFEQ as shown in Figure 2.9.

Given this information, we can now proceed to the algorithm used to generate control state-

ments. When a new JavaScript function is about to be executed, Rhino loads its instructions ar-
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ray and creates a new execution stack frame. The CODEGENERATOR instruments this function

loading phase by parsing the function bytecode and generating what we call Template Abstract

Syntax Tree (Template AST) for the bytecode. A Template AST is an Abstract Syntax Tree

that specifies the syntax of the control statements (i.e., the control structure) of a JavaScript

function only without specifying the syntax of non-control statements. For non-control state-

ments, placeholder nodes are used to reserve a place for the subtree that represents the syntax

of that statement that will be generated later. Figure 2.10 shows the body of a JavaScript func-

tion along with the corresponding RVM bytecode and the Template AST. The nodes INST0,

INST1, ...etc represent the placeholder nodes in the tree. To store the Template AST (along

with other information), CODEGENERATOR uses its own execution (call) stack where it inserts

a new frame for each new JavaScript function call and stores the Template AST (along with

other information) in that frame.

The Template AST is built by parsing the IF/GOTO control structure of the bytecode into

a more complex one that uses if/else and while loop. The parsing algorithm is recursive to

allow for detecting nested control statements inside each other to any depth. The algorithm

starts by receiving the bytecode array along with the indices of the first and last instructions

that mark the region in the bytecode array that the algorithm is going to process. In the first

call to the algorithm this region spans the whole bytecode array of the current JavaScript func-

tion that is being processed. For example, given the JavaScript function in Figure 2.10, the

first call is going to scan and process the whole bytecode starting from instruction with index

0 ([0] LINE : 1) and ending with instruction with index 37 ([37] RETURN_RESULT).
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In the consecutive calls, this region spans all instructions in the bytecode that correspond to

the JavaScript control statement that is currently being processed. For example, in Figure 2.10,

while scanning and analyzing the bytecode during the first call to the algorithm, when the algo-

rithm reaches instruction 13, a recursive call is going to be initiated to process the instructions

13 to 34 that represent the while loop.

During each recursive call, a new subtree is generated as follows: (1) In the first call to the

algorithm, it generates the Template AST for the current JavaScript function being processed.

The Template AST will have a node of type SANITIZER that is also the root node along with

another node of type BLOCK (see nodes SANITIZER and BLOCK in Figure 2.10). (2) In the

consecutive recursive calls, a subtree is generated for either an IVSL if/else statement or an

IVSL while loop statement. For an if/else statement, the subtree has an IF node as its root

node and three subtrees under the IF node, (I) a condition subtree, (II) a then subtree and

(III) an else subtree. For a loop statement, the subtree has a WHILE node as its root node and

two subtrees under the WHILE node, (I) a condition subtree and (II) a loop body subtree. The

subtree for either of the two types of control statements is inserted under the current parent

tree by replacing the placeholder node for the first instruction corresponding to the control

statement (i.e., GOTO for while loop statement and IFNE for if/else statement). The parent

tree is either the AST itself, if the control statement is not nested in another control statement,

or a subtree for an if/else or while loop statement in case of nested control statements (i.e.,

a loop nested inside a conditional statement, a loop nested inside another loop, a conditional
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statement nested inside another conditional statement or a conditional statement nested inside

a loop).

After the Template AST/subtree is created, the instructions within the current region of

bytecode being processed are scanned and processed as follows: (1) If this is the first call to

the algorithm, then scanning starts from the first instruction; (2) if this is a recursive call to

process an if/ else statement then three regions are scanned, (I) the condition (which consists

of the single instruction that precedes the IFNE instruction), (II) the then branch and (III) the

else branch (see Figure 2.9); and (3) if this is a recursive call to process a loop statement then

two regions are scanned: (I) the loop body and (II) the loop condition (see Figure 2.9). For

example, in Figure 2.10, the algorithm during the first call is going to scan all instructions from

instruction 0 to instruction 13. When it reaches instruction 13 it will initiate a recursive call to

process a loop. This recursive call is going to first scan the body instructions i.e., instructions

from 16 to 26 and then scan the condition instructions i.e., instructions from 29 to 33. Since

there is no nested control statements, the algorithm will finish the recursive call and go back to

process the instruction 37 and terminate.

While scanning the instructions, for instructions other than GOTO, IFNE and IFEQ, we

generate a placeholder node for each instruction and insert it into the proper branch of current

subtree based on the current region being processed. For example, if we are currently parsing

instructions in the then branch region of an if/else statement, then we insert the node for the

current instruction as a child of the then branch node of the if/else subtree. Notice that each

node of an instruction is inserted as a right sibling of the node generated for the previous
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instruction. When a GOTO instruction is found then we initiate a new recursive call to the

algorithm to parse a loop statement. On the other hand, when an IFNE instruction if found, a

new recursive call to the algorithm is initiated to parse an if/else statement.7

For each non-control instruction, the template AST keeps a placeholder node which will be

replaced by the instruction’s corresponding node or subtree after its execution. For instructions

that are not executed or which are not relevant (not an assign or control instruction), their nodes

will be removed at the end before the final IVSL code is generated from the AST. Figure 2.11

shows the AST after execution of the function along with generated IVSL code.

Assignment Statement

An IVSL assignment statement is generated per each assign bytecode instruction, An assign

bytecode instruction is one that assigns a right hand side expression to a left hand side variable.

An example of such instructions in Figure 2.7 are SETNAME (number 8) and ADD (number

19). There is a special type of assign instructions that may produce multiple IVSL statements

since they correspond to multiple assignments. For example, CALL instruction, which is used

to execute a function call, assigns zero or more arguments to zero or more parameters.

Dealing with Aliasing

Due to aliasing, an instruction may access different memory locations (i.e., object proper-

ties) during the same execution. For example, line 9 in JavaScript code in Figure 2.12 writes

7Currently we do not handle continue and break statements.
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var x = "foo";
while (x == "foo")

x = "bar";

---------

[0] LINE : 1
[3] REG_STR_C0
[4] BINDNAME
[5] REG_STR_C1
[6] STRING
[7] REG_STR_C0
[8] SETNAME
[9] POP
[10] LINE : 2
[13] GOTO 29
[16] LINE : 3
[19] REG_STR_C0
[20] BINDNAME
[21] REG_STR_C2
[22] STRING
[23] REG_STR_C0
[24] SETNAME
[25] POP_RESULT
[26] LINE : 2
[29] REG_STR_C0
[30] NAME
[31] REG_STR_C1
[32] STRING
[33] EQ
[34] IFEQ 16
[37] RETURN_RESULT
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Figure 2.10: JavaScript code along with corresponding bytecode and template AST.

to two different memory locations, x.p1 and y.p1, in different iterations of the while loop.

Line 10 reads from two different memory locations which are x.p1 and y.p1. We deal with

this by having a number of IVSL statements per each bytecode instruction with read/write ac-
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sanitizer(mloc0){
mloc0 := "foo";
while( mloc0 == "foo") {

mloc0 := "bar";
}
return "";

}

SANITIZER

VAR:mloc0 BLOCK

ASSIGN WHILE RETURN

VAR:mloc0 STRING:foo EQ BLOCK

VAR:mloc0 STRING:bar ASSIGN

VAR:mloc0 STRING:bar

STRING:""

Figure 2.11: IVSL code and its AST that correspond to JavaScript and bytecode in Figure 2.10.

cess that involves aliasing. We wrap these instructions with a non-deterministic conditional

statement. Lines 4-8 in the IVSL code in Figure 2.12 correspond to line 9 in JavaScript code

while lines 9-13 of IVSL code correspond to line 10 of JavaScript code. Notice that lines 5-8
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of the JavaScript code are ignored since they deal with non-string memory locations (x, y and

z are object references while i is a number).

1 var x = {p1:"foo"};
2 var y = {p1:"bar"};
3 var w, i = 0, a;
4 while (i < 5){
5 if (i < 2)
6 w = x;
7 else
8 w = y;
9 w.p1 = "abc";
10 a = w.p1;
11 i++;
12 }

1 mloc0 := "foo";
2 mloc1 := "bar";
3 while(*) {
4 if(*) {
5 mloc0 := "abc";
6 }else {
7 mloc1 := "abc";
8 }
9 if(*) {
10 mloc2 := mloc0;
11 }else {
12 mloc2 := mloc1;
13 }
14 }

Figure 2.12: JavaScript code along with corresponding IVSL code that is extracted.

Function Inlining

CODEGENERATOR dynamically inlines functions when they are extracted. Each CALL

instruction has its own subtree in the template AST. When executing a CALL instruction the

following happens:

1. If caller passes string arguments then a number of IVSL assignment statement subtrees

are generated, one subtree per each passed string argument. Each subtree represents

the assignment of an argument to a callee function’s parameter or to an element in the

arguments array. The argument-passing subtrees are inserted next to each other under

the node of the CALL instruction (which represents the call site).
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1 function f(a){
2 var z = a;
3 z = arguments[1];
4 return z;
5 }
6 var x = "foo";
7 var y = f(x, x);
8 y = f(y, y);

1 mloc0 := "foo"; //x = "foo"
2 mloc1 := mloc0; //pass x to arguments[0]
3 mloc2 := mloc0; //pass x to arguments[1]
4 mloc3 := mloc0; //pass x to a
5 mloc4 := mloc3; //z = a
6 mloc4 := mloc2; //z = arguments[1]
7 mloc5 := mloc4; //return z into y
8 mloc6 := mloc5; //pass y to arguments[0]
9 mloc7 := mloc5; //pass y to arguments[1]
10 mloc8 := mloc5; //pass y to a
11 mloc9 := mloc8; //z = a
12 mloc9 := mloc7; //z = arguments[1]
13 mloc5 := mloc9; //return z into y

Figure 2.13: Inlining function calls when dynamically extracting JavaScript code.

2. The current CODEGENERATOR stack frame is pushed along with the current template

AST.

3. A new CODEGENERATOR stack frame is generated along with a new template AST

generated by parsing the callee function.

After the callee function returns from execution CODEGENERATOR does the following:

1. It pops the top stack frame, takes the AST of the callee and inserts all subtrees under top

BLOCK node of the AST as subtrees of the CALL instruction node in the caller AST.

These are inserted after the subtrees related to passing of arguments.

2. If the caller returns a string value then an IVSL assignment statement subtree is gener-

ated that represents the return of the value and inserted as the last subtree of the CALL

instruction.

At the end of a function execution, the subtrees under each CALL instruction node in that

function are moved as children of the parent of the CALL instruction’s node. They are inserted
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as right siblings of the subtree for the instruction before the CALL instruction and as left sib-

lings of the subtree for the instruction after the CALL instruction. Figure 2.13 shows some

JavaScript code along with the extracted IVSL code in which function f was inlined twice.

2.6 Static Extraction of Server-Side PHP Code

We use the front-end of PIXY—a vulnerability analysis tool for PHP that is based on taint

analysis [55]—to extract sanitizer functions from PHP code [2, 103–105]. Unlike the case

with forward extraction technique of JavaScript code, the extraction process here starts from

a sensitive sink and goes backwards all the way to the input variables that may flow into this

sink. A sensitive sink is a sink (i.e., an output function) for which all input values have to be

sanitized before reaching it to avoid a vulnerability such as XSS or SQLI (see 4.1). Two of the

most commonly used sensitive output functions in PHP are print and mysql_query.

By default, PIXY extracts a multi-input sanitizer per each sensitive sink. This sanitizer

includes an input variable for each value in the HTTP request that may flow into this sink.

A multi-input sanitizer is used for server-side policy-based repair that we discuss in 4.1. We

augmented PIXY to add path sensitivity and support for PHP5. An IVSL sanitizer function

extracted by PIXY is represented using a dependency graph instead of a control flow graph.
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sanitizer(x){
if (length(x) > 4)

reject;
else {

x = replace(’/</’, "", x);
if (x == ’’)

reject;
else

return x;
}

}

Return: x

Var: x

__vlab_restrict

Lit: /.+/ Var: x Lit: false

replace

Lit: /</ Lit: Var: x

__vlab_restrict

Lit: /^.{0,4}$/ Var: x Lit: false

Input: x

Figure 2.14: A PHP sanitizer and its dependency graph.

2.6.1 Dependency Graphs

A dependency graph specifies the data and control flow in the IVSL program. Formally

speaking, a dependency graph G = 〈N,E〉 is a directed graph, where N is a finite set of nodes

and E ⊆ N × N is a finite set of directed edges. An edge (ni, nj) ∈ E identifies that the

value of ni depends on the value of nj . For n ∈ N , Succ(n) = {n′ | (n, n′) ∈ E} is the set

of successors of n. Pred(n) = {n′ | (n′, n) ∈ E} is the set of predecessors of n. Each node
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n ∈ N can be: (1) a data node including input, literal, variable, and return, or (2)

an operation node including string operations such as the two string operations concat and

replace.

An input node identifies the data from untrusted parties, e.g., an input from web forms,

that is received as input to the sanitizer. A literal node is associated with a constant string

value, a regular expression value (which is delimited by the symbol / at the beginning and the

end) or the special value false. Both nodes have no successors. In other words, defining a

leaf node as Leaf(G) = {n | Succ(n) = ∅}, each of these two types of nodes is always a leaf

node. return node is the root defined as Root(G) = {n | Pred(n) = ∅}. It represents the

positive sink at which the sanitizer returns its output. For each sanitizer only one return node

is allowed.

An operation node represents a string manipulation operation such as concat and replace.

This type of nodes has one or more successors which represent its parameters. For example, a

concat node n has two successors labeled as the prefix node (n.p) and the suffix node (n.s),

and stores the concatenation of any value of the prefix node and any value of the suffix node

in n. If n is a concat node, Succ(n) = {n.p, n.s}. A replace node has three successors

labeled as the target node (n.t), the match node (n.m), and the replacement node (n.r). For

the example in Figure 2.14, n.m has the regular expression /</ as its value, n.r has the string

value “” (i.e., the empty string ε) and n.t represents the variable x. It performs the following

operations for each value of n.t: (1) identifies all the matches, i.e., any value of n.m, that
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appear in n.t, (2) replaces all these matches in n.t with any value of n.r, and (3) stores the

replaced result in n. If n is a replace node, Succ(n) = {n.t, n.m, n.r}.

Furthermore, operation nodes include the special string operation _vlab_restrictwhich

is used to represent control dependencies on branch conditions. A _vlab_restrict node has

three successors labeled as the condition node (n.c), the target node (n.t), and the negation node

(n.g). The condition node n.c is a regular expression representing the constraint enforced by

the branch condition. We have a simple converter to convert some types of constraints such as

length constraints into a regular expression (as shown in the example in Figure 2.14). The con-

verter leverages our regular expression syntax which allows for the intersection operator & in

a regular expression (along with the standard union operator |) which returns the intersection

of two regular languages encoded by two regular expressions. The intersection operator along

with the union operator | allow to model the logical AND and OR operators in a branch con-

dition. The negation node is used to decide if the dependency on the branch condition comes

from the true branch or the false branch. A value true means that we should restrict with the

negation of the language of the regular expression n.c while a value of false means that we

should restrict with the language of the regular expression n.c.

When doing differential verification discussed in Chapter 5, we need to extract a single-

input sanitizer for each html input field i. In this case we need to deal with the fact that the

value of the input field i may flow into more than one sensitive sink. Fortunately, since we

use dynamic crawling to map client-side and server-side code to each other, we can utilize this

dynamic analysis (as we explain in Chapter 5) to pinpoint which sink, among the sensitive
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sinks that this input field i may flow into, we are considering. When the sink is specified,

we statically extract the dependency graph—as explained above previously—starting from this

sink and going backwards to all variables that may flow into it. Given the dependency graph,

we do a forward phase to extract the validation and sanitization code for this variable up to

the first string operation or branch condition where the variable interacts with another input

variable.

Notice that here we use a sound static extraction algorithms which guarantees that all input

validation and sanitization code for a given variable(s) is included.

2.7 Static Extraction of Server-Side Java Code

We used the Java static extraction technique from VIEWPOINTS [4]8 to extract Java input

validation and sanitization code.

2.7.1 Web Deployment Descriptor

Each Java web application must provide a Web deployment descriptor file, web.xml, as

specified in the Java EE specification [25]. In this first step, extraction technique analyzes

this file to understand and store references to the different components used within the web

application, along with the paths to various library and framework configuration files. It then

performs framework specific analysis of this information to discover how input fields of appli-

8VIEWPOINTS is a collaborative work with Shauvik Roy Choudhary, Mattia Fazzini and Alessandro Orso
who implemented the static extraction of Java code.
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cation forms are validated and sanitized on the server side. Upon discovery of this information,

our technique gets a reference to the server-side validation functions and proceeds with the val-

idation code extraction. Our current implementation handles two popular J2EE frameworks:

Struts and Spring MVC. Based on our experience, it could be extended to handle additional

frameworks with relatively low effort.

2.7.2 Server-Side Extraction

Once the technique knows the specific server-side Java functions that are used to validate

each input (i.e., form field), it accesses the corresponding class files using the Soot frame-

work (http://www.sable.mcgill.ca/soot/) in order to analyze such validation func-

tions. Because of the limitations of our current implementation, we had to apply several semi-

automated transformations to the validation functions before being able to analyze them in

isolation. Here is the list of transformations that our tool applies to each validation method

(note that most of this transformations could be eliminated with further engineering) :

Input parameter re-writing: The function is transformed to remove all the formal arguments

that are not of interest for our analysis. This allows us to have a simpler function and

ignore many of the indirections introduced by the framework.

Function inlining and modeling: Our extraction technique inlines string operations

performed by J2EE framework library functions.
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Parameter inlining: Some of the validation routines might use parameters that are read from

a configuration file. For example, the developer can specify a regular expression in the

configuration that the validation function matches against the input. For such functions,

the technique plugged the value of the parameter at all the corresponding uses inside the

function.

After the above transformations are performed, our technique invokes the constant prop-

agation and dead code elimination phases from the Soot framework to obtain a concise Java

CFG for the validation function under analysis. These CFGs have two kinds of exit nodes—

one that returns true, leading to the successful validation of the input, and the other one

that returns false, leading to the rejection of the input. Our technique first uses this CFG

to compute control and data dependences, which are then used to synthesize the PDG for the

function. Upon the creation of the PDG, forward slicing is performed from the variable rep-

resenting the input parameter being validated. This static slice contains all of the operations

that are performed on the input variable and marks those that are string operations. Then, our

technique performs backward slicing (on this forward slice) starting from the accepting nodes

(i.e., return true statements) to capture the string operations involved in the successful

validation. The resulting slice is a CFG with only string operations performed on the validated

input and is transformed into an IVSL CFG graph for analysis.
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Analyzing Sanitizer Functions Using

String Analysis

After extracting a sanitizer function, the next step is to anlyze this function using automata-

based string analysis. The analysis result is used later to verify the correctness of the function

and repair it in case a bug was found. The analysis computes the post- and pre-images of the

function as deteministic finite automata using symbolic string analysis.

We first give the formal definition of the pre- and post-image of a sanitizer [2] and then

show the string analysis algorithms that we use for image computation.
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3.1 Post- and Pre-Image of a Sanitizer

3.1.1 Post-Image

Assuming a given input, we call the set of strings returned by a sanitizer function its post-

image (which is the set of strings that reach the sink, i.e., the return statement). Formally

speaking, given a sanitizer F with n input variables, the set of strings returned by F when the

input language for each input variable vi is restricted to Li where Li ⊆ Σ∗ is defined as:

POST(F, (L1, . . . , Ln)) = {s | ∃(s1, . . . , sn) ∈ L1 × · · · × Ln : ∃s ∈ Σ∗ : F (s1, . . . , sn) = s}

We call this set the post-image of sanitizer F with respect to L1 × · · · × Ln. We com-

pute the post-image of a sanitizer using automata-based forward symbolic string analysis

algorithm in 3.2.5. In general, we can not precisely compute POST(F, (L1, . . . , Ln)) due

to undecidability of string analysis. Instead we compute an over-approximation of this set,

namely, POST+(F, (L1, . . . , Ln)) ⊇ POST(F, (L1, . . . , Ln)). This means that, we may con-

clude that certain strings are accepted and returned by F when they are not. Since we are

using automata-based symbolic string analysis, the result of the post-image computation is an

automaton that accepts the language POST+(F, (L1, . . . , Ln)), and we denote this automaton

as A(POST+(F, (L1, . . . , Ln))).

Figure 3.1 shows a sanitizer function F1 along with Venn Diagrams illustrating its domain

and co-domain. Function F1 represents a single-input sanitizer function F1 : Σ∗ → Σ∗ ∪ {⊥}

where Σ = {a, b}.
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aa""

bb"
ab"

aab"
bbb"
.".".".""

aa"

bb"

.".".".""

ba"

Σ*�" !Post!Image!Σ*"

.".".".""

T"

sanitizer(x){ 
  if (x != “aa” && x != “bb” && x != “ab”) 
      reject; 
  x = replace(/^ab$/, “ba”,x); 
  return x;  
} 

T"

Figure 3.1: Example of post-image (shaded areas) for a sanitizer function F1 assuming input
to be Σ∗ where Σ = {a, b}.

Assuming Σ∗ as input, the function’s post-image POST(F1,Σ
∗) = {aa, bb, ba} (notice that we

always exclude ⊥ from post-image as it does not represent a returned string value).

3.1.2 Pre-Image

Given a sanitizer function F with n number of input variables and a set of strings L ⊆ Σ∗

in the co-domain of F , we call the set of input tuples of strings that is mapped by F to L the

pre-image of F with respect to L and we define it as:

PRE(F,L) = {(s1, . . . , sn) | ∃s ∈ L : F (s1, . . . , sn) = s}
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sanitizer(x){ 
  if (x != “aa” && x != “bb” && x != “ab”) 
      reject; 
  x = replace(/^ab$/, “ba”,x); 
  return x;  
} 

Figure 3.2: Example of pre-image (the shaded area on the left) of sanitizer function F1 given
a subset of the co-domain of F1 (shaded area on the right).

We use automata-based backward symbolic string analysis algorithm in 3.2.6 to com-

pute the pre-image of a sanitizer. Again, due to over-approximation, we compute the set

PRE+(F,L) ⊇ PRE(F,L). Since the string analysis algorithm that we use does not consider

the relations between different variables in a sanitizer (i.e., relational string analysis [110] is

not used), PRE+(F,L) for a sanitizer F with more than one input variable (i.e., number of input

variables n > 1) will always be the set (Σ∗)n. In other words, when computing the pre-image

of a sanitizer with more than one input variable, for all practical purposes the result is useless

due to loss of all precision.
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Figure 3.2 shows the sanitizer function F1 along with its pre-image. Given the set {aa, ba},

the pre-image PRE(F1, {aa, ba}) = {aa, ab}.

3.1.3 Negative Pre-Image

We call the set of strings that are rejected by a sanitizer F the negative pre-image of F . For

a given sanitizer function F , this set is defined as:

PRE⊥(F ) = {(s1, . . . , sn) | F (s1, . . . , sn) = ⊥}

We use a slightly different automata-based backward symbolic string analysis algorithm

which we show in 3.2.7 to compute an over approximation of the negative pre-image, PRE+
⊥(F ),

where PRE+
⊥(F ) ⊇ PRE⊥(F ). This means that, we may conclude that certain strings are re-

jected by F when they are not. On the other hand, since we are computing an

over-approximation, any string that is rejected by F is guaranteed to be in PRE+
⊥(F ). Since

we are using automata-based symbolic string analysis, the result of the negative pre-image

computation is an automaton that accepts the language PRE+
⊥(F ), and we denote this automa-

ton as A(PRE+
⊥(F )).

Figure 3.3 shows the negative pre-image of sanitizer F1. PRE⊥(F1) = Σ∗ \ {aa, bb, ab}.

3.1.4 Negative Post-Image

This set is a special set in the sense that it does not characterize a subset of the input or

the output of a sanitizer. Given a sanitizer F and a set of possible input values L, the negative
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sanitizer(x){ 
  if (x != “aa” && x != “bb” && x != “ab”) 
      reject; 
  x = replace(/^ab$/, “ba”,x); 
  return x;  
} 

Figure 3.3: Example of a negative pre-image (the shaded area on the left) of sanitizer function
F1 which is mapped by F1 to ⊥ (i.e., rejected).

post-image of F with respect to L, POST⊥(F,L), is the set of strings that reach the negative

sinks (i.e., reach the reject statements) in F .

As is the case with previous images, in general, we can not precisely compute POST⊥(F,L)

due to undecidability of string analysis. Instead we compute an over-approximation of this set,

namely, POST+
⊥(F,L) ⊇ POST⊥(F,L). This means that, we may conclude that a string can

reach a negative sink when it does not. Since we are using automata-based symbolic string

analysis, the result of the negative post-image computation is an automaton that accepts the

language POST+
⊥(F,L), and we denote this automaton as A(POST+

⊥(F,L)).
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3.2 Automata-Based Symbolic String Analysis

To compute pre and post-images of a sanitizer function, we use automata-based flow-

sensitive and path-sensitive symbolic string analysis. The string analysis technique we use is a

forward/backward reachability computation that uses Deterministic Finite Automata (DFA) as

a symbolic representation. We iteratively compute an over approximation of the least fixpoint

that corresponds to the reachable values of the string expressions. In each iteration, given the

current state DFA for a variable, we compute the next/previous state DFA. We use algorithms

for next/previous state computation for common string operations such as concatenation and

language-based replacement as well as specialized string sanitization operations such as trim

and addslashes.

We use the symbolic DFA representation provided by the MONA DFA library [12], in

which transition relations of the DFA are represented as Multi-terminal Binary Decision Di-

agrams (MBDDs) [33]. MONA also provides the implementation for automata operations

union, intersection, negation and projection for symbolic DFA.

3.2.1 Symbolic DFA

Given B = {0, 1}, a symbolic DFA M is a tuple 〈Q, q0,ΣB, δ, F 〉 where:

• Q is a finite set of states.

• q0 is the initial state.
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• Instead of using a regular alphabet Σ, where each character c is a single ASCII print-

able symbol such as a and b, we use a symbolic binary alphabet ΣB ⊆ Bk where

k = log2(d |Σ| e) and each alphabet symbol α is a k-bit string α ∈ Bk. In our dis-

cussion, we will use character to refer to a non-symbolic alphabet character c ∈ Σ and

we will use alphabet symbol to refer to a symbolic alphabet symbol α ∈ ΣB. Each char-

acter c ∈ Σ is mapped to one and only one corresponding alphabet symbol αc ∈ ΣB and

vice versa.

• F ⊆ Q is finite set of accepting states.

• δ : Q× ΣB → Q is the transition relation.

Following our definition of Σ and ΣB, we define a non-symbolic string w of length n as a

sequence of characters 〈c0, c1, . . . , cn−1〉 where each character ci ∈ Σ and its corresponding

symbolic string wB as a sequence of alphabet symbols 〈α0, α1, . . . , αn−1〉 where each alphabet

symbol αi ∈ ΣB. The special string w of length 0 |w| = 0 is called ε. Let us define the relation

δ∗ : Q× Σ∗B → Q for the symbolic DFA M as following:

given a string wB = 〈α0, α1, . . . , αn−1〉 where each character αi ∈ ΣB

δ∗(qi, ε) = qi and δ∗(qi, wB) = qj if there exists a sequence 〈qi, qi+1, qi+2, . . . , qi+n〉 ∈ Qn+1

such that:

(1) qi+n = qj (2) ∀l ≥ 0 : δ(qi+l, αl) = qi+l+1

A state q of M is a sink state if ∀α ∈ ΣB, δ(q, α) = q and q /∈ F . In the following

discussion, we assume that for all unspecified pairs (q, α), δ(q, α) goes to a sink state. When
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Sample Explicit DFA
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Figure 3.4: Symbolic representation of a DFA using MBDD.
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a = 0000 b = 0001 0X0X = a, b, e, f = [a-b], [e-f]
c = 0010 d = 0011 0X1X = c, d, g, h = [c-d], [g-h]
e = 0100 f = 0101 1XXX = i, j, k, l, m, n, o, p = [i-p]
g = 0110 h = 0111 XXXX = a, b, c, d, e, f, g, h,
i = 1000 j = 1001 i, j, k, l, m, n, o, p = [a-p]
k = 1010 l = 1011
m = 1100 n = 1101
o = 1110 p = 1111

Figure 3.5: Σ and corresponding ΣB for the sample symbolic DFA along with MONA transi-
tion labels and their corresponding explicit transitions.

visualizing a DFA we omit the sink state and the transitions that lead to a sink state. We say

that a string wB is accepted by M if δ∗(q0, wB) 6= sink. The language of M or L(M) ⊆ ΣB is

the set of strings wB that are accepted byM . For two states qi and qj inM , a transition between

qi and qj on an alphabet symbol α is a tuple (qi, α, qj) where δ(qi, α) = qj and we write it like

this (qi
α−→ qj). For two states qi and qj in M , we say there is a path qi, qi+1, . . . , qj of length

n between qi and qj if there is a string wB ∈ Σ∗B of length n such that δ∗(qi, wB) = qj and we

write it like this (qi
wB−→
∗
qj).

Example. Figure 3.4 shows an example symbolic DFA. At the top is the explicit DFA using

an explicit representation that uses character ranges. In the middle is the symbolic DFA that

uses binary alphabet symbols. In the bottom is the actual internal representation using a Multi-

terminal Binary Decision Diagram (MBDD). The alphabet Σ and the corresponding symbolic

alphabet ΣB is shown in Figure 3.5. We have 16 characters in Σ which means that we need

log2(d16e) = 4 bits for the symbolic alphabet (i.e., ΣB ⊆ B4). Figure 3.5 shows each character

c ∈ Σ and its corresponding alphabet symbol αc ∈ ΣB. For example, αa = 0000 and αl =

1011.
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The sample DFA in Figure 3.4 has 3 states Q = {S0, S1, S2, S3}. Our convention is to

label each state with a number n and refer to it in the text with Sn. The shaded state S1 is the

sink state and dashed edges represent transitions that go to sink state. From now on we always

omit sink states to simplify the figures (shaded states and dashed edges will be used for other

purposes). In the sample symbolic DFA in the middle, we use MONA symbolic labels such as

0
X
1
X

where the X symbol represents an option of either 0 or 1. For example, from state S0 → S2,

an edge labeled
0
X
1
X

means that there are four transitions between these two states on alphabet

0010, 0011, 0110 and 0111 (i.e., four transitions on characters c, d, g, h). Figure 3.5 shows each

of the MONA labels used in sample symbolic DFA and its meaning.

MBDD. Figure 3.4 shows at the bottom the Multi-terminal Binary Decision Diagram [33] that

is used as the actual internal representation of the sample symbolic DFA. The second row in

table at the top 0 1 2 3 represents DFA states while the first row in that table 1 -1 -1 1

represents state types which are either accepting state 1 or rejecting state -1. The shaded

nodes represent BDD nodes. Each circle-shaped node has a number n that represents its level

i.e., which BDD variable n (in other words, which bit n in an alphabet symbol α ∈ ΣB) it

corresponds to. Each square-shaped node has a number n that represents the destination state

Sn that the node corresponds to. Dashed line represents a BDD variable (bit) value of 0 while a

regular line represents a BDD variable (bit) value of 1. The symbolic transition relation works

as following: suppose that we are in state S0 and given alphabet symbol αc = 0010. Let us

see how we go from state S0 to state S2 on character c. We start from table cell 0 then go

to a BDD node at level 0. Then, looking at value of bit-0 of αc which is 0, we go to a BDD
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node at level 2. Notice that since we are in a BDD node at level 2, we will look at 2nd BDD

variable (i.e., bit-2) skipping value of bit-1 as it does not affect which destination state we will

go to. Then we look at value of bit-2 which is 1 which means that we go to destination state S2

(skipping value of bit-3).

Throughout the remaining of this text we use a representation of a DFA in a figure that is a

mixture of the top two representations in Figure 3.4. On one hand, we will have one edge only

between each two states in the DFA (as we did in the middle sample symbolic DFA). On the

other hand, instead of labeling the edge with a MONA label like
1
X
X
X

we will label it with either

character ranges such as [a-c] or a character set such as {a, b} and Σ \ {d, h, k}. In addition,

we will always omit the sink state and all transitions that go to it.

0

1
a

2a

3

a

0

1

0
0
0
0

2

0
0
0
1

3

0
0
1
0

Figure 3.6: A symbolic DFA on the right with ΣB ⊆ B2 simulating non-determinism in the
NFA on the left using 2 extra bits.

3.2.2 Non-Determinism in Symbolic DFA

The algorithms for next/previous state computation for string operations are implemented

without using the standard constructions based on the ε-transitions, since the MBDD-based
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automata representation used by MONA does not allow ε-transitions. Non-determinism is

modeled by extending the alphabet with extra bits and then projecting them away using the

on-the-fly subset construction algorithm provided by MONA. Projection is applied one bit at a

time, and after projecting each bit away, the size of the resulting automaton is reduced using

MBDD-based automata minimization.

Formally, the project and determinize operation, denoted as PROJECT(M, i), where 1 ≤

i ≤ k, converts a DFA M recognizing a language L over the alphabet ΣB ⊆ Bk, to a DFA M ′

recognizing a language L′ over the alphabet ΣB ⊆ Bk−1, where L′ is the language that results

from applying the tuple projection on the ith bit to each symbol of the alphabet. The process

consists of removing the ith track of the MBDD and determinizing the resulting MBDD via

on-the-fly subset construction. This operation is provided by MONA library. If we have a DFA

M recognizing a language L over the alphabet ΣB ⊆ Bk, and we want to add to M n non-

deterministic transitions out from a state S on some character c, we need to extend ΣB with

l = dlog2(n)e extra bits to get Σ′B ⊆ Bk+l. Then we determinize by projecting the extra l bits

one bit at a time.

Figure 3.6 shows on the left part of a Non-deterministic FA with three non-deterministic

transitions on character a from state S0 to states S1, S2 and S3. On the right it shows the

corresponding symbolic DFA where ΣB ⊆ B2 and αa = 00. To simulate non-determinism,

we need to extend the alphabet ΣB by adding 2 extra bits to represent 3 different characters

a namely a0, a1 and a2 where αa0 = 0000, αa1 = 0001 and αa2 = 0010. At the end, we

determinize the DFA by projecting bit-3 then bit-2.
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CONSTRUCT(regexp e)≡ A({w | w ∈ L(e)}).
CLOSURE(DFA M1) ≡ A({w1w2 . . . wk | k > 0,∀i, 1 ≤ i ≤ k,wi ∈ L(M1)}).
UNION(DFA M1, DFA M2) ≡M where L(M) = L(M1) ∪ L(M2).
INTERSECT(DFA M1, DFA M2) ≡M where L(M) = L(M1) ∩ L(M2).
WIDENING(DFA M1, DFA M2) ≡M where L(M) ⊇ L(M1) ∪ L(M2).
EQUCHECK(DFA M1, DFA M2) ≡ True if L(M1) = L(M2) otherwise.
EMPCHECK(DFA M ) ≡ True if L(M) = ∅ otherwise False.
EMPTY() ≡M where L(M) = ∅.
UNIVERSAL() ≡M where L(M) = Σ∗

Figure 3.7: Core automata operations used in our analysis.

3.2.3 Symbolic vs. Explicit DFA

Symbolic DFA is more efficient in terms of memory than explicit DFA which means that,

using symbolic DFA, our analysis consumes less memory. Although both explicit and BDD

representation of Sample DFA shown in Figure 3.4 seem to use the same number of transitions,

bear in mind that a BDD transition is labeled with a single bit while an explicit DFA transition

is labeled with 2 characters using 4 bits to represent each one (4 = log2(|Σ|)). In general,

the difference between explicit and symbolic DFA in memory consumption becomes more

obvious as size of alphabet |Σ| grows such as the case with |ΣASCII | = 256 and |ΣUNICODE| =

65536 [47].

3.2.4 Analysis Lattice and Termination.

Before discussing the analysis lattice, let us first introduce the automata operations ∩,∪, \,

(which are implemented by MONA library [12]) that generate automata that accept the inter-

section, union, difference and complement of the languages of the given automata, respectively,

the operation � that generates an automaton that accepts the concatenation of the languages of
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the given two automata and the =,⊆ operations which test the language equivalence and lan-

guage inclusion between two automata. The function A(L) takes a regular language L ⊆ Σ∗

and returns a DFA that recognizes L. We also use L(M) to denote the language accepted by

the automaton M . Figure 3.7 shows the definitions for these operations (for concatenation

operation � see POSTCONCAT in Figure 3.8).

Each element in string analysis lattice for a given variable is a symbolic DFA M that en-

codes a regular language L(M). L(M) is the set of possible values that a variable can take

at a program point. The bottom element in the lattice is ⊥ which is the empty set DFA A(∅)

while the top > element is the DFA A(Σ∗). Elements in the lattice are partially ordered using

operator ⊆ where M1 � M2 ⇔ M1 ⊆ M2 ⇔ L(M1) ⊆ L(M2). The join operator is ∪ and

the meet operator is ∩. The lattice for the analysis is the cartisian product of the lattices for all

the variables in the sanitizer function.

Although a DFA is finite structure, it may represent an infinite set of strings which means

that the lattice for a variable (consequently the analysis lattice) has an infinite height. For ex-

ample, given Σ = {a}, A(∅) ⊆ A({a}) ⊆ A({a, aa}) ⊆ A({a, aa, aaa}) · · · ⊆ A(a∗) is an

infinite chain in the lattice. Due to this reason, the fixpoint computations are not guaranteed

to converge. To alleviate this problem, we use the automata widening operator ∇ proposed by

Bartzis and Bultan [11] to compute an over-approximation of the least fixpoint. This widen-

ing operator merges those states belonging to the same equivalence class identified by certain

conditions.
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Algorithm 1 FWANALYSIS(CFG,M1, . . . ,Mn)
1: initInputVars(v1, . . . , vn,M1, . . . ,Mn, getIN(CFG.entrynode));
2: queue WQ := NULL;
3: WQ.enqueue(CFG.entrynode);
4: while (WQ 6= NULL) do
5: node := WQ.dequeue(); changed := false;
6: IN := getIN(node); OUT := getOUT(node);
7: for all (var in getVars()) do
8: IN [var] :=A(∅);
9: for all (node′ in getPredNodes(node)) do

10: if (node′ ≡ IF pred THEN or node′ ≡WHILE pred) then
11: if node = getSuccOnTrueBranch(node′) then
12: OUTnode′ := getOUTOnTrueBranch(node′);
13: else
14: OUTnode′ := getOUTOnFalseBranch(node′);
15: end if
16: else
17: OUTnode′ := getOUT(node′);
18: end if
19: IN [var]:= IN [var] ∪ OUTnode′ [var];
20: end for
21: end for
22: if (node ≡ IF pred THEN or node ≡WHILE pred) then
23: OUTon_T := getOUTOnTrueBranch(node); OUTon_F := getOUTOnFalseBranch(node);
24: tmpon_T := tmpon_F := IN ;
25: if (numOfV ars(pred) = 1) then
26: var := getPredV ar(pred);
27: predV al := EVALPRED(pred, IN [var]);
28: tmpon_T [var] : = IN [var] ∩ predV al;
29: tmpon_F [var] : = IN [var] ∩ (A(Σ∗) \ predV al);
30: end if
31: for all (var in getVars()) do
32: tmpon_T [var] := (tmpon_T [var] ∪ OUTon_T [var])∇ OUTon_T [var];
33: tmpon_F [var] := (tmpon_F [var] ∪ OUTon_F [var])∇ OUTon_F [var];
34: if (tmpon_T [var]6⊆ OUTon_T [var]) then
35: OUTon_T [var] := tmpon_T [var]; OUTon_F [var] := tmpon_F [var];
36: changed := true;
37: end if
38: end for
39: if (changed) then
40: WQ.enqueue(getSuccOnTrueBranch(node)); WQ.enqueue(getSuccOnFalseBranch(node));
41: end if
42: else
43: tmp := POSTTRANSFERFUNCTION(node, IN );
44: for all (var in getVars()) do
45: tmp[var] := (tmp[var]∪OUT [var])∇OUT [var];
46: if (tmp[var] 6⊆ OUT [var]) then
47: OUT [var] := tmp[var];
48: changed := true;
49: end if
50: end for
51: if (changed) then
52: WQ.enqueue(getSuccNode(node));
53: end if
54: end if
55: end while
56: var := getVarInReturnNode();

57: return getIN(CFG.returnnode)[var]
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3.2.5 Forward Analysis

Algorithm 1 computes the least fixed point that over-approximates the possible values that

string variables can take at any given program point [103, 105]. We use the algorithm to com-

pute the post-image of a sanitizer function F with n inputs variables (i.e.,

POST(F,L1, . . . , Ln)). The algorithm takes as input the CFG of a sanitizer function F along

with an array of DFAsM1 . . .Mn that represents the assumed initial input i.e., the initial sets of

values that we assume input variables v1 . . . vn can take. The algorithm is worklist based, that

is, it keeps track of the CFG nodes that still needs to be processed in a worklist. Each statement

is associated with two arrays of DFAs: IN and OUT. DFA IN[var] is a DFA that accepts

all string values that a certain string variable var can take at the program point just before the

execution of that statement. Similarly, OUT[var] is a DFA that accepts all string values that

string variable var can take at the program point just after the execution of that statement. The

tmp array is used to store the temporary values (i.e. DFAs) computed by the transfer function

before joining these values with the previous ones.

Starting with the CFG entry node in the worklist (line 3), a CFG node is extracted from the

worklist at each iteration of the algorithm (lines 4, 5). IN array for this node is computed as

the union of OUT arrays from predecessor statements (lines 6-21) representing possible values

that may flow from predecessor statements to this statement. Then the transfer function for

the corresponding statement is computed (lines 22-50) as we describe later in this chapter.

Briefly, the DFAs in the tmp array are updated based on the DFAs in the IN array and the

transfer function of the statement associated with the current node (lines 24-29, 43). After
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computing the transfer function, each value in the tmp array for the current statement is joined

(unioned) and widened with the corresponding old value in the OUT array (lines 32, 33, 45).

The analysis converges when the worklist becomes empty, which means that reevaluating the

transfer functions would not change the values in the OUT array (lines 34-37, 46-49). After

convergence, the OUT[var] value for the variable var that is returned at the return var

statement (i.e., the statement that represents returning an output value by the sanitizer function)

is the result of our analysis—a DFA that accepts an over-approximation of the set of values

output by the sanitizer function (lines 56, 57).

Modified Forward Analysis Assuming a sanitizer F and a set of inputs L, we need to slightly

modify the forward analysis algorithm to compute the negative post-image POST+
⊥(F,L). The

modification is to compute an over-approximation of each of the sets of all possible strings

that may reach a negative sink (i.e., a reject statement) instead of the positive sink (i.e., the

return var statement). It is enough to change the line 56 and 57 to achieve this such that

we return the union of the DFA values at each negative sink for the given variable (we only

consider one variable here according to the definition of the negative post image).

3.2.6 Backward Analysis

Algorithm 2 is a worklist-based algorithm that, given a sanitizer function F and a set of

string values L(M) that represents the preferred output (i.e., preferred subset of strings that

are allowed to reach the program point after sink statement return var), it computes an

over-approximation of the set (of input values) that is mapped by the sanitizer function F to
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Algorithm 2 BWANALYSIS(CFG,M,FwdResult)
1: v1 := getVarInReturnStmt();
2: initVar(v1, M );
3: queue WQ := NULL;
4: WQ.enqueue(CFG.returnnode);
5: while (WQ 6= NULL) do
6: node := WQ.dequeue(); changed := false;
7: OUT := getOUT(node); IN := getIN(node);
8: for all (var in getVars()) do
9: node′ := getSuccNode(node);

10: INnode′ := getIN(node′);
11: OUT [var] := INnode′ [var];
12: end for
13: if (node ≡ IF pred THEN or node ≡WHILE pred) then
14: OUTon_T := getOUTOnTrueBranch(node); OUTon_F := getOUTOnFalseBranch(node);
15: tmpon_T := OUTon_T ; tmpon_F := OUTon_F ;
16: if (numOfV ars(pred) = 1) then
17: var := getPredV ar(pred);
18: predV al := EVALPRED(pred, IN [var]);
19: tmpon_T [var] : = OUT [var] ∩ predV al;
20: tmpon_F [var] : = OUT [var] ∩ (A(Σ∗) \ predV al);
21: end if
22: for all (var in getVars()) do
23: tmp[var] := (tmpon_T [var] ∪ tmpon_F [var] ∪ IN [var])∇ IN [var];
24: if (tmp[var]6⊆ IN [var]) then
25: IN [var] := tmp[var];
26: changed := true;
27: end if
28: end for
29: if (changed) then
30: WQ.enqueue(getPredNodes(node));
31: end if
32: else
33: if FwdResult 6= NULL then
34: OUTmax := getOUT(FwdResult[node]);
35: else
36: OUTmax := POSTTRANSFERFUNCTION(node, [A(Σ∗), . . . ,A(Σ∗)]);
37: end if
38: for all (var in getVars()) do
39: OUT [var] := OUT [var] ∩ OUTmax[var];
40: end for
41: tmp := PRETRANSFERFUNCTION(node, IN );
42: for all (var in getVars()) do
43: tmp[var] := (tmp[var]∪IN [var])∇IN [var];
44: if (tmp[var] 6⊆ IN [var]) then
45: IN [var] := tmp[var];
46: changed := true;
47: end if
48: end for
49: if (changed) then
50: WQ.enqueue(getPredNodes(node));
51: end if
52: end if
53: end while

54: return getOUT(CFG.entrynode)
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Algorithm 3 NEGBWANALYSIS(CFG)
1: v1 := getVarInReturnStmt();
2: initVar(v1,A(∅));
3: queue WQ := NULL;
4: WQ.enqueue(CFG.returnnode);
5: while (WQ 6= NULL) do
6: node := WQ.dequeue(); changed := false;
7: OUT := getOUT(node); IN := getIN(node);
8: for all (var in getVars()) do
9: node′ := getSuccNode(node);

10: INnode′ := getIN(node′);
11: OUT [var] := INnode′ [var];
12: end for
13: if (node ≡ IF pred THEN or node ≡WHILE pred) then
14: OUTon_T := getOUTOnTrueBranch(node); OUTon_F := getOUTOnFalseBranch(node);
15: tmpon_T := OUTon_T ; tmpon_F := OUTon_F ;
16: if (numOfV ars(pred) = 1) then
17: var := getPredV ar(pred);
18: predV al := EVALPRED(pred, IN [var]);
19: tmpon_T [var] : = OUT [var] ∪ A(Σ∗) \ predV al;
20: tmpon_F [var] : = OUT [var] ∪ (predV al);
21: end if
22: for all (var in getVars()) do
23: tmp[var] := (tmpon_T [var] ∪ tmpon_F [var] ∪ IN [var])∇ IN [var];
24: if (tmp[var]6⊆ IN [var]) then
25: IN [var] := tmp[var];
26: changed := true;
27: end if
28: end for
29: if (changed) then
30: WQ.enqueue(getPredNodes(node));
31: end if
32: else
33: OUTmax := POSTTRANSFERFUNCTION(node, [A(Σ∗), . . . ,A(Σ∗)]);
34: for all (var in getVars()) do
35: OUT [var] := OUT [var] ∩ OUTmax[var];
36: end for
37: tmp := PRETRANSFERFUNCTION(node,OUT );
38: for all (var in getVars()) do
39: tmp[var] := (tmp[var]∪IN [var])∇IN [var];
40: if (tmp[var] 6⊆ IN [var]) then
41: IN [var] := tmp[var];
42: changed := true;
43: end if
44: end for
45: if (changed) then
46: WQ.enqueue(getPredNodes(node));
47: end if
48: end if
49: end while

50: return getOUT(CFG.entrynode)
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L(M) [102, 104]. We use the algorithm to compute the pre-image of a sanitizer function F

given a set of preferred outputs L (i.e., PRE(F,L)). The algorithm takes as input the CFG

of the sanitizer function F along with a DFA M that represents the set of preferred output

values that F is allowed to return. The difference between this algorithm and forward analysis

algorithm (Algorithm 1) is that this algorithm goes in the opposite direction starting from the

CFG node that represents the sink statement return var. For a given statement, the values

in the IN array are computed based on the values in the OUT array. In other words, given a DFA

OUT[var] that accepts all the possible values that a variable var can take after executing a

statement, we compute the pre-image of OUT[var] which is the DFA IN[var] that accepts

all possible values with which, evaluating the statement expression/predicate may result in

OUT[var].

For a given statement s and a variable var, the language accepted by the DFA OUT[var]

that is computed by the post transfer function POSTTFs of statement s can not be larger than

the language accepted by the DFA OUTmax[var] where OUTmax is computed by the post

transfer function of statement s over Σ∗ i.e., OUTmax = POSTTFs(Σ∗). The reasons are (1)

Σ∗ represents the largest set that may reach the program point before statement s and (2) the

transfer functions that we use are monotonic i.e., for two regular sets X and Y , X ⊆ Y ⇒

POSTTFs(X) ⊆ POSTTFs(Y ). We can utilize this observation to add more precision to our

analysis. Before computing the pre-image array IN of a statement, we intersect each DFA

value in the post-image array OUT with the corresponding DFA from OUTmax (lines 35-40).

Since, for a given statement s and a variable var, OUTmax[var] represents the largest set of
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possible values for var that may reach the program point after statement s, we can be even

more precise if we have already computed the post-image of the sanitizer function F on the

input (Σ∗, . . . ,Σ∗) using forward analysis (Algorithm 1). In this case, the resulting OUT for a

statement s represents a smaller, and hence more precise, upper bound (lines 33, 34, 38-40) for

values that may reach the program point after s.

3.2.7 Negative Backward Analysis

Given a sanitizer F , we use negative backward analysis (Algorithm 3) to compute an over-

approximation of the possible set of input values that are mapped by F to ⊥ (i.e., PRE+
⊥(F )).

A sanitizer F partitions the set of all possible input strings into two sets, the set of rejected

inputs IR and its complement IA which is the set of accepted inputs. Although this partitioning

is exclusively the result of the filtering of invalid string values through validation operations

(i.e., branch conditions), this does not mean that sanitization operations do not affect it. Re-

jecting an input string may not be the direct result of filtering its value v by a branch condition.

The presence of sanitization operations complicates this since a sanitizer F , using sanitization

operations, may map v to another value v′ and then the filtering is applied onto v′. For exam-

ple, the following sanitizer filters any input string that does not contain a non-space character,

indirectly, by first mapping all input strings that consist of only space characters to ε and then

blocking ε.

sanitizer(x){

x = trim(x);
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if (x == "")

reject;

return x;

}

So the string “ ” which consists of two consecutive white space characters is rejected by first

mapping it into ε then rejecting ε. This means that a sanitizer F maps IR to the set Sn which

is the set of string values that reach the negative sinks (i.e., reject statements) and maps IA

to the set Sp which is the set of string values that reach the positive sink (i.e., return var

statement). Note that Sp = POST(F,Σ∗) and IA = PRE(F, Sp).

Given this, a straight forward method to compute I+
R ⊇ IR can utilize previous forward and

backward algorithms as following:

• First, assuming all possible inputs (i.e., Σ∗), we slightly modify forward analysis to

compute an over-approximation of each of the sets of all possible strings that may reach

a negative sink (i.e., a reject statement) instead of the positive sink (i.e., the return

var statement). Let us call these sets of rejected strings R+
1 , R

+
2 , . . . . Now we have

partitioned the strings that may reach the two types of sinks in the sanitizer function into

two sets: the negative sinks set S+
n =

n⋃
i=1

R+
i and the positive sink set S−p = Σ∗ \ S+

n

where S−p ⊆ Sp (since we over-approximate Sn, Sp is under approximated).

• Then, given R+
1 , R

+
2 , . . . , we use slightly modified backward analysis that (1) starts from

negative sinks instead of the positive sink and (2) uses R+
1 , R

+
2 , . . . as its input, to com-
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pute an over-approximation of the set of input strings that may result in each of the sets

R+
1 , R

+
2 , . . . reaching a negative sink.

To improve performance, we designed a faster one-phase algorithm instead of the two-

phase algorithm above. We call this algorithm negative backward analysis (Algorithm 3) and it

is a modified version of the backward analysis shown in Algorithm 2. The algorithm is based

on the following insights:

• The set of strings that may reach the positive sink given the set of inputs IR is ∅. So,

without doing any forward analysis, we start the backward analysis from the positive sink

assuming ∅ as the only set that reaches the program point after return var statement

as a result of IR.

• Let us call the set of strings that satisfy a branch condition B the language of B or L(B).

Given the set of inputs IR, the reason that no string reaches the positive sink is because of

the filtering by the branch conditions i.e., not satisfying L(B) for some branch condition

B. So during backward analysis, to get the value of IN[var] for a branch condition B

we union the value in OUTon_T[var] with the negation of L(B) and union the value in

OUTon_F[var] with L(B) (lines 14-21).

So, negative backward analysis algorithm starts with ∅ at the sink and then computes the

input values that do not satisfy branch conditions on any of the computational paths to positive

sink return var in F .
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3.2.8 Transfer Functions

Below we describe the transfer functions used to compute the OUT DFA in forward anal-

ysis and IN DFA for backward analysis for the types of statements in a sanitizer function:

Assignment Statement, Halt Statements and Conditional Statement.

Algorithm 4 POSTTRANSFERFUNCTION(node, IN )
1: OUT := IN ;
2: if (node ≡VAR := EXP) then
3: var1 := getVar(VAR);
4: if (EXP ≡ "<string-literal>") then
5: OUT [var1] :=A({"<string-literal>"});
6: else if (EXP ≡VAR) then
7: var2 := getVar(EXP);
8: OUT [var1] := IN [var2];
9: else if (EXP ≡?) then

10: OUT [var1] :=A(Σ∗);
11: else if (EXP ≡ STRINGFUNC) then
12: OUT [var1] := POST(STRINGFUNC);
13: end if
14: else if (node ≡return Var or node ≡reject) then
15: for all var in getVars() do
16: OUT [var] :=A(∅);
17: end for
18: end if

19: return OUT ;

Algorithm 5 PRETRANSFERFUNCTION(node,OUT )
1: IN := OUT ;
2: if (node ≡VAR := EXP) then
3: var1 := getVar(VAR);
4: if (EXP ≡ "<string-literal>" or EXP ≡VAR or EXP ≡?) then
5: IN [var1] :=A(Σ∗);
6: else if (EXP ≡ STRINGFUNC) then
7: IN [var1] := PRE(STRINGFUNC);
8: end if
9: else if (node ≡return Var or node ≡reject) then

10: for all var in getVars() do
11: IN [var] :=A(Σ∗);
12: end for
13: end if

14: return IN ;

Assignment Statement: In this type of statement, variable var on the left-hand side is as-

signed a value of an expression on the right-hand side. We use the Algorithm 4 (lines 1-13)
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to compute the set of string values that an expression may produce in the forward analysis

and Algorithm 5 (lines 1-8) to compute the set of string values that the expression may take

to produce a certain value in the backward analysis. Algorithm 4 takes two inputs: the node

which contains the expression on the right-hand side of the assignment and the IN DFA of the

assignment statement where the expression is. Algorithm 5 takes two inputs: the node which

contains the expression on the right-hand side of the assignment and the OUT DFA of the as-

signment statement where the expression is. The two algorithms evaluate the expressions on

the right hand side as follows:

• string-literal: for post transfer function a singleton set that only contains the value of

the string-literal is returned (i.e., a DFA that recognizes only the string-literal). For pre

transfer function variable is assigned Σ∗ since we do not know what its value was before

the assignment.

• Var: for post transfer function we copy the set that represents all possible values for the

right hand side variable into the left hand side variable. For pre transfer function left

hand side variable is assigned Σ∗ since we do not know what its value was before the

assignment.

• ?: since our analysis is concerned only with analyzing string values, ? is used to repre-

sent non-string expressions. In these cases we return > = Σ∗ indicating that the value of

the expression is not known.
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• StringFunc: in this case we use the specific post and pre image computation algorithm

for the function. Figure 3.8 shows a brief description of the post and pre images for the

two common string functions concatenate and replace. For full details on the algorithms

used to compute the post and pre images of these two functions see [106] [104].

– concatenate(expression1, expression2): In this case, POSTCONCAT computes the

concatenation of the regular languages resulting from evaluating expression1 and

expression2 and returns it as the result (using the symbolic DFA concatenation

operation discussed in [106]). PRECONCATPREFIX computes the prefix pre-image

language while PRECONCATSUFFIX computes the suffix pre-image language using

the pre-image computation algorithm discussed in [104].

– replace(pattern1, pattern2, s): POSTREPLACE computes the result of replacing all

string values in IN that match the pattern1 (given as a regular expression) with all

string values regular expression pattern2. There are two types of pattern matching:

partial match and full match. The match operation used is chosen based on the

pattern1 value as follows. 1) If the value starts with symbol “ˆ” and ends with

symbol “$”, a full match must be performed, that is, string in IN should be replaced

only if it fully matches the regular expression in the pattern1. This is accomplished

by taking the difference between the language in IN and the language L(pattern1)

and adding the language L(pattern2) to the result. 2) In all other cases, a partial

match is performed, where the result is computed by using the language-based
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POSTCONCAT(DFA M1, DFA M2): ≡ A({w1w2 | w1 ∈ L(M1), w2 ∈ L(M2)}).

POSTREPLACE(DFA M1, DFA M2, DFA M3)≡
A({w1c1w2c2 . . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1),∀i, xi ∈ L(M2), wi does not contain
any substring accepted by M2, ci ∈ L(M3)}).

PRECONCATPREFIX(DFA M , DFA M2) returns a DFA M1 so that M = CONCAT(M1,M2).

PRECONCATSUFFIX(DFA M , DFA M1) returns a DFA M2 so that M = CONCAT(M1,M2).

PREREPLACE(DFA M , M2, M3) returns a DFA M1 so that M = REPLACE(M1,M2,M3).

Figure 3.8: Definition of post- and pre-images of the two most common string functions
namely concatenation and replace.

replacement algorithm described in [106]. PREREPLACE computes the pre-image

for case 1 by adding the languageL(pattern1) to INwithout removing the language

L(pattern2) since we are not sure that this was added by the replace operation. For

case 2 pre-image is computed using the replace pre-image computation algorithm

discussed in [104].

In addition to the general replace operation above, we also implemented a number of

specialized automata replace operations to model some string sanitization operations

such as trim, htmlspecialchars, addslashes and mysql_real_escape_string, The

details for these operations are shown in 3.3.

Halt statements: for the two halt statements return var and reject, algorithm 4 (lines

14-17) returns ⊥ = ∅ for post transfer function since halting execution kills all values. On the

other hand algorithm 5 (lines 9-13) returns > = Σ∗ for pre transfer function. This indicates

that, going backwards, a variable can have any possible string value as its value at the program

point before a halt statement regardless of its possible values at the program point after the halt
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statement. The reason is that a halt statement stops execution which means that the values at

the program points after it are not the result of the values at the program point before it.

Algorithm 6 EVALPRED(Pred, Mvar)
1: if Pred ≡ Pred1 && Pred2 then
2: return EvalPred(Pred1) ∩ EvalPred(Pred2);
3: else if Pred ≡ Pred1 || Pred2 then
4: return EvalPred(Pred1) ∪ EvalPred(Pred2);
5: else if Pred ≡ !Pred1 then
6: return Σ∗ - EvalPred(Pred1);
7: else if Pred ≡ (Pred ) then
8: return EvalPred(Pred);
9: else if Pred ≡ Var RelOp "<string-literal>" then

10: return EvalVarRelOpLit(RelOp, "<string-literal>");
11: else if Pred ≡ Var matches RegExp then
12: return EvalLangMembership(Pred);
13: else if Pred ≡ StringFunc RelOp "<string-literal>" then
14: return StringFuncModelForPred(param1, param2, . . . , Mvar , RelOp, "<string-literal>");
15: else if Pred ≡ IntFunc RelOp <integer-literal> then
16: return IntFuncModelForPred(param1, param2, . . . , RelOp, <integer-literal>);
17: else
18: return A(Σ∗);

19: end if

Conditional Statement: Conditional statements consist of a predicate on variables and con-

stants. Because they represent a branch in the program, unlike other statements, they are fol-

lowed by two statements, one on the ON_TRUE branch and the other on the ON_FALSE branch.

If the predicate evaluates to true, the execution will continue in the ON_TRUE branch. Other-

wise, it will take the ON_FALSE branch. This behavior is represented in our analysis by having

two OUT DFAs reflecting the possible future values on each of the two branches of execution.

OUTon_T represents the values for the ON_TRUE branch, and OUTon_F represents the values for

the ON_FALSE branch. In order to compute these DFAs, our analysis first computes, using

EVALPRED algorithm 6, DFAT—the DFA that accepts the set of string values that would make

the predicate evaluate to true [3]. Then, the algorithm computes the OUTon_T DFA by inter-

90



Chapter 3. Analyzing Sanitizer Functions Using String Analysis

secting the IN DFA with DFAT . Conversely, to compute the OUTon_F , our algorithm intersects

the IN DFA with the complement of DFAT .

Algorithm 6 recursively traverses the predicate while constructing the DFA for each subex-

pression in the predicate. Logical operations are handled using automata union, intersection

and complement operations, while all other expressions are mapped to regular expressions [3].

In case of nondeterministic predicate ?, if the predicate is alone of if it is disjoined with an-

Algorithm 7 EVALVARRELOPLIT(RelOp, strlit)
1: if RelOp ≡ == then
2: Mr := A({strlit});
3: else if RelOp ≡ != then
4: Mr := A(Σ∗) \ A({strlit});
5: else
6: Mr := A(∅);
7: for i := 0→ len(strlit) do
8: Mt1 = A({ε});
9: for j := 0→ i− 1 do

10: Mt1 := Mt1 �A({strlit[j]});
11: end for
12: j := i;
13: Mt2 := A(∅);
14: for all c ∈ Σ do
15: if ((RelOp ≡ < or RelOp ≡ <=) and c ≺ strlit[j]) or ((RelOp ≡ > or RelOp ≡ >=) and c � strlit[j]) then
16: Mt2 := Mt2 ∪ A({c});
17: end if
18: end for
19: Mt1 := Mt1 �Mt2 ;
20: if i == len(strlit) then
21: if RelOp ≡ <= or RelOp ≡ >= then
22: Mt1 := temp1� Σ∗

23: else
24: Mt1 := Mt1 � Σ+;
25: end if
26: else
27: Mt1 := Mt1 � Σ∗;
28: end if
29: Mr := Mr ∪Mt1 ;
30: end for
31: end if

32: return Mr ;

Algorithm 8 EVALLANGMEMBERSHIP(RegExp)
1: if check_regexp(RegExp) = partial_match then
2: return A(Σ∗)�A(RegExp)�A(Σ∗);
3: else
4: return A(RegExp);

5: end if
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other predicate then EVALPRED returns Σ∗ indicating that we lose path sensitivity as we can not

guarantee the condition on which we took a specific branch of execution. On the other hand,

if the nondeterministic predicate is conjoined with another predicate then for the ON_TRUE

branch we just return the result for the other predicate while for the ON_FALSE branch we re-

Algorithm 9 substringMODELFORPRED(intlit_begin, intlit_end, RelOp, strlit)
1: i := intlit_begin; j := intlit_end;
2: Mprefix := A(Σi);
3: if RelOp ≡ == then
4: if len(strlit) neqj − i then
5: Mr := ∅;
6: else
7: Mr := Mprefix �A({strlit})�A(Σ∗);
8: end if
9: else if RelOp ≡ != then

10: Mr := A(Σ∗) \ (Mprefix �A({strlit})�A(Σ∗));
11: else
12: Mr := A(∅);
13: if len(strlit) ≥ (j − i) then
14: Mr := ∅;
15: for i := 0→ j − i do
16: Mt1 = A({ε});
17: for j := 0→ i− 1 do
18: Mt1 := Mt1 �A({strlit[j]});
19: end for
20: j := i;
21: Mt2 := A(∅);
22: for all c ∈ Σ do
23: if ((RelOp ≡ < or RelOp ≡ <=) and c ≺ strlit[j]) or ((RelOp ≡ > or RelOp ≡ >=) and c � strlit[j]) then
24: Mt2 := Mt2 ∪ A({c});
25: end if
26: end for
27: Mt1 := Mt1 �Mt2 ;
28: if i == len(strlit) then
29: if RelOp ≡ <= or RelOp ≡ >= then
30: Mt1 := temp1� Σ∗

31: else
32: Mt1 := Mt1 � Σ+;
33: end if
34: else
35: Mt1 := Mt1 � Σ∗;
36: end if
37: Mr := Mr ∪Mt1 ;
38: end for
39: Mr := Mprefix �Mr �A(Σ∗)
40: end if
41: end if

42: return Mr ;
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turn Σ∗. Recursive evaluation of a predicate stops when reaching one of the following 4 atomic

predicates:

Algorithm 10 lengthMODELFORPRED(RelOp, intlit)
1: if RelOp ≡ == then
2: return A(Σintlit );
3: else if RelOp ≡ > then
4: return A(Σ∗) \

⋃intlit
l=0 A(Σl);

5: else if RelOp ≡ >= then
6: return A(Σ∗) \

⋃intlit−1
l=0 A(Σl);

7: else if RelOp ≡ < then
8: return

⋃intlit−1
l=0 A(Σl);

9: else if RelOp ≡ <= then
10: return

⋃intlit
l=0 A(Σl);

11: else if RelOp ≡ > then
12: return A(Σ∗) \ A(Σintlit );

13: end if

Algorithm 11 indexofMODELFORPRED(RelOp, intlit)
1: strlit = <string-literal>;
2: if RelOp ≡ == then
3: if intlit = -1 then
4: return A((Σ \ {strlit [0]})∗);
5: else if intlit ≥ 0 then
6: return A(Σintlit−1)�A({strlit [0]})�A(Σ∗);
7: end if
8: else if RelOp ≡ >= then
9: if intlit = -1 then

10: return A(Σ∗)�A({strlit [0]})�A(Σ∗);
11: else
12: return A((Σ \ {strlit [0]})intlit )�A(Σ∗)�A({strlit [0]})�A(Σ∗);
13: end if
14: else if RelOp ≡ > then
15: return A((Σ \ {strlit [0]})intlit+1)�A(Σ∗)�A({strlit [0]})�A(Σ∗);
16: else if RelOp ≡ <= then
17: if intlit = -1 then
18: return A(Σ \ {strlit [0]})∗);
19: else
20: return

⋃intlit
l=0 A(Σl)�A({strlit [0]})�A(Σ∗);

21: end if
22: else if RelOp ≡ < then
23: if intlit = 0 or intlit = -1 then
24: return A((Σ \ {strlit [0]})∗);
25: else
26: return

⋃intlit−1
l=0 A(Σl)�A({strlit [0]})�A(Σ∗);

27: end if
28: else if RelOp ≡ != then
29: if intlit = -1 then
30: return A(Σ∗)�A({strlit [0]})�A(Σ∗);
31: else if intlit = 0 then
32: return A(Σ \ {strlit [0]})�A(Σ∗);
33: else
34: return A(Σintlit−1)�A(Σ \ {strlit [0]})�A(Σ∗);
35: end if

36: end if
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• Var RelOp "<string-literal>" (lines 9,10): this represents a lexicographical comparison

between the string value of the left hand side variable and the value of <string-literal>.

Algorithm 7 shows how to evaluate this predicate.

• Var matches RegExp (lines 11,12): this predicate tests if a variable is a member of the

language of a regular expression. Algorithm 8 shows how to evaluate this predicate.

• StringFunc RelOp "<string-literal>" (lines 13,14): this predicate calls the specific algo-

rithm for the given StringFunction. Algorithm 9 shows how to evaluate predicates that

use substring function.

• IntFunc RelOp "<integer-literal>" (lines 15,16): this predicate calls the specific algo-

rithm for the given IntFunction. Algorithms 10 and 11 show how to evaluate predicates

that use length and indexof functions.

Notice that we only call EVALPRED to evaluate a predicate if it contains a single variable

(see algorithm 1: lines 25-30, algorithm 2: lines 22-28, and algrotihm 3: lines 16-21). To

handle branch conditions with multiple variables we need relational string analysis [110].

After evaluating the predicate we then compute post-image of the conditional statement

in the case of forward analysis and pre-image in the case of backward analysis. In forward

analysis (algorithm 1) we compute OUTon_T[var] by intersecting result of EVALPRED with

the value of IN[var] and compute value of OUTon_F[var] by intersecting the complement

of the result of EVALPRED with the value of IN[var]. This reflects the fact that the possible

values that the variable var can take will be filtered (i.e., constrained by) the predicate on true
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branch and its negation on false branch. In the case of backward analysis, there are two ways

to compute the pre-image of conditional statements. In algorithm 2 IN[var] DFA gets the

union of the values of OUTon_T and OUTon_F after they are intersected with the (complement

of) result of EVALPRED. The reason here is that we are trying to compute the set of input string

values that are mapped to a given set of output string values by the sanitizer function. This

set is the set that is not mapped by the sanitizer function to ⊥ but rather to Sp ⊆ Σ∗ which

means that it satisfies all branch conditions on all paths to positive sink (i.e., return var

statement) program point. For algorithm 3 the situation is different and we need to union with

the (complement of) result of EVALPRED as we explained before.

3.3 Specialized Replace Algorithms

To increase the precision and performance of our analysis, we developed [2] a number of

automata-based algorithms for computing the pre and post-images of frequently used string op-

erations such as trim, htmlspecialchars,

addslashes, mysql_real_escape_string, tolower, and

toupper. These algorithms are more precise and more efficient than using the general re-

place algorithm to model these specialized operations [106]. The general replace algorithm

consumes significantly more time and space since it relies on automata determinization which

requires the use of subset construction algorithm which has an exponential complexity. On the

other hand, the specialized algorithm we developed for the ESCAPE operation, for example,
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runs in linear time and its result is precise without any over-approximation. In the experimen-

tal results we demonstrate the improvement that we gain from these specialized algorithms.

Below we describe the post-image of four of the specialized replace operations that we

implemented.

Definitions

POSTESCAPE(DFA M1, char e, charset E): this automata operation escapes charac-

ters in E along with the escape character e itself in all strings in L(M1) using the escape

character e. It returns a DFA M such that L(M) = { w1ec1w2ec2 . . . wkeckwk+1 | k > 0,

w1c1w2c2 . . . wkckwk+1 ∈ L(M1), ∀i : ci ∈ E ∪ {e} and wi ∈ Σ∗ − (E ∪ {e})∗}. An ex-

ample of an escape function is PHP’s addslashes. Notice that ESCAPE escapes all chars

c ∈ {e} ∪ E without checking if they have already been escaped before. This may result in

double escaping i.e. w1eew2 will become w1eeeew2.

POSTTRIMLEFT(DFA M1, char s): this automata operation removes all the space char-

acters s from the beginning of strings in L(M1) up to the first character that is not equal to s.

It returns a DFA M such that L(M) = {c1w | w1c1w ∈ L(M1), w1 ∈ {s}∗ and w ∈ Σ∗ and

c1 ∈ Σ− {s}}.

POSTTRIMRIGHT(DFAM1, char s): this automata operation removes all the s characters

from the end of strings in L(M1) going in backward (i.e., reverse) direction starting from the

end up to the first character that is not equal to s. It returns a DFA M such that L(M) =

{wc1 | wc1w1 ∈ L(M1), w1 ∈ {s}∗ and w ∈ Σ∗ and c1 ∈ Σ− {s}}.
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POSTREPLACECHAR(DFA M1, char r, String w): this automaton operation replaces a

single char r with a string w in all strings in L(M1). It returns a DFA M such that L(M) =

{w1ww2w . . . wkwwk+1 | k > 0, w1rw2r . . . wkrwk+1 ∈ L(M1),

wi ∈ (Σ − {r})∗}. This operation can be used to model string operations such as PHP’s

htmlspecialchars efficiently.

POSTREPLACECHARSETWITHCHARSET(DFA M1, Relation R): in this automaton

operation we are given a relation (partial function)R ⊆ Σ×Σ that maps a set of characters to

another set of characters where a character does not appear at the same time in the domain and

the range of the relation and each character can be mapped byR to one and only one character.

Formally, ∀c1, c2 and c3 ∈ Σ, (c1, c2) ∈ R and (c1, c3) ∈ R ⇒ c2 = c3 and ∀c and c′ ∈ Σ, if

(c, c′) ∈ R then @c′′ ∈ Σ such that (c′′, c) ∈ R.

This automaton operation replaces each character c in the domain ofR with its counterpart

in the range ofR in all strings in L(M1). It returns a DFAM such that L(M) = {w1c
′
1w2c

′
2 . . .

wkc
′
kwk+1 | k > 0, w1c1w2c2 . . . wkckwk+1 ∈ L(M1), ∀i ≤ k(ci, c

′
i) ∈ R}. This can be used to

model PHP operations such as tolower and toupper that change all characters in input string

to lower or upper case.

Algorithms

POSTESCAPE(M1, e, E): Given M1 = 〈Q1, q0,ΣB, δ1, F1〉 the result DFA

M = 〈Q, q0,ΣB, δ, F 〉 is constructed as follows: For each state qi that has at least one out

transition (qi
c−→ qj) on a character c ∈ {e} ∪ E (1) we mark each transition (qi

c−→ qj) out
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PostEscape input

40 1
Σ

3
Σ Σ

PostEscape result

4
0 1

Σ-{',",\}

5

 \ 3

Σ-{',",\}

6

 \ 
Σ-{',",\}

7

 \ 
{',",\} {',",\} {',",\}

Figure 3.9: Example of applying POSTESCAPE to DFA M1 where L(M1) = Σ3 to escape the
characters ’ and " with character \.

from qi to a state qj , (2) we add a new state q′k and a new transition (qi
e−→ q′k) on escape

character e, (3) we move each marked transition (qi
c−→ qj) to become a transition (q′k

c−→ qj).

The resulting automaton does not have nondeterminism which means that we avoid the use of

subset construction algorithm for determinization.

Formally, PostEscape-DFA M = 〈Q, q0,ΣB, δ, F 〉 can be constructed as follows:

• Q = Q1 ∪Q′, Q′ = {q′i | ∀i ≥ 0 : ∃ α ∈ EB ∪ {αe} : qi ∈ Q1 and δ1(qi, α) 6= sink}.

• F = F1.

• ∀q ∈ Q,∀α ∈ ΣB \ EB ∪ {αe} : δ(q, α) = δ1(q, α)

∀i ≥ 0 : (∃ α ∈ EB ∪{αe} : δ1(qi, α) 6= sink)⇒ (δ(qi, αe) = q′i and ∀α ∈ EB ∪{αe} :

δ(q′i, α) = δ1(qi, α)).

Example. Figure 3.9 shows the result of applying POSTESCAPE to DFA M1 where L(M1) =

Σ3 to escape the characters E = {’, "} with escape character e = \ which models the seman-
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tics of function addslashes in PHP. The shaded states are the newly added states and dash

lines are newly added transitions.

Notice that, given any two states, instead of drawing one edge between the two states for

each transition (on a character in Σ) between the two states, we draw a single edge between

these two states and label it with the set of characters that have transitions between the two

states. In other words, each edge represents n transitions in the transition relation where n is

the number of characters in the character set labeling the edge. For example, (S0
Σ−→ S1) in M1

represents 256 transitions between states S0 and S1, one transition per each ASCII character in

Σ.

(1) First, we mark in M1 transitions (S0

′
−→ S1), (S0

”−→ S1), (S0
\−→ S1), (S1

′
−→ S3),

(S1
”−→ S3), (S1

\−→ S3), (S3

′
−→ S4), (S3

”−→ S4), (S3
\−→ S4). (2) Then we add states S5, S6, S7

and transitions (S0
\−→ S5), (S1

\−→ S6), (S3
\−→ S7). (3) Finally, we move transitions (S0

′
−→ S1),

(S0
”−→ S1), (S0

\−→ S1) to (S5

′
−→ S1), (S5

”−→ S1), (S5
\−→ S1) and move transitions (S1

′
−→ S3),

(S1
”−→ S3), (S1

\−→ S3) to become (S6

′
−→ S3), (S6

”−→ S3), (S6
\−→ S3) and move transitions

(S3

′
−→ S4), (S3

”−→ S4), (S3
\−→ S4) to become (S7

′
−→ S4), (S7

”−→ S4), (S7
\−→ S4).

Notice that adding transitions (S0
\−→ S5), (S1

\−→ S6), (S3
\−→ S7) did not introduce nonde-

terminism since we moved transitions (S0
\−→ S1), (S1

\−→ S3), (S3
\−→ S4) from states S0, S1,

and S3. This shows how critical it is to have the escape e character being at the same time an

escaped character.

PREESCAPE(M1, e, E) implementation: Given M1 = 〈Q1, q0,ΣB, δ1, F1〉 we first pre-

process M1 to partition all transitions (q
e−→ q′) into two sets of transitions: Escaping transi-
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0 1e 2c
e

3c

Figure 3.10: Example of double escaping that happens if an escape character e on transition
(1

e−→ 2) is escaping c and being escaped by another e.

tions Tg and escaped transitions Te such that: ∀q, q′ ∈ Q1 : (q
e−→ q′) ∈ Te ⇒ ∃q′′ ∈ Q1:

(q′′
e−→ q) ∈ Tg.

Notice that in M1, a transition (q
e−→ q′) can not be escaping and at the same time being es-

caped, i.e., Te∩Tg = ∅. Otherwise we will have a string w1eecw2 ∈ L(M1) where w1, w2 ∈ Σ∗

which contradicts the definition of

POSTESCAPE(M1, e, E). Figure 3.10 shows part of a DFA where character c has to be always

escaped by e. Notice that (1 e−→ 2) is escaping and at the same time being escaped. This gives us

the path in dashed lines that would result in double escaping. We can formalize this condition as

follows: There is no path q0, . . . , qi−1, qi, qi+1, qi+2, . . . , qf inM1 where qf ∈ F, δ(qi−1, e) = qi,

δ(qi, e) = qi+1 and δ(qi+1, c) = qi+2 where c ∈ {e} ∪ E. During the analysis, we enforce this

condition by applying PREESCAPE on M1∩ ESCAPE(A(Σ∗), e, E). Using the same reasoning

we conclude that (1)∀(q e−→ q′) ∈ Tg : q′ /∈ F , (2) ∀c /∈ {e} ∪ E, ∀(q e−→ q′) ∈ Tg : δ(q′, c) =

sink, (3) ∀q ∈ Q1(∀c ∈ {e} ∪ E : δ(q, c) 6= sink ⇔ ∀c′ /∈ {e} ∪ E : δ(q, c′) = sink), and

(4)δ(q0, e) 6= sink ⇒ (q0
e−→ q′) ∈ Tg.

Using these results, we compute Tg and Te using a depth first traversal starting from the

start state q0. We then compute the set of escaped states Qe which is the set of states that

has all input transitions in Tg. Due to the preconditions we stated earlier, all transitions on e
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must be either coming into an escaped state or going out from it. Also all transitions on escaped

characters c ∈ {E}must be going out from an escaped state. Taking the result of POSTESCAPE

in Figure 3.9 as an example input to PREESCAPE, Tg = {(S0
\−→ S5), (S1

\−→ S6), (S3
\−→ S7)},

Te = {(S5
\−→ S1), (S6

\−→ S3), (S7
\−→ S4), (S5

′
−→ S1), (S6

′
−→ S3), (S7

′
−→ S4), (S5

”−→

S1), (S6
”−→ S3), (S7

”−→ S4)} and Qe = {S5, S6, S7}.

Finally, given Qe, we construct the new DFA by removing all states qk ∈ Qe such that:

(1) all transitions (qi
e−→ qk) are removed, and (2) each transition (qk

c−→ qj) is added, as

an out transition, to all states qi where a transition (qi
e−→ qk) was removed. Based on the

conditions we discussed above on M1, this last step can be done without determinization and

subset construction.

Finally PreEscape-DFA M = 〈Q, q0,ΣB, δ, F 〉 can be constructed as follows.

• Q = Q1 −Qe.

• F = F1.

• ∀q ∈ Q,∀α ∈ ΣB − EB ∪ {αe} : δ(q, α) = δ1(q, α).

• ∀q ∈ Q,∀α ∈ {αe} ∪ EB : δ(q, α) = q′ ∈ Q if δ1(q, αe) = q′′ and δ1(q′′, α) = q′.

The two algorithms above are precise as they do not over-approximate the result. Addition-

ally, they are linear in the size of the input DFA and avoid subset construction which makes

them very fast compared to the general replace algorithm.

POSTTRIMLEFT(M1, s): Given M1 = 〈Q1, q0,ΣB, δ1, F1〉 our goal is to construct a DFA

that would accept w if w1w ∈ L(M1) where w1 ∈ s∗. We start first by marking all states
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qi reachable from start state q0 on a string w ∈ s∗ where s is the char to be trimmed. Given

a DFA M = 〈Q, q0,ΣB, δ, F 〉, a state qm ∈ Q and a char s ∈ Σ, let us define function s-

reach : Q← 2Q as following:

s-reach(qm) = {qn: there exists a path qm, qm+1, . . . , qn such that

∀ 0 ≤ i, (qm+i, s, qm+i+1) ∈ δ}

Notice that qm ∈ s-reach(qm) since qm is reachable from itself on ε = s∗. We say that a

state qn is s-reachable from a state qm if qn ∈ s-reach(qm). The first step in our algorithm

is to mark all states that are s-reachable from start state q0. Intuitively, we try to add to the

language accepted by the new DFA all substrings w that (1) do not start with s and (2) can

be accepted by M1 starting from a state qm ∈ s-reach(q0). We can achieve this by adding

a new start state qinit and then for all transitions (qi
c−→ qj) where qi is reachable from q0

on s (qi ∈ s-reach(q0)) and c is not s (c ∈ Σ \ {s}), we copy that transition to get a new

transition (qinit
c−→ qj). Since adding two transitions to qinit on the same alphabet symbol α to

two different states will introduce non-determinism, we need to simulate this non-determinism

because symbolic automaton does not allow non-deterministic transitions (i.e., two transitions

on the same character out from the same state) or ε-transitions. This simulation is done by

adding extra bits to ΣB as we explained before. In our case here, the worst case scenario is

that we find an outgoing transition on a character c 6= s out from each state qi ∈ s-reach(q0)

(i.e.∃c ∈ Σ\{s} such that ∀qi ∈ s-reach(q0)∃qj such that (qi
c−→ qj)). Since we need to copy all

these transitions as outgoing transitions from the new start state qinit, we need to simulate this

non-determinism symbolically to differentiate between all of these new transitions on the same
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character c (i.e., to let each pair of the new copied transitions have different alphabet symbol

on it). This can be achieved by adding extra bits to each alphabet symbol as following: let n

be the size of s-reach(q0) (i.e., n = |s-reach(q0)|). Given m = dlog2(n)e, ∀α ∈ ΣB, ∀q ∈ s-

reach(q0) we define a new symbol αmq where mq ∈ Bm. Adding extra bits to an alphabet

symbol αc allows us to have multiple versions c0, c1, c2, . . . of the corresponding character c

where we can use two different versions for each pair of transitions outgoing from the same

state on c. We then construct an intermediate DFA M ′ = 〈Q′, q′0,Σ′B, δ′, F ′〉 as follows:

• Σ′B ⊆ Bk+m where m = dlog2(n)e.

• Q′ = Q1 ∪ {qinit}.

• F ′ = F1 if F1 ∩ s-reach(q0) = φ otherwise F ′ = F1 ∪ {qinit}.

• δ(qinit, αmq) = q′ ∈ Q′ if α 6= αs and ∃q ∈ s-reach(q0) such that δ1(q, α) = q′.

• ∀q ∈ Q1 : δ(q, αm0) = δ1(q, α) where m0 = 0m.

Finally we determinize the symbolic DFA M ′ by projecting all extra bits. Formally, we con-

struct M = ∀1 ≤ i ≤ m, PROJECT(M ′, k + i).

Example. Figure 3.11 shows an example of running POSTTRIMLEFT on the input symbolic

DFA shown on the top left corner. For each step of the algorithm, we show a symbolic DFA

with symbolic alphabet along with another one with non-symbolic alphabet to give an idea

of how we actually implement our algorithms using symbolic automata representation. In the

following discussion we will explain the example using the symbolic DFAs. We will use the
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Input Symbolic DFA

0

2X
X

30
X

X
X

Input DFA

0

2 a,b,c,s

3 a,b
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X
X
0
0

2

0
X
0
0

X
X
0
0

i

0
X
1
1

0 1
X 0
1 1
0 0

0 1
X 0
0 0
1,1

Intermediate DFA
0

1

a0,b0,
c0,s0

2

a0,b0
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i

a3,b3

a2,b2,
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a1,b1,
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0

2

0
X
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1
0

0
X

1
X

4
0
X

5
1
X
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0
X

7
1
X
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X
X

X
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X
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Final DFA
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 a,b
3

 c

 a,b  c,s

4
 a,b

5

 c,s

6

 a,b

7 c,s

8 a,b

 a,b,c,s

 a,b,c,s

 a,b,c,s

Figure 3.11: Example of POSTTRIMLEFT.
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prefix S before each state number to refer to a certain state in one of DFAs in the example.

For example, S0 means state 0 (the initial state in input DFA on top left corner) while Si

means state i (the initial state in intermediate DFA on top right corner). Since we want to

give a simple example to explain the algorithm, we used the small alphabet Σ = {a, b, c, s}

where each character c ∈ Σ is represented by an alphabet symbol αc ∈ (0|1)∗ as following:

αa ⇒ 00, αb ⇒ 01, αc ⇒ 10, αs ⇒ 11. An X symbol in the figure represents an option

of either 0 or 1. For example, from state S0 → S1 in input DFA, an edge labeled
X

X
means

that there are four transitions between these two states on alphabet 00, 01, 10 and 11 (i.e., four

transitions on characters a, b, c, s). Also, from state S2 → S0 an edge labeled
0

X
means that

there are two transitions between these two states on alphabet 00 and 01 (i.e., two transitions

on characters a and b).

The first step in the algorithm is to compute s-reach(S0) (i.e., states that are reachable

from state 0 on α∗s). Since S0 is reachable from itself on α0
s = ε, we add S0. Then, starting

from S0 we have edge labeled
X

X
to S1 which means one of the transitions that it represents

is on αs = 11. So we add S1. Then checking transitions out from S1 we have edge labeled

X

X
to S2 which means one of the transitions that it represents is on αs = 11. So we add S2.

Then checking transitions out from S2 we have edge labeled
0

X
to S0 which means none of the

transitions that it represents is on αs = 11. So the result is s-reach(S0) = {S0, S1, S2}. Then

we calculate m which is the number of extra bits that we need to symbolically simulate non-

determinism (i.e., number of extra bits to differentiate between different transitions on same
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character that will go out from the new initial state that we will introduce). To calculate m we

take the log of the size n of s-reach(q0) to base 2: m = dlog2(3)e = 2.

Next we build intermediate DFA (the DFA on the top right corner) by (1) copying original

input DFA after adding the extra bits to its alphabet then (2) adding a new start state Si then (3)

copying all transitions out from s-reach(S0) states {S0, S1, S2} on a character not equal to s to

new start state Si and adding the extra bits to differentiate them. To appreciate the 2 extra bits

that we need to add notice that we have 3 transitions on the two alphabet 00 and 01 out from

new initial state Si (see edges labeled with
0
X
1
1

,
0
X
0
1

and
0
X
1
0

out from Si) and we needed two extra

bits to differentiate all these three transitions from each other. We have to point out that adding

the extra bits introduced large number of new transitions that are not shown here since they all

go to sink state which is also not shown here.

Finally, we project the two extra bit, bit-2 and bit-3 to determinize the intermediate DFA.

The result is the DFA shown in the bottom. All strings accepted by this new DFA do not start

with the left-trimmed symbol αs = 11.

PRETRIMLEFT(M , s): Given M1 = 〈Q1, q0,ΣB, δ1, F1〉 our goal is to construct a DFA

M where M1 = POSTTRIMLEFT(M , s). Notice that we do not know how many charac-

ters s have been left-trimmed from each string in L(M) to get L(M1). For example, as-

suming Σ = {a, b, s}, left-trimming s in the following two languages L1 = {sa, ssab} and

L2{sab, ab, sssa} will result in the same language Llt = {a, ab}. In fact, left-trimming all
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PreTrimLeft input

0 2 a
 s, b

PreTrimLeft result

0

2

a

s, b

i

as

Figure 3.12: Example of PRETRIMLEFT.

languages L ⊆ Lmax = (s∗a|s∗ab) will result in Llt. So we are going to construct the maximal

DFA M such that ∀ DFA Mi : M1 = POSTTRIMLEFT(Mi, s)⇒ L(Mi) ⊆ L(M).

It is tempting at the beginning to just add a self loop on s to the start state q0. However,

although this is a correct over-approximation, it is too imprecise since it may add the substrings

s∗ to all paths that have a back edge to start state q0 on some c ∈ Σ (i.e., (qi,
c−→, q0)). So a more

precise way to do this is to copy q0, along with all transitions out from it, into a new start state

qinit and then add the self loop transition on s to this new state (i.e., (qinit,
s−→, qinit)). Notice

that there could not be a transition on s out from q0 (i.e., (q0,
s−→, qi)) since we assume that M1

is the result of POSTTRIMLEFT. This means that adding the self loop on s out from qinit will

not introduce nondeterminism and there is no need for extra bits.

Formally, we will construct a DFA M ′ = 〈Q′, qinit,ΣB, δ′, F ′〉 as following:

• Q′ = Q1 ∪ {qinit}.

• F ′ = F1 if q0 /∈ F1 otherwise F ′ = F1 ∪ {qinit}.

• ∀q ∈ Q1, δ
′(q, α) = δ1(q, α) and

δ′(qinit, α) = δ1(q0, α), δ′(qinit, αs) = qinit
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Example. Figure 3.12 shows an example of running PRETRIMLEFT. Notice that we did not

need an intermediate DFA. We just added a new state Si with a self loop on s and copied all

transitions out from S0 to new Si.

POSTTRIMRIGHT(M1, s): Given M1 = 〈Q1, q0,ΣB, δ1, F1〉 our goal is to right trim s by

constructing a DFA that would accept w if ww1 ∈ L(M1) where s is that char to be right

trimmed and w1 ∈ s∗. We start first by marking, for each accepting state qf in M1, all states

qi, where qf is reachable from qi on s∗. To do this, let us first define the reverse of transition

relation δ1 as following:

δ−1
1 = {(qj, c, qi): where (qi, c, qj) ∈ δ1}

Notice that δ−1
1 is nondeterministic i.e., ∃(qi, c, qj) ∈ δ−1

1 and (qi, c, qk) ∈ δ−1
1 where (qj 6= qk).

Now given a DFA M = 〈Q, q0,ΣB, δ, F 〉, a state qm ∈ Q and a char s ∈ Σ, let us define

function s-reach−1 : Q← 2Q as following:

s-reach−1(qm) = {qn: there exists a path qm, qm+1, . . . , qn such that

∀ 0 ≤ i, (qm+i, s, qm+i+1) ∈ δ−1}

Now we can define the first step of the algorithm as computing s-bw-reachable =
⋃

qf∈F1

s-

reach−1(qf ). To compute this set, we run depth first search multiple times on δ−1 starting each

time from one of the accepting states. Intuitively, this step helps us to add to the language

accepted by the new DFA all substrings w that (1) do not end with s and (2) by simulating M1

on w starting from q0 we will reach a state qm that reachable from an accepting state by reverse

transition relation δ−1.
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Given s-bw-reachable, we construct a new DFA M ′ from M as following: (1) add a new

accepting state qfinal and then (2) for each transition (qi
c−→ qj) where qj ∈ s-bw-reachable

(i.e., reachable from an accepting state on s using δ−1 and c ∈ Σ \ {s}, we copy that transition

to get a new transition (qi
c−→ qfinal). Since adding this new transition from qi on the same

character c to a different state than qj will introduce non-determinism, we need to add an

extra bit to ΣB. ∀α ∈ ΣB, we define two new symbols α0 and α1. Finally, if q0 ∈ s-bw-

reachable then q0 becomes an accepting state. We construct the intermediate DFA M ′ =

〈Q′, q0,Σ
′
B, δ

′, F ′〉 as follows:

• Σ′B = Bk+1 where ΣB = Bk.

• Q′ = Q1 ∪ {qfinal}.

• F ′ = {qfinal, q0} if q0 ∈ s-bw-reachable otherwise F ′ = {qfinal}.

• δ′(qi, α0) = δ(qi, α0) and

δ′(qi, α1) = qfinal if δ(qi, α) = qj for a qj ∈ s-bw-reachable and α 6= αs.

Finally we determinize the symbolic DFA M ′ by projecting the extrabit. Formally, final result

is M = PROJECT(M ′, k + 1).

Example. Figure 3.13 shows an example of running POSTTRIMRIGHT on the input DFA. The

first is computing s-reach−1(S3) (i.e., states that can reach accepting state 3 on α∗s). These

states are = {S0, S2, S3}. The second is building intermediate DFA (the DFA in the middle)

by (1) copying original input DFA after adding an extra bit to its alphabet then (2) adding a
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PostTrimRight input

3

0

 c 2 s, a

 s, b

PostTrimRight intermediate result

0

2s0, a0

f
a1

3

s0, b0
b1

c0 c1

PostTrimRight result

0

3

 a

2 s

5

 b

4 s

 c
 b

 s

 c

Figure 3.13: Example of POSTTRIMRIGHT.

new accepting state Sf (i.e., qfinal) then (3) copying all transitions out from s-reach−1(S3)

states {S0, S2, S2} on a character not equal to s to accepting state Sf and adding an extra bit

to differentiate them and finally (4) marking start state S0 as an accepting state since it is in

s-reach−1(S3). The third and final step is to project the extra bit to determinize the interme-

diate DFA. All strings accepted by this new DFA do not end with the right-trimmed character s.

PRETRIMRIGHT(M , s): Given M1 = 〈Q1, q0,ΣB, δ1, F1〉 our goal is construct a DFA M

where M1 = POSTTRIMRIGHT(M , s). Notice that we do not no how many characters s

have been right-trimmed from each string in L(M) to get L(M1). For example, assum-

ing Σ = {a, b, s}, right-trimming s in the following two languages L1 = {as, abss} and

L2{absss, ab, ass} will result in the same language Llt = {a, ab}. In fact, right-trimming

all languages L ⊆ Lmax = (as∗|abs∗) will result in LRT . So we are going to construct the

maximal DFA M such that ∀ DFA Mi : M1 = POSTTRIMRIGHT(Mi, s)⇒ L(Mi) ⊆ L(M).
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PreTrimRight input
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PreTrimRight intermediate result

0
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PreTrimRight result

0

 s
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 s
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Figure 3.14: Example of PRETRIMRIGHT.

It is tempting at the beginning to just add a self loop on s to each of the accepting states

qf ∈ F1. But, although this is a correct over-approximation, it is too imprecise as it may add the

substrings s∗ to all paths that have a back edge from an accepting state qf on some c ∈ Σ (i.e.,

(qf ,
c−→, qi)). So a more precise way to do this is to (1) add a new accepting state qfinal, and (2)

copy any outgoing transition from a state qi on a character c that goes into an accepting state

qf ∈ F1 as a transition that goes from qi into qfinal ((i.e., (qi,
c−→, qfinal)) and (3) add the self

loop transition on s to this new state (i.e., (qfinal,
s−→, qfinal)). Since in the second step, for each

state qi that has an outgoing transition to a final state qf ∈ F1 we will duplicate that transition

to qfinal, this will result in having two transitions on a character c out from the same state qi. To

deal with the nondeterminism we need to extend ΣB by one more bit to differentiate these two

transitions. Finally, if that start state q0 is an accepting state (i.e., q0 ∈ F1) then we need to add

a new start state qinit—in addition to qfinal—in the same way that we did in PRETRIMLEFT.
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Formally, we will construct an intermediate DFA M ′ = 〈Q′, q′0,Σ′B, δ′, F ′〉 as following:

• Σ′B = Bk+1 where ΣB = Bk.

• q′0 = q0 if q0 /∈ F1 otherwise

q′0 = qinit

• Q′ = Q1 ∪ {q′0, qfinal}

• F ′ = {qfinal} if q0 /∈ F1 otherwise

F ′ = {q′0, qfinal}

• ∀q ∈ Q1, δ
′(q, α0) = δ1(q, α) and

∀q ∈ Q1, δ
′(q, α1) = qfinal if δ1(q, α) ∈ F1 and

δ′(qfinal, αs1) = qfinal and

if q0 ∈ F1 then δ′(qinit, α0) = δ1(q0, α), δ′(qinit, αs1) = qinit.

Finally we determinize the symbolic DFA M ′ by projecting all extra bits. Formally, we con-

struct M = PROJECT(M ′, k + 1).

Example. Figure 3.14 shows an example of running PRETRIMRIGHT on the input DFA shown

on the top. We built the intermediate DFA (the DFA in the middle) by (1) copying original input

DFA after adding an extra bit to its alphabet then (2) adding a new start state Si (i.e., qinit) since

Si is an accepting state and a new accepting state Sf (i.e., qfinal) then (3) copying all transitions

coming into accepting states {S0, S3} to transition coming into Sf and adding an extra bit to dif-

ferentiate them and finally (4) adding self loop transitions on new start and accepting states Si
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             DFA before replace char 'r'

0 1
Σ

            Intermediate DFA after replace 'r' with string "foo"

0 1

 Σ-{r}

3
 f

4 o
 o

Figure 3.15: Example of replacing a transition on char r between two states S0 and S1 with a
path on string “foo” while computing POSTREPLACECHAR.

and Sf . Finally, we project the extra bit to determinize the intermediate DFA. The result is the

DFA shown in the bottom.

POSTREPLACECHAR(M1, r, w): The algorithm takes as input a symbolic DFA M1 =

〈Q1, q0,ΣB, δ1, F1〉, a character r ∈ Σ and a string w of length n > 0 that consists of a

sequence of characters w = 〈c0, c1, . . . , cn−1〉 where each character ci ∈ Σ. The result DFA

M = 〈Q, q0,ΣB, δ, F 〉 is constructed as follows:

(1) if |w| = 1 (i.e., w consists of a single character c0) we replace each transition (qi
r−→ qj)

on replace character r with transition (qi
c0−→ qj) (2) else we replace each transition (qi

r−→ qj)

on replace character r with a new path (qi
w−→
∗
qj) of length n by adding n − 1 new states

q′i0 , q
′
i1
, . . . , q′in−2

and n transitions (qi
c0−→ q′i0), (q′i0

c1−→ q′i1), . . . , (q′in−2

cn−1−−→ qj). Since qi might

have an outgoing transition on c0, we need to add one extra bit to simulate non-determinism.

Figure 3.15 shows how to replace a marked transition on r between states S0 and S1 with a

new path between the states on string foo. The shaded states are the new added states and the

dashed transitions are the new added transitions.
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The resulting intermediate automaton M ′ = 〈Q′, q0,Σ
′
B, δ

′, F ′〉 is constructed as follows:

• Σ′B ⊆ Bk+1 where ΣB ⊆ Bk.

• Q′ = Q1 ∪Q′′, Q′′ = {q′il |∀i ≥ 0, qi ∈ Q1 and δ1(qi, αr) 6= sink and 0 ≤ l ≤ n− 2)}.

• F ′ = F1.

• ∀q ∈ Q,∀α 6= αr : δ′(q, α0) = δ1(q, α)

if n = 1 then ∀i ≥ 0 : (δ1(qi, αr) 6= sink)⇒ (δ′(qi1, αc01) = δ1(qi, αr))

else ∀i ≥ 0 : (δ1(qi, αr) 6= sink) ⇒ (δ′(qi, αc01) = q′i0 ,∀0 ≤ l ≤ n − 2 :

δ′(q′il , αcl+1
1) = q′il+1

and δ′(q′in−2
, αcn−11) = δ1(qi, αr)).

Then we get final DFA M by projecting the added bit, M = PROJECT(M ′, k + 1)

PREREPLACECHAR(M1, r, w): The algorithm takes as input a symbolic DFA M1 =

〈Q1, q0,ΣB, δ1, F1〉, a character r ∈ Σ and a string w of length n > 0 that consists of a

sequence of characters w = 〈c0, c1, . . . , cn−1〉 where each character ci ∈ Σ. The result is a

DFAM = 〈Q, q0,ΣB, δ, F 〉 such thatM1 =POSTREPLACECHAR(M , r, w). M is constructed

as following:

(1) for each state qi ∈ Q1 we check if there a path on w to a non-sink state qj (i.e., (qi
w−→
∗
qj)

or δ∗1(qi, w) = qj where qj 6= sink) (2) if so then we add a new transition from qi to qj on r

(i.e., (qi
r−→ qj)) if such transition does not exist before without removing the path (qi

w−→
∗
qj).

Since qi might have an outgoing transition on r to a state qk 6= qj , we need to add one extra bit

to simulate non-determinism.
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The resulting intermediate automaton M ′ = 〈Q′, q0,Σ
′
B, δ

′, F ′〉 is constructed as follows:

• Σ′B ⊆ Bk+1 where ΣB ⊆ Bk

• Q′ = Q1.

• F ′ = F1.

• ∀q ∈ Q,∀α ∈ ΣB : δ′(q, α0) = δ1(q, α)

∀q ∈ Q : δ′(q, αr1) = δ∗1(q, αr).

Then we get final DFA M by projecting the added bit, M = PROJECT(M ′, k + 1)

POSTREPLACECHARSETWITHCHARSET(M1, RB): The algorithm takes as input a

symbolic DFA M1 = 〈Q1, q0,ΣB, δ1, F1〉, and a relation (partial function) RB ⊆ ΣB × ΣB

where ∀α1, α2 and α3 ∈ ΣB, (α1, α2) ∈ RB and (α1, α3) ∈ RB ⇒ α2 = α3 and ∀α and

α′ ∈ ΣB, if (α, α′) ∈ RB then @α′′ ∈ ΣB such that (α′′, α) ∈ RB. For each pair of charac-

ters (c1, c2) ∈ R, the algorithm replaces each occurance of the first character c1 in all strings

w ∈ L(M1) with the second character c2. The result DFAM = 〈Q, q0,ΣB, δ, R〉 is constructed

as follows:

for each state qi for each pair of characters (c1, c2) ∈ R we replace each outgoing transi-

tion (qi
c1−→ qj) on first character c1 to some state qj with a transition (qi

c2−→ qj). Since qi

might already have an outgoing transition on c1, we need to add one extra bit to simulate

non-determinism.

The resulting intermediate automaton M ′ = 〈Q, q0,Σ
′
B, δ

′, F 〉 is constructed as follows:
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• Σ′B ⊆ Bk+1 where ΣB ⊆ Bk.

• Q = Q1.

• F ′ = F1.

• ∀q ∈ Q,∀α ∈ ΣB : if ∃α′ such that (α, α′) ∈ RB then δ′(q, α′1) = δ1(q, α) and

δ′(q, α0) = sink else δ′(q, α0) = δ1(q, α)

Then we get final DFA M by projecting the added bit, M = PROJECT(M ′, k + 1)

PREREPLACECHARSETWITHCHARSET(M1,RB): The algorithm takes as input a sym-

bolic DFA M1 = 〈Q1, q0,ΣB, δ1, F1〉, and a relation (partial function) RB ⊆ ΣB × ΣB where

∀α1, α2 and α3 ∈ ΣB, (α1, α2) ∈ RB and (α1, α3) ∈ RB ⇒ α2 = α3 and ∀α and α′ ∈ ΣB,

if (α, α′) ∈ RB then @α′′ ∈ ΣB such that (α′′, α) ∈ RB.. Then it computes a DFA M =

〈Q, q0,ΣB, δ, R〉 where POSTREPLACECHARSETWITHCHARSET( M , RB) = M1. The pre

image computation is very similar to the post image computation except that 1) we will com-

pute the result M using R−1
B and 2) for all pairs (c1, c2) ∈ R we are not going to remove any

transition (qi
c2−→ qj) on the second character c2. The reason is that we do not know if c2 was the

result of replacing c1 while doing the post-image computation or not. Since M1 is supposed to

be the result of POSTREPLACECHARSETWITHCHARSET, M1 can not contain any character

c2 in a pair (c1, c2) ∈ R. This means that we do not need extra bits when adding an outgoing

transition (qi
c2−→ qj) on c2.

The resulting automaton M = 〈Q, q0,ΣB, δ, F 〉 is constructed as follows:

• Q = Q1.
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• F = F1.

• ∀q ∈ Q, ∀α ∈ ΣB : if ∃α′ such that (α′, α) ∈ RB then δ(q, α) = δ1(q, α′) else δ(q, α) =

δ1(q, α)

Computing Post and Pre-images of IVSL String Functions

We use the previous pre and post-image computation algorithms along with the algorithms

for POSTCONCAT, POSTREPLACE, PRECONCATPREFIX, PRECONCATSUFFIX and PRERE-

PLACE to compute pre and post-images (transfer functions) for String Functions in IVSL. Im-

age computation for some functions such as concat, replace and addslashes map di-

rectly to image computation algorithms POSTCONCAT/PRECONCAT,

POSTREPLACE/PREREPLACE and POSTESCAPE/PREESCAPE. For others this is not the case.

Here are two examples.

trim : this function removes the chars , \t, \n and \0 from beginning and end of its

input string ( represents the white space char). Given Min =IN[var] for some variable

var and trim(var), we can use compute post-image Mout =OUT[var] by multiple calls

to POSTTRIMLEFT and POSTTRIMRIGHT as following:

M1 = POSTTRIMLEFT(Min, )

M2 = POSTTRIMLEFT(M1, \t )

M3 = POSTTRIMLEFT(M2, \n )

M4 = POSTTRIMLEFT(M3, \0 )

M5 = POSTTRIMRIGHT(M4, )
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M6 = POSTTRIMRIGHT(M5, \t )

M7 = POSTTRIMRIGHT(M6, \n )

Mout = POSTTRIMRIGHT(M7, \0 )

Assuming Mout =OUT[var] as input to pre-image computation, we substitute POSTTRIM-

LEFT with PRETRIMLEFT and POSTTRIMRIGHT with PRETRIMRIGHT going in reverse di-

rection starting with M1 = PRETRIMRIGHT(Mout, \0 ) all the way to

Min = PRETRIMLEFT(M7, ).

htmlspecialchars : this function replaces some chars with their HTML encoding as

following: < with “&lt;”, > with “&gt;”, ’ with “&apos;”, " with “&quot;” and finally &

with “&amp;”. Given Min = IN[var] for some variable var and

htmlspecialchars(var), we can use compute post-image Mout = OUT[var] by mul-

tiple calls to POSTREPLACECHAR as following:

M1 = POSTREPLACECHAR(Min, <, “\xfelt;”)

M2 = POSTREPLACECHAR(M1, >, “\xfegt;”)

M3 = POSTREPLACECHAR(M2, ’, “\xfeapos;”)

M4 = POSTREPLACECHAR(M3, ", “\xfequot;”)

M5 = POSTREPLACECHAR(M4, &, “&amp;”)

Mout = POSTREPLACECHAR(M5, \xfe, &)

Notice that we used a temporary intermediate char \xfe that is internally reserved. This allows

us to avoid replacing all chars & that could have been introduced by the first four replacement

operations which will result in optimized more precise image computation that can handle
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htmlspecialchars in the presence of length constraints upto 1000. Without this opti-

mization, the computation reaches MONA memory limit (see end of this Chapter) at around

length 150.

Figure 3.16 shows an example of running post-image computation for

htmlspecialchars on an input DFA M where L(M) = Σ2. Assuming Mout =

OUT[var] as input to pre-image computation, we substitute POSTREPLACECHAR with PRE-

REPLACECHAR going in reverse direction starting with M1 = PREREPLACECHAR(Mout, &,

“&amp;” ) all the way to Min = PREREPLACECHAR(M4, <, “&lt;” ) without the need for

the special reserved char \xfe.

Performance of Special Replace Algorithms

Figure 3.17 shows a comparison in terms of time and memory (represented using the num-

ber of BDD nodes) between the performance of the generic replace algorithm and the special-

ized replace algorithms we presented here. In our setup we computed the post-image of the two

PHP functions addslashes (which does 3 replace operations) and htmlspecialchars

(which does 5 replace operations) on the language
l⋃

i=0

Σl. This setup is identical to a sanitizer

function that restricts the length of its input i to a certain value l through branch condition

len(i) <= l, and then sanitizes the input that passes the branch condition using one of the

two functions. The x axis shows the length while the y axis shows the time and memory and

uses a log scale. We notice that the generic replace grows exponentially as we increase the

length while the specialized ones do not. For the generic replace, the analysis reaches MONA
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Figure 3.17: Time and memory performance for generic replace and optimized/specialized
replace algorithms.

limit on BDD size1 at length 31 for addslashes and at length 8 for htmlspecialchars.

On the other hand, for the specialized replace operations it took less than 1 second to run with

length 100 with negligible memory overhead.

1MONA has a hard limit on maximum number of BDD nodes which is 224

121



Chapter 4

Policy-Based Bug Detection and Repair

In this chapter we show how to verify extracted sanitizers against manually written policies.

First we show how to detect and repair some vulnerabilities such as XSS and SQLI in PHP

server-side code in web applications using security policies [3, 102–105]. Then we switch to

client-side Javascript and show how we detect input validation errors by verifying validators

against a minimum and a maximum policy to make sure that they are not over-constrained or

under-constrained.

4.1 Vulnerability Detection and Repair for Server-Side PHP

Input Sanitization

Web application development is error prone and results in applications that are vulnerable

to attacks by malicious users. The global accessibility of Web applications makes this an ex-
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tremely serious problem. According to the Open Web Application Security Project (OWASP)’s

top ten list that identifies the most serious web application vulnerabilities, the top three vul-

nerabilities in 2007 [75] were: 1) Cross Site Scripting (XSS) and 2) Injection Flaws (such as

SQL Injection). Even after it has been widely reported that web applications suffer from these

vulnerabilities, the top two of the vulnerabilities listed in OWASP’s top ten list in 2010 [76]

were the same top two from 2007.

A XSS vulnerability results from the application inserting part of the user’s input in the

next HTML page that it renders. Once the attacker convinces a victim to click on a URL that

contains malicious HTML/JavaScript code, the user’s browser will then display HTML and

execute JavaScript that can result in stealing of browser cookies and other sensitive data. An

SQL Injection vulnerability, on the other hand, results from the application’s use of user input

in constructing database statements. The attacker can invoke the application with a malicious

input that is part of an SQL command that the application executes. This permits the attacker

to damage or get unauthorized access to data stored in a database.

As we satated earlier, all these vulnerabilities are caused by improper string manipulation

in server-side code. Programs that propagate and use malicious user inputs with improper

sanitization on the server-side are vulnerable to these well-known attacks. The attacks that

exploit the vulnerabilities related to string manipulation can be characterized as attack patterns,

i.e., regular expressions that specify potential attack strings. In this section we explain how to

use these attack patterns as security policies against which we verifiy and repair vulnerabilities.
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1 sanitizer(www){
2 l_otherinfo = "URL";
3 www = replace( "/[^A-Za-z0-9 .-@://]/", "", www );
4 temp1 = concat(l_otherinfo, ":");
5 temp2 = concat(temp1, www);
6 return temp2;
7 }

Figure 4.1: A sanitizer with an XSS vulnerability extracted from server-side code in a PHP
web application.

4.1.1 Example

Let us look at the previous example from Figure 1.6. Figure 4.1 shows the corresponding

sanitizer written in IVSL language and we have already explained how to extract such function

from PHP code (see 2.6). The PHP input variable $_GET["www"] has been translated into the

parameter www and the PHP sink function echo has been translated into the return statement.

Computing the post-image of the IVSL sanitizer corresponds to computing the values that flow

from input variable $_GET["www"] into the sink function echo. So to check if this PHP

example server-side code is vulnerable i.e., to check if some vulnerable string values can flow

into the sensitive sink echo, we need to check if the IVSL sanitizer can return such vulnerable

values as its output.

We briefly describe the vulnerability in this example here as we have already explained the

example in detail in the introduction. The problem with this sanitizer is in the replace operation

in line 3. The goal of this replace operation is to remove any special characters from the input to

prevent XSS attacks e.g., to prevent strings that contain the string constant <script from being

returned as output. However, since the regular expression [A-Za-z0-9 .-@://], contains
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ASCII symbols that are between the symbol . and the symbol @, this leads to the symbol

< not being deleted from the input, leading to a XSS vulnerability i.e., the possibility of the

sanitizer to return a malicious output containing some javascript code in between <script>

and </script> tags.

To detect and repair such vulnerability, we need to 1) check if the sanitizer is capable of

returning bad output values and if so 2) we need to sanitize or block the input values that

resulted in such bad output values. But in order to do this, we need to first specify what

constitutes bad output values. For this purpose, we use a special type of security policies

that we call attack patterns. An attack pattern is a regular expression that specifies potential

attack strings specific to a certain vulnerability i.e., strings that appear in the exploits of such

vulnerability. Based on these security policies, we introduce a new policy based algorithm to

detect and repair XSS and SQLI vulnerabilities. First, the algorithm compares the sanitizer’s

possible output language (i.e., post-image) to the language of an XSS attack pattern. If the

two langugaes intersect then we report a possible XSS vulenrability. After that, given the

intersection result which characterizes the bad output, we compute the possible inputs that

may have resulted in this bad output (i.e., the pre-image of the sanitizer and the bad output)

using algorithms from 3.

4.1.2 Policy-Based Repair Problem

Let us define a security policy P (i.e., an attack pattern) as a regular expression that specifies

all attack strings that may appear in the output of a vulnerable function. Given a potentially
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vulnerable sanitizer function F and a a security policy P , the goal of policy-based repair is to

automatically generate a new sanitizer function F P , called a patch, such that when F is patched

by composing it with F P , the set of strings returned by the resulting repaired function are not

in the language of the regular expression P . Formally, the policy-based repair problem is to

automatically construct a patch F P such that POST(F ◦F P ,Σ∗)∩L(P ) = ∅ where L(P ) is the

language of the security policy (i.e., regular expression) P . This means when we compose F

with F P (see 2.3 for definition of sanitizers composition) we want to make sure that the result,

F ◦ F P does not return a string s ∈ L(P ) for any given input. We call this new composed

function the policy-based repair FPR, where FPR = F ◦ F P .

4.1.3 Policy-Based Repair Algorithm

Algorithm 12 POLICYBASEDREPAIR(F, P, strategy)
1: Mp := A(L(P ));
2: M1 :=A(POST+(F,Σ∗,Σ∗, . . . ,Σ∗));
3: Mb = M1 ∩Mp;
4: if (L(Mb) 6= ∅) then
5: REPORT( Vulnerable );
6: if (F is single-input sanitizer) then
7: Mvs :=A(PRE+(F,L(Mb)));
8: if (strategy = match-and-block) then
9: FP := GENERATEBLOCKINGSIMULATOR(Mvs);

10: else
11: Σmc := MINCUT(Mvs);
12: FP := GENERATEMATCHINGSANITIZER(Mvs, Σmc);
13: end if
14: else
15: FP := GENERATESIMULATOR(A(∅));
16: end if
17: else
18: FP := IDENTITYFUNCTION;
19: end if
20: FPR := F ◦ FP ;

21: return FPR;
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Our policy-based repair algorithm is shown in Algorithm 12. The algorithm takes a single

or multi-input sanitizer function F and a security policy (i.e., attack pattern) P as input and 1)

reports if the sanitizer F is vulnerable and 2) if F is a vulnerable single-input sanitizer then

it generates a sanitizer FPR as output which corresponds to policy-based repair of F against

P . The algorithm is based on automata based symbolic string analysis, and uses the post and

pre-image computation algorithms from Chapter 3. In the algorithm, each variable that has a

name starting with M represents a DFA, each variable with a name starting with F represent a

sanitizer. The algorithm uses the DFA operations ∩,∪, \, ,A,L as described in 3.2.4.

In line 1 we construct the DFA Mp that accepts the language of the security policy. Then

in line 2 we compute an over-approximation of the post-image of the sanitizer F and the tuple

Σ∗,Σ∗, . . . ,Σ∗ (see 3.1.1), i.e., all possible output values that F may return when each of its

input variables is allowed to take any possible input value. In line 4 we check if there is a

possiblity for F to output a bad value according to P i.e., a value that is in the language of the

attack pattern P . If this is possible then we report a possible detected vulnerability in line 5.

Figure 4.2 shows the post-image for the example vulnerable sanitizer in figure 4.11. In this

figure and the next two, we use character ranges to indicate transitions on each character in

this character range. For example, the self loop edge from state S6 to itself has [.-Z] which

means that there is a transition from S6 to itself on each character in the ASCII table between

the two characters . (i.e., 0x2E) and Z (i.e., 0x5A) including the two characters themselves. We

use either special symbols or the decimal value for non-printable characters. For example, \s

1These DFAs are automatically generated by our tools
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6

 \s, [.-Z], [a-z]

0 2 U 3 R 4 L 5 :  \s

Figure 4.2: Post-image of sanitizer in Figure 4.1.

means white space character and [NUL-253] means range of ASCII characters from the first

ASCII character NULL (i.e., 0x00) to the character with the ASCII decimal number 253 (i.e.,

0xFD) (note that we reserve the two characters 254 and 255 for internal use). Figure 4.3 shows

the intersection of the attack pattern Σ∗ < Σ∗ with the post-image.

Notice that since we over-approximate the set of values that F may return when comput-

ing its post-image (see 3.1.1), we are not going to miss a vulnerability. However, this over-

approximation may result in our algorithm reporting a false positive (i.e., spurious) vulnerabil-

ity here. In other words, in this algorithm we compute POST+(F,Σ∗, . . . ,Σ∗) ⊇

POST(F,Σ∗, . . . ,Σ∗). If POST+(F,Σ∗, . . . ,Σ∗) ∩ L(P ) 6= ∅, this does not mean that

POST(F,Σ∗, . . . ,Σ∗) ∩ L(P ) 6= ∅ while the opposite is true i.e., POST+(F,Σ∗, . . . ,Σ∗) ∩

L(P ) = ∅ guarantees that POST(F,Σ∗, . . . ,Σ∗) ∩ L(P ) = ∅.

If the input function F is a multi-input sanitizer then we stop at the detection phase of

the algorithm and do not proceed to the patch generation phase. The reason is that pre-image

computation for a multi-input sanitizer is not precise enough to produce acceptable results (one

can use relational analysis here as we discussed in 3.1.2).

After that, in line 7, given the set of possible bad outputs that F may return (i.e., the set

of strings that are in the post-image of F and at the same time are in the language of P ),
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7

 \s, [.-Z], [a-z]

0 2 U 3 R 4 L 5 : 6 \s                <

 \s, [.-;], [=-Z], [a-z]

Figure 4.3: Intersection of post-image of sanitizer in Figure 4.2 and attack pattern Σ∗ < Σ∗.

1

 [NUL-253]

0       <

 [NUL-;], [=-253]

mincut

Figure 4.4: Vulnerability signature DFA Mvs for example in Figure 4.1 given attack pattern
Σ∗ < Σ∗. The dotted line shows the mincut for this vulnerability signature DFA.

we compute the vulnerability signature DFA (the DFA Mvs) using the pre-image algorithm

(see 3.1.2). The vulnerability signature gives an over-approximation of all possible malicious

input values that can exploit the vulnerability. Hence, if we do not allow input values that

match the vulnerability signature then we can remove the vulnerability.

To proof this let us formally define what a vulnerability signature V S is. Given an sanitizer

F and a security policy P , we formally define the vulnerability signature V S as following:

V S = PRE+(F, POST+(F,Σ∗) ∩ L(P ))

V S = PRE+(F, POST+(F,Σ∗) ∩ L(P )) ⊇ PRE(F, POST+(F,Σ∗) ∩ L(P ))

⊇ PRE(F, POST(F,Σ∗) ∩ L(P )) which is the actual set of malicious input values. Note that

due to over-approximation, we may consider some input values as malicious while they are

not. The extreme case is when the actual set of malicious input values is ∅ while V S 6= ∅. This
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happens when we report a spurious vulnerability. Figure 4.4 shows the vulnerability signature

for our example in Figure 4.1.

Given the vulnerability signature DFA Mvs, there are two strategies that we can follow to

generate the patch function F P : (1) match-and-block and (2) match-and-sanitize. In our match-

and-block strategy (line 9) we generate a patch that simply checks if the input string matches the

vulnerability signature DFA Mvs by simulating Mvs. If it does, it halts the execution without

executing the rest of the code.

In our match-and-sanitize strategy, instead of blocking the execution, we modify the input

in a minimal way to guarantee that the modified input cannot lead to any attack strings. We

do this by analyzing the vulnerability signature DFA Mvs. Our goal is to find a minimal set of

characters, such that if we remove those characters from a given string, the resulting string will

not be accepted by the DFA. We use the mincut algorithm [104] to achieve this. The mincut

algorithm takes the DFA Mvs as input, and produces a set of characters Σmc. Using Σmc, we

generate a repair function F P (line 12) that modifies a given input string by deleting a set of

characters—using the replace function—such that the modified string is not accepted by the

Mvs. In order to prevent extensive modification to the input, the set of characters to be deleted

should be as small as possible. The question, then, is, how do we identify the set of characters

to be deleted?
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MinCut Algorithm

First, we formalize this problem in automata-theoretic terms [104]. We say S ⊆ Σ is an

alphabet-cut of M , if L(M) ∩ LS̄ = ∅, where LS̄ = (Σ \ S)∗ is the set of all strings that do

not contain any character in S. The min-alphabet-cut problem is finding the alphabet-cut Smin,

such that for any other alphabet-cut S, |Smin| ≤ |S|.

The min-alphabet-cut problem can also be stated in graph-theoretic terms. Given a DFA

M , an edge-cut of M is a set of transitions E ⊆ δ such that if the set of transitions in E are

removed from the transition relation δ then none of the states in F are reachable from the initial

state q0. Let SE denote the set of symbols of the transitions in E. If E is an edge-cut of M

then SE is an alphabet-cut of M . Hence, finding the min-alphabet-cut is equivalent to finding

an edge-cut with minimum set of distinct symbols.

Note that, if M accepts the empty string then there will not be any edge (or alphabet) cut

since the initial state would be an accepting state. For the rest of our discussion we assume that

L(M) 6= ∅ (we can easily handle the cases where it accepts the empty string by first testing if

the input string is empty and then inserting a single character to the input if it is).

It has been shown that the min-alphabet-cut problem is NP-hard [104], so, rather than trying

to find the optimum solution, we can consider using efficient heuristics that give a reasonably

small cut that is not necessarily the optimum solution. One heuristic solution is to minimize

the number of edges in a cut rather than the number of distinct alphabet symbols. Given a DFA

M , a min-edge-cut of M is an edge-cut Emin such that for any other edge-cut E, |Emin| ≤

|E|. Note that the min-edge-cut minimizes the number of edges in the edge-cut whereas the
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min-alphabet-cut minimizes the set of symbols on the edges in the edge-cut. Interestingly,

even though the min-alphabet-cut problem is intractable, there is an efficient algorithm for

computing the min-edge-cut. We use the Ford-Fulkerson’s max-flow min-cut algorithm [22] to

find a min-edge-cut Emin where the complexity of the algorithm is O(|δ|2). Note that |Smin| ≤

|Emin|, i.e., the min-edge-cut provides and upper bound for the min-alphabet-cut. So if the

min-edge-cut is small then the set of distinct symbols on the edges of the min-edge-cut will

give us a good approximation of the Smin. Figure 4.4 shows the mincut of the vulnerability

signature DFA for our example in Figure 4.1. The mincut alphabet is Σmc = {<}.

Once we compute an alphabet-cut Σmc, we generate the patch F P (line 12) with a replace

statement that deletes the symbols in Σmc from the input if it matches Mvs, making sure that

the resulting string does not match Mvs. The function F P is a sound repair that will guarantee

that POST(F ◦ F P ,Σ∗) ∩ L(P ) = ∅.

4.1.4 Empirical Evaluation

We experimentally evaluate our approach for XSS vulnerabilities using five known vulner-

abilities. Then we apply our analysis on three open source web applications looking for XSS

and SQLI vulnerabilities. In our experiments we use an Intel machine with 3.0 GHz processor

and 4 GB of memory running Ubuntu Linux 8.04. We used 8 bits to encode each ASCII char-

acter. During extraction phase, for the XSS vulnerabilities the sinks for which we extracted

sanitizers include the printf and echo functions. For SQLI vulnerabilities the sinks include

the mysql_query function. We used the attack pattern Σ∗ <SCRIPTΣ∗ for XSS and reported a
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vulnerability for each vulnerable sanitizer that can return an attack string (matching the attack

pattern). We used the attack pattern Σ∗ ’ or 1=1Σ∗ for SQLI.

We first perform vulnerability analysis using forward analysis algorithm (Algorithm 1) to

compute the post-images. Then for each detected vulnerability, we generate the corresponding

vulnerability signature(s) using the backward analysis algorithm to compute the pre-images.

Note that, during this analysis, we only used the general replace algorithm not the customized

and optimized ones (Algorithm 2). Finally, we synthesize sanitization code based on the vul-

nerability signature DFAs that we computed. For match statements, we generate a C extension

to PHP language that simulates the vulnerability signature automaton. For replace statements,

we use the PHP function preg_replace to delete characters that are identified by the alphabet-

cuts generated from the vulnerability signature automata.

Patching Known Vulnerabilities

We first analyzed five benchmarks manually extracted from (1) MyEasyMarket-4.1 (a

shopping cart program), (2) BloggIT-1.0 (a blog engine), and (3) proManager-0.72 (a project

management system). Each benchmark represents a known XSS vulnerability [9] containing

a single sink where the statements in the original program that are not related to this sink

have been removed. The dependency graphs (see 2.6) for the extracted sanitizers from these

benchmarks are rather small (around 20-30 nodes) but include loops, concatenations with large

constants, and nested replacements (from customized or PHP built-in sanitization routines).

We believe that they present typical string manipulations in PHP Web applications.
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Vulnerability Analysis: The first step is to detect whether there is a vulnerability in the sani-

tizer function (lines 1-5 of Algorithm 12). Table 4.1 shows the performance of the vulnerability

analysis. It shows the spent time and consumed memory by the analysis besides the number of

states (#states) and the number of BDD nodes (#bdds) of the DFA M (the transition relation of

the DFA is stored symbolically as a multi-terminal decision diagram) that represents the post-

image of a sanitizer. For all five benchmarks, L(M) is not an empty set and we conclude that

there is a vulnerability in all benchmarks. (#inputs indicates the number of input variables.)

time(s) mem(kb) res. #states / #bdds #inputs

1 0.08 2599 vul 23/219 1
2 0.53 13633 vul 48/495 1
3 0.12 1955 vul 125/1200 2
4 0.12 4022 vul 133/1222 1
5 0.12 3387 vul 125/1200 1

Table 4.1: Vulnerability analysis performance for benchmarks.

Signature Generation: The next step is to generate their vulnerability signatures (line 7 of

Algorithm 12). Table 4.2 summarizes the performance of vulnerability signature generation.

The last column shows the size of the vulnerability signature DFA ( since benchmark 3 contains

multiple (two) inputs, we ignore it). It can be seen that most of them are computed within

seconds except for benchmark 2. Taking a closer look, we found that it consists of several

nested replacement operations that cause the pre-image computations to blow-up.

time(s) mem(kb) #states /#bdds

1 0.46 2963 9/199
2 41.03 1859767 811/8389
4 2.33 32035 91/1127
5 5.02 14958 20/302

Table 4.2: Signature generation performance for benchmarks.
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Sig. 1 2 4 5

#edges 1 8 4 4
mincut-alphabet {<} {S,′ , ”} {<,′ , ”} {<,′ , ”}

Table 4.3: Minimum edge and alphabet cuts.

Finally, following the match-and-sanitize strategy, we generate the mincut alphabet based

on the vulnerability signature (line 11-12 of Algorithm 12). Table 4.3 shows the number

of edges in the min-edge-cut for the vulnerability signature automata we computed, and the

alphabet-cuts that correspond to these min-edge-cuts .

Our results show that our techniques are very effective. As we can see, the min-edge-cut re-

sults in a very small alphabet-cut, and the optimum solution in 1. We favored non-alphanumeric

characters while generating the alphabet-cuts by increasing the weights of the alphanumeric

characters during the min-cut algorithm (we assume that alphanumeric characters are more

likely to represent normal user input and we prefer not to delete them unless necessary). This

resulted in having non-alphanumeric characters in all the cuts but one. Notice that, existing

sanitization operations such as mysql_real_escape_string that are in the analyzed bench-

marks can add some additional characters to the alphabet-cut due to the conservative nature of

our analysis that over-approximates the vulnerability signatures. For example, in 2 ’ and " are

introduced by the PHP sanitization operation mysql_real_escape_string.

Finally, taking a close look at the vulnerability signature of (1) MyEasyMarket-4.1. The

vulnerability signature actually accepts α∗ <α∗ sα∗ cα∗ rα∗ iα∗ pα∗ tα∗ with respect to the

attack pattern Σ∗ <scriptΣ∗. α is the set of characters, e.g., !, that are deleted in the program.

An input such as <!script can bypass the filter that rejects Σ∗ <scriptΣ∗ and exploit the
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vulnerability. This shows that simply filtering out the attack pattern can not prevent its exploits.

On the other hand, the exploit can be prevented using our vulnerability signature instead.

4.1.5 Analyzing and Patching Open Source Applications:

We applied our analysis to three open source PHP web applications: (1) Webchess 0.9.0

(a server for playing chess over the internet) (2) EVE 1.0 (a tracker for players activity for an

online game), and (3) Faqforge 1.3.2 (a document management tool). The sizes of these

applications are shown in 4.4. These applications are downloaded from sourceforge and are

directly analyzed without any manual modification.

Application # of php files total loc # of sanitizers
XSS SQLI

1 Webchess 0.9.0 23 3375 421 140
2 EVE 1.0 8 906 114 17
3 Faqforge 1.3.2 10 534 375 133

Table 4.4: The sizes of analyzed applications.

Table 4.5 and Table 4.6 summarize the results of our XSS and SQLI vulnerability analysis

respectively and the performance for signature generation. Notice that we omited results for

pre-image computation for multi-input sanitizers since we do not generate vulnerability signa-

tures for vulnerabilities in such sanitizers. We discovered 55 XSS and 61 SQLI vulnerabilities

in these applications. (single, two, three) indicates the number of detected vulnerabilities that

have single input, two inputs and three inputs, respectively. For example, all detected vulner-

abilities in Faqforge have single input (denoted as (20, 0, 0)). That is, all sanitizers extracted

from this application are single-input sanitizers.
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# of Vul. Time (seconds) Memory (Kb)
(single, two, three) total forward backward average

1 (24, 3, 0) 39.78 1.73 0.92 16850
1 (0, 0, 8) 160.7 6.80 − 125382
3 (20, 0, 0) 7.87 0.22 0.22 9948

Table 4.5: XSS vulnerability analysis results.

# of Vul. Time (seconds) Memory (Kb)
(single, 2, 3, 4) total forward backward average

1 (43, 3, 1, 2) 72.67 4.87 12.039 136790
2 (8, 3, 0, 0) 18.7 1.5 8.47 17280
3 (0, 0, 0, 0) 6.7 − − < 1

Table 4.6: SQLI vulnerability analysis results.

As shown in Table 4.5 and Table 4.6, the analysis cost seems affordable: the total time

indicates the total time to analyze all php files in these applications from start to the end, which

includes extraction time and policy-based repair time (vulnerability analysis and vulnerability

signature generation for single-input sanitizers). It ranges from 7 seconds to 161 seconds. The

forward time indicates the total time to detect vulnerabilities in all extracted sanitizers includ-

ing post-image computation using forward analysis (Algorithm 1) and intersection with the

attack pattern. The backward time indicates the total time to generate vulnerability signatures

for all detected vulnerabilities in single-input sanitizers i.e., time to compute pre-image using

backward analysis (Algorithm 2).

Mincut performance: The average time spent in generating the alphabet-cut from the vulnera-

bility signature automata for for XSS (SQLI) was 0.05 (0) seconds per automaton for Faqforge

and 0.06 (0.07) seconds per automaton for Webchess (we ignore EVE since it only contains

multi-input sanitizers).
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All of the generated alphabet-cuts contain only a single character per each input. For each

XSS single track automata the cut is only the character < which is the optimum cut (conse-

quently the optimum sanitization with respect to the attack pattern). The automatically gen-

erated sanitization (replace) statements from our analysis were almost the same as the ones

that are manually written except that they delete the < character instead of replacing it with

the HTML entity “&lt;” as is typically done in manual sanitization. On the other hand, for

each SQLI single track automata the cut is only the character = which is the optimum cut

(consequently the optimum sanitization with respect to the attack pattern).

Match performance: We evaluated the overhead of running the generated match code to

simulate one of the vulnerability signature automata from Webchess against a manually written

PHP preg_match that performs the same task. Both preg_match and our stranger_match are

written as C extensions to PHP and called from a PHP script on the same input. We evaluated

the overhead of running this code on 10 sets of randomly generated strings each containing

1000 strings of the same length. The lengths started from 100 characters per string for the first

set, adding 100 more characters for each new set and going up to 1000 characters per string

for the last set. The results are shown in Figure 4.5. Clearly, automatically generated match

does not cause an extra overhead compared to the manually written one. The time of matching

a 1000 character string to the vulnerability signature automaton is less than 0.35 milliseconds.

How to use our analysis result: Our analysis produces two artifacts: a PHP extension that

contains a number of patch functions F P where each function contains a stranger_match_*

code that simulate vulnerability signature DFA and a preg_replace to delete mincut alphabet.
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Figure 4.5: Input matching overhead using stranger_match to simulate vulnerability sig-
nature DFA.

We generate one patch function F P for each extracted sanitizer. In PHP, user input from such

places as $_GET and $_POST is always available at the first program point in the script. This

means that if we want to sanitize the inputs, we need to do it at the first PHP line of the target

script. Inserting calls to these patch functions can easily be automated as we have the file names

for each of the input variables along with the variables’ names from the parsing phase. Note

that we are analyzing PHP scripts statically in a sound manner where we only deal with one

script at a time along with all the files it includes

We used the result of our analysis to sanitize the three applications above by placing the au-

tomatically generated sanitization statements at the beginning of each vulnerable script. Then

we ran our forward vulnerability analysis which reported zero vulnerabilities with regard to the

attack pattern mentioned above.
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1 sanitizer isValidEmail(x) {
2 x = trim(x);
3 if(!x matches
4 /^[a-z0-9!#$%&’*+/=?^_‘{|}~-]+
5 (?:\.[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*@
6 (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+
7 [a-z0-9](?:[a-z0-9-]*[a-z0-9])$/))
8 {
8 reject;
10 }
11 return x;
12 }

Figure 4.6: An over-constrained validator that corresponds to Javascript function in Figure 1.7.

4.2 Verifying Client-Side Input Validation Against Minimum

and Maximum Policies

In the previous section we showed how to automatically detect, given a security policy,

if a server-side sanitizer function is under-constrained. An under-constrained sanitizer is a

sanitizer that returns some bad output values that are not supposed to be in its output (i.e.,

its post-image). In this section we expand the policy-based bug detection to deal with over-

constrained sanitizers [3]. An over-constrained sanitizer is a sanitizer that does not accept

some good output values that are supposed to be in its output (i.e., its post-image). If this

problem happens then it will affect the correctness of the web application even if it was on the

client-side. For example, if a Javascript email address sanitizer is over-constrained, then it may

not allow the user input (i.e., the email address) to reach the server even if it is correct. If this

happens, then it will prevent the user from interacting with the web application in a correct

way.
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Email → /^[a-zA-Z0-9]+[.a-zA-Z0-9_\-]*@
[.a-zA-Z0-9_\-]+\.[a-zA-Z]{2,6}$/

Date → /^(([0-9]{1,2})|[A-Za-z]{3})[\/\-]
[0-9]{1,2}[\/\-][0-9]{2}([0-9]{2})?$/

Phone → /^(\(?[0-9]{3}\)?)?[\- ]?[0-9]{3}
[\- ]?[0-9]{4}$/

Time → /^[0-9]{1,2}:[0-9]{2}([ap]m)?$/
Zip Code → /^[0-9]{5}([. ][0-9]{4})?$/
NotEmpty → /^.*[^ \n\t].*$/

Figure 4.7: Maximum input validation policies.

Email → /^[a-zA-Z0-9]+@[a-zA-Z]+\.[a-zA-Z]{3}$/
Date → /^[0-9]{1,2}\/[0-9]{1,2}\/[0-9]{4}$/
Phone → /^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$/
Time → /^[0-9]{2}:[0-9]{2}$/
Zip Code → /^[0-9]{5}$/
NotEmpty → /^.*[^ \n\t].*$/

Figure 4.8: Minimum input validation policies.

Consider the example IVSL validator in Figure 4.6 which corresponds to the Javascript

function in Figure 1.7. As we have stated in the introduction, this validator is over-constrained

since it does not return email addresses with capital letters. The regular expression in lines 4-7

does not allow strings with capital letters since it only allows [a-z] but not [A-Z].

4.2.1 Minimum and Maximum Validation policies

To detect both under and over-constrained validators, we expand our policy-based bug de-

tection to use two types of validation policies: Max and Min. The Max policy specifies the

maximal set of strings that should be accepted while the Min policy specifies the minimal set

of strings that should not be rejected. We use regular expressions for specification of the Max

and Min policies. This is a natural choice since regular expressions are well-known and de-
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velopers implementing input validation functions commonly use regular expressions in string

manipulation functions. Figures 4.7 and 4.8 show a number of maximum and minimum input

validation policies that we have used in our analysis. Each policy has two entries: the type

of the input field that is checked against this policy and the specification of the policy as a

regular expression. The syntax we use for specifying regular expressions is the syntax defined

by IVSL. For some simpler input types we have the same maximum and minimum policies.

For example the Email policy in Figure 4.7 specifies the correct value for an email address.

It is a more restrictive policy than RFC5322 which specifies valid email addresses. This is

due to the fact that some major email providers such as Hotmail are much more restrictive in

their email address policy than the previous standard. Although some of these policies look

simple we were surprised to find that there are many validation functions that do not adhere to

them. For example, four out of five validation functions that we found in JavaScript tutorials

and textbooks that check for emptiness miss the fact that a form field with only spaces should

be considered to be an empty field.

Notice that Max policy is the dual of the security policy in previous section. Both of these

policies are used to check if a sanitizer is under-constrained but in the opposite way. On one

hand, Max policy describes a white list of values while, on the other hand, the security policy

describes a black list of values.
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4.2.2 Min Max Policy Conformance Problem

Given two policies a Max policy Pmax and a Min Pmin, specified as regular expressions,

and a validator/sanitizer F , we want to verify that F conforms to both policies i.e., the set

of strings accepted by F is a subset of the Max policy and a superset of the Min policy. If

F violates one or both of the policies then we consider it to be faulty. In other words, let us

assume that the language of the Max policy that specifies the maximal valid set of inputs for

the given field type is L(Pmax) and the language of the Min policy that specifies the minimal

valid set of inputs for the given field type is L(Pmin). Then the Min Max Policy Conformance

Problem is to check if L(Pmin) ⊆ POST(F,Σ∗) ⊆ L(Pmax).

4.2.3 Min Max Policy Conformance Algorithm

Algorithm 13 shows the Min Max Policy Conformance Algorithm. The algorithm takes as

its input a validator F , two policies, a minimum policy Pmin and a maximum policy Pmax and

the type of the function F , either a validator or a sanitizer. The algorithm uses the automata-

based string analysis (from Chapter 3) to verify if F conforms to both policies i.e., L(Pmin) ⊆

POST(F,Σ∗) ⊆ L(Pmax). In the algorithm, each variable that has a name starting with M rep-

resents a DFA, each variable with a name starting with F represent a validator. The algorithm

uses the DFA operations ∩,∪, \, ,A,L as described in 3.2.4.

Since the string analysis is an undecidable problem in general, it is not possible to compute

POST(F,Σ∗) precisely. However, using our automata-based string analysis approach we can
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Algorithm 13 MINMAXPOLICYCONFORMANCE(F, Pmin, Pmax, type)
1: Mmin := A(L(Pmin));
2: Mmax := A(L(Pmax));
3: MAccept :=A(POST+(F,Σ∗));
4: if (MAccept 6⊆Mmax) then
5: if (type = validator) then
6: s := GENERATESATISFYINGSTRING(MAccept \Mmax);
7: return s; //counter example
8: else
9: MAccepti :=A(PRE+(F,MAccept \Mmax));

10: s := GENERATESATISFYINGSTRING(MAccepti );
11: return s; //counter example
12: end if
13: else
14: REPORT("Conforms with Max Policy");
15: end if
16: MReject :=A(POST+⊥(F,Σ∗));
17: if (MReject ∩Mmin 6= ∅) then
18: if (type = validator) then
19: s := GENERATESATISFYINGSTRING(MReject ∩Mmin);
20: return s; //counter example
21: else
22: MRejecti :=A(PRE+(F,MReject ∩Mmin));
23: s := GENERATESATISFYINGSTRING(MRejecti );
24: return s; //counter example
25: end if
26: else
27: REPORT("Conforms with Min Policy");

28: end if

compute an over-approximation POST+(F,Σ∗) such that POST(F,Σ∗) ⊆ POST+(F,Σ∗) (line

3). Note that, if POST+(F,Σ∗) ⊆ L(Pmax), then we can be sure that F conforms to the Max

policy (lines 4,14). If POST+(F,Σ∗) 6⊆ L(Pmax), on the other hand, we cannot definitely say

that F violates the Max policy. Since POST+(F,Σ∗) is an over-approximation, we may have

a false positive. In this case, in order to figure out if the validator/sanitizer is really faulty, we

generate a string input value that would result in an output that is accepted by the function but

not in the language of the maximum policy.

If we have a validator then since a validator does not modify its input, then we do not

need to compute the pre-image to generate such input value. We just need to generate a string

s ∈ POST+(F,Σ∗) \ L(Pmax) (line 6) and execute the original input validation function that
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corresponds to the extracted validator F on that value. If the input validation function returns

true for this input, then we are sure that the input validation function violates the Max policy

and the generated string s serves as a counter-example demonstrating the policy violation.

If on the other hand we have a sanitizer, then we need to first compute its pre-image given

the set of possible output strings by the sanitizer that we computed which are not in the lan-

guage of the maximum policy i.e., PRE+(F,POST+(F,Σ∗) \Mmax. Then we generate a string

s in the result pre-image to serve as a counter example (lines 9-11).

We cannot use the over-approximation POST+(F,Σ∗) to check conformance to the Min pol-

icy since L(Pmin) ⊆ POST+(F,Σ∗) does not imply that L(Pmin) ⊆ POST+(F,Σ∗). In order

to check conformance to the Min policy we need an under-approximation of POST+(F,Σ∗).

However, since our string analysis is a sound analysis technique, it can only generate over-

approximations. We solve this problem by using our string analysis to compute an over-

approximation of the set of values that reach the negative sinks (i.e., reject statements) in F .

Let us call this set POST⊥(F,Σ∗). Using our string analysis we compute POST+
⊥(F,Σ∗) such

that POST⊥(F,Σ∗) ⊆ POST+
⊥(F,Σ∗) (line 16). Then, we check if POST+

⊥(F,Σ∗)∩L(Pmin) = ∅

(line 17). If the intersection of POST+
⊥(F,Σ∗) and L(Pmin) is empty, then we can be sure that

the validator F does not reject (at the negative sinks) any value that is allowed by the Min

policy, i.e., it conforms to the Min policy (line 27). If, on the other hand, POST+
⊥(F,Σ∗) ∩

L(Pmin) 6= ∅, we cannot be sure that F violates the Min policy since it can be a false positive.

In this case we generate a string s ∈ POST+
⊥(F,Σ∗) ∩ L(Pmin) if we have a validator (line 19)
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or a string s ∈ PRE+(F,POST+
⊥(F,Σ∗)∩Mmin if we have a sanitizer for the same reason stated

for the maximum policy (lines 22, 23).

Finally, we execute corresponding input validation function on input s. If the input valida-

tion function returns false for this input, then we can be sure that F violates the Min policy and

s is a counter-example demonstrating this policy violation.

4.2.4 Empirical Evaluation

The approach presented in this paper can be used both as a forward engineering approach

(as an analysis used during the application development) or as a reverse engineering approach

(by automatically extracting and analyzing input validation functions after deployment). We

evaluated the forward engineering scenario on input validation functions collected from tu-

torials and books for teaching JavaScript. We evaluated the reverse engineering scenario on

several real-world applications by extracting and analyzing their input validation functions. In

our experiments we used a MacBook Pro with a 2.53 GHz core 2 due processor and 4 GB of

memory.

4.2.5 Verifying Stand-Alone Input Validation Functions

In this section we show the results of verifying 23 JavaScript validation functions collected

from a JavaScript book [72] and several JavaScript input validation tutorials on the internet.

The book on JavaScript and the tutorials represent a set of validation functions that should

have been written very carefully given that these are examples used for teaching JavaScript
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These functions also include a wide variety of string operations and predicates that one

expects to see in a JavaScript application and hence form a good benchmark for evaluating the

effectiveness of our string analysis techniques. The functions we analyzed cover all the policies

mentioned in Section 4.2.1. Five of the validation functions were changed slightly to conform

to our model of input validation and sanitization functions, so that the modified function do not

return empty/nonempty error messages in case of acceptance/rejection of input.

Results. The total time it took for analyzing the 23 functions was 3.05 seconds during which

488 lines of code have been analyzed. Table 4.2.5 shows the individual results for each val-

idation function using our analysis. The first column is the validation function name. The

second one is the source for this function. The third column shows the type of data that is

validated by this validation function which is also the type of policy used to verify the function

itself. Columns four and five show the performance of our string analysis in terms of time

and memory. Last column shows the result for verification against both the maximum and the

minimum policies. Failing the maximum policy means that the function accepts and returns

some values that are invalid according to our policy. For example, the first function does not

satisfy the maximum policy which means that it returns email addresses that are considered to

be invalid by our policy. On the other hand failing the minimum policy means that the function

rejects some values (at the sink) that are correct according to our policy. For example, function

number 13 does not satisfy the minimum policy which means that it rejects some time inputs

that we consider to be correct.
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Discussion. Among the 23 functions we have analyzed, 10 of them violated a maximum policy

while 3 of them violated a minimum policy. We tested these results using the counter-examples

generated by our analysis and did not find any false positives due to over-approximation. It is

interesting to see that all the functions that validate the email addresses failed to comply with

our maximum email policy (which is the most complicated policy we used). It is even more

interesting to see that four of the five functions that validate non emptiness failed to comply

with our maximum non emptiness policy although this check seems very simple.

The most subtle error in email validation functions is the one where the developer forgot

to escape the dash character inside a character class. This results in accepting email addresses

with invalid characters such as [. Another problem that we have found is the usage of a black

list to block invalid characters in an email address rather than a white list where only valid

characters are accepted. All of these black lists miss at least one invalid character. We think

that the white list approach that we used in our policy is much simpler and less error prone.

The phone validation function number 16 failed to comply with our minimum policy be-

cause it rejects a phone number that has two parentheses around its area code. This is the most

common format to write a phone number in US and, hence, in our minimum policy we specify

that this should be accepted as valid input.

The most surprising result is the errors in non emptiness checks. The reason behind the

four failures is that these four functions accept and return a field value that only consists of

white space characters while such value should be considered empty. Such a validation error
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will likely cause an unnecessary interaction with the web server, and if the same validation

check is also erroneous at the server side it can lead to fatal errors in the application.

Our results demonstrate that 1) writing input validation checks in JavaScript is an error-

prone task and even the sample validation functions shown in tutorials and books on JavaScript

contain errors. 2) Using the string analysis techniques we presented, we can efficiently check

the conformance of a JavaScript input validation function to a given input validation policy.

4.2.6 Verifying Input Validation in Deployed Web Applications

We applied our verification technique to a number of real world websites that use JavaScript

to validate their HTML form inputs. For each of these websites we pick an HTML form, fill

it out, and submit it. During submission we automatically extract the validation function for

one target field (as described in 2.5) and analyze this function statically (Algorithm 13) to see

if it confirms to our predetermined minimum and maximum policies for the type of that field.

We applied our technique on fields with common input format such as email, phone number,

etc. Our analysis can also be applied to other fields that need specific policies chosen by the

organization running the website such as username and password fields.
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Results. Table 4.8 shows the results of applying our analysis to a number of websites. Each

row represents the results for extracting and verifying the validation code for a single input

field in a form in the given website. Since this is done twice for a valid and invalid input we

show two sub-columns for each. The first column is name of website where we got the form

from. The second column shows the type of data that is validated by this validation function

which is also the type of policy used to verify the function itself. Column three shows the size

(in lines of code) of the form submission handling code including the validation code from

which we extracted the validation function. Column four shows the number of lines of code

that has been executed as part of submitting the form. Column five shows the time it takes

to dynamically extract the validation function while column six shows the time to statically

analyze the extracted function. In two cases there was no validation code in the application

and the extracted validation function was empty. Hence, there was no string analysis done for

these two cases and the corresponding column is left empty. Last column shows the result for

verification against both the maximum and the minimum policies where an X means a policy

violation.

Policy Violations. We have found a policy violation in each of the websites that we tested.

Some of these policy violations are a result of subtle bugs in the validation code, some of them

are a result of writing light weight validation code or even not writing any, and some of them

are due to minor differences between our policies and websites’ policies.

Two subtle bugs that we have found are in 7 and 4. In 7, a condition in the validation

code was supposed to reject any email that ends with “@csta.acm.org”. This was written
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as “if(ckEmailVal.match("@csta.acm.org")){..}” The programmer forgot to

escape the dot as a special character in the regular expression so when JavaScript converts

this string into a regular expression, it will interpret dot as any character. Our analyzer output

“A@cstaAacm.org” as an example for an email that should not be rejected.

In 4 (a website for a large telecom company) the developers claim that they follow the

RFC standard for email addresses. We found that they disallowed capital characters from

emails with no obvious reason and our analyzer gave the following example that should not be

rejected “A@A.AAA”.

Some of the other websites have lightweight validation code that will accept incorrect in-

put. For example, 2 only checks for presence of @ and . in an email and our analyzer gave

“.@n” as an invalid email that is accepted. Number 1 accepts any email that does not have

(whitespace), ’ or " in it. Our analyzer gave “0x1f@0x1f.0x1f” as an invalid email that

is accepted. This latter example was randomly generated and happened to be not printable but

for this case there are counter examples with printable characters. Finally, two websites 8 and

10, had no validation code at all and our slicer returned an empty validation function, meaning

that all input values are accepted. In this corner case there is no need to run the string analysis

and we only report a maximum policy violation.

153



Chapter 5

Differential Bug Detection and Repair

Effectiveness of policy-based bug detection and repair that we presented in previous chapter

depends on the correctness and precision of the written policies in characterizing good and bad

string values. It is often possible, for instance, to encode well-known attacks into security

policies (in the form of attack patterns) and write down policies for common input fields such

as email address and zip code. In other cases, however, the checks to be performed on the

inputs are specific to the functionality of the web application, and the input validation may

be tightly coupled with and dependent on the application logic. Because they are specific to

individual applications, there are no pre-specified policies that can be used to assess these types

of input checks. In these cases, to make sure that the input validation is adequate, it would be

necessary to specify a different policy for each different application, which is a tedious and

error-prone task.
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In this chapter, we present a differential analysis and repair approach [2, 4] for analyzing

and repairing validation and sanitization functions in web applications. This new approach

eliminates the need to write manual specifications by exploiting redundancy in input validation

and sanitization code.

Web application developers often introduce redundant input validation and sanitization

code in the client and server-side code of a web application. The checks done on the client-side

improve the responsiveness of the application by preventing unnecessary communication with

the server and reduce the server load at the same time. However, since a malicious user can

by-pass the client-side checks, it is necessary to re-validate and re-sanitize at the server-side.

Moreover, many applications repeat the checks for different types of fields in different parts of

the application which can be exploited to obtain multiple instances of the validation and san-

itization code with the same intended functionality. Finally, across different applications, one

can easily find multiple instances of validation and sanitization code used to check standard

formats (such as email) or to protect against same class of vulnerabilities (such as SQL injec-

tion and XSS). Using the differential analysis and repair techniques presented in this chapter,

we exploit these redundancies within and application and across applications, to automatically

detect and repair differences between input validation and sanitization functions by comparing

them against each other.

Motivating Example. Let us take a look at this example taken from a real web application

called JGOSSIP (http://sourceforge.net/ projects/jgossipforum/), a message board written using

Java technology. Figures 5.1 and 5.2 show two snippets of client- and server-side valida-
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1 <html>
2 ...
3 <script>
4 function validateEmail(form) {
5 var emailStr = form["email"].value;
6 if(emailStr.length == 0) {
7 return true;
8 }
9 var r1 = new RegExp("( )|(@.*@)|(@\\.)");

10 var r2 = new RegExp("^[\\w]+@([\\w]+\\.[\\w]{2,4})$");
11 if(!r1.test(emailStr) && r2.test(emailStr)) {
12 return true;
13 }
14 return false;
15 }
16 </script>
17 ...
18 <form name="subscribeForm" action="/Unsubscribe"
19 onsubmit="return validateEmail(this);">
20 Email: <input type="text" name="email" size="64" />
21 <input type="submit" value="Unsubscribe" />
22 </form>
23 ...
24 </html>

Figure 5.1: JavaScript and HTML code snippets for client-side validation.

1 public class Validator {
2 public boolean validateEmail(Object bean, Field f, ..) {
3 String val = ValidatorUtils.getValueAsString(bean, f);
4 Perl5Util u = new Perl5Util();
5 if (!(val == null || val.trim().length == 0)) {
6 if ((!u.match("/( )|(@.*@)|(@\\.)/", val))
7 && u.match("/^[\\w]+@([\\w]+\\.[\\w]{2,4})$/",
8 val)) {
9 return true;

10 } else {
11 return false;
12 }
13 }
14 return true;
15 }
16 ...
17 }

Figure 5.2: Java server-side validation code snippet.

tion code, respectively, from this application (we slightly simplified the code to make it more

readable and self-contained)1. The user fills the client-side form, shown on lines 18–22 of
1We present the original functions rather than the IVSL extracted sanitizers to show an example of an actual

difference between two validation functions written in different languages in a web application

156



Chapter 5. Differential Bug Detection and Repair

Figure 5.1, by providing an email address to the HTML input element with name “email”

and by clicking on the “Submit” button. When this button is clicked, the browser invokes

the JavaScript function validateEmail, which is assigned to the onsubmit event of the

form. This function first fetches the email address supplied by the user from the corresponding

form field. It then checks if this address has zero length and, if so, accepts the empty address

on line 6. Otherwise, on lines 9 and 10, the function creates two regular expressions. The first

one specifies three patterns that the email address should not match: a single space character, a

string with the @ symbol on both ends, and the string “@.”. The second one specifies a pattern

that the email address should match: start with a set of alphanumeric characters, followed by

symbol @, further followed by another set of alphanumeric characters, and finally terminated

by a dot followed by two to four additional alphanumeric characters. If the email address does

not match the first regular expression and matches the second one, this function returns true,

indicating acceptance of the email address (line 12), and the form data is sent to the server.

Otherwise, the function rejects the email address by returning false on line 14. This results in

an alert message to inform the user that the email provided is invalid.

When the form data is received by the server, it is first passed to the server-side valida-

tion function. For the specific form in this example, the validation function used is method

validateEmail from class Validator, which is shown in Figure 5.2. This method calls

a routine on line 3 to extract the value contained in the email field from the form object (bean)

and stores it in variable val. It then uses library Perl5Util to perform the regular expres-

sion match operations, which allows for using the same Perl style regular expression syntax
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used in the client. First, the method checks whether the email string is null or has zero length

after applying the trim function, on line 5. If so, it accepts the string. Otherwise, it checks the

address using the same regular expressions used on the client side. As shown on lines 6–12,

the address is accepted if it satisfies these regular expression checks, and it is used for further

processing on the server side (e.g., it may be sent as a query string to the database); otherwise,

it is rejected on the server side, and the user is taken back to the form.

As shown in this example, the regular expression checks are similar on both ends, which

emphasizes that validations on both ends should allow or reject the same set of inputs. Other-

wise, there would be mismatches that may create problems for the application. As we stated

in the Introduction, if the server side is less strict than the client side, this would be considered

a vulnerability (even when such a vulnerability is not exploitable) since it violates a common

security policy that server-side checks should not be weaker than the client-side checks: a ma-

licious user could bypass the client-side checks and submit to the server an address that does

not comply with the required format, which may result in an attack. For example, an attacker

could inject SQL code in the email that may result in an SQL injection attack [42]. In gen-

eral, server-side checks that are less strict than the client-side checks could lead to two types

of undesirable behaviors: (1) the server side allows some wrong or malicious data to enter the

system, leading to failures or attacks; (2) the client side rejects legitimate values that should be

accepted, resulting in the user being unable to access some of the functionality provided by the

web application.
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In our example, the client-side validation code shown in Figure 5.1 rejects a sequence of

one of more white space characters (e.g., " "), for which the condition on line 6 evaluates

to false and the regular expression check on line 11 fails, thereby resulting in the function

returning false. However, for the same input, the second condition on line 5 of the server-side

validation method (Figure 5.2) evaluates to false, due to the trim function call, and the string

is therefore accepted by the server. This would lead to white spaces being accepted as email

addresses by the server, which might in turn lead to failures (e.g., the web application might

try to send an email to the user, which would fail due to an invalid email address) or attacks,

such as a denial-of-service attack.

To solve the problem in this example we present a differential analysis and repair technique

that consists of four main steps:

1. Extracting and mapping input validation and sanitization functions at the client and/or

server sides.

2. Identifying and reporting inconsistencies in corresponding input validation and sanitiza-

tion functions.

3. Automatically repairing inconsistent input validation and sanitization functions against

each other.
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Task 2: 
Input validation
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Figure 5.3: High-level view of differential analysis technique.

5.1 Discovering Client- and Server-Side Input Validation and

Sanitization Inconsistencies

In this section, we present a new differential string analysis based technique to discover

inconsistencies between the client- and the server-side code in web applications [4]. The tech-

nique (1) extracts and maps input validation functions at the client and server sides, (2) models

input validation functions as deterministic finite automata (DFAs) using string analysis tech-

niques from chapter 3, and (3) identifies and reports inconsistencies in corresponding input

validation functions. Figure 5.3 provides a high-level view of the three steps of our technique.

5.1.1 Mapping Input Validation and Sanitization Functions at the Client-

and the Server-Side

As far as languages are concerned, we target web applications that use Java on the server-

side and JavaScript on the client-side, as these are commonly used languages for the devel-

opment of web applications. As for technologies, we focus on web applications built using
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any Java Enterprise Edition (EE) web framework, such as Struts (http://struts.apache.

org/), and Spring MVC (http://www.springsource.org/). We focused on these tech-

nologies because they are the most popular application development frameworks for Java EE

web applications. Based on our experience, our work could be extended to handle additional

frameworks with relatively low effort.

We start the extraction and mapping process by identifying entry points of the web applica-

tion, that is, points where user input is read. At the client side, such points correspond to input

fields in web forms. Modern Java EE web application frameworks let developers specify in a

configuration file2 the input fields of a web application, together with the JavaScript validation

functions to be applied to each field. By leveraging this information, we can identify (1) the

complete set of validated inputs on the client side, and (2) the corresponding set of JavaScript

functions that are used for validating such inputs.

The identification of the input validation code on the server side is analogous to that of

the client side, with the difference that validation is performed using a different language—

Java instead of JavaScript—and that parameters are read through calls to input functions. This

second difference is almost irrelevant because, analogously to the client side, web application

frameworks also allow developers to specify server side inputs and corresponding validation

functions. Also for the server side, therefore, an analysis of the web application’s configuration

file can provide us with (1) the complete set of validated inputs for the server side and (2) the

set of Java functions that are used for validating each of these inputs.

2Web Deployment Descriptor file, web.xml, as specified in the Java EE specification [25]
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It is worth noting that web applications could also perform input validation checks directly

in the code, without explicitly specifying inputs and corresponding validating functions in a

configuration file. In the next section we introduce a different mapping technique for PHP in

which we analyze all dynamically generated web pages and corresponding web forms to find

and map input validation functions to each other.

5.1.2 Inconsistency Identification Problem

Given a client-side validator/sanitizer Fc and a server-side validator/sanitizer Fs for an

HTML input field i, the Inconsistency Identification Problem is the problem of finding if Fc

and Fs return different output values for the same set of inputs. Formally, two functions Fc and

Fs are inconsistent if POST(Fs,Σ
∗) 6= POST(Fc,Σ

∗).

5.1.3 Inconsistency Identification Algorithm

Algorithm 14 shows the Inconsistency Identification Algorithm. The algorithm takes as

its input a client-side single-input validator/sanitizer Fc and a server-side single-input valida-

tor/sanitizer Fs both working on the same HTML input field i and the type of the functions

if they are validators of sanitizers. The algorithm uses the automata based string analysis de-

scribed in chapter 3. In the algorithm, each variable that has a name starting with M represents

a DFA, each variable with a name starting with F represent a validator. The algorithm uses

the DFA operations ∩,∪, \, ,A,L as described in 3.2.4. The algorithm starts by computing
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Algorithm 14 INCONSISTENCYIDENTIFICATION(Fc, Fs, type)
1: Mc :=A(POST+(Fc,Σ∗));
2: Ms :=A(POST+(Fs,Σ∗));
3: Ms−c := Ms \Mc;
4: if (L(Ms−c) 6= ∅) then
5: if (type = validators) then
6: w := GENERATESATISFYINGSTRING(Ms−c);
7: if (EXECUTE(Fc(w)) = reject && EXECUTE(Fs(w)) = accept) then
8: REPORT("Bug in Server-Side Validator Fs");
9: return w; //counter example

10: end if
11: else
12: Msi :=A(PRE+(Fs,Ms−c));
13: w := GENERATESATISFYINGSTRING(Msi );
14: if (EXECUTE(Fc(w)) = reject && EXECUTE(Fs(w)) = accept) then
15: REPORT("Bug in Server-Side Validator Fs");
16: return w; //counter example
17: end if
18: end if
19: end if
20: Mc−s := Mc \Ms;
21: if (L(Mc−s) 6= ∅) then
22: if (type = validators) then
23: w := GENERATESATISFYINGSTRING(Mc−s);
24: if (EXECUTE(Fs(w)) = reject && EXECUTE(Fc(w)) = accept) then
25: REPORT("Bug in Client-Side Validator Fc");
26: return w; //counter example
27: end if
28: else
29: Mci :=A(PRE+(Fc,Mc−s));
30: w := GENERATESATISFYINGSTRING(Mci );
31: if (EXECUTE(Fs(w)) = reject && EXECUTE(Fc(w)) = accept) then
32: REPORT("Bug in Client-Side Validator Fc");
33: return w; //counter example
34: end if
35: end if

36: end if

two DFAs: Mc(i) (client side) and Ms(i) (server side), where Mc(i) = A(POST+(Fc,Σ
∗)) and

Ms(i) = A(POST+(Fs,Σ
∗)) (lines 1,2).

Using Mc(i) and Ms(i), we construct two new automata:

• Ms−c(i) where Ms−c(i) = Ms(i) \Mc(i) (line 3), and

• Mc−s(i) where Mc−s(i) = Mc(i) \Ms(i) (line 20).

We call Ms−c(i) and Mc−s(i) difference signatures, where:
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• L(Ms−c(i)) contains strings that are accepted and returned by the server side but rejected

by the client side, and

• L(Mc−s(i)) contains strings that are accepted and returned by the client side but rejected

by the server side.

Let us now consider various scenarios for the difference signatures. If L(Ms−c(i)) =

L(Mc−s(i)) = ∅, this means that our analysis could not identify any difference between the

client- and server-side validation functions, so we have no errors to report. Note that, due to

over-approximation in our analysis, this does not mean that the client and server-side validation

functions are proved to be equivalent. It just means that our analysis could not identify an error.

If L(Ms−c(i)) 6= ∅, there might be an error in the server-side validation function (line 4).

A server-side input validation function should not accept a string value that is rejected by the

client-side input validation function—as we discussed earlier, this would be a security vulner-

ability that should be reported to the developer. Due to over-approximation in our analysis,

however, our result could be a false positive. To prevent generating false alarms, we validate

the error as follows.

We try to find an example input string that would result in the difference between the client

and server-side. Since a validator does not modify its input, then we do not need to compute

the preimage of the difference. Instead, we generate a string s ∈ L(Ms−c(i)) and execute

both the client and server-side input validation functions by providing s as the input value for

the input field i. If client-side function rejects the string, and server-side function accepts it,
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then we are guaranteed that there is a problem with the application and report the string s as a

counter-example to the developer. If we cannot find such a string s, then we do not report an

error (lines 5-11).

If we have sanitizers then we need to do pre-image computation to get the set of input

values that resulted in the difference. Then we generate the example from this set i.e., generate

s ∈ PRE+(Fs,Ms−c) (lines 12-17).

We also check if L(Mc−s(i)) 6= ∅ and, if so, we again generate a string to demonstrate

the inconsistency between the client and server-side validation functions. Note that client-side

validation functions accepting a value that the server rejects may not be as severe a problem as

their counterpart (lines 20-35). It is nevertheless valuable to report this kind of inconsistencies

because fixing them can improve the performance and response time of the web application

and prevent client-side vulnerabilities [81].

5.1.4 Empirical Evaluation

To assess the usefulness of our approach, we implemented our approach in a prototype tool

called VIEWPOINTS to perform an empirical evaluation on a set of real-world web applications.

In our study, we investigated the following two research questions:

RQ1: Can VIEWPOINTS identify inconsistencies in client- and server-side input validation

functions (or establish equivalence between them otherwise)?

165



Chapter 5. Differential Bug Detection and Repair

Name URL

JGOSSIP http://sourceforge.net/projects/jgossipforum/
VEHICLE http://code.google.com/p/vehiclemanage/
MEODIST http://code.google.com/p/meodist/
MYALUMNI http://code.google.com/p/myalumni/
CONSUMER http://code.google.com/p/consumerbasedenforcement
TUDU http://www.julien-dubois.com/tudu-lists
JCRBIB http://code.google.com/p/jcrbib/

Table 5.1: Web applications used in our empirical evaluation.

RQ2: Is VIEWPOINTS efficient enough to analyze real-world web applications within accept-

able time and memory usage limits?

In the rest of this section, we first describe the details of the experimentation performed for

investigating RQ1 and RQ2, and then discuss our results.

Experimental Subjects

For our experiments, we selected seven real-world web applications from two open source

code repositories: Sourceforge (http://sourceforge.net) and Google Code (http://

code.google.com). Because our current implementation can handle web applications writ-

ten using Java EE frameworks, we searched the two repositories for web applications with

these characteristics. In addition, we discarded projects with a small user base or with a low

activity level, so as to privilege web applications that were more likely to be widely used and

well maintained.

Table 5.1.4 shows the list of web applications that we used for our experimentation and

the URL from which they were obtained. The first four applications in the list are written us-
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ing the Struts framework (http://struts.apache.org/): JGOSSIP is a messaging board

application; VEHICLE is an application to manage vehicles owned by a company; MEODIST

is an application for managing information about a club members; and MYALUMNI is a so-

cial network application for school alumni. The last three applications are written using the

Spring MVC framework (http://www.springsource.org/): CONSUMER is a customer

relationship management application; TUDU is an on-line application for managing todo lists;

and JCRBIB is a virtual library application that supports user collaboration. Based on their

descriptions, these web applications cover a wide spectrum of application domains. More-

over, because of the way they were selected, most of these applications are popular and widely

used in practice. JGOSSIP, for instance, has been downloaded almost 30,000 times from its

Sourceforge page.

Experimental Procedure and Results

For conducing our experiments, we used a Ubuntu Linux machine with an Intel Core Duo

2.4Ghz processor and 2GB of RAM running Java 1.6. To collect data to answer RQ1 and RQ2,

we ran VIEWPOINTS on the web applications considered. For each web application, VIEW-

POINTS first analyzed the application’s configuration to identify its inputs and corresponding

client- and server-side validation functions. It then built client- and server-side validation func-

tions for each input.

Table 5.3 shows relevant data for this part of the analysis. The first column in the table lists

the application name, followed by the number of forms extracted (Frm) and the total number
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Subject Client-Side DFA Server-Side DFA
min max avg min max avg

Avg size (mb) S B S B S B Avg size (mb) S B S B S B

JGOSSIP 6.03 4 10 35 706 6 39 6.05 4 24 35 706 6 41
VEHICLE 4.83 4 24 7 41 5 26 4.84 4 24 7 41 5 26
MEODIST 5.67 5 25 5 25 5 25 5.67 5 25 5 25 5 25
MYALUMNI 3.17 4 10 4 10 4 10 3.16 3 24 5 25 5 25
CONSUMER 5.34 4 10 17 132 5 25 5.34 4 24 17 132 7 41
TUDU 6.12 4 10 4 10 4 10 6.12 3 24 23 264 8 68
JCRBIB 5.37 4 10 4 10 4 10 5.38 5 25 5 25 5 25

Table 5.2: Relevant data on the input validation modeling step of the technique.

of inputs across all forms (Inputs). Column V IC (resp., V IS) lists the number of inputs for

which a client-side (resp., server-side) validation function is specified in the configuration.

Similarly, column ETC (resp., ETS) lists the time taken, in seconds, to extract the summary

validation functions for these inputs on the client side (resp., server side). For example, web

application CONSUMER contains 3 forms, for a total of 21 inputs. Of these inputs, 14 are

validated on the client side, whereas all of 21 of them are validated on the server side. It

took 68.4 and 1.1 seconds to extract the validation functions on the client side and server side,

respectively. Note that the time required to compute the client-side validation functions is much

higher than the time to extract server-side validation functions. This difference is due to the

additional time required to perform dynamic slicing on the client side, which in turn requires

VIEWPOINTS to load and run JavaScript functions in the browser.

After extracting client- and server-side validation functions for each input, VIEWPOINTS

constructed the corresponding DFAs, as described in Chapter 3. Table 5.2 shows details about

this part of the analysis. For each application, and both for the client side and the server side, the

table shows: the average size of the DFAs in megabytes, followed by the minimum, maximum,

and average number of states (column S) and BDD nodes (column B). (The number of BDD
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Subject Frm Inputs V IC ETC (s) V IS ETS (s)

JGOSSIP 25 83 74 329.80 83 4.38
VEHICLE 17 41 41 155.48 41 2.04
MEODIST 18 62 62 192.20 62 1.93
MYALUMNI 46 141 0 0.00 141 4.28
CONSUMER 3 21 14 68.40 21 1.10
TUDU 3 11 0 0.00 11 0.78
JCRBIB 21 45 0 0.00 45 1.51

Table 5.3: Relevant data on the input validation extraction step of the technique.

nodes represents the size of the symbolic representation of the DFA’s transition relation.) As

an example, the application TUDU has DFAs with an average of 4 states and 10 BDD nodes

for the client side, whereas it has DFAs with an average of 8 states and 68 BDD nodes for the

server side. Note that, when client-side validation is absent for an input, the DFA for that input

accepts the language Σ∗. Hence, TUDU has a client-side DFA even though it has no client-side

validation code (see Tables 5.2 and 5.3).

Finally, VIEWPOINTS compared client- and server-side DFAs to identify possible inconsis-

tencies among them. The results of this comparison for our subjects is shown in Table 5.7. For

each application, the table reports the time it took VIEWPOINTS to perform differential string

analysis, in milliseconds, and the number of inputs with identified (and confirmed) inconsisten-

cies. Specifically, column MC−S shows the number of inputs for which the client side accepts

strings that would be rejected by the server side, whereas column MS−C shows the opposite.

For JGOSSIP, for instance, the differential string analysis took around 3 seconds and identified

nine client-side inconsistencies and two server-side inconsistencies.

169



Chapter 5. Differential Bug Detection and Repair

Subject T ime (ms) MC−S MS−C

JGOSSIP 3220 9 2
VEHICLE 1486 0 0
MEODIST 1745 0 0
MYALUMNI 2853 141 0
CONSUMER 1019 7 0
TUDU 595 11 0
JCRBIB 1168 45 0

Table 5.4: Data on the inconsistency identification step of the approach and overall results.

Discussion

As the results in Table 5.7 show, VIEWPOINTS was able to find both types of inconsis-

tencies: client checks that are more strict than server checks and vice versa. We manually

checked all the results and 1) verified that all identified inconsistencies correspond to actual

inconsistencies (i.e., our tool did not generate any false positives), and 2) confirmed that there

are no inconsistencies other than those found by our automated analysis (i.e., our tool did not

generate any false negatives). For JGOSSIP, in particular, VIEWPOINTS found two instances of

the inconsistency that we presented in our motivating example. As we discussed before, such

inconsistencies represent actual vulnerabilities in the code that a malicious user may be able to

exploit. For the remaining applications, four out of six contain input validation inconsistencies

on the client side. A special case is that of MYALUMNI, which has 141 inputs that are inconsis-

tently validated at the client side and server side. For this application, the developers provided

no validation whatsoever on the client side, and thus all the 141 inputs that are checked on the

server side are inconsistently validated.

Although these results are preliminary, and further experimentation would be needed to

confirm them, they provide strong supporting evidence for answering RQ1: ViewPoint is in-
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deed able, at least for the cases considered, to identify inconsistencies in client- and server-side

input validation functions.

RQ2 relates to the efficiency and practicality of the analysis. From Table 5.3, we can see

that the extraction phase of VIEWPOINTS took between 0.78 and 4.38 seconds for the server-

side validation functions. Although for the client-side functions the numbers are higher, due to

the more expensive analysis performed on the client side (see 5.1.4), the maximum total time

needed to analyze one of the web applications considered is less than six minutes.

Table 5.2 illustrates the space cost of VIEWPOINTS. As the table shows, the space needed

to store the DFAs is negligible, as it is less than seven megabytes in all cases. Finally, Table 5.7

shows the time needed to perform the comparison of two DFAs. Also in this case, the time it

takes VIEWPOINTS for the comparison is in the order of a few seconds and, thus, negligible.

We can therefore provide a positive answer to RQ2 as well.

Overall, these results provide preliminary, yet clear evidence that our differential bug find-

ing approach can be both practical and useful.

5.2 Semantic Differential Repair For Input Validation and

Sanitization

After finding the differences between two input validation and sanitization functions, the

next step is to repair the functions against each other to remove the difference. In this section

we present a novel semantic differential repair algorithm [2] that exploits redundancies in in-
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function reference_function($x){
if (strlen($x) > 4)

exit();
else {

$x = preg_replace(’/</’, ’’, $x);
if ($x == ’’)

exit();
else

return $x;
}

}

function target_function($y){
$y = preg_replace(’/"/’, ’\"’, $y);
return $y;

}

Figure 5.4: A small, but illustrative example, showing a target function to be repaired based
on a reference function.

put validation and sanitization within and application and across applications to automatically

repair input validation and sanitization functions by comparing them against each other.

In this section we give an overview of our automated differential repair technique that

strengthens the validation and sanitization functionality of a given target function based on a

given reference function. Consider the example functions shown in Figure 5.43. The reference

function starts with a validation check that blocks any string that is longer than 4 characters.

This is followed by a sanitization operation which replaces the character < with ε (i.e., deletes

<). Finally, the result of the sanitization operation goes through another validation check that

blocks the empty string. The target function in Figure 5.4 does not do any validation. It only

sanitizes the input string by replacing the character " with the string “\"” (i.e., it escapes the

double quote characters).

3We kept the original functions written in PHP language to help the reader when comparing the original
functions with the generated patches
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function validation_patch($x){
if (preg_match(’/<*|[^<].{4,}|<[^<].{3,}|<<[^<].{2,}|

<<<[^<].+/’,$x))
exit();

else
return $x;

}

function length_patch($x){
if (preg_match(

’/"".{1,2}|".{1,2}"|.{1,2}""|"[^"]{3,3}|[^"]{3,3}"/’,$x))
exit();

else
return $x;

}

function sanitization_patch($x){
$x = preg_replace(’/</’, "", $x);
return $x;

}

function repaired_function($x){
return target_function(

sanitization_patch(
length_patch(
validation_patch($x)

)
)

);
}

Figure 5.5: The repaired function that is generated by our differential repair algorithm for the
target function shown in Figure 5.4.

The goal of our differential repair technique is to strengthen the validation and sanitization

operations in the target function as much as the reference function. More precisely, the goal

is to make sure that the repaired target function does not return a string that is not returned by

the reference function or the original target function. Before explaining how our differential

repair technique works on these two functions, we would like to discuss two potential repair

techniques that may seem to be the natural choice in this case and explain why they do not

work. This would help the reader to understand the motivation behind the choices we made

when we invented our differential repair algorithm.
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Figure 5.6: The repaired function is the composition of three automatically generated patches
and the original target function.

Repair by Composition. One question we may ask is: why not simply run two sanitizers

one after another? Due to lack of idempotency in some string sanitization operations, one

can not blindly compose two given sanitizers to get a stronger one without first computing

the difference between them. For example, composing a reference and a target sanitizers

that have some differences but at the same time share the following sanitization operation

preg_replace(’/"/’, ’\"’, $x)—which escapes the " with a \—is problematic.

Since this operation is not idempotent, the composition would result in double escaping i.e.,

“ab"c” would become “ab\\"c” instead of “ab\"c”. Furthermore, we repair sanitizers that

are extracted from different programming languages (and different applications in some cases).

The original two pieces of code where we extracted the two sanitizers from are written in dif-

ferent languages with different semantics and contain other logic related to the functionality of

the application where they were extracted from. This shows the importance of the 1) extrac-

tion phase in removing code unrelated to validation and sanitization and 2) using our language

agnostic string analysis framework in which we handle the semantical differences by reducing

them to differences between regular languages.
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Repair using Multi-Track DFAs (i.e., Transducers). The second option is to use a transducer

to model the input-output relation for each of the two santizers then find the difference between

the two transducers. This would help to generate a patch that captures the difference between

the two sanitizers in the way each input is mapped to its corresponding output . At the same

time, this patching technique avoid the idempotency problem and gives a unified framework to

deal with semantical differences between languages. Unfortunately, the class of deterministic

finite transducers (i.e., regular relations) is not closed under difference operation [37]. Further

more, computing the post-image of a transducer over replace operation with enough precision

is not possible [110]. Finally, since client-side code is always composed with (i.e., run before)

server-side code, we can only repair the validation difference between the two (see 5.2.3 for

more details) and in this case we do not need a transducer.

Since these two options do not work, we describe a new diffirential repair technique that

avoids the aforementioned issues. The goal of the technique is to make sure that the post-image

of the repaired function does not contain any string that is not in the post-image of the reference

function and the original target function.

The post-image for the reference function in Figure 5.4 is the language of all strings that are

shorter than 5 characters and not empty and do not contain the character <, while the post-image

for the target function is the language of all strings that do not contain the character " unless

it is preceded by the character \. For example, the string “foo” is an element in the reference

function’s post-image while the string “foo<” is not since it contains the < character. Also,

the strings “foo” and “foo\"bar” are elements in the target function’s post-image while
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the string “foo"bar” is not since it contains the character " without being preceded by the

character \.

Our differential repair algorithm works in three phases, where each phase generates a patch-

function with a specific purpose: (1) a validation patch, (2) a length patch, and (3) a sanitization

patch. The final repair is obtained by applying the composition of all three patch-functions

together as shown in Figure 5.6.

Validation patch The purpose of this phase is to generate a patch that makes sure that the

repaired function rejects all the inputs that are rejected by the reference function. Figure 5.5

shows the validation-patch produced in this phase of the repair algorithm for our running ex-

ample. The validation patch blocks all input strings that are either empty, consist of one or

more < characters or longer than 4 characters. For example, the strings “”, “<”, “<<<” and

“<html>” will be blocked by the validation patch. On the other hand, the strings “fo” and

“<a>” will not be blocked.

The validation patch blocks the inputs that generate a string that is in the post-image of the

target function but not in the post-image of the reference function. Note that our algorithm

is able detect that some input strings are blocked by the reference function only after being

sanitized such as the string “<<<” (which is first converted to empty string by deletion of <

and then blocked by the reference function). So, for this case, to make sure that the string “<<

<” is not in the post-image of the repaired function, the validation patch blocks it.
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Length patch The purpose of this phase is to make sure that (1) the maximum length of the

strings that are in the the post-image of the repaired function is not bigger than the maximum

length of the strings that are in the post-image of the reference function and (2) the minimum

length of the strings that are in the post-image of the repaired function is not smaller than the

minimum length of the strings that are in the post-image of the reference function.

For the reference function in our example, the minimum length is 1, since it blocks the

empty string, and the maximum length is 4. On the other hand, for the target function, after

the validation patch is applied, the minimum length is 1 since it also blocks the empty string,

but the maximum length is not 4 but 8. The reason is that the sanitization in the target function

escapes the " character so that an input string of length 4 like “""""” (which passes the

validation patch) is escaped to produce the string “\"\"\"\"” at the sink, which is of length

8.

This example shows that due to the sanitization operation in the target function, we get

a length difference in the post-image languages even though the validation patch has already

blocked all strings longer than 4. To address this issue we generate a length patch that blocks

any input string that results in a string longer than 4 characters at the target sink even if the

input string itself is shorter than 4 characters. For example, the length patch blocks the string

“"a"” although it has 3 characters only since it will result in the string “\"a\"” of length 5

at the sink which is longer than 4 characters. On the other hand, the string “foo” will not be

blocked by the length patch since it will reach the sink as it is, 3 characters long.
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Figure 5.5 shows the length patch-function for our example. Note that the function assumes

that the validation patch function is applied before it so it only blocks things not blocked by the

validation patch function. In section 5.2.3 we explain how to automatically generate the length

patch-function.

Sanitization patch The purpose of this final phase is to take care of the differences that are

due to sanitization operations. Our goal is to make sure that the post-image of the repaired

function is a subset of the post-image of the reference function.

In our example, there is one sanitization operation in the reference function in which the

character < is deleted. Even after application of the validation and length patches, this behavior

would not be fully replicated at the repaired target function. Although the validation patch will

prevent some strings such as “<<<” from reaching the sink at the repaired function, there

are still other strings, such as “a<b” for example, that will still be in the post-image of the

repaired function but not in the post-image of the reference function, since the character < gets

deleted. The goal of the sanitization patch is to remedy such situations, and make sure that the

sanitization operations in the target function are as strong as the sanitization operations in the

reference function.

Unlike the previous two phases, the sanitization patch does not block the input strings

that are found in the difference between the post-images of the target and reference functions.

Instead we use the min-cut algorithm ( 4.1.3) to generate a sanitization code that will delete

(or escape) certain characters in the input strings such that the difference between the two
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post-images is removed. Using this min-cut algorithm, our differential repair algorithm will

generate the sanitization patch-function shown in Figure 5.5. This function does not block input

strings that contain the character <, but rather, deletes this character from these input strings

and returns the corresponding string without that character. This repair simulates the same

sanitization behavior of the reference function in the new repaired function. In section 5.2.3

we explain the min-cut algorithm and how to automatically generate the sanitization patch.

Given the final sanitization phase, one might think that the first two phases are redundant.

However, without the first two phases, the repair generated by our approach can become too

conservative by rejecting all input strings or by deleting all characters from the input string.

Dividing the repair generation to three separate phases enables us to generate a combined

repair that is not overly conservative.

The final result of the differential repair algorithm for our running example is shown in

Figure 5.5. The repaired function, is obtained by composing the three patch-functions, in the

order in which they were introduced here, with the original target function.

We extract one sanitizer function per input field which characterizes all the validation and

sanitization operations that are used for that particular field. Validation and sanitization oper-

ations involve use of regular expressions and validation operations such as string match, sub-

string, and sanitization operations such as string replace, trim, addslashes, htmlspecialchars,

etc. In the next section we discuss how to extract sanitizer functions from a web application

and when to map two functions to each other.

179



Chapter 5. Differential Bug Detection and Repair

5.2.1 Extracting and Mapping Sanitizers From the Client- and/or the

Server-side

Before we run our differential repair algorithm, we need to extract sanitizer functions from

the client and/or server side and map them to each other to generate target, reference sanitizer

pairs. We built a crawler using HTMLUnit [34] to find input fields and corresponding sinks

in a PHP web application. When the crawler hits a web page with an HTML form, it fills it

out automatically using a set of pre specified profiles and submits it. Then, for each HTML

input field, JavaScript validation and sanitization code is dynamically extracted as described

in 2.5, resulting with one sanitizer function per each input field. On the server-side, we also

collect the execution traces to figure out the inputs and the sinks (where the inputs flow into)

during crawling. We use that information later on to map server-side sanitizer functions to

client-side sanitizer functions. Then, we use the front end of Pixy [55] to statically extract the

corresponding sanitizer functions from the server-side as described in 2.6.

Client-client sanitizers are mapped to each other based on the type of data they operate on

(i.e., email address, phone number, . . . etc). Server-server mapping is done within the same

application and across different applications based on field names that are extracted from the

PHP $_POST and $_GET arrays.
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5.2.2 Differential Repair Problem

Given a target sanitizer function FT and a reference sanitizer function FR, the goal of

differential repair is to generate a new sanitizer function F P , called a patch, such that when

FT is patched by composing it with F P , the resulting repaired function returns a string only

if FR and FT can both return that string. I.e., we want to make sure that a string is not in the

post-image of the repaired function if it is not in the post-image of FT or FR.

In order to formalize this, let us define the difference between the post-images of two

sanitizer functions F1 and F2 as follows:

DIFF(F1, F2) = {x | ∃y ∈ Σ∗ : F1(y) = x ∧ (∀z ∈ Σ∗ : F2(z) 6= x)}

which is the set of strings that are in the post-image of F1 but not in the post-image of F2.

Given this definition (along with the definition of sanitizer’s composition from section 2.3),

the differential repair problem is to automatically construct a patch F P such that DIFF(FT ◦

F P , FR) = ∅, which means when we compose FT with F P we want to make sure that the

result, FT ◦ F P , is at least as strict as FR, i.e., its post-image is a subset of the post-image of

FR. We call this new composed function the differential repair FDR, where FDR = FT ◦ F P .

Note that, due to the way we are constructing the differential repair, by composing the

target function FT with the automatically generated patch F P , we guarantee that the repaired

function FDR is at least as strict as FT , i.e., its post-image is also a subset of the post-image of

FT .
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5.2.3 Differential Repair Algorithm

Algorithm 15 DIFFERENTIALREPAIR(FT , FR)
1: M1 :=A(PRE+⊥(FR));
2: M2 :=A(PRE+⊥(FT ));
3: if (L(M1 \M2) 6= ∅) then
4: MV := M1 \M2;
5: FV := GENERATEBLOCKINGSIMULATOR(MV );
6: else
7: FV := IDENTITYFUNCTION; MV := A(∅);
8: end if
9: M1 :=A(POST+(FR,Σ

∗));
10: M2 :=A(POST+(FT ,L(MV )));
11: Md = M2 \M1;
12: if (L(Md) 6= ∅) then
13: if (lenmin (M2) < lenmin (M1) ∨ lenmax (M2) > lenmax (M1)) then
14: M3 := RESTRICTLENGTH(M2,M1);
15: ML :=A(PRE+(FT ,L(M2 \M3)));
16: FL := GENERATEBLOCKINGSIMULATOR(ML);
17: M2 := M3;
18: else
19: FL := IDENTITYFUNCTION;
20: end if
21: Md := M2 \M1;
22: if (L(Md) 6= ∅) then
23: Mmc :=A(PRE+(FT ,L(Md)));
24: Σmc := MINCUT(Mmc);
25: FS := GENERATESANITIZER(Σmc,M1);
26: else
27: FS := IDENTITYFUNCTION;
28: end if
29: else
30: FS := FL := IDENTITYFUNCTION;
31: end if
32: FDR := FT ◦ FS ◦ FL ◦ FV ;

33: return FDR;

Given a target sanitizer FT and a reference sanitizer FR, our differential repair algorithm

consists of three phases that produce three patches: (1) The validation patch generation phase

produces F V , (2) the length patch generation phase produces FL, and (3) the sanitization patch

generation phase produces F S . The result of our differential repair algorithm is a patch that is

the composition of these three individual patches: F S ◦ FL ◦ F V and the repair we generate is

the composition of this patch with the target function, i.e., FDR = FT ◦ F S ◦ FL ◦ F V .

182



Chapter 5. Differential Bug Detection and Repair

Our differential repair algorithm is shown in Algorithm 15. The algorithm takes a target

sanitizer FT and a reference sanitizer FR as input and generates sanitizer FDR as output which

corresponds to differential repair of FT with respect to FR. Our differential repair algorithms

is based on automata based string analysis from chapter 3, and computes post or pre-images

of given sanitizers as DFA as we described before. In Algorithm 15, each variable that has a

name starting with M represents a DFA, each variable with a name starting with F represent a

sanitizer. The algorithm uses the DFA operations ∩,∪, \, ,A,L as described in 3.2.4. In the

remaining part of this section we discuss the three phases of the Algorithm 15.

Phase I: Validation Patch Generation

Our goal is to generate a validation patch F V such that:

∀x ∈ Σ∗ : FR(x) = ⊥ ⇒ FT ◦ F V (x) = ⊥,

i.e., the validation patch F V guarantees that FT ◦ F V does not accept inputs that FR rejects.

In order to compute the validation patch, we first need to identify the set of strings that are

rejected by FT and FR i.e., their negative pre-images.

As we said before, it is not possible to compute the pre or post-image of a sanitizer precisely

due to undecidability of string analysis problem. We use automata-based backward symbolic

string analysis techniques discussed in section 3.2.7 to compute an over approximation of the

negative pre-image, PRE+
⊥(F ), where PRE+

⊥(F ) ⊇ PRE⊥(F ). This means that, we may con-

clude that certain strings are rejected by F when they are not. On the other hand, since we
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are computing an over-approximation, any string that is rejected by F is guaranteed to be in

PRE+
⊥(F ). Since we are using automata-based symbolic string analysis, the result of the nega-

tive pre-image computation is an automaton that accepts the language PRE+
⊥(F ), and we denote

this automaton as A(PRE+
⊥(F )).

In lines 1 and 2 of Algorithm 15 we construct two automata M1 and M2, that accept an

over-approximation of the negative pre-images of FT and FR, respectively, where L(M1) =

PRE+
⊥(FR) and L(M2) = PRE+

⊥(FT ). The next step (line 3) checks if the reference function

FR rejects more input values than the target function FT by computing the difference between

negative pre-images of M1 and M2. If the difference is empty then F V is assigned the identity

function (line 7) which is a sanitizer function that returns the input as it is without blocking any

value (i.e., it is a no-op). If the difference is not empty, the target function must be patched to

reject the values rejected by the reference function. To achieve this we automatically generate

a patch that rejects only the strings that are rejected by FR but not FT .

Note that the validation patch we generate is not sound due to over-approximation of the

negative pre-image of the target function FT . The set of strings that are in PRE+
⊥(FR) ∩

(PRE+
⊥(FT )\PRE⊥(FT )) will not be blocked by the patch we generate, whereas they should

be blocked in order to reach our precise goal. We can make the validation patch sound by

blocking all the strings in PRE+
⊥(FR) without computing the set difference with PRE+

⊥(FT ), but,

that would result in generation of a validation patch in many cases even when it is not nec-

essary. Our experiments indicate that the imprecision in our pre-image computation is not a
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Figure 5.7: The validation patch automaton MV for the example in Figure 5.4. The validation
patch F V blocks the strings accepted by this automaton.

problem in practice since for all the examples we manually checked we observe that PRE+
⊥(FR)

∩ (PRE+
⊥(FT )\PRE⊥(FT )) = ∅.

Figure 5.7 shows the validation patch automaton MV that is automatically generated for

the example shown in Figure 5.4 where Σ represents the ASCII characters. To save space we

collapsed all transitions between any two states si and sj into one transition tij . We annotate

this transition with a set of characters ΣC ⊆ Σ such that if a character c is in ΣC then there is

a transition on c between si and sj . The sink state along with transitions into and out of it are

omitted.

Since our analysis represents the set of strings at each program point using DFA, we gen-

erate the patch repair function F V based on the DFA that is computed by our analysis. The

validation patch code that is generated with GENERATEBLOCKINGSIMULATOR filters the in-

puts by simulating the resulting automaton MV in Figure 5.7 to determine if the input string is

accepted by MV . If the input string is accepted by the automaton MV , then F V will return ⊥

to block the input, otherwise it will return the input string without modification.
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Phase II: Length Patch Generation

The goal of length patch generation is to generate a patch FL such that:

∀x ∈ Σ∗ :

((∃y, z ∈ Σ∗ : |FR(y)| ≤ |FT ◦ F V (x)| ≤ |FR(z)|)⇒ FL(x) = x) ∧

(¬(∃y, z ∈ Σ∗ : |FR(y)| ≤ |FT ◦ F V (x)| ≤ |FR(z)|)⇒ FL(x) = ⊥)

i.e., given the target function FT composed with the validation patch F V , FL rejects any input

string that will cause the output of FT ◦ F V to contain a string of length longer or shorter than

all the strings in the output of the reference function FR.

The validation patch makes sure that any input string rejected by the reference sanitizer

is also rejected by the repaired target sanitizer. However, this does not mean that the set of

strings that are returned by the repaired target sanitizer and the reference sanitizer are the same

after the validation patch since they may be using different sanitization operations. The length

patch is the first step in establishing that the repaired target sanitizer does not return any string

that is not returned by the reference sanitizer. The length patch makes sure that the length of

any string returned by the repaired target function is not larger or smaller than all the strings

returned by the reference sanitizer.

The lines 9-20 in Algorithm 15 construct the length patch. The lines 9 and 10 compute an

over-approximation of the post-images i.e., the automata that accept the set of strings that are

returned by the reference sanitizer and the target sanitizer that is composed with the validation
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patch. The lines 11 and 12 in Algorithm 15 check if there are any strings that are returned

by the target sanitizer composed with the validation patch that are not returned by the refer-

ence sanitizer by checking if POST+(FT ,L(MV ))\ POST+(FR,Σ∗) = ∅. If the difference is

empty, then we consider FT ◦ F V to be as strict as FR and the analysis concludes by assigning

IDENTITYFUNCTION (i.e., no-op) to length and sanitization patches FL and F S (line 30).

Note that, due to over-approximation in our analysis, it is not guaranteed that FT ◦ F V

is as strict as FR even if the difference is empty. However, again manual inspection of our

experiments indicate that our approximate analysis always finds the differences if they exist

since the precision of our post-image computation is quite good in practice.

If a difference is found, then we check if the difference corresponds to a length difference

in line 13. Let us first define lenmax and lenmin for an automaton. Given an automaton M ,

lenmax (M) =∞ if M accepts an infinite set, and lenmax (M) is the length of the longest string

accepted by M otherwise. We can check if lenmax (M) = ∞ by checking if there are cycles

in M on any path from the starting state to an accepting state. If there is at least one cycle,

then lenmax (M) =∞. If there are no cycles, then lenmax (M) is finite, and we use a depth first

search to compute the length of the longest string accepted by M . On the other hand, given an

automaton M , lenmin(M) is the length of the shortest string accepted by M . If the start state

is an accepting state then lenmin(M) = 0. Otherwise, lenmin(M) is computed by finding the

length of the shortest path from the start state to an accepting state.

If a length difference is found, then we restrict the length of the set of strings accepted by

FT to remove the length difference using the following operation in line 14:
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Figure 5.8: The length patch automaton ML for the example in Figure 5.4. The length patch
FL rejects the strings accepted by this automaton.

RESTRICTLEN(M2,M1) ≡M2 ∩
lenmax (M1)⋃
i=lenmin (M1)

Σi

After the length restriction, in line 15, we use the pre-image computation (see sections 3.1.2

and 3.2.6) to compute an over-approximation of the set of input strings that cause the length

discrepancy i.e., PRE+(F,L) ⊇ PRE(F,L). This over-approximation may result in blocking

input strings that do not contribute to the length discrepancy.

In line 16 we generate the length patch FL that blocks the strings that are accepted by

the automaton ML in Figure 5.8 and returns the strings rejected by ML without any change.

Figure 5.8 shows the length patch automaton ML that our algorithm computes for the example

shown in Figure 5.4.
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Phase III: Sanitization Patch Generation

The third and final phase in the repair algorithm is the sanitization patch generation, which

results in a patch function F S such that:

∀x ∈ Σ∗ : (∀y ∈ Σ∗ : FR(y) 6= x)⇒

(∀z ∈ Σ∗ : FT ◦ FS ◦ FL ◦ F V (z) 6= x)

which means that, after adding the sanitization patch F S to the previously generated patches,

we want the differential repair FDR = FT ◦ F S ◦ FL ◦ F V to be as strict as FR in terms of the

set of strings it returns.

The lines 21-28 in Algorithm 15 generate the sanitization patch. First, in the lines 21, 22,

we check if there is a difference between what FT returns (after validation and sanitization

patches are applied) and what FR returns assuming any input. If no difference is found, then

we consider FT ◦ FL ◦ F V to be as strict as FR and the analysis concludes by assigning IDEN-

TITYFUNCTION to F S (line 27). This indicates that there is no sanitization patch. Note that,

as we discussed before, due to over-approximation our repair algorithm can miss differences,

however we have not observed this in our experiments.

If a difference is found, then, in the line 23, we compute an over-approximation of the set of

input strings that result in such a difference. The set L(Mmc) represents an over-approximation

of the set of all input strings that are the cause of the difference between the set of strings

returned by FR and FT ◦ FL ◦ F V . We call Mmc the mincut automaton and in the line 24

we use this mincut automaton to generate a mincut alphabet using the MinCut algorithm in
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Figure 5.9: The mincut automaton Mmc for the example in Figure 5.4. The dotted line shows
the mincut edges with the corresponding mincut alphabet {<}.

section 4.1.3, such that if the symbols in the mincut alphabet are removed from the input strings,

then the difference between the post-images of FR and FT ◦ FL ◦ F V disappear. Figure 5.9

shows the mincut automaton Mmc for our running example in Figure 5.4 along with the mincut

edges which correspond to the mincut alphabet Σmc = {< }.

Then, in the line 25, we generate the sanitization patch F S to either delete or escape the

set of symbols in the mincut alphabet. Finally, in the lines 32 and 33, we construct and return

the differential repair function FDR as the composition of the target function FT with the three

patch functions generated during the three phases of the repair algorithm.

Code Generation Heuristics.

Once we compute an alphabet-cut Σmc, we generate the sanitization patch F S with a

replace statement that deletes the symbols in Σmc from the input, making sure that the result-

ing string does not match Mmc. Although the function F S is a sound repair that will guarantee
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that POST+(FT ◦F S ◦FL ◦F V ,Σ∗) ⊆ POST+(FR,Σ
∗), we apply two heuristics to generate

more accurate repair functions.

The first heuristic is the escape heuristic. We look at the automaton M1 generated in line

9 of the Algorithm 15 (which represents all the string values returned by FR), and check if all

the characters in the mincut alphabet Σmc are always preceded by the same single character e.

If that is the case, we we call the character e the escape character. Formally speaking, given

DFA M1 = 〈Q1, q0,Σ, δ1, FR〉, we check that ∀q ∈ Q1,∀c ∈ Σmc : δ1(q, c) 6= sink ⇒ (∀q′ ∈

Q1 : δ1(q′, c′) = q ⇒ c′ = e). If this is the case, then the sanitization patch F S we generate

uses the replace operation to escape all the characters in the mincut alphabet Σmc (instead of

deleting them) by prepending them with the escape character e.

The second heuristic we use is the trim heuristic. Here, if we get a mincut Σmc which

contains space characters, we first check ifM1 accepts any string that contains a space character

(which can be determined by checking if transitions on space characters always go to the sink).

If not, then we generate a patch that deletes the space characters as in our basic mincut based

patch generation algorithm. If M1 does accept a string that contains a space character, then we

check if it is the case that the strings accepted by M1 do not start or end with space characters.

Formally speaking, given DFA M1 = 〈Q1, q0,Σ, δ1, FR〉, we check that for all space character

s δ1(q0, s) = sink and ∀q ∈ Q1 : δ1(q, c) ∈ FR ⇒ c 6= s). If so, then we generate patch

F S which uses the trim function to delete the space characters from the beginning and end of

each input string.
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5.2.4 Empirical Evaluation

We have implemented our differential repair algorithm in a tool called SEMREP (see 6.3).

In order to evaluate our repair algorithm we experimented on five open-source PHP applica-

tions 1) PHPNews v1.3.0 (news publishing software), 2) UseBB v1.0.16 (forum software),

3) Snipe Gallery v3.1.5 (image management system), 4) MyBloggie v2.1.6 (weblog system),

5) Schoolmate v1.5.4 (school administration software) along with a number of JavaScript

sanitizer-function benchmarks from various websites [3]. We ran all the experiments on an

Intel I5 machine with 2.5GHz X 4 processors and 32 GB of memory running Ubuntu 12.04.

Results. Table 5.5 shows the total number of target-reference sanitizer pairs we analyzed

and the number of patches generated at each phase of the algorithm for four categories: Client-

server (C-S) where the server (target) is patched against the client (reference), server-client

(S-C) where the client (target) is patched against the server (reference), server-server (S-S)

and client-client (C-C). Note that for the server-server and client-client cases we analyze each

pair twice by considering each sanitizer function as target once and as reference once. The

most commonly generated patches are validation patches which indicates that inconsistencies

in validation policies are common. There are also a significant number of sanitization patches

generated, except that the client-server pairs generated no sanitization patches. We checked

the client-server pairs manually and confirmed that this is an accurate result (i.e., there are no

cases where the sanitization at the client-side is stronger than the sanitization at the server-

side). Among 49 server-server validation patches, 48 of them are generated for the pairs that

are from different applications. We found 14 server-server sanitization patches within the same
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application, which indicates inconsistent sanitization policy within the application. For server-

server and client-client, there are no length patches since the validation patches in these cases

do not involve length restrictions.

Table 5.6 shows the details of sanitization patches and results of the mincut algorithm.

As we can see our mincut heuristics were able to identify 41 trim operations and 10 escape

operations. This identification is very helpful since applying sanitization patches that escape

certain characters is not idempotent which is critically important to be avoided for server-client

pairs. In the client-client sanitization patches there was an interesting case in which the mincut

was Σ. The reason was that the languages of the post-image DFAs were disjoint which means

that the two functions return completely different sets of strings (in this case the discrepancy

was due to the presence/absence of the dash symbol in phone number fields).

#pairs #valid. #length #sanit.
C-S 122 61 11 0
S-C 122 53 2 30
S-S 206 49 0 33
C-C 19 34 0 5

Table 5.5: Number of patches generated.

mincut
avg size

mincut
max size #trim #escape #delete

S-C 4 10 15 10 20
S-S 3 5 23 0 20
C-C 7 15 3 0 2

Table 5.6: Sanitization patch results.

Table 5.7 shows the memory and time performance of our repair algorithm. Rows I, II, and

III corresponds to validation, length, and sanitization patch generation phases, respectively.

Memory performance is represented as number of BDD nodes that is needed to represent a
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DFA where the size of each BDD node is 16 bytes. In general our algorithm is efficient both

in terms of time and memory. The average total time for the algorithm is 1.35 seconds and the

maximum time is 186.22 seconds. During our experiments we had to abort the algorithm in 36

among 469 pairs (%7.6) due to MONA’s limit on BDD size. The main reason for exceeding the

BDD size limit is length constraints with large numbers. For example, in one of the cases in

the experiments, validation patch restricts the length of the language of the input strings to 255.

Then, sanitization function htmlspecialchars in the target increases the maximum length of the

post-image to 1275. Since we use finite automata to represent sets of strings, the automaton

has to count the length of the strings with its states. For this reason, we can see from Table 5.7

that the second phase of the algorithm which deals with the length constraints has the highest

time and memory consumption.

repair
phase

DFA size
(#bddnodes)

peak DFA size
(#bddnodes)

time
(seconds)

avg max avg max avg max
I 997 32,650 484 33,041 0.14 4.37
II 129,606 347,619 245,367 4,911,410 9.39 168.00
III 2,602 11,951 4,822 588,127 0.17 14.00

Table 5.7: Time and memory performance of analysis.
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Tools

We present in this chapter a String Analysis Library called LIBSTRANGER [103] along with

two new tools called STRANGER [103] and SEMREP.

6.1 LIBSTRANGER

LIBSTRANGER [103] is a string manipulation library that handles all core string and au-

tomata operations described in chapter 3 such as general language replacement, concatena-

tion, intersection, union, widen and special replace operations. During the string forward

and backward analysis carried out by STRANGER and SEMREP, all string and automata manip-

ulation operations that are needed to compute the post and pre-images of string operations

are available in LIBSTRANGER. LIBSTRANGER uses MONA [16] library developed by Klar-

lund et al. to provide the symbolic representation of automata using MBDDs. The core

195



Chapter 6. Tools

of LIBSTRANGER is implemented in C language as a shared library libstranger.so to

get a faster computation and a tight control on memory. A C++/Java class called Stranger-

Automaton is available to encapsulate the low level algorithms and data structures and provide

a much elegent interface to the library. We used JNA (Java Native Access) to bridge the C

language and Java code. LIBSTRANGER along with its source code and manual is available

https://github.com/vlab-cs-ucsb/LibStranger.

6.2 STRANGER

We developed a tool called STRANGER [103] (STRing AutomatoN GEneratoR) that imple-

ments our approach in 4.1 to check the correctness of string validation and sanitization func-

tions in Web applications with respect to known attacks.

STRANGER is implemented in Java and uses PIXY—which is developed by Jovanovic et

al. [54]—as a front end and our string manipulation library LIBSTRANGER (see 6.1) along with

MONA [16] for automata manipulation. STRANGER takes a PHP program and a set of attack

patterns as input and automatically analyzes it and outputs the possible XSS or SQL Injection

vulnerabilities (characterized as attack patterns) in the program. For each input that leads to

a vulnerability, it also outputs the vulnerability signature, i.e., an automaton (in a dot format)

that characterizes all possible string values for this input which may exploit the vulnerability

along with the patch generated using the mincut algorithm. STRANGER and several benchmarks

are available at http://www.cs.ucsb.edu/~vlab/stranger.
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6.2.1 Architecture

The architecture of STRANGER is shown in Figure 6.1. The tool consists mainly of the two

modules: (1) the vulnerability analysis module that uses PIXY to parse PHP code and perform

the taint analysis and then performs the vulnerability analysis and repair and (2) the string

analysis module that implements the post- and pre-image computation and uses LIBSTRANGER

and MONA for automata manipulation operations.
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Figure 6.1: The architecture of STRANGER.

The first step in the vulnerability analysis is done by PIXY [54], a taint analysis tool for

detecting web application vulnerabilities. PIXY parses the PHP program and constructs the

control flow graph (CFG). PHP programs do not have a single entry point as in some other

languages such as C and Java, so we process each script by itself along with all files included

by that script. The CFG is passed to the taint analyzer in which alias and dependency analyses

are performed to generate dependency graphs (see 2.6). If no tainted data flow to the sink,
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taint analysis reports the dependency graph to be secure; otherwise, the dependency graph is

considered to be tainted and passed to the vulnerability analyzer for more inspection.

The vulnerability analyzer implements our policy-based repair algorithm (Algorithm 12). It

uses the symbolic string analyzer which implements our post- and pre-image computation from

chapter 3 (that is modified slightly to work with dependency graphs). The dependency graphs

are pre-processed to optimize the image computation. First, a new acyclic dependency graph

is built where all the nodes in a cycle (identifying cyclic dependency relations) are replaced by

a single strongly connected component (SCC) node. The vulnerability analysis is conducted

on the acyclic graph so that the nodes that are not in a cycle are processed only once. In the

forward analysis, we propagate the post images to nodes in topological order, initializing input

nodes to DFAs accepting arbitrary strings. Upon termination, we intersect the language of the

DFA of the sink node with the attack pattern. If the intersection is empty, we conclude that the

sink is not vulnerable with respect to the attack pattern. Otherwise, we perform the backward

analysis and propagate the pre images to nodes in the reverse topological order, initializing the

sink node to a DFA that accepts the intersection of the result of the forward analysis and the

attack pattern. Upon termination, the vulnerability signatures are the results of the backward

analysis for each input node. For both analyses, when we hit an SCC node, we switch to a work

queue fixpoint computation on nodes that are part of the SCC represented by the SCC node.

During the fixpoint computation we apply automata widening on reachable states to accelerate

the convergence of the fixpoint computation. We added the ability to choose when to apply

the widening operator. This option enables computation of the precise fixpoint in cases where
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the fixpoint computations converges after a certain number of iterations without widening. We

also incorporate a coarse widening operator that guarantees the convergence to avoid potential

infinite iterations of the fixpoint computation.

6.3 SEMREP

SEMREP is a new tool to analyze and repair validation and sanitization functions in web

applications. SEMREP implements the new language-agnostic automated semantic differential

repair algorithm from 5.2 to analyze and repair validation and sanitization functions in web

applications. Most of SEMREP is implemented in C++. MinCut algorithm and patch generator

is implemented in Java. SEMREP uses our LIBSTRANGER library (see 6.1) along with MONA

library for automata manipulation operations. Source code for latest version along with the

manual are available online from https://github.com/vlab-cs-ucsb/SemRep.

6.3.1 Architecture

SemRep consists of two modules: (1) the differential repair module which implements the

differential repair algorithm in 5.2 and (2) the symbolic string analysis module which computes

the pre and post-images of a sanitizer. Figure 6.2 shows the architecture of the tool.

The tool takes as input the dependency graphs (see 2.6) of two sanitizer functions. After

parsing the dependency graphs, difference computation component will send each graph to

negative pre-image computation component. In general, image computation components use
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Figure 6.2: The architecture of SEMREP.

forward and backward string analyses to compute post and pre-images of the function rep-

resented by the dependency graph similar to the way done in STRANGER. Each node in the

dependency graph will be annotated with a DFA (stored in an object of type StrangerAutoma-

ton) that accepts all possible string values that may reach this node going forward or backward.

(Negative) Pre-image component annotates the input node with the (negative) pre-image DFA

while post-image component annotates the return node with the post-image DFA.

After negative pre-image computation component finishes, the difference computation com-

ponent will then use the two DFAs associated with the input nodes to calculate the validation

patch. Next, it will annotate the input node in the target dependency graph with the validation

patch DFA (if a validation patch is needed) and send the two dependency graphs to the post-

image computation component. Then, it will check to find out if the there is a length difference

between the validation-patched target and the reference by checking the length difference be-

tween post-image DFAs that are associated with the return nodes. If a difference is found,

it will (1) restrict the length of the DFA at the target return node by the length of the DFA
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at the reference return node and (2) annotate the return node at the target with the new

length-restricted DFA indicating that the language of this DFA represents the preferred output.

It then sends the target dependency graph to pre-image computation component to compute the

pre-image for this preferred output which represents the length patch DFA.

Then, if after the length restriction there is still a difference between the DFAs at the sinks

(return nodes), the difference computation component will annotate the return node of the

target dependency graph with the DFA that represents this difference (which we call sanitiza-

tion difference DFA), indicating a non-preferred output, and sends that dependency graph to

the pre-image computation component. The pre-image computation component will annotate

the input node with the sanitization patch DFA. Then, the difference computation component

will send the sanitization patch DFA along with the validation and length patch DFAs to the

patch generation component.

The patch generation component will do the following: (1) Generate the code for the valida-

tion and length patches in the preferred programming language provided in the patch language

input. These patches are functions that simulate the validation and length-patch DFAs. (2)

Send the sanitization patch DFA to the mincut algorithm and uses the returned mincut alphabet

to generate the code for the sanitization patch.
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Related Work

7.1 Bug Detection in Web Applications

There has been lots of work on bug detection in web applications. We first present work

done on the client-side then move on to the server-side.

Client-Side In the past ten years, there has been lots of work on static type checking of

Javascript programs [6, 7, 41, 52, 53, 58]. Historically, type checking has been one of the most

widely used static verification techniques. However, it was not extensively applied towards

detection of the class of bugs and vulnerabilities that are caused by string manipulation. Static

control [40], information [21] and taint [39] flow analyses have been used for Javascript pro-

grams to detect security vulnerabilities. GATEKEEPER [38] uses static analysis to verify the

enforcement of security policies written in Datalog on JavaScript widgets. These policies are

different than ours and they are not related to input validation.
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In general, although, pure static analyses for Javascript can be used not just to detect bugs

but also to proof certain program correctness properties, they still suffer from enough loss of

precision that renders them to be practically useless. The reason for that is that Javascript is

very dynamic language and the dynamic features of the language are used heavily [78]. This

was the main reason for us to use a hybrid analysis for bug detection in Javascript where the

dynamic part can help with precision while the static part helps with vastly expanding the state

space that we are searching. Nevertheless, we would like to investigate if we can use our string

analysis as a preliminary analysis to improve precision and lower the rate of reporting spurious

bugs in these static analyses (especially [39]1) while still scaling to large applications. The

main reason that led us to believe that our string analysis has a potential to improve the result is

that objects and arrays in Javascript are maps from strings to strings. However, there is still one

important feature that we need to add to our string analysis which index sensitivity. We believe

that this is achievable if we only consider the cases where all possible values for an index are a

finite set of integers.

In addition to static analysis, dynamic analysis techniques have been used in [28, 60, 80,

81] to extract and/or analyze Javascript code. FLAX [81] uses dynamic analysis techniques

to discover client side validation vulnerabilities. The authors use dynamic taint analysis to

extract validation code related to a certain sink and then use random fuzzing to test this sink.

In our techniques we use a similar approach to extract the validation function but then we

statically analyze the extracted code to see if it violates the given policies which allows us to

1Unfortunately, this tool is not publicly available at this time
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expand the state space under investigation. In [80] authors developed a symbolic execution

framework for JavaScript. At the core of their framework there is a string constraint solver

called KUDZU that is built on top of the bounded string solver HAMPI [59]. In general and

compared to (dynamic) symbolic execution, we use—in the extraction phase (chapter 2)—a

set of profiles for generating input values that we use when extracting client-side code. We

can mix the two approaches by 1) starting our dynamic extraction with input values taken from

these profiles and then 2) compute pre-images of extracted functions using a single backward

pass that is slightly different from the negative backward analysis and finally 3) generate a

satisfying example for the complement of the computed DFA from 2. Compared to the static

analysis phase (chapter 3), we do infinite state symbolic model checking where we do not

bound (i.e., unroll) loops as is the case with symbolic execution. We discuss in the next section

the differences between our techniques for handling string manipulation operations compared

to the techniques in [59, 80] .

Server-Side There has been many static vulnerability detection techniques that have been de-

veloped for PHP and Java web applications. Many of these techniques such as [19, 36, 70, 87,

96,97] are based exclusively on static string analysis and we will discuss them more in the next

section. Pixy [55] uses different static analysis techniques to build dependency graphs that

represent the data flow from sources to sinks in a PHP web application. Then it uses taint anal-

ysis to detect if there are vulnerabilities in web applications. We built our tools STRANGER [88]

and SEMREP [2] on top of Pixy and used our string analysis to improve precision as shown

in [2–4, 102, 104].
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Xie and Aiken [101] addressed the problem of statically detecting SQL injection vulnera-

bilities in PHP scripts by means of a three-tier architecture. In this architecture, information is

computed bottom-up for the intra-block, intra-procedural, and inter-procedural scope. As a re-

sult, their analysis is flow-sensitive and inter-procedural. They use traditional data flow analysis

to determine whether unchecked user inputs can reach security-sensitive functions (so-called

sinks) without being properly checked. However, they do not calculate any information about

the possible strings that a variable might hold. Thus, they can neither detect all types of vulner-

abilities (such as subtle SQL injection bugs) nor determine whether sanitization routines work

properly. RIPS [26] used the same technique with extensive modeling for PHP builtin func-

tions and libraries and extended their application to other types of vulnerabilities such XSS and

MFE. Phantm [62] runs the PHP web application to solve include statements and configuration

values then uses the dynamically collected data to improve precision of static analysis. In our

case we consider all include files and possible configuration values for a specific version of

PHP. Apollo [8] uses dynamic symbolic execution to generate test cases for the web applica-

tion. It applies some techniques to minimize the conditions on the inputs that cause a failure

to provide better error reporting. Wassermann et al. [98] uses dynamic symbolic execution

along with grammar based string analysis to generate test inputs for PHP web applications.

Saner [9] mixes string-based static and dynamic techniques to discover vulnerabilities. Com-

pared to symbolic execution techniques, our analysis for PHP programs is completely sound

with respect to the policies since we do not bound the loops or the length of the strings. We are
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able, as we have shown in chapter 4, not just to find bugs and generate counter examples but

also to automatically fix these bugs in a sound way.

7.2 String Analysis

String analysis refers to static and dynamic techniques used to reason about string expres-

sions in a program. This kind of analysis is crucial for verification tools that need to verify

programs with string expressions. There are three types of string analysis techniques. Static

string analysis in which the input programs are statically analyzed to compute an over approx-

imation of string expressions’ values throughout the program. Hybrid string analysis in which

dynamic analysis and monitoring is used along with static string analysis. String constraint

solving in which a decision procedure is developed to solve constraints that involve string vari-

ables and the results are used later as test input cases or counter examples.

7.2.1 Static String Analysis

Static string analysis is the process of computing an over approximation of string expres-

sions’ values throughout a program statically without running it.

Context Free Grammar Based Analysis. JSA [19] was the first static string analyzer and

it was designed for Java programs. Given a Java program, JSA first constructs a directed flow

graph for every specified hotspot, that captures the flow of strings and string operations while

abstracting everything else away. Nodes represent string constants, variables, expressions,
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and operations while edges represent possible data flow. Hotspots represent program points

where the user of the tool is interested in string values that may reach them. This graph is

then transformed into a context free grammar (CFG) such that each nonterminal represents

a node in the graph and each terminal represents a constant string. The grammar has the

property that for a node n in the flow graph, the associated nonterminal An has L(An) (the set

of strings that can be derived from nonterminal An) that contains all possible string values the

string variable or expression represented by this node may have. This grammar is then over-

approximated (using Mohri-Nederhof algorithm) into a finite state automaton (FSA) A such

that L(A) (language accepted by the automaton A) represents an over approximation of string

values that may reach the hotspot. Kirkegaard et al. applied JSA to statically analyze the XML

transformations in Java programs [61] by using DTD schemas as types and modeling the effect

of XML transformation operations. Gould et al. [36] use this grammar-based string analysis

technique to check for errors in dynamically generated SQL query strings in Java-based web

applications. Christodorescu et al. [20] present an implementation of the grammar-based string

analysis technique for executable programs for the x86 architecture.

Minamide [70] extended previous CFG-based approach by providing support for string-

based replacement operations in PHP applications. He approximates the whole HTML output

of a PHP program at once instead of one hotspot at a time. Instead of converting the resulting

CFG into an FSA and then giving the results represented as an FSA, he stops at the CFG

creation phase and directly uses the resulting CFG in two ways. First, he checks XSS attacks

by intersecting the resulting CFG language with a regular expression language that represents
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the dangerous output that contains an XSS attack. Second, he checks for HTML output well-

formedness by checking if the CFG language is a subset of HTML CFG language. Since this

problem is undecidable, he bounds the depth of tag-nesting in HTML CFG language which

converts it into a regular language. If the subset check succeeds then program’s output is valid

otherwise the bound is increased and a test is done again. To model PHP string operations

such as str_replace, finite state transducers (FST) are used where an FST transforms a CFG

language based on a string operation by computing its post image under that operation.

Wassermann and Su [96] used the string analyzer developed by Minamide to check for

SQL injection vulnerabilities in PHP applications. A CFG language that approximates strings

that may reach an SQL hotspot is computed. Nonterminals in this CFG are annotated with taint

values from taint analysis. Then for each tainted nonterminal, two checks are applied. First,

they check if it is in a literal string syntactic position in an SQL query. If so, then they check

if it intersects with a regular language that represents strings with odd number of unescaped

quotes. If so then it is considered to be vulnerable. In [97] Wassermann and Su used similar

approach to check for XSS vulnerabilities.

Compared to CFG-based string analysis, we can state the following advantages for our

automata-based string analysis:

1. The widening operation used in the CFG-based analyses to deal with loops gives a very

coarse approximation in the presence of string replacement operations. According to

P. Cousot [24] “The definition of the widening operation must be a balance between
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compelling the convergence of the global analysis of the program and discovering as

much information as possible about programs.”

2. In the case of differential analysis, if CFGs are used to approximate the post-images

of sanitizers, then we can not detect the difference since CFGs are not closed under

difference [50].

3. To our knowledge, CFGs has been used to compute pre-images of sanitizers. Pre-image

computation is essential to the repair algorithms that we presented.

The main disadvantage of automata-based string analysis is that, CFG-based string analysis

can be used to detect certain classes of vulnerabilities that affect structured output such as SQL

queries and HTML documents. It does so by detecting the possibility of changing the syntax

tree of the auto-generated structured output using user input. This is done without the need for

policies and assuming no replace (sanitization) operations inside loops.

Automata Based Analysis. Hooimeijer et al. propose a symbolic automata representation [46]

and use finite state transducers [92, 95] to analyze behaviors of sanitization operations. Their

tool Bek is able to identify whether a target string is a valid output of a sanitization routine.

Later on, Loris D’Antoni et al. [27,30,31,91] extended this line of research to string encoding

and decoding operations. All these tools limit their analysis to single-input sanitizers. Unlike

this transducer-based approach, we use an MBDD-based symbolic automata representation

where we use an efficient automata construction for the string replace operations on top of

MBDDs as shown in [2, 105, 106] and chapter 3. The construction prevents the potential
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explosion in the size of the automata due to multiple conjunctions of transducers. Nevertheless,

Bek can be combined with our analysis to increase the confidence in the result. We assume that

builtin string sanitization operation written as part of PHP, Java and Javascript builtin libraries

do what they claim to do in their specifications. Tools like Bek can be used to guarantee this

by providing a language for writing and verifying such string sanitization operations.

Rex [93, 94] combine SMT solvers (using Z3 [68]) with symbolic automata and show its

effectiveness to encode and manipulate strings having large alphabets such as Unicode. The

presented approach here is also capable of encoding large alphabets by increasing BDD vari-

ables in MBDDs. In fact, Yu et al. [107] show that by adjusting BDD variables for various

encodings one can adjust the precision and performance of string analysis.

A multitrack automata based string backward analysis has been proposed in [104] to com-

pute a relational vulnerability signature for multi-input sanitizers. This backward analysis has

been used to automatically patch vulnerabilities in PHP web applications. The multitrack au-

tomata has been used to model relations between string inputs and output [109] [110].

Language-based replacement has been discussed in computational linguistics [35, 57, 71,

90]. These algorithms are based on the composition of finite state transducers. By composing

specific transducers, constraints like longest match and first match can be precisely modeled.

However, each composition may result in a quadratic size of non-deterministic automaton, and

is more likely to blow-up compared to algorithms that we used here. The transducer-based

replacement function [71] has been implemented in Finite State Automata utilities (FSA) [89],

where automata are stored and manipulated using an explicit representation. We use a symbolic
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DFA representation based on MBDDs. This symbolic encoding enables us to perform complex

automata operations, such as closure, concatenation, replace, and widening, efficiently using

the MBDDs.

Choi et al. [18] investigates a widening method to analyze strings. The widening operator

is defined on strings and the widening of a set of strings is achieved by applying the widening

operator pairwise to each string pair. The widening operator we use is defined on automata,

and was originally proposed for arithmetic constraints [11]. The intuition behind this widening

operator is applicable to any symbolic fixpoint computation that uses automata. In [11] it is

proved that for a restricted class of systems the widening operator computes the precise fixpoint

and we extend this result to our analysis. Moreover, in our experiments, the over-approximation

computed by this widening operator works well for proving the properties we were interested

in.

Index Sensitive Analysis. Tateishi et al. [87] propose a path- and index- sensitive string anal-

ysis based on Monadic Second-Order Logic (M2L) [44]. They statically encode string opera-

tions that are used in java sanitization code into M2L and then check if a string generated by

the sanitization code satisfies a pre-specified constraint using an M2L constraint solver such as

MONA [16]. Compared to our automata-based approach, they do not handle loops.

7.2.2 Hybrid String Analysis

In AMNESIA [43] SQL Injection attacks are fought by first applying static string analysis

to approximate the syntactic structure of an SQL query at a hotspot in a program. Then dynamic
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monitoring is used to enforce this structure when executing the program. The key insights

behind their technique is that information needed to predict the possible structure of SQL

queries in a web application is contained within the application’s code. So an SQLI attack,

by injecting additional SQL statements into a query, would violate that structure. AMNESIA

uses static string analysis from JSA [19] to analyze the application code and automatically build

a model for the legitimate queries. This analysis is applied per each hotspot in the application

in which an SQL query, stored in a string variable, is sent to the database for execution. The

model used is a non-deterministic finite automaton (NFA). The alphabet of the NFA is SQL

keywords and operators, delimiters and place holders for input string values. After that, at

runtime, all dynamically generated queries are monitored and checked for compliance with

previously statically generated model (NFA). Queries that violate the model are classified as

illegal, prevented from executing on the database and reported to the application developers

and administrators.

Balzarotti et al. [9] combine both dynamic and static techniques in their tool Saner to verify

PHP programs. They support language-based replacement by incorporating FSA [89] and if a

sanitizer is found to be vulnerable, then a dynamic analysis is performed to check using a pre-

defined set of dangerous test cases if sanitization operations could miss any of these test cases.

They only support bounded computation for loops and approximate variables updated in a loop

as arbitrary strings once the computation does not converge within a fixed bound. We incor-

porate the widening operator in [11] to tackle this problem and obtain a tighter approximation

that enables us to verify a larger set of programs.
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7.2.3 String Constraint Solvers

Constraint solving received a lot of attention recently since it is used by all symbolic exe-

cution tools which have become very popular. String constraints solvers are used specifically

to deal with constraints that involve string variables. Nikolaj Bjorner et al. [15] studied the

decidability problem of string constraints extracted from path conditions for programs using

.NET string library. The .NET string library is modeled using a first order language called the

string library language. They proved that the satisfiability of the string library language where

length of string variables is fixed and replace operation is removed is decidable. If the length

is not fixed but replace is still removed then the problem is open. If replace is introduced then

the satisfiability problem is undecidable for constraints with multiple variables.

Automata-based Solvers. Shannon et al. [83] propose symbolic execution to perform string

analysis on Java programs. In their approach, automata are used to trace path constraints and

encode the values of string variables. Fu et al. [32] use symbolic execution to find SQLI vul-

nerabilities in .NET applications. They use automata to represent string constraints and support

string-based replacement (as opposed to language-based replacement which we support in our

analysis). Wassermann et al. [98] use finite state transducers (FST) to model constraints in PHP

web applications for test input generation. Their approach is based on concolic execution [82],

where results of a concrete execution are used to collect constraints on program execution.

These constraints are then used to generate new test cases. Hooimeijer and Weimer [48, 49]

present an automata-based decision procedure for solving equations over regular language vari-

ables using partial state space construction. Since they use a single track automata encoding,
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the techniques in their paper can only provide an approximation for solving equations over

string variables. One potential solution is using multitrack automata to model relations among

string variables [109] [110]. Rex [93, 94] uses symbolic automata to solve string constraints

involving regular expressions.

Our automata operations that we presented here can be used for string constraints solv-

ing. One advantage over previous solvers is that we can solve constraints involving replace

operations.

Bounded Solvers. Nikolaj Bjorner et al. [15] designed a string constraint solver that solves

string constraint in two phases. First, a string constraint is abstracted into an integer constraint

by replacing each string variable with an unquantified integer variable. After solving the new

integer constraint with an SMT solver, results are used to fix (i.e., bound) the lengths of the

strings. Then the original string constraint is solved after fixing the length of strings variables

in it.

HAMPI [59] allows string constraints to be specified as a membership in a context free

language or a regular language. Then a higher bound on string variables’ lengths is specified

which converts the constraint into a constraint on a finite (i.e., regular) language. The ability to

specify constraints with context free languages is only a convenience feature which makes

it much easier to specify constraints on variables that hold a context free language values

such as SQL queries. Given an input constraint, it is normalized into a core string constraint

where each constraint is of the form x = R or x 6= R where R is a regular expression. A

simple algorithm is provided to convert a bounded CFG into a regular expression. Then core
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constraints are translated into a quantifier-free logic of bit-vectors constraints which are passed

into a special constraint solver called STP. If there is a solution, HAMPI decodes the output

bit-vectors into a string solution.

A string constraint solver called Kaluza [80] was built on top of the HAMPI. It uses the

same approach of bounding the lengths of the execution paths (by bounding loops) and us-

ing a bounded string solver. Kaluza is used by KUDZU—a symbolic execution framework

for javascript—to solve string constraints in javascript and generate new input that is used to

explore more execution paths.

On one hand, bounded solvers are able to handle a larger set of string operations and pred-

icates compared to automata-based string solvers. However, since they bound the length of

strings they may miss some solutions that we can catch especially given how well our automata-

based algorithms scale well with length (see end of chapter 3) The ability to handle unbounded

length in addition to unbounded loops allows us to prove, for example, that a validation func-

tion conforms to a given policy while they can not.

7.2.4 Relationship to Model Checking, Abstract Interpretation and Pre-

and Post-Condition Computation

In chapter 3, we presented our string analysis for IVSL programs using the classical data

flow analysis [1, 56]. In the following discussion, we present our string analysis from other

perspectives.
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Model Checking

State Space. From a model checking perspective, our string analyzer is an infinite state sym-

bolic model checker [17, 67] for string manipulating programs (such as IVSL programs). A

state S for an IVSL program P with n variables v1, v2, . . . , vn consists of the program counter

pc along with a tuple of string values 〈w1, w2, . . . , wn〉 where each element wi in the tuple rep-

resents current string value for the corresponding IVSL variable vi in state S. The initial state

for an IVSL program S0 has the value of pc as 0, which represents the first line in an IVSL pro-

gram, along with the tuple of values 〈ε, ε, . . . , ε〉 (i.e., empty strings). Starting from the initial

set of reachable states (which contains only the initial state S0 of the program), in each step of

the model checking algorithm, we compute, given the current set of reachable states, the next

set of reachable states using the transfer functions in chapter 3 as post-image computers. At

each step of the model checking algorithm, a set of reachable states is represented as a tuple of

sets of strings where each set represents all reachable values for a string variable at that step.

Symbolic Representation. To represent the set of reachable states, we use two levels of sym-

bolic representation, DFAs which symbolically represent regular sets of strings and MBDDs

which symbolically represent the transition relation of a DFA (see 3.2.1). A DFA provides a

finite symbolic representation of the possibly infinite set of reachable values for a string vari-

able. Since the set that represents all reachable values for a string variable is not guaranteed

to be regular, our representation is an over-approximation of this set (i.e., at each step of the

model checking algorithm, we over-approximate the set of reachable states).
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Model Checking Algorithm Termination. To guarantee the termination of the model check-

ing algorithm we need to guarantee that the model checking algorithm is going to find the least

fixed point for the set of reachable states. However, the problem is that the lattice of possi-

ble reachable states (cartesian product of the lattices for each variable which is discussed in

3.2.4) has an infinite height. To deal with this problem (i.e., guarantee termination) we use the

concept of “widening” from abstract interpretation [23, 24] to approximate the least fix-point

for the set of reachable states by computing the least upper bound of the fix-point (using the

automata widening operator from [11]).

Safety Properties. The policies that we use in policy-based verification are similar to the

safety properties used in model checking. We use regular expression to specify these policies

instead of temporal logic since we do not need to express time. We can formulate a safety

property Φ—based on the security policy—such that it specifies that the output of an IVSL

program should not be an element in the language of the security policy. Using CTL logic, we

check for AG(Φ).

Pre- and Post-Condition Computation

Here we present our analysis as a computation of pre- and post-conditions in Floyd-Hoare

Logic [45]. Let us start with the following observation, given a variable x, both a DFA and

a unary (i.e., single-variable) predicate on x (i.e., a condition or a constraint with x as the

only free variable that appear in it) are finite structures that represent or encode the (possibly

infinite) set of values that the variable x can take. Assuming any input, the post-image of
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a sanitizer (see 3.1.1) is equivalent to the post-condition. Given a subset of the co-domain

of a sanitizer function, its pre-image (see 3.1.2) is equivalent to computing the weakest pre-

condition for a given post-condition. A DFA M1 is weaker that a DFA M2 if M1 ⊇ M2 (i.e.,

we check if a DFA represents the weakest pre-condition by replacing the logical implication

operator⇒ with the automaton operator ⊇). In the policy-based bug detection, for example,

we start the pre-image computation with the intersection of the policy (or its negation) with

the post-image (or its negation) as the post-condition. Then, we propagate this post-condition

backwards by conjuncting it (intersecting it) with branch conditions and using our pre-image

computation algorithms for string functions (i.e., the backward transfer functions) as Dijkstra

predicate transformers [29] for DFAs. Finally, the widening operator is used to find the loop

invariant I .

7.3 Differential Analysis and Repair

Differential Analysis. Differential analysis techniques [63–65,77] typically stop after finding

differences between different pieces of code without trying to repair it. In [77] differential

symbolic execution is used to find differences between original and refactored code by sum-

marizing procedures into symbolic constraints and then comparing different summaries using

an SMT solver. SYMDIFF [63] computes the difference between two different functions in a

language agnostic way by reducing both functions to Boggie [10] intermediate language then

finds semantic differences using the Z3 SMT solver [68]. There are several specialized dif-
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ferential analysis techniques that focus on web applications. In NoTamper [13] the authors

analyze client-side script code using dynamic symbolic execution to generate test cases that

are subsequently used as inputs to the server side of the application. Since the approach relies

on dynamic (black-box) testing, it can suffer from limited code coverage. In a recent follow up

paper [14], the same authors propose WAPTEC, which uses symbolic execution of the server

code to guide the test case generation process and expand coverage. In addition to finding se-

mantic differences, our work also generates a fix for such difference. MiTV [86] uses dynamic

symbolic execution engine Pex [69] to test the correctness of user input validation functions for

.NET web applications. These functions are first classified according to the type of input they

validate. Then each validation function is tested by comparing it to a subset of the functions

under the same class. In our differential analysis, we provided more precise mapping tech-

niques since we map two functions—on the client to the server-side— that have high potential

of being similar.

Differential Program Repair. Differential program repair [5, 74, 79, 84, 85, 99, 100] became

an active topic recently. Weimer et al. [99, 100] repair bugs detected through manually written

test suites by using genetic programming. The abstract syntax tree (AST) of the program

is randomly mutated multiple time by deleting, swapping and/or copying subtrees related to

the execution path taken by the test suite. Mutation is done until a mutated version passes

the original test suite. Compared to our differential repair approach, this approach needs test

suites and can introduce new errors into the program since it does not consider the semantics.

Son et al. [84, 85] find access control problems in PHP by comparing a possibly buggy AST
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with one that is considered to be correct and then patch the difference by inserting statements

from the latter into the former. Unlike these syntax based approaches, our differential repair

algorithm uses a semantic approach which enables us to generate precise repairs in multiple

languages. In [74, 79] test suites are used to find bugs then symbolic execution is used to find

constraints on variables that result in such bugs. Using the solution to the negation of these

constraints, a patch is synthesized for the program such that it passes all test suites. Unlike this

approach, our approach does not require a test suite and it can handle unbounded loops using

fixpoint computation. Livshits et al. [66] automatically place a set of sanitizers in a sanitizer

free program based on a user defined policy and a flow graph. The sanitizers are placed in the

flow graph such that they satisfy the specified policy and at the same time avoid idempotency

problems. In our case we take into account the previous sanitization code and the way we

generate the repair allows us to place it at the beginning of the code that is under repair without

requiring a placement policy. Placing the repair before the original code, instead of changing

the code, allows us to avoid interference with the original sanitization code that may have

side-effects.
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Conclusions

Input validation and sanitization is the cornerstone in the correctness and security of web

applications. Since most of web applications input comes from HTML input fields, inadequate

manipulation of string variables causes many bugs and serious vulnerabilities in web applica-

tions. In this dissertation, we presented a number of techniques for automatic detection and

repair of input validation and sanitization bugs in web applications.

We separated the verification problem into three stages: 1) in the first stage we showed how

to extract input validation and sanitization functions from web applications; 2) in the second

stage we showed how to analyze the extracted functions using automata-based symbolic string

analysis; 3) in the third phase we gave a number of bug detection and repair techniques that

utilize the analysis results from the second stage.

In the extraction phase, we gave a formal specification for different types of input validation

and sanitization functions. Then we presented a new domain specific language called Input
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Validation and Sanitization Language (IVSL) that can express these different types of input

validation and sanitization functions. We showed how IVSL was designed to be capable of

capturing input validation and sanitization semantics in a number of popular web programming

languages such as PHP, Javascript and Java. Then we showed how to extract input validation

and sanitization functions statically and dynamically from Javascript, PHP and Java into IVSL

programs.

Given an extracted input validation and sanitization function, we presented an automata-

based symbolic string analysis framework that can be used to over-approximate the 1) output

of the function assuming any input, 2) input to the function that may result in a given output,

and 3) input to the function that will be rejected. We designed a number of algorithms to model

predicates that are used for input validation operations along with a number of new specialized

language-based replacement algorithms that can be used to model sanitization operations in an

efficient and precise way.

Using this analysis framework, we presented two novel techniques to detect and repair bugs

and vulnerabilities in web applications. The first technique is a policy-based technique that

verifies the input validation and sanitization function against a given policy to see if either 1)

the function is under-constrained and accepts bad inputs, or 2) the function is over-constrained

and rejects good inputs. Utilizing security policies, we applied this technique to detect and

repair vulnerabilities on the server-side of the web applications. Furthermore, utilizing min

and max policies for common input fields such as email address, we applied this technique to

detect bugs in client-side input validation code.
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Since policy-based verification is dependent on manually written policies, we presented a

novel differential analysis and repair technique that avoids this limitation. Given two input

validation and sanitization functions, the technique is capable of 1) finding the semantical

difference between the two functions 2) if a difference is found, then the technique is capable

of automatically repairing this difference.

We built two new verification tools, STRANGER and SEMREP based on a new and more

efficient and precise version of the automata manipulation library LIBSTRANGER that is ex-

tended with our new specialized language-based replacement algorithms. Using these tools,

we demonstrated the effectiveness of our bug detection and repair techniques on several bench-

marks, as well as some large-scale applications written in PHP, Java and Javascript.
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