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Abstract

Design for Verification for Concurrent and Distributed
Programs

by

Aysu Betin-Can

In this dissertation we present a design for verification (DFV) approach that embeds

intentions of developers into software and makes software systems amenable to au-

tomated verification; hence, making the automated verification techniques scalable

to large systems. In this DFV approach, we use 1) behavioral interfaces that isolate

the behavior and enable modular verification, 2) an assume-guarantee style verifi-

cation strategy that separates verification of the behavior from the verification of

the conformance to the interface specifications, 3) a general model checking tech-

nique for interface verification, and 4) domain specific and specialized verification

techniques for behavior verification.

We realize our DFV approach for concurrent programming by introducing the

concurrency controller pattern. We aim to eliminate synchronization errors in con-

current Java programs. We use the Action Language Verifier to verify the concur-

rency controller behaviors by an automated translation from their Java implementa-

tions. We have applied this framework to two software systems: a concurrent text

editor and a safety critical air traffic control software called TSAFE.

To demonstrate the applicability of our DFV approach to another application do-

main, we introduce the peer controller pattern for asynchronously communicating

viii



web services. Our goal is both to analyze properties of interactions among the par-

ticipating peers and to validate the conformance of peer implementations to their

behavioral specifications. We use the SPIN model checker to verify the interac-

tion properties. We adapt synchronizability analysis to enable behavior verification

with respect to unbounded asynchronous communication queues. We extend this

approach with an hierarchical interface model for compact representation of peer

interfaces.

We use the Java PathFinder for interface verification in both application domains.

We present techniques for thread isolation which improve the efficiency of interface

verification.
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Chapter 1

Introduction

Assuring reliability and correctness for complex software systems is a major chal-

lenge. Correctness and reliability are the most important software qualities espe-

cially for safety critical systems. For example, recently, a collaborative research

program, called NASA High Dependability Computing Program (HDCP) [54], was

established to investigate ways to improve the development of highly reliable soft-

ware. There are various automated verification tools and techniques for assuring

the reliability and correctness of a software system. Some of the examples are Java

PathFinder [99], SPIN [58], ESC/Java [43], and Action Language Verifier [23]. In

all of these tools, however, scalability is an issue.

Model extraction is the most crucial step for scalable software verification. A

compact model hides the details that are irrelevant to the properties being verified.

Such models are extracted through user guidance [53], static analysis techniques

[5, 55], or both [25]. Model extraction rediscovers some information about the soft-

ware that may be known to its developers at design time. A design for verification

approach that enables software developers to document the design decisions and
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Chapter 1. Introduction

makes verifiability an explicit design criterion [75], can be useful for verification

and may improve scalability. We summarize this approach as follows:

Designing software systems in a way that includes the developer’s inten-

tions and makes the system amenable to automated verification; hence,

making the automated verification techniques scalable to large systems.

We call this approach Design for Verification (DFV).

In our design for verification methodology, we achieve this goal by using do-

main specific behavioral design patterns. Any software system developed based on

the patterns introduced in this dissertation embodies the developer’s intentions and

the model of the software system explicitly. The resulting software is suitable for

automated verification, improving the applicability of model checking techniques

significantly.

The DFV approach introduced in this dissertation is based on the following prin-

ciples: 1) use of stateful, behavioral interfaces which isolate the behavior and enable

modular verification, 2) an assume-guarantee style verification strategy which sep-

arates verification of the behavior from the verification of the conformance to the

interface specifications, 3) a general model checking technique for interface verifi-

cation, and 4) domain specific and specialized verification techniques for behavior

verification. We have applied our DFV approach based on these principles to ver-

ification of synchronization operations in concurrent programs [11, 13, 16] and to

verification of interactions among multiple peers in composite web services [14, 15].

We have developed two verifiable design patterns which facilitate modular specifi-

cation of interfaces and behaviors. These verifiable design patterns also help us

2



Chapter 1. Introduction

in automating the model extraction and environment generation steps required for

software model checking.

Our assume-guarantee style modular verification strategy is based on the stateful

interfaces that isolate the behavior. An interface of a component should provide the

necessary information about how to interact with that component without giving all

the details of its internal structure. However, providing only names, types, and sig-

natures, as commonly practiced in interface representations in current programming

languages, is not sufficient for most verification tasks [21]. For example, such an in-

terface does not contain any information about the order in which the methods of the

class should be called. Therefore, we use finite state machines to specify interfaces.

Such interface machines can be used to specify the order of method calls or any other

information that is necessary to interact with a component. For complex interfaces

one could use an extended state machine model and provide information about some

of the input and output parameters of the component. In Chapter 3, we discuss in-

terfaces in detail and introduce a formal model for such interfaces. Another possible

extension is to use hierarchical state machines for interfaces [14] which is discussed

in Section 5.5.

The verification strategy we present in this dissertation exploits the decoupling of

behavior and interface specifications in the proposed design patterns and combines

the strengths of different model checkers. Some model checkers have their own

specification languages [23, 58, 72]. The usage of such model checkers in software

verification requires abstractions of the input programs in order to translate them to

the input languages of these model checkers [25]. These model checkers are spe-

3



Chapter 1. Introduction

cialized for different aspects of verification and employ specialized model checking

techniques on the specifications written in their own input languages. These tech-

niques, however, cannot handle all the constructs in a high level programming lan-

guage. Model checkers that target a programming language [99, 49, 43], on the other

hand, can handle all the constructs in a high level language. The weakness of these

more generalized techniques, however, is that they cannot explore the whole state

space due to state space explosion. Our techniques combine these two approaches

as follows:

1. During behavior verification, we use domain specific model checkers. To

verify the synchronization behavior in concurrent programs we use symbolic

model checking techniques. These techniques enable us to verify the behavior

in the presence of parameterized constants, unbounded variables, and arbitrary

number of concurrent threads. To verify the interactions among multiple peers

in an asynchronously communicating web services, we use the model check-

ing techniques that focus on process interaction and can handle asynchronous

communication among processes.

2. Conformance to the interface specifications is checked by using model check-

ers that target a programming language. We use Java PathFinder [99] which

is a model checker for Java programs and can handle arbitrary Java imple-

mentations without any restrictions. Conformance is verified using interfaces

as stubs for controllers and isolating concurrent threads and asynchronous

peers. This approach improves the efficiency of the interface verification sig-

nificantly.

4
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and Stub Substitution
Thread Isolation

Multithreaded
and/or distributed
Program based on a
Controller Pattern

Domain Specific
Model Checker

Error TraceVerified

Java PathFinder

Verified Error Trace

BPEL and WSDL
for web services

Domain Specific Functionality

Controllers

Rest of the program

Interfaces

Behavior Specification

Isolated Program

Optimized Code
for concurrent programs

BPEL Generator

Counting Abstraction

Notification Optimizer

Automated
Behavior Translator

Synchronizability Analyzer

Figure 1.1: System architecture overview

The proposed modularization of the verification tasks improves the efficiency of the

verification, covers a larger portion of the state space, and hence, makes automated

verification of realistic programs feasible.

An overview of our approach based on the proposed verifiable design patterns is

illustrated in Figure 1.1. A program written based on the these design patterns con-

sists of controllers, their interfaces, and the rest of the program. These components

are shown on the left side of the figure. The assume-guarantee style verification ap-

proach is illustrated on the top half of the figure. The verification consists of two

steps: behavior and interface verification. During behavior verification, a controller

and its interface are given to our automated behavior translator. (The behavior of

each controller is verified separately.) The output of this translator is a behavioral

5
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specification of the program written in the language of a domain specific model

checker. This specification is verified with respect to user defined properties. The

result of this phase is either a certification that the behavioral properties hold, or fal-

sification with an error trace. For the interface verification, the input is the controller

interfaces and the rest of the program. Interface verification is performed on each

concurrent thread in isolation. During the isolation process the interactions among

the application threads are abstracted by stub substitution and replacement of con-

trollers with their interfaces. The result of this isolation is a set of isolated programs,

one per application thread. In the case of asynchronously communicating web ser-

vices, the same process is used to isolate the participant peers with peer interfaces.

Each of these isolated programs is checked for interface violations with a model

checker for Java. The result of interface verification is either an assurance that the

users of a controller obey the interfaces, or an error trace showing the violation in

the implementation with respect to the controller interface.

In addition to the above verification approach, our framework also includes do-

main specific functionalities shown at the bottom of the main box separated with a

dashed line in Figure 1.1. For composite web service systems, we provide an au-

tomated BPEL generator that synthesizes BPEL and WSDL specifications from the

interfaces to be published for interoperability. This functionality exploits the explicit

definitions of interfaces in the peer controller pattern. We also provide a synchro-

nizability analyzer in order to be able to verify properties of asynchronously com-

municating composite web services in the presence of unbounded message queues.

A composite web service is called synchronizable if its global behavior does not

6
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change when asynchronous communication is replaced with synchronous commu-

nication [47]. The analyzer checks the sufficient conditions for synchronizability

presented in [47] based on the peer controller pattern using the peer interfaces and

works with the automated behavior translator to generate a behavior specification

with synchronous communication semantics. For concurrent programs, we provide

a notification optimizer that eliminates unnecessary context switches among con-

current threads. This optimizer performs an automated notification analysis on the

concurrency controllers. The output is a new concurrency controller implementation

that uses the specific notification pattern [24] and has the same behavior of the origi-

nal concurrency controller. The last feature, called counting abstraction, works with

the automated behavior translator. The counting abstraction enables us to verify the

behavior of a concurrency controller for arbitrary number of application threads.

Design for verification is a fairly new concept. Sharygina et al. [90] focus on ver-

ification of UML models, whereas we focus on verification of programs. Similar to

our work, Mehlitz et al. [75] also suggest using design patterns in improving the effi-

ciency of the automated verification. Our interface-based modular verification tech-

nique, however, is different and does not overlap with their approach [75]. Design

patterns are utilized by Mehlitz et al. for code separation, to partition a large pro-

gram into independently verifiable components. They suggest having usage rules for

these patterns; however, the specification method is not precisely defined since the

work is in its early stages. The design decisions are reflected in the code by source

code annotations and dynamic assertions [74]. These annotations are suggested to

be used for extracting models from the code. Design for verification methodology

7



Chapter 1. Introduction

has also been applied to circuit design and hardware systems [89, 66, 3].

There has been other work on behavioral and stateful interfaces. Chakrabarti et

al. [27] specify interfaces of software modules as a set of constraints, and present

algorithms for interface compatibility checking. The authors have applied their inter-

face formalism also to web service interfaces [18, 17]. We use finite state machines

to specify interfaces and, unlike their work, our goal is to verify both the controller

behavior and conformance to interface specifications. DeLine et al. [32, 33] extend

type systems with stateful interfaces and treat interface checking as a part of type

checking. There has also been work on interface discovery and synthesis in which

stateful interfaces are extracted by analyzing existing code [100, 2]. In contrast, we

use interfaces as part of a verifiable design pattern to isolate the synchronization

behavior or asynchronous interaction behavior.

Summary of Contributions

The contributions in this dissertation can be summarized as follows.

• We introduce a DFV approach for concurrent programs with a concurrency

controller pattern and for asynchronously communicating web services with a peer

controller pattern. The concurrency controller pattern includes Java classes to facil-

itate the behavior of a concurrency controller to be written in a guarded command

fashion. The peer controller pattern includes peer controllers, helper Java classes

to aid the implementation of asynchronous messaging for web services, and peer

interfaces. Both of these verifiable patterns include a finite state machine implemen-

tation in Java to be used for writing behavioral interfaces. We formalize our interface

8



Chapter 1. Introduction

model as an extended finite state machine. We give formalisms for defining the se-

mantics of both proposed design patterns.

• We have developed an assume-guarantee style modular verification strategy.

To realize the behavior verification for concurrency controllers, we have imple-

mented a translator that outputs a specification in the language of the model checker

Action Language Verifier [23] from the concurrency controller classes and their in-

terfaces. To realize the behavior verification for peer controllers, we have imple-

mented a translator that outputs a specification in the language of the model checker

SPIN [58] from the peer interfaces in a composite web service.

The interface verification in both application domains are performed with Java

PathFinder [99] on isolated peers and threads. The peers are isolated through peer

interfaces. For thread isolation we have implemented a data dependency analysis,

generic stubs for modeling GUI components and network communication, a driver

generator for modeling graphical user events, and an automated driver and stub gen-

erator for modeling RMI operations. The interactions among concurrent threads are

modeled with controller interfaces and shared data stubs.

• We have applied the presented DFV approach for concurrent programs to two

real-life software systems both of which have remote procedure calls and multiple

threads. We have implemented a Concurrent Editor with about 2800 lines of code

using the concurrency controller pattern. We have reengineered a safety critical air

traffic control software, which consists of 21,057 lines of code, using the concur-

rency controller pattern. The study on this software system, called TSAFE, has

empirical results demonstrating the effectiveness of our modular verification strat-

9
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egy.

• We have applied the presented DFV approach for asynchronously communi-

cating web services to four different web service implementations. Among these

composite web services, two of them consist of five interacting peers and two of

them consist of two interacting peers. We have implemented these web services

based on the peer controller pattern and successfully verified both their interaction

properties and the conformance of participant peers to their interfaces.

• We introduce a hierarchical state machine (HSM) model for specifying peer

interfaces in a compact manner. The HSM model reflects the natural hierarchy of the

service behavior and contains less number of states and transitions for peers that have

concurrent executions of communication operations. We integrate the HSM model

to the peer controller pattern. We extend the synchronizability analysis to HSMs so

that we can identify synchronizable peer interfaces efficiently without flattening the

HSMs.

Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the de-

sign patterns we have developed to apply the DFV principles to concurrent program-

ming and to asynchronously communicating web services. Chapter 3 presents the

formal models used in this dissertation. It includes our interface model, formal se-

mantics of the presented design patterns, simple and abstract models for concurrent

and distributed programs, the basis for verification methodologies, thread isolation,

and the general interface verification approach. Chapter 4 presents the application

10
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of DFV principles to concurrent programming. It introduces the DFV framework

based on the concurrency controller pattern with the goal of eliminating synchro-

nization errors in concurrent programs. Chapter 5 presents the DFV approach for

developing reliable asynchronously communicating web services based on the peer

controller pattern with the goal of automated verification of properties of interaction

among the participating peers. Finally, Chapter 6 summarizes and concludes the

dissertation.

11



Chapter 2

Design for Verification Patterns

This chapter presents two design patterns we have developed for applying the design

for verification principles discussed in Chapter 1 to two different domains. The

first pattern is called the concurrency controller pattern. This pattern is developed

for applying our DFV approach to concurrent programming in Java with the goal

of eliminating synchronization errors from Java programs using model checking

techniques [11, 13, 16]. With this pattern, synchronization policies for coordinating

the interactions among multiple threads are specified using concurrency controller

classes instead of error-prone Java synchronization primitives. The second pattern

is called the peer controller pattern. This pattern is developed for applying our DFV

approach to asynchronously communicating web services [14, 15]. The goal here is

to automatically verify properties of interactions among multiple peers participating

in a web service implemented in Java.

In this chapter, we first present the concurrency controller pattern that enables

verifiable concurrent programming in Java. Then, we continue with the presentation

of the peer controller pattern that enables verifiable web service development in Java.

12
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2.1 Verifiable Concurrent Programming

Reliable concurrent programming is especially important for Java programmers since

threads are an integral part of Java. Efficient thread programming in Java requires

conditional waits and notifications implemented with multiple locks and multiple

condition variables with associated synchronized,wait, notify, and notifyAll

statements. Concurrent programming using these synchronization primitives is error-

prone with common programming errors such as nested monitor lockouts, missed or

forgotten notifications, slipped conditions, and so forth [68].

We have developed a design for verification (DFV) framework based on a de-

sign pattern to facilitate verifiable concurrent programming in Java. The goal is to

eliminate synchronization errors without sacrificing other desirable qualities of the

software such as efficiency and maintainability. This pattern is called concurrency

controller pattern. Using the concurrency controller pattern, a developer can write

concurrency controller classes defining a synchronization policy without using any

of the error-prone synchronization primitives of Java.

To implement a synchronization policy based on the concurrency controller pat-

tern, a software developer needs to write a set of controller actions where each action

is specified as a set of guarded commands. This is the behavior of the concurrency

controller. The developer should also write an interface for the concurrency con-

troller. The interface defines the allowed execution order of the actions for each

thread. Note that, such an interface cannot be written as a Java interface; hence, we

declare the controller interfaces as Java classes. The controller interface is a Java

13
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class implementing a finite state machine with transitions representing controller

actions.

In this section, we present the concurrency controller pattern in detail with an

example. We also present an automated optimization for concurrency controllers to

eliminate unnecessary context switches. The pattern presented in this section is the

basis of the DFV approach we have developed for concurrent programming. The

verification technique based on the concurrency controller pattern, however, will

not be discussed in this section. Later, in Chapter 4, we show that both safety and

liveness properties of concurrency controllers can be automatically verified using a

modular verification technique.

2.1.1 Motivating Example

To illustrate the DFV approach for concurrent programs, we use the following ex-

ample. Consider a data buffer implementation:

public class DataBuffer{
private Vector data;
...
public void put(Object in){...}
public Object take(){...}
public Object peek(){...}

}

Suppose that we want to share an instance of the DataBuffer class

among multiple threads. If we declare all the methods of the DataBuffer class

as synchronized to enforce mutual exclusion, a thread that calls peek method

will be blocked by another thread executing the same method. One can achieve

more efficient synchronization by using a reader-writer lock which allows multiple

14
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threads to peek at the data buffer at the same time without blocking each other. How-

ever, a reader-writer lock may not be sufficient. For example, it may be necessary

to implement a conditional wait for threads which call the take method when the

buffer is empty. We may also want to put a bound to the size of the DataBuffer to

prevent overflows or to limit the memory usage. In that case, it may be necessary to

implement a conditional wait for threads which call the put method when the buffer

is full.

To implement this synchronization strategy based on the concurrency controller

pattern, we define a separate concurrency controller class which implements a

bounded buffer protected by a reader-writer lock. The synchronization strategy im-

plemented by this controller allows multiple threads to peek at the contents of the

buffer at the same time, but it only allows a thread to perform a put or take opera-

tion when there is no other thread accessing the buffer. Additionally, this controller

ensures that a thread that wants to put an item into the buffer waits while the buffer

is full. Similarly, a thread that wants to take an item from the buffer waits while

the buffer is empty. We call the controller which implements this synchronization

BoundedBuffer-ReaderWriter (BB-RW) controller. The methods of the BB-RW con-

troller are:

public interface BBRWInterface{
public void w_enter_produce();
public void w_enter_consume();
public boolean w_exit();
public void r_enter();
public boolean r_exit();

}

15
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Here, we define the return types of the methods w exit and r exit as booleans

because we would like to give the flexibility of not releasing the read and write locks

but we would like to know whether the lock is released or not.

To use the BB-RW controller in the above scenario, every thread that accesses

the shared buffer instance should first invoke the related controller methods. For

example, when a thread wants to put an item into the buffer, it needs to execute

w enter produce, put, and w exit methods in this order. This sequence guaran-

tees that while performing the put operation, no other thread accesses the buffer and

the buffer is not full. Similarly, when a thread wants to take an item from the buffer,

it needs to execute w enter consume, take, and w exit methods in this order. In

our framework, these call sequences are checked during interface verification. Fig-

ure 2.1 shows an excerpt from a thread’s code that illustrates this usage. Here, the

Java interface of the BB-RW controller is used in the thread implementation.

In the next section, we explain the concurrency controller pattern, which aids the

development of concurrency controllers such as the BB-RW controller, in detail.

2.1.2 Concurrency Controller Pattern

While developing multi-threaded programs that have a set of concurrently accessed

shared data and that require conditional waits and notifications, the following design

forces arise:

• The implementation should be verifiable. There should be a scalable auto-

mated verification framework which ensures that the implementations of con-

currency controllers are correct with respect to desired safety and liveness
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class MyClass extends Thread{
private DataBuffer buffer;
private BBRWInterface controller;

public MyClass(DataBuffer buf, BBRWInterface c){
buffer=buf; controller=c; ...

}
public void run (){
...
controller.w_enter_produce();
buffer.put(new Object());
controller.w_exit();
...
controller.r_enter();
buffer.peek();
controller.r_exit();
...
controller.w_enter_consume();
buffer.take();
controller.w_exit();
...

}
}

Figure 2.1: A sample thread that uses the BBRWController

properties. In recent years, there has been considerable progress in auto-

mated verification techniques for concurrent systems based on model check-

ing [23, 99, 58, 72]. It should be possible to leverage this technology for the

verification of concurrency controllers.

• The implementation should avoid common concurrent programming errors.

Usage of error-prone synchronization statements such as synchronized,

wait, notify, and notifyAll should be avoided to prevent common pro-

gramming errors such as nested monitor lockouts, missed or forgotten notifi-
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cations, and slipped conditions [68].

• The synchronization strategy should be pluggable. Encapsulating the synchro-

nization strategy with the implementation of the shared data classes down-

grades the reusability of the code. It is time consuming and error-prone to

modify the code to support new synchronization strategies. Moreover, if the

synchronization is encapsulated in the shared data classes, then manipulat-

ing more than one shared object at the same time could be difficult, or even

impossible.

• Shared data classes should be maintainable. Encapsulating the implementa-

tion of the shared data with the synchronization operations makes modification

of the shared data classes difficult. Managing synchronization among multiple

threads and updating the states of the shared objects are separate concerns and

it should be possible to modify them separately.

• There should be an efficient mechanism to prevent unnecessary context-switch

among threads. The specific notification pattern [24] avoids context-switch

overhead through multiple condition variables, multiple locks and notifica-

tions. However, the correct usage of these multiple locks and dependency

analysis for correct notification is not easy to implement.

The concurrency controller pattern resolves these design forces. In this pat-

tern, synchronization policies are implemented using guarded commands preventing

error-prone usage of synchronization statements. The concurrency controller pattern

separates the synchronization operations from the operations that change the shared
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Figure 2.2: Concurrency controller pattern class diagram

object’s internal state. This decoupling makes the synchronization policy pluggable

and improves the maintainability of the code. We exploit this decoupling in our

modular verification technique, which is presented in Chapter 4. The modularity

improves the efficiency of the verification process and enables us to verify large

systems by utilizing different verification techniques such as infinite state symbolic

model checking and explicit state model checking with their associated strengths.

The concurrency controller pattern also resolves the difficulty in efficient imple-

mentation of synchronization policies since we provide an automated optimization

technique based on the specific notification pattern [24].

Figure 2.2 shows the class diagram for the concurrency controller pattern. The

ControllerInterface is a Java interface that defines the names of actions avail-

able to user threads. The Controller class specifies the synchronization pol-
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icy such as the BB-RW in Section 2.1.1. Multiple threads use an instance of the

Controller class to coordinate their access to shared data. The Controller-

StateMachine class is the controller interface that specifies the order of actions

that can be executed by user threads. This class has an instance of the StateMachine

class, which is a finite state machine implementation provided with the pattern and

can be used as is. SharedInterface is the Java interface for the shared data such

as the Java interface of the DataBuffer. The actual implementation of the shared

data is the Shared class. The SharedStub class specifies the constraints on ac-

cessing the shared data based on the interface states of the concurrency controller.

Implementing The Concurrency Controller Behavior

A concurrency controller behavior is implemented with the Controller class in

Figure 2.2. The variables of the Controller class store only the state informa-

tion required for concurrency control. Each action of the Controller class is

associated with an instance of the Action class and consists of a set of guarded

commands. The code for the Action class is the same for each controller imple-

mentation. To write a concurrency controller class based on the pattern in Figure

2.2, a developer only needs to write the constructor for the Controller class, in

which a set of guarded commands is defined for each action. Each method in the

controller just calls the blocking or nonblocking method of the corresponding

action. A blocking action causes the calling thread to wait until one of the guarding

conditions becomes true whereas a nonblocking action does not cause the calling

thread to wait. A nonblocking action returns true if a guarded command is executed
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class BBRWController implements BBRWInterface{
int nR; boolean busy; int count; int size;
final Action act_r_enter, act_r_exit;
final Action act_w_enter_produce, act_w_enter_consume, act_w_exit;
BBRWController(int sz) {
nR=0; count=0; busy=false; size=sz;
Vector gcs = new Vector();
gcs.add(new GuardedCommand() {
public boolean guard(){ return (!busy );}
public void update(){ nR = nR+1; } });
act_r_enter = new Action(this,gcs);

gcs = new Vector();
gcs.add(new GuardedCommand() {
public boolean guard(){ return true;}
public void update(){ nR = nR-1; } });
act_r_exit= new Action(this,gcs);

gcs = new Vector();
gcs.add(new GuardedCommand() {
public boolean guard(){ return true;}
public void update(){ busy = false; } });
act_w_exit= new Action(this,gcs);

gcs = new Vector();
gcs.add(new GuardedCommand() {
public boolean guard(){

return (nR == 0 && !busy && count<size);}
public void update(){ busy = true; count=count+1; } });
act_w_enter_produce = new Action(this,gcs);

gcs = new Vector();
gcs.add(new GuardedCommand() {
public boolean guard(){ return (nR == 0 && !busy && count>0 );}
public void update(){ busy = true; count=count-1;} });
act_w_enter_consume = new Action(this,gcs);

}
public void r_enter(){ act_r_enter.blocking();}
public boolean r_exit(){return act_r_exit.nonblocking();}
public void w_enter_produce(){ act_w_enter_produce.blocking();}
public void w_enter_consume(){ act_w_enter_consume.blocking();}
public boolean w_exit(){return act_w_exit.nonblocking();}

}

Figure 2.3: BB-RW implementation based on the concurrency controller pattern
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and returns false if none of the guarding conditions were true.

Consider the BB-RW controller discussed in Section 2.1. A BB-RW controller

can be implemented using four variables and five actions. The variables are nR,

busy, count, and size. Here, nR denotes the number of readers in the critical

section, busy denotes whether there is a writer in the critical section, count denotes

the number of items in the buffer, and size denotes the size of the buffer. The

actions are r enter, r exit, w enter produce, w enter consume, and w exit.

The controller class implementation for BB-RW controller is the BBRWController

shown in Figure 2.3.

We specify the behavior of a concurrency controller in a guarded command style

similar to that of CSP [57]. Since the Java language does not have a guarded com-

mand structure, we provide the GuardedCommand interface and the Action class.

Each instance of the Action class has a vector of guarded commands that defines

its behavior. The code for the Action class is given in Figure 2.4.

The Action class has three significant methods. The GuardedExecutemethod

is used for executing one of the guarded commands of the action. If all the guards

evaluate to false, then this method returns false. The execution of a blocking action

is implemented by the blocking method. When a thread calls a blocking action,

it has to execute a guarded command. Therefore, if the GuardedExecute method

does not execute one of the guarded commands, then the thread waits in a loop,

until it is notified by another thread. The execution of a nonblocking action is im-

plemented by the nonblockingmethod. This method calls the GuardedExecute
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public class Action{
protected final Object owner;
private final Vector gcV;
public Action(Object c, Vector gcs){...}
private boolean GuardedExecute(){
boolean result=false;
for(int i=0; i<gcV.size(); i++)
try{
if(((GuardedCommand)gcV.get(i)).guard()){
((GuardedCommand)gcV.get(i)).update();
result=true; break; }

}catch(Exception e){}
return result;

}
public boolean nonblocking(){
synchronized(owner) {
boolean result=GuardedExecute();
if (result) owner.notifyAll();
return result; }

}
public void blocking(){
synchronized(owner) {
while(!GuardedExecute()) {
try{owner.wait();}
catch (Exception e){} }

owner.notifyAll(); }
}

}

Figure 2.4: Action class
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Figure 2.5: Controller sequence diagram

and notifies the other threads if a guarded command is executed. Note that, a non-

blocking action does not cause the calling thread to wait. A nonblocking action

returns true if a guarded command is successfully executed and returns false if

the guards of all its guarded commands are false.

In a typical scenario, several threads would use an instance of a concurrency

controller to coordinate their access to some shared data. Figure 2.5 shows a se-

quence diagram demonstrating the use of the concurrency controller pattern. In this

scenario, thread B calls the controller action action1, which is a blocking action.

After thread B executes the blocking action successfully, thread A calls the same
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Figure 2.6: Concurrency controller interfaces

action, however, thread A is blocked by the controller. While thread A is blocked,

thread B successfully executes a couple of operations on the shared object. After it

finishes its operations on the shared object, thread B calls action2 (a nonblocking

action of the controller). The last controller action executed by thread B enables

the action that is blocking thread A, and thread A successfully completes executing

action1. This sequence of events, for example, corresponds to two threads inter-

acting with each other using a mutex lock where action1 corresponds to acquire

action and action2 corresponds to release action.

Implementing The Concurrency Controller Interface

The interface of a concurrency controller defines the acceptable call sequences for

the threads that use the controller. Note that, controller interfaces have states and

cannot be specified as Java interfaces. In the concurrency controller pattern, we use
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Java classes to represent controller interfaces. The ControllerStateMachine

class in Figure 2.2 defines the controller interface. This class encodes the state

machine defining the allowed action call sequences. To encode the state machine we

provide a StateMachine class, which is a finite state machine implementation and

can be used as is. The ControllerStateMachine has the same set of methods

as the concurrency controller itself. When a method of the controller interface is

called, the transition method of the StateMachine with the corresponding action

name is invoked. This transition(action) method first executes an assertion

which checks that the current state is a state where the action can be executed, and

then sets the current state to the target state of that transition.

The interface of the concurrency controller BB-RW is shown in Figure 2.6 (a).

This interface has three states: IDLE, READ, and WRITE, with IDLE being the ini-

tial state. The interface state machine shows how the interface state changes when

an action is executed. The BB-RW controller interface, for example, states that a

thread using the BB-RW controller can execute (i.e. call) the r exit action only

after executing the r enter action. This controller interface can be defined as

BBRWStateMachine shown in Figure 2.7 by using a StateMachine instance. A

method of this class contains only the invocation of the corresponding transition in

the state machine instance, e.g., the r enter method invokes the transition from

IDLE to READ.

The controller interface is also used to specify when the methods of the shared

data objects can be executed. For example, for the BB-RW controller protecting the

DataBuffer, the take or put method of the DataBuffer can only be executed
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public BBRWStateMachine implements BBRWInterface{
StateMachine sm;
final int IDLE=0; final int READ=1; final int WRITE=2;
public BBRWStateMachine(int sz){
sm=new StateMachine(3);
...
sm.initial(IDLE);
...
sm.addTransition("r_enter",IDLE,READ);
sm.addTransition("r_exit",READ,IDLE);
...

}
public void r_enter(){ sm.transition("r_enter");}
public boolean r_exit(){return sm.transition("r_exit");}
...

}

Figure 2.7: Parts of the controller interface implementation for BB-RW

in the WRITE state, the peek method can be executed in the READ and WRITE states,

and no method of the DataBuffer can be executed in the IDLE state. In the con-

currency controller pattern, these constraints are specified as assertions in a data stub

class.

The interfaces of concurrency controllers can be complex. For example, the state

machine in Figure 2.6(b) is the interface of a concurrency controller for an Airport

Ground Traffic Control simulation program [105]. This controller consists of 13

integer variables and 20 actions. The controller actions are called for simulating the

behavior of an airplane in an airport ground network model similar to that of the

Seattle/Tacoma International Airport.
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2.1.3 Optimizing Concurrency Controllers

Concurrency controllers written based on the design pattern given in Figure 2.2

may be inefficient because of the following reasons: 1) The pattern in Figure 2.2

does not use the specific notification [24], hence, after every state change in the

concurrency controller all the waiting threads are awakened, increasing the context-

switch overhead; 2) The inner classes used in the pattern in Figure 2.2 and the large

number of method invocations may degrade the performance. To solve both of these

problems, we automatically optimize the concurrency controllers using a source-to-

source transformation. The optimized controller class 1) uses the specific notifica-

tion pattern [24], 2) does not have any inner classes, and 3) minimizes the number

of method invocations.

Implementing the specific notification pattern requires a notification dependency

analysis which can be difficult and complicated to do manually. In our automated

optimization process, we use the algorithm presented by Yavuz-Kahveci et al. [105]

to compute these dependencies automatically. This algorithm is shown in Figure

2.8. We compute the notification dependencies and create a notification list for each

action using this algorithm. In this algorithm, if the execution of the action a is able

to make some guarding condition of action b true by updating some variable, then

that action b is added to the notification list of a. To check this condition, we use pre-

and post-condition computations provided in the Action Language Verifier. In the

figure, the notations appear as in the original paper by Yavuz-Kahveci et al. [105].

In this notation, each action has one guarded command. (To handle actions with

multiple guarded commands, we create temporary actions each of which has one
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for each action a

if ds(a) 6= true then
mark a as guarded
create condition variable conda

else mark a as unguarded
for each action b s.t. a 6= b

if POST(¬ds(b), EXP(a)) ∩ ds(b) 6= ∅ then
add condb to notification list of a

Figure 2.8: Notification list computation algorithm by Yavuz-Kahveci et al. [105]

guarded command). Here, given an action a, ds(a) represents the guard condition

of action a, EXP(a) represents the the conjunction of the guard condition and update

expression, which is the definition of the action a.

To implement the specific notification pattern, we automatically generate one

condition variable for each wait condition, i.e., for each blocking action. Condi-

tion variables are objects declared only for the purpose of synchronization. In the

optimized concurrency controller class, when a thread is blocked while executing a

blocking action, it waits on the condition variable of that action. Using a different

condition variable for each blocked action improves the performance by awakening

only the related threads.

Consider the actions of BBRWController. The notification list of r enter is

empty since the executions of these actions do not make any guarding condition true.

The notification list of r exit contains w enter produce and w enter consume

actions. The w enter produce and w enter consume actions notify each other.

Finally, the notification list of w exit contains r enter, w enter produce and

w enter consume since its execution is able to make the guarding condition of
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class BBRWController implements BBRWInterface{
...
private boolean Guarded_w_enter_produce(){
boolean result=false;
synchronized(this) {
if(nR==0 && !busy && count>size){

busy=true; count=count+1; result=true;}
else; }
return result;

}
public void w_enter_produce(){
synchronized(Condw_enter_produce){
while (!Guarded_w_enter_produce()){
try{ Condw_enter_produce.wait();
} catch(InterruptedException e){}}}

synchronized(Condw_enter_consume){
Condw_enter_consume.notifyAll();

}
}
public boolean w_exit(){ ...
//notifies Condr_enter, Condw_enter_produce, Condw_enter_consume

}
}

Figure 2.9: BBRWController class produced by optimization

these actions true. Figure 2.9 is an excerpt from the optimized version of BB-RW

controller generated from the source given in Figure 2.3.

2.1.4 Related Work

Design patterns for multi-threaded systems have been studied extensively. For ex-

ample, Schmidt et al. [88] present several interrelated patterns, including synchro-

nization and concurrency patterns, for building concurrent and network systems.

Some of these patterns, such as Active Object, Monitor Object and Strategized lock-
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ing pattern, are closely related to our concurrency controller pattern. The object

synchronizer [91] is another related pattern in the sense that it decouples the object

functionality and synchronization management. Lea [68] also discusses several de-

sign patterns for concurrent object oriented programming and their usage in Java

programs. All these patterns are built in order to help developers in writing reliable

concurrent programs. Our goal, on the other hand, is to present a design pattern

which improves the verifiability of concurrent programs by automated tools. In ad-

dition to presenting a verifiable design pattern for concurrency, we also present a

modular verification technique that exploits the presented design pattern.

Lea [68] also provides a package of Java solutions for commonly used synchro-

nization policies. Our concurrency controller implementations could be interpreted

as a generalization of this framework. Our framework enables customized solutions

for customized synchronization policies. A developer can write her own synchro-

nization policy without much effort when she faces a new problem which requires a

customized solution.

Deng et al. [35] propose a pattern system in their approach. The patterns in their

system are idioms which are used for specifying a synchronization policy in a high-

level language. These specifications are also used as abstractions when extracting

the model of the program with the synthesized code to reduce the cost of automated

verification. In our approach, we achieve the state space reduction during interface

checking by replacing the controller implementations with the controller interfaces

which serve as stubs. Although these approaches may seem similar, there are two

important differences. The first difference is that, during behavior verification, we
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can handle all ACTL properties including liveness properties, not just invariants.

The other difference is that our approach is modular. During interface verification,

we only check the correct usage of the concurrency controllers. Since the controller

is guaranteed to satisfy the given synchronization properties, after behavior verifi-

cation, interface verification does not have to search for synchronization errors and

does not have to generate all possible interleavings of the concurrent threads.

The universe model presented by Behrends et al. [6] separates concurrency man-

agement from computation. The desired properties of a system are specified by uni-

verse invariants. Violations of these invariants are recognized at run-time. In our

approach, verification is performed statically and programmers are not required to

write specifications in another language.

To avoid the error-prone usage of low-level synchronization primitives, the re-

cently released J2SE 5.0 [61] includes a concurrency utilities package [62, 65]. The

package involves a Lock interface and a ReadWriteLock among other utilities.

Similar to our framework, developers can create their own synchronization policies

by implementing these interfaces. The verification approach enabled by the concur-

rency controller pattern can be adapted to automated verification of these custom

implementations. With the concurrency utilities package, the lock acquisitions in

the programs have to be explicit as well. Interface verification can be used to detect

errors such as missing lock operations and unprotected data access.

In [78] a high-level inter-thread communication mechanism, called Message-

Driven Thread API (MDT), is presented. The goal of this approach is to reduce the

error-prone usage of synchronization primitives in Java. Unlike MDT, our approach
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provides a framework for verification of the concurrent behavior of Java programs

including correct usage of concurrency controllers with respect to their interfaces.

2.2 Verifiable Asynchronously Communicating Web

Services

Web-based software applications that enable user interaction through web browsers

have been extremely successful. Nowadays one can look for and buy almost any-

thing online, from a book to a car, using such applications. A promising extension to

this framework is the area of web services, i.e., web accessible software applications

that interact with each other through the Internet. Web services have the potential to

have a big impact on business-to-business applications similar to the impact interac-

tive web software had on business-to-consumer applications.

Web services provide a framework for decoupling the interfaces of web acces-

sible applications from their implementations, making it possible for the underlying

applications to interoperate and integrate into larger, composite services. The fol-

lowing characteristics of web services are crucial for this purpose: 1) standardizing

data transmission via XML [104], 2) loosely coupling interacting services through

standardized interfaces, and 3) supporting asynchronous communication.

A fundamental problem in developing reliable web services is analyzing their

interactions. The characteristics above present both opportunities and challenges in

this direction. For example, decoupling of the interfaces and the implementations,

which is necessary for interoperability, also provides opportunities for modular anal-
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ysis. On the other hand, asynchronous communication, which is necessary to deal

with pauses in availability of services and slow data transmission, makes analysis

more difficult.

A composite web service consists of a collection of individual web services,

called peers, working in a collaborative manner. Interaction among peers is estab-

lished through asynchronous messages. In asynchronous communication, when a

message is sent, it is inserted to a FIFO message queue, and the receiver consumes

(i.e., receives) the message when it reaches the front of the queue. The interac-

tion among the peers in a composite web service can be modeled as a conversation,

the global sequence of messages that are exchanged among the peers [22, 51, 59].

A typical peer implementation includes the code for the operations specific to the

application, the code for the asynchronous communication mechanism, and an in-

terface specification describing the behavior of the peer.

We propose a behavioral design pattern called peer controller pattern for de-

veloping reliable web services. The peer controller pattern separates the operations

related to the application logic from the communication details. The communication

component is responsible for asynchronous messaging. The component implement-

ing the application logic uses the communication component to interact with other

peers. This decoupling improves the code maintainability and reusability and sup-

ports our modular verification strategy.

In the peer controller pattern, each peer has a behavioral interface description

that captures the information needed by the other peers in order to interact with it. A

peer interface is a Java class implementing a state machine which defines the order
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LoanApprover

CustomerRelations RiskAssessor

Figure 2.10: Loan Approval service

of send and receive operations that can be executed by that peer. The interface of a

peer can be viewed as a contract between that peer and other peers which interact

with it.

In this section, we discuss the peer controller pattern in detail. This pattern

is the basis of the design for verification approach we developed for the verifiable

web services. The peer controller pattern enables a modular, assume-guarantee style

verification which is discussed in Chapter 5.

2.2.1 An Example Web Service

To illustrate the peer controller pattern we use the Loan Approval example described

in the BPEL 1.1 specification [20]. In this example, a customer requests a loan

for some amount. If the amount is small, the loan request is approved. For large

amounts, a risk assessment service decides a risk level. The loan request is approved

when the risk level is low and denied when the risk level is high.

The Loan Approval service is composed of three individual services (peers):

CustomerRelations, LoanApprover and RiskAssessor (see Figure 2.10). Customers

make loan requests using the CustomerRelations service. This service sends a re-
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Figure 2.11: Peer interfaces

quest message to the LoanApprover service. The request message has a field called

amount. If the request is for a small amount, the LoanApprover service sends an ap-

proval message, with the accept field set to true, to the CustomerRelations service.

Otherwise, the LoanApprover service sends a check message to the RiskAssessor

service. The RiskAssessor calculates a risk level and reports to the LoanApprover

by a risk message with a level field. Then, the LoanApprover service sends an ap-

proval message to the CustomerRelations service with the accept field set to true or

false depending on the content of the risk message received from the RiskAssessor

service.

In this system, the communication among the peers is through asynchronous

messaging. The Loan Approval service can process more than one customer ap-

plication at a time. Each loan request generates a new session. The control logic
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described above is the same for each session.

2.2.2 Peer Interfaces as Contracts

To reason about a composite web service, we need behavioral contracts describing

the behaviors of the individual services, i.e., peers. We use finite state machines

to specify behaviors of the peers and we call these state machines peer interfaces.

Let us consider the Loan Approval example. Since this service is a composition of

three services, one can specify the peer interfaces with three finite state machines,

as shown in Figure 2.11.

The state machines in Figure 2.11 (a), (b), and (c) specify the behavioral inter-

faces of the CustomerRelations, LoanApprover and RiskAssessor services respec-

tively. These behaviors are specified for one session. Here, !message denotes send-

ing a message, ?message denotes receiving of a message. There are 5 message

types: request with an amount field, approval with an accept, check with an amount,

nocheck, and risk with a level field. As seen in Figure 2.11, send transitions are

labeled with conditions on the message contents. Consider the transition labeled

with !approval [risk.level=high/accept=false] in Figure 2.11 (b). This

transition is taken only if the level field of the last risk message is high. When

this guarding condition holds, the LoanApprover peer sends an approval message

with the accept field set to false.
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2.2.3 Conversations

Using the peer interfaces, global behavior of a composite web service can be mod-

eled as a set of state machines communicating with asynchronous messages, similar

to the communicating finite state machine (CFSM) model. In [22, 46, 47] interac-

tions among peers in such a system is specified as a conversation, i.e., the sequence

of messages exchanged among peers, recorded in the order they are sent. A con-

versation is said to be complete if at the end of the session each peer ends up in

a final state and each message queue is empty. (For simplicity, all conversations

are assumed to be complete for the rest of the chapter). The notion of a conversa-

tion captures the global behavior of a composite web service where each peer exe-

cutes correctly according to its interface specification, and every message ever sent

is eventually consumed. (We assume that no messages are lost during transmission,

which is a reasonable assumption based on the messaging frameworks provided by

the industry [64, 77, 63]). For example, the following is a conversation that can

be generated by the Loan Approval example in Figure 2: request(amount=large),

check(amount=large), risk(level=high), approval(accept=false).

The conversation model gives us a convenient framework for reasoning about

and analyzing interactions of web services. Given this framework, a natural prob-

lem is verifying properties related to conversations. As discussed in [46], temporal

logic LTL can be extended to specify properties of conversations. A composite web

service satisfies an LTL property if all the conversations generated by the service sat-

isfy the property. We discuss how to perform behavior verification on conversations

in Chapter 5 in detail.
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2.2.4 Peer Controller Pattern

We propose the peer controller pattern for applying our DFV approach to web ser-

vices to facilitate verifiable composite web service development. This pattern re-

solves the following design forces that arise in the development of reliable composite

web services:

• Contracts of peers should be explicit. To achieve interoperability, the interface

of a peer should be specified explicitly and should serve as a behavioral con-

tract, specifying everything other peers need to know about a peer to interact

with it. The interface of a peer should not be affected by the changes in the

peer implementation that are not relevant to this contract.

• The application logic of a peer should be implemented independent from the

communication logic handling the asynchronous communication. This separa-

tion is necessary for standardization of the communication and maintainability

of the code.

• The implementation should be amenable to automated verification. Due to

their distributed nature and asynchronous communication, web services are

prone to errors. There should be a scalable automated verification framework

to ensure their correctness.

The peer controller pattern resolves the above design forces. In the peer con-

troller pattern, the application logic of a peer and the communication component are

separated. This separation enables the developer to focus on the application logic
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Figure 2.12: Class diagram for the peer controller pattern

without worrying about the details associated with the implementation of the asyn-

chronous communication. This pattern also requires the developer to define the peer

interface, which is the behavioral contract of the peer, explicitly. The peer interface

is specified within the communication component. This explicit definition of the

behavioral contract is crucial both for interoperability and modular verification.

The class diagram of the peer controller pattern is shown in Figure 2.12. The pro-

posed pattern is session based. The application logic of a peer is the same for each

session. This logic is implemented in the ApplicationThread. The application

thread communicates asynchronously with other peers through the Communicator.

40



Chapter 2. Design for Verification Patterns

The Communicator is a Java interface that provides standardized access to the ac-

tual asynchronous communication implementation and its peer interface.

The actual communication is performed via the CommunicationController

and customized message implementation classes (e.g. Msg1Impl). The peer inter-

face, i.e., the behavioral contract for a peer, is written as a state machine via the

CommunicationInterface. This class uses message stubs and an implementa-

tion of nondeterministic state machine (StateMachine).

Note that in the peer controller pattern, the communication component is more

than a Business Delegator [30]. This component contains the behavioral contract of

a peer, and plays a crucial role in verification.

Communication Controller

The CommunicationController class is a servlet that performs the actual com-

munication. Since it is tedious to write such a class, we provide a servlet im-

plementation (PeerServlet) that uses JAXM [63] in asynchronous mode. This

helping servlet deals with opening an asynchronous connection, creating SOAP

messages, and sending/receiving a SOAP message through JAXM provider. The

CommunicationController class extends the PeerServlet and implements

the Communicator interface. An interface method in this class returns a new actual

message instance. Figure 2.13 shows a CommunicationController implemen-

tation for the LoanApprover peer.

The helping servlet is associated with a ThreadContainer that contains ap-

plication thread references indexed by the session identifier. Whenever a message
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public class ApproverServlet extends PeerServlet
implements LAServlet{

public void init(ServletConfig servletconfig)
throws ServletException{

super.init(servletconfig);
urn="urn:LoanApprover";

}
public ApprovalMessage request(int sessionId){
return new ApprovalMessageImpl(this,sessionId); }

public CheckMessage check(int sessionId){
return new CheckMessageImpl(this,sessionId); }

public NoCheckMessage nocheck(int sessionId){
return new NoCheckMessageImpl(this,sessionId); }

}

Figure 2.13: The ApproverServlet class for the LoanApprover peer

with a session identifier is received from the JAXM provider, it is delegated to the

thread indexed with that session number. We use buffers for this message delega-

tion. If there is no thread for the specified session, this container class creates a new

application thread instance and starts that thread.

A sequence diagram is given in Figure 2.14 to explain the role of the Thread-

Container and a message reception. In this scenario, the JAXM provider receives

a message from another peer. It delivers the message to the Communication-

Controller by calling the method onMessage. (The onMessage method is

implemented within the PeerServlet. Recall that, this class is extended by the

CommunicationController. In the figure, we show PeerServlet object in-

stead of the controller since the JAXM provider interacts with it for the message

reception.) The onMessage method invokes putMessage method of the Thread-

Container. The ThreadContainer looks for an application thread indexed with
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Figure 2.14: Sequence diagram for two message reception

the session identifier of the received message. In this scenario, there is no thread

for the specified session. Therefore, a new ApplicationThreadwith this session

identifier is instantiated. The message is stored in the buffer associated with this

thread and the message reception by the JAXM provider is completed. Later, when

the newly created ApplicationThread calls the CommunicationController,

shown as the PeerServlet here, to receive a message, the first message from the

buffer associated for that session is returned to the application thread. In the scenario

shown in Figure 2.14, the newly created application thread invokes the communica-

tion controller to receive another message before the second message for this session

is delivered to this peer. I.e. application thread tries to get a message and the buffer

for this session is empty. The application thread stalls and notified by the JAXM
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provider when a new message for that session is delivered.

Messages

The peers interact with each other using customized messages. The peer controller

pattern requires each message type to be implemented in Java. This implementation

consists of one actual message type definition, one message stub, and one Java inter-

face to provide uniform access to these classes. The abstract class for the customized

message types is shown as MessageImpl in Figure 2.12. Its send operation uses

the sending method of the PeerServlet. The abstract class for the message stubs

is MessageStub class. Its send operation uses the sendTransition method of

StateMachine, which is explained below. This abstract class has a subclass that

serves as a stub for incoming messages. Finally, the Java interface which unifies the

actual message types and their stubs is called Message in Figure 2.12.

As an example, consider the approval message used by the LoanApprover peer.

For this message type, we need to implement one Java interface, one message class

that is used for communication, and one stub class that is used during verification. In

Figure 2.12, these implementations correspond to Msg1, Msg1Impl and Msg1Stub,

respectively.

In our framework, the attributes of message classes are categorized as control

attributes and data attributes. The attributes that influence the behavior of the in-

terface are called control attributes. A control attribute can be of enumerated or

boolean type. Since at the time this framework build Java does not support enu-

merated types, we provide an Enumerated class. We use this separation between
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control and data attributes in reducing the number of states of the message stubs.

The stub for a message class only stores the values of the control attributes.

Communication Interface

The CommunicationInterface class is a special class that specifies the peer in-

terface. A peer interface specifies the behavioral contract of the peer and it is also

used during the verification process. The CommunicationInterface class con-

tains two representative variables for each message type. One holds the last value

and the other holds the current value of the control attributes of a message. These

variables are the interface variables.

The CommunicationInterface encodes the state machine defining the con-

tract by using the provided StateMachine class. In the constructor, the developer

defines the transitions of the state machine. There are two kinds of transitions: send

and receive transitions. A send transition is defined as a SendTransition in-

stance. This instance stores the message, the source and the target states, and the

guarding condition for that transition. A guarding condition consists of two con-

ditions: the condition guardV specifies when the transition is executable and the

condition guardP specifies the contents of the message to be sent with that transi-

tion. A guarding condition is defined as an anonymous inner class implementing the

GuardingCondition Java interface.
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The syntax of these conditions is defined as follows:

guardV → term
∣

∣ guardV && guardV
∣

∣ guardV || guardV
∣

∣ !guardV

guardP → term
∣

∣ guardP && guardP

term → varname == value

In the condition guardV the varname is in the form of last msg.fieldname()

where last msg is the name of the variable that holds the last value of the message

msg. In this condition, the equalities are defined on the control fields of last mes-

sages. In the condition guardP, the equalities are defined on the message to be sent,

i.e., varname is in the form of msg.fieldname().

Consider the transition whose source state is 3, target state is 5, and labeled with

!approval[risk.level=high/accept=false] in Figure 2.11(b). This send

transition is implemented as

GuardingCondition gc=new GuardingCondition(){
public boolean guardV(){
return last_risk.level()==Low;}

public boolean guardP(){
return approval.accept()==true;}};

SendTransition outTrans= new SendTransition(approval,3,5,gc);

A receive transition is defined with a ReceiveTransition instance. This in-

stance holds the message and the source and the target states. There is no guarding

condition for receive transitions. In the LoanApprover peer, for example, the receive

transition (0,?request, 1) in Figure 2.11(b) is specified with the statement

ReceiveTransition rcv= new ReceiveTransition(request,0,1);

where the variable request has the current value of the request message.
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The StateMachine class is a nondeterministic finite state machine implementa-

tion. This class has two important methods: sendTransitionand receiveTran-

sition. The method sendTransition(message) computes the set of next in-

terface states from the current interface states, asserts that this set is not empty.

Then, it updates the current interface state, and saves the message instance to the

corresponding interface variable. Note that only the values of control attributes are

saved for a message instance. This set of next interface states is the target of the

SendTransitions whose 1) label is of message type, 2) guarding conditions are

satisfied, and 3) source state is in the current state. The receiveTransition()

method computes the set of possible ReceiveTransitions available in the cur-

rent interface state, and asserts that this set is not empty. If the set is not empty, it

chooses one of these transitions nondeterministically. Here the nondeterminism is

used to choose one type of message to receive. For example, consider a state from

which two transitions with ?msg1 and ?msg2 are originated. With this nondeter-

minism, either ?msg1 or ?msg2 is chosen. Then, the method sets the current inter-

face state, updates the interface variables, and returns the chosen incoming message

stub instance. The incoming message stubs (InMessageStub) are generated in the

preprocessing phase of the interface verification. These classes have an instance

method that returns an instance with control field values chosen nondeterministically

from the possible values that other peers can set. The nondeterminism is achieved

by the Verify.random function which is a special function of the program checker

Java PathFinder (JPF) [99]. This function forces JPF to search exhaustively every

possible nondeterministic choice during interface verification.
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2.2.5 Related Work

To achieve interoperability among web services a contractual agreement among par-

ticipating peers is a necessity. The WSDL [103] standard is commonly used as a

contract for specifying the operations, port types, and message types of an individ-

ual web service. This kind of information, however, is not sufficient for developing

composite services. WSDL is a connectivity contract which does not model the

behavior [76, 92]. A number of standards have been proposed for describing the

behavior of a web service, such as BPEL [20], WSCI [102], and OWL-S (formerly

DAML-S) [84]. Fu et al. [22] use state machines for this purpose and have shown

that other behavioral descriptions (such as BPEL) can be translated to state machines

[47]. Since state machines are powerful enough to specify the behaviors of web ser-

vices and since they are suitable for automated reasoning, in our framework, the

behavioral contracts among peers are specified as state machines.

State machines are used as behavioral contracts also by Gerede et al. [48] and

Berardi et al. [9, 10]. Unlike our work, their goal is automatic web service compo-

sition. Also, Berardi et al. focus on sequences of activities performed rather than

message sequencing in the composition. Benatallah et al. [8, 70] use statecharts

to describe service behavior, specifically to declare a service composition. They

present a framework for implementing web services without addressing verification

of service interactions.

Currently, there are several design patterns to help developers in implementing

web services [30, 1, 97, 7]. Fauvet et al. [42] introduce patterns for implementation

and synthesis of composite services. Unlike these patterns, our goal is to present
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a pattern which improves the verifiability of composite web services by automated

tools. We also use the peer controller pattern to realize DFV for asynchronously

communicating web services.
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Formal Models

In this Chapter we present the formal models used in this dissertation. We first de-

fine a general interface model. Then we introduce the formal semantics of the design

patterns presented in Chapter 2: concurrency controller pattern and peer controller

pattern. We continue with a simple and abstract model for concurrent programs, dis-

tributed programs, and asynchronously communicating distributed programs. After

the presentation of these models, we define the formal basis for interface and behav-

ior verification.

This chapter also addresses the thread isolation which is a form of environment

generation problem [85, 96, 95]. We define how to isolate threads for interface

verification and show that the interface verification can be performed separately on

each thread.

We present a general interface verification approach and explain how to perform

the interface verification directly on the implementation with a model checker called

Java PathFinder based on the presented formalisms. Finally, we present a formaliza-

tion of interface composition.
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3.1 Interface Model

In this section we define our interface model. An interface of a controller specifies

the allowed sequencing of controller actions and the assumptions of each action. An

interface I is a finite state machine extended with interface variables. We denote an

interface as a tuple I = (Q, q0, V, Σ, δ, F ) where Q is the set of finite states, q0 ∈ Q

is the initial state, V is a finite set of typed interface variables each of which has a

finite domain, Σ is the input alphabet, δ is the transition relation, and F ⊆ Q is the

set of final states. A configuration of I is defined as c ∈ Q ×
∏

v∈V DOM(v). We

denote the value of interface variables in a configuration c as c(V ) and the interface

state as c(Q). Given an interface I , there are a finite number of configurations since

the sets Q and V are finite, and DOM(v) for each v ∈ V is finite.

Each element of Σ corresponds to a controller action. Each action σ ∈ Σ has

a finite set of control attributes denoted as attr(σ). A control attribute of σ is an

attribute that affects the behavior of the interface. While a general attribute of an

action is unrestricted, the control attributes are restricted to have finite domains.

The transitions in δ are of the form (q, σ, g, u, q ′) where q ∈ Q is the source state,

σ ∈ Σ is an action, g is the guard condition (defined below), u :
∏

v∈V DOM(v) →
∏

v∈V DOM(v) is the update function defined on interface variables, and q ′ ∈ Q

is the target state. Each transition has a guard condition g. A guard condition is a

predicate of the form g(attr(σ), c(V )) where σ ∈ Σ is an action and c is an interface

configuration. The guard condition has two parts, g = gp ∧ gv. The condition gp

is a conjunction of predicates on attr(σ). The condition gv consists of predicates on
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Figure 3.1: Two sample interface specifications

c(V ) combined with boolean operators. For brevity when the guard condition g is

always TRUE, g is not shown in the transition. Similarly, when the update function

u is identity function, u is not shown in the transition.

As an example, consider a reader-writer controller which allows multiple read-

ers to access the data and only allows one writer to modify the data when there

are no readers. One interface specification I = (Q, q0, V, Σ, δ, F ) for this con-

troller is shown in Figure 3.1(a). The set of interface states is Q = {1}, the ini-

tial state is q0 = 1, and the final state is F = {1}. The interface variables are

V = {reading,writing}. The input alphabet is Σ = {r enter, r exit,

w enter, w exit}. There are four transitions in this interface. One of these

transitions is (1,r enter, g, u, 1) where the guarding condition g = gv ∧ gp is

gv ≡writing=FALSE ∧ reading=FALSE and gp ≡ TRUE, and the update function

u is u(reading,writing) = (TRUE, FALSE). The same order of actions for the

reader-writer controller can be defined with another interface specification with no

variables as shown in Figure 3.1(b). Note that both interfaces in Figure 3.1(a) and

(b) specify the same action sequencing for the reader-writer controller.

52



Chapter 3. Formal Models

An action sequence w is a legal sequence of I = (Q, q0, V, Σ, δ, F ) if the fol-

lowing conditions hold. First, each element σ of the sequence w should be an input

symbol σ ∈ Σ. The second condition is defined by running the interface machine

with the sequence w as follows. We start the interface machine at the initial con-

figuration c0 = (q0, v10
, v20

, . . . , vn0
) where n = |V | and vi0 for 0 ≤ i ≤ n is

the initial value the interface variable vi ∈ V . We remove the first element σ of w

from the sequence. If there is a transition (c(Q), σ, g, u, q ′) ∈ δ where c is the cur-

rent configuration, and if g(attr(σ), c(V )) holds, the current configuration becomes

c′ = (q′, v′
1, v

′
2, . . . , v

′
n) where v′

1, v
′
2, . . . , v

′
n store the values of interface variables

in the configuration c′ and c′(V ) = u(c(V )). Otherwise, it is an error and the run

stops. The execution continues with the removal of the new first element of w until

w becomes empty or there is an error. When w is empty and the interface state in

the current configuration is not a final state, there is an error. If there is no error and

the first condition holds, then the sequence w is a legal sequence of I .

The transition relation δ is deterministic. Given a configuration c and an action σ

there is only one next configuration. More precisely, given a configuration c where

c(Q) = q and an action σ, if there are any two transitions (q, σ, g1, u1, q1) ∈ δ and

(q, σ, g2, u2, q2) ∈ δ where g1 and g2 evaluate to TRUE at c, then c1 = c2 where c1 is

the configuration after the first transition is taken and c2 is the configuration after the

second transition is taken. This determinism does not affect the expressiveness of

the interface model since any nondeterministic finite state machine can be converted

to an equivalent deterministic finite state machine.
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3.2 Controller Semantics

In this section we first formalize the semantics of the concurrency controllers. We

continue with a formalization of a composite web service specification based on

the peer controller pattern. These semantic definitions are the formal model we use

during behavior verification.

3.2.1 Concurrency Controller Semantics

A concurrency controller is a tuple CC = (Γ, IC, A, I), where Γ is the set of

controller variables, IC is the initial condition, A is the set of actions, and I is

the controller interface. For example, for the concurrency controller BB-RW dis-

cussed in Section 2.1.1, Γ = { nR, busy, count, size } and A = { r enter,

r exit, w enter produce, w enter consume, w exit }. The concurrency

controller variables are private and can only be modified or accessed via the actions

of CC. The initial condition denotes the initial values assigned to the concurrency

controller variables in the constructor of the controller class. Formally, IC is a

predicate on the concurrency controller variables in Γ, i.e., IC :
∏

γ∈Γ DOM(γ) →

{TRUE, FALSE}, where DOM(γ) denotes the domain of the concurrency controller

variable γ and
∏

γ∈Γ DOM(γ) denotes the Cartesian product of the variable domains.

For the BB-RW IC ≡ nR = 0 ∧ ¬busy ∧ count= 0.

The interface of a concurrency controller is a finite state machine I =(Q, q0, V,

Σ, δ, F ) where Q is the set of states of the interface, q0 ∈ Q is the initial state of

the interface, Σ is the input alphabet, and δ is the transition relation of the interface
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(see Section 3.1). A controller interface specifies the execution order of controller

actions and when the methods of the shared data can be executed. Therefore, Σ

is the union of A and the methods of the shared data protected by the concurrency

controller CC. The concurrency controller interface is a special case of the interface

model presented in Section 3.1 in the sense that the set of final states has only the

initial state (F = {q0}). In the concurrency controller interfaces we investigated

for the case studies in Chapter 4, there are no interface variables (V = ∅), no guard

conditions, and no update functions. Therefore, in the rest of this chapter, for brevity,

we will denote a transition in δ, because of the aforementioned features, as (q, act, q ′)

instead of (q, act, g, u, q′) where act ∈ A, and q, q′ ∈ Q. As an example, consider the

interface of BB-RW given in Figure 2.6(a) in the previous chapter. At this interface

Q = {IDLE, READ, WRITE} and the initial state q0 =IDLE. In this example, δ has

five transitions and one of these transitions is (IDLE, r enter, READ).

The semantics of a concurrency controller specification CC is a transition system

T (CC)(n) = (IT, ST, RT ) where n is the parameter denoting the number of user

threads, ST is the set of states, IT ⊆ ST is the set of initial states, and RT ⊆

ST × ST is the transition relation. The transition system T (CC)(n) represents

all possible behaviors of a controller object when it is shared among n threads and

assuming that each thread uses the controller object according to its interface. The

initial states correspond to the states of the controller at the end of the execution of

the constructor method. The transition relation RT represents the behavior of the

controller object by recording its state at the end of the execution of each controller

method that corresponds to an action.
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The set of states is defined as the Cartesian product of the concurrency controller

variable domains and the states of the user threads, ST =
∏

γ∈Γ DOM(γ) ×
∏n

Q.

Note that, the state of a user thread is represented by an interface state and there is

one interface state per user thread.

We introduce the following notation. Given a state s ∈ ST and a controller

variable γ ∈ Γ, s(γ) ∈ DOM(γ) denotes the value of the variable γ in state s.

Given a state s ∈ ST and a set of variables Γ′ ⊆ Γ, s(Γ′) ∈
∏

γ∈Γ′ denotes the

projection of state s to the domains of the variables in Γ′. Finally, given a state s

and a thread t, where 1 ≤ t ≤ n, s(Q)(t) ∈ Q denotes the state of thread t in s, and

s(Q − t) ∈
∏n−1

Q denotes the projection of state s to the states of all the threads

except thread t.

The initial states of the transition system T (CC)(n) is defined as

IT = {s | s ∈ ST ∧ IC(s) ∧ ∀1 ≤ t ≤ n, s(Q)(t) = q0}

The set of actions, A, specifies the behavior of the concurrency controller. Each

action act ∈ A, consists of a set of guarded commands act.GC. Each action has a

blocking/nonblocking tag. For each guarded command gc ∈ act.GC, guard gc.g is

a predicate on the variables Γ, gc.g :
∏

γ∈Γ DOM(γ) → {TRUE, FALSE}. For each

guarded command gc ∈ act.GC, the update gc.u is defined on controller variables

gc.u =
∏

γ∈Γ DOM(γ) →
∏

γ∈Γ DOM(γ).

Consider a transition (q, act, q′) ∈ δ where q and q′ are two interface states, and

act is an action. We will define a transition relation RT(q,act,q′) ⊆ ST × ST , which

corresponds to executing the action act at interface state q. We define RT u
(q,act,q′),
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the transition relation for a transition (q, act, q ′) when one guarded command is ex-

ecuted, as

RT u
(q,act,q′) = {(s, s′) | s, s′ ∈ ST ∧ (∃gc ∈ act.GC, gc.g(s(Γ))

∧ s′(Γ) = gc.u(s(Γ))) ∧ (∃1 ≤ t ≤ n, s(Q)(t) = q

∧ s′(Q)(t) = q′ ∧ s′(Q − t) = s(Q − t))}

If the action act is blocking, then the transition relation of (q, act, q ′) is defined

as RT(q,act,q′) = RT u
(q,act,q′). If the action a is nonblocking, then RT(q,act,q′) =

RT u
(q,act,q′) ∪ RT nb

(q,act,q′) where RT nb
(q,act,q′) denotes the case where none of the guards

of act evaluate to TRUE

RT nb
(q,act,q′) = {(s, s′) | s, s′ ∈ ST ∧ s′(Γ) = s(Γ)

∧ (∀gc ∈ act.GC, ¬gc.g(s(Γ)))

∧ (∃1 ≤ t ≤ n, s(Q)(t) = q ∧ s′(Q)(t) = q′

∧ s′(Q − t) = s(Q − t))}

The transition relation RT of the transition system T (CC)(n) is defined as

RT =
⋃

(q,act,q′)∈δ RT(q,act,q′)

We define the execution paths of the transition system T (CC)(n) based on

RT as follows: An execution path s0, s1, . . . is a path such that s0 ∈ IT and

∀i ≥ 0, (si, si+1) ∈ RT . Let AP denote the set of atomic properties, where

a property p ∈ AP is a predicate on the concurrency controller variables in Γ,

p :
∏

γ∈Γ DOM(γ) → {TRUE, FALSE}. We use ACTL to state properties of the tran-

sition system T (CC)(n). A concurrency controller CC satisfies an ACTL formula

f , if and only if, ∀n ≥ 0, all the initial states of the transition system T (CC)(n)

satisfy the formula f .
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3.2.2 Peer Controller Semantics

We focus on composite web services where the participant peers communicate with

each other through asynchronous messaging. We denote the set of messages with M .

We use class(M) to denote the set of message classes and for each message m ∈

M we use class(m) to denote the message class of m. A composite web service

specification is a tuple W = (class(M), I1, . . . , Ik) where k is the number of peers

in the composition, class(M) is a finite set of message classes and Ii is the interface

of the peer i for 1 ≤ i ≤ k. For each message m ∈ M , sender(m) ∈ {I1, . . . , Ik}

denotes the peer that sends the message m, and receiver(m) ∈ {I1, . . . , Ik} denotes

the peer that receives the message m. We assume that there is one sender and one

receiver for each message class.

Each peer interface Ii = (Qi, q0i
, Vi, Σ, δi, Fi) (see Section 3.1) is a finite state

machine specifying the behavior of the peer i per session. We denote the configu-

ration set of the interface Ii as C i = Qi ×
∏

v∈Vi
DOM(v). The specialization in the

interface model for peer interfaces is as follows. First, the transition relation δ is

partitioned into send transitions δS and receive transitions δR. A receive transition

represents the incoming calls to this peer and a send transition represents the out-

going calls from this peer. A receive transition is of the form (q, ?σ, g, u, q ′) ∈ δR

where q ∈ Q is the source state, σ ∈ Σ is an action, g is the guard condition, u is

the update function, and q′ ∈ Q is the target state. A send transition is of the form

(q, !σ, g, u, q′) ∈ δS . The symbols ? and ! denote the receive and send transitions,

respectively. Both send and receive transitions are triggered by an action.

The other specialization is that the input alphabet is Σ = class(M), and each
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interface variable v ∈ Vi holds the content of a message. More precisely, |Vi| =

|class(M)| and for each control attribute f of each message class mc ∈ class(M)

there is an interface variable vmc.f ∈ V where f ∈ attr(mc) that stores the last value

of f . In other words, there is an interface variable that stores the last transmitted or

received message instance of message class class(m) ∈ class(M). Based on the

peer controller pattern, the domain of each control attribute is finite which is the case

for the interface variable definition in Section 3.1. Since the interface variables store

the last exchanged message content, given a transition with a message m ∈ M , the

update function u of this transition assigns the content of the message attributes to

the corresponding interfaces variable vm. The guard conditions are specified by the

user as explained in Section 2.2.

As an example, consider the Loan Approver Service given in Section 2.2.1. In

this example, there are three participant peers (k = 3). The peer interfaces are

shown in Figure 2.11. Consider the interface of the LoanApprover peer. This in-

terface has five interface variables since there are five message classes. The inter-

face variable, for example, for the risk message class stores the control attributes of

this message class. The risk message class has only level field as control attribute,

i.e., attr(risk) = {level} where DOM(level) = {low, high}. In the LoanApprover

peer interface δR has two and δS has five transitions. One of these transitions is

(3, !approval, g, u, 5) ∈ δS where the guard condition is g = gp ∧ gv with gv ≡

vrisk.level=high and gp ≡ accept=false, and the update function stores the val-

ues of the control attributes of the approval message into the corresponding interface

variables.
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The semantics of a composite web service specification is a transition system

T (W ) = (IT, ST, RT ) where ST is the set of states, IT ⊆ ST is the set of initial

states, and RT is the transition relation of the system. The set of states is defined as

ST = C1 × Θ1 × C2 × Θ2 × . . . Ck × Θk where k represents the number of peers in

the composition, Θi is the set of configurations of the input queue of peer i, and C i

is the set of configurations of Ii.

We introduce the following notations. Given a state s ∈ ST and a peer identifier

i, s(Ii) denotes the interface configuration of Ii in state s, and s(Θi) denotes the con-

figuration of input queue of peer i in state s. We define two functions. The function

append is used for manipulation of the queue configurations, where append(Θ1, Θ2)

appends Θ1 to the front of Θ2. The function first(Θ) returns the first element in the

Θ. 〈〉 denotes an empty queue and 〈m〉 where m ∈ M denotes a queue containing a

single message m.

The set of initial states of T (W ) is defined as

IT = {s|s ∈ ST ∧ (∀1 ≤ i ≤ k, s(Θi) = 〈〉 ∧ s(Ii)(Qi) = q0i
)}
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We define the following relation for the send transition (q, !class(m), g, u, q ′).

RT(q,!class(m),g,u,q′) = {(s, s′)|s, s′ ∈ ST ∧ (∃1 ≤ i ≤ k, s(Ii)(Qi) = q

∧ s′(Ii)(Qi) = q′ ∧ (q, !class(m), g, u, q′) ∈ δi

∧ g(attr(m), s(Ii)(V )) ∧ s′(Ii)(V ) = u(s(Ii)(V ))

∧ (∀1 ≤ j ≤ k, j 6= i, s′(Ij) = s(Ij)))

∧ (∃1 ≤ p ≤ k, receiver(m) = Ip

∧ s′(Θp) = append(s(Θp), 〈m〉)

∧(∀1 ≤ l ≤ k, l 6= p, s′(Θl) = s(Θl)))}

where m ∈ M .

We define the following relation for the receive transition (q, ?class(m), g, u, q ′).

RT(q,?class(m),g,u,q′) = {(s, s′)|s, s′ ∈ ST ∧ (∃1 ≤ i ≤ k, s(Ii)(Qi) = q

∧ s′(Ii)(Qi) = q′ ∧ (q, ?class(m), g, u, q′) ∈ δi

∧ g(attr(m), s(Ii)(V )) ∧ s′(Ii)(V ) = u(s(Ii)(V ))

∧ (∀1 ≤ j ≤ k, j 6= i, s′(Ij) = s(Ij))

∧ first(s(Θi)) = m ∧ append(〈m〉, s′(Θi)) = s(Θi)

∧(∀1 ≤ l ≤ k, l 6= i, s′(Θl) = s(Θl)))}

where m ∈ M .

Finally, the transition relation RT for the T (W ) is defined as

RT =
⋃

(q,!class(m),g,u,q′)∈δSi
,1≤i≤k RT(q,!class(m),g,u,q′)∪

⋃

(q,?class(m),g,u,q′)∈δRi
,1≤i≤k RT(q,?class(m),g,u,q′)

We define an execution sequence exe = s0, s1, ... as a sequence of states where

(si, si+1) ∈ RT . The conversation conv(exe) generated by this sequence is defined
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recursively as follows: The conversation conv(s0) is the empty sequence. The con-

versation conv(s0, s1, ..., sn, sn+1) is conv(s0, s1, ..., sn), m if there exists Θj such

that sn+1(Θj) = append(sn(Θj), 〈m〉) and m ∈ M , or conv(s0, s1, ..., sn) other-

wise. A conversation is a complete conversation if in the last state of the execution

sequence each peer is in a final state and all the message queues are empty. We

call the set of conversations generated by all the execution sequences of T (W ), the

conversation set generated by T (W ).

3.3 Program Model

In this section, we first introduce a simple model for concurrent programs imple-

mented based on the concurrency controller pattern. On this model we define two

projection functions to formulate interface verification and behavior verification

based on the concurrency controller pattern. We continue with a model for dis-

tributed programs that communicate via remote procedure calls and asynchronous

messaging. Finally, we define a projection function on this model to define the be-

havior verification based on the peer controller pattern.

3.3.1 A Model for Concurrent Programs

In a single concurrent program P , there are three types of concurrent threads: 1) the

main thread, 2) the threads that are created by other threads explicitly, and 3) the

threads that are created implicitly by, for example, the Java Runtime Environment.

In Java, an explicit thread is created with the invocation of the start() method of

62



Chapter 3. Formal Models

a class that extends java.lang.Thread or implements java.lang.Runnable.

For a single program, the only implicit thread is the event thread created by JVM

(java.awt.EventDispatchThread) that dispatches the graphical user interface

(GUI) events.

In the simple model presented in this section we have the following assumptions:

1) The shared variables are known and are implemented based on the concurrency

controller pattern. Shared variables are only concurrency controllers and the shared

data protected by these controllers. A variable is shared if more than one thread

accesses that variable during a program execution. With an escape analysis [28, 19,

60] one can find this shared variable set. 2) The shared data is not primitive type.

Otherwise, the concurrency controller pattern cannot be applied since the pattern

requires an interface machine for the shared data. Also, the fields of the shared data

are private and the only way to access or modify these fields is through method calls.

3) Suppose a thread t uses more than one controller (CC1 and CC2). We assume

that t does not execute an action of CC2 if it is not at the initial state (which is the

only final state) of the interface of CC1. However, we allow composing interfaces

of concurrency controllers which then relaxes this restriction. Also, we assume that

the controller variables of each concurrency controller are distinct.

Before formulating a program configuration and execution, we define the pro-

gram stores in a single concurrent program. A shared store mapping is defined as

ρ ∈ Sh : V →
⋃

v∈V DOM(v) ∪ ⊥ where V is the set of program variables that

are accessed by more than one thread. When a variable v ∈ V is mapped to ⊥ , it

means that v is not visible to more than one thread. We assume that the mappings
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are correct with respect to types. I.e., for any ρ ∈ Sh, ρ(v) ∈ DOM(v) ∪ ⊥ for all

v ∈ V . Based on the first assumption above, the elements of V to be used in shared

store mappings are known and can be computed. Let v be an element of V . A shared

store mapping ρ(v) returns the value of v if v is visible to more than one thread,

and otherwise returns ⊥ . Intuitively, ρ represents the shared stores in P through

which the concurrent threads communicate with each other. We define a local store

mapping for a thread as follows. Given a thread t, the local store mapping of t is

`t ∈ Lcl(t) : V →
⋃

v∈V DOM(v) ∪ ⊥ where V is the set of program variables

that are accessed by t. When a variable v ∈ V is mapped to ⊥ , it means that v is

visible to more than one thread. We assume the local mappings are also correct with

respect to types. Given v ∈ V , a local store mapping `t(v) returns the value of v

if v is visible only to t and returns ⊥ otherwise. Intuitively, `t represents the local

stores of t which are accesses only by t. Suppose `t(v) 6= ⊥ and ρ(v) = ⊥ at a

program configuration and v becomes visible to more than one thread at the next

program configuration. Then the shared store mapping becomes ρ′(v) 6= ⊥ and the

local store mapping becomes `′t(v) = ⊥ .

Configuration of a Single Program

Here we define a configuration of a single concurrent program implemented based

on the concurrency controller pattern. A program configuration consists of a shared

store mapping (ρ ∈ Sh) through which the threads interact with each other, a local

store mapping for each thread t (`t ∈ Lcl(t)) which is accessed only by t, a control

state for each t (αt ∈ Ctl(t)) which is the program counter of t. Formally, the set of
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program configuration is {c|c ∈ Sh ×
∏

t∈T (Lcl(t) × Ctl(t))} where T is the finite

set of threads. The number of threads in a program changes during the program

execution with explicit thread creations and thread terminations. We represent the

set of threads at a configuration as c(T ). We assume that all of the implicit threads

are created at the program start. When a single concurrent program starts, there are

two threads: the main thread tm and the event thread te. A program starts with an

initial configuration c0 = (ρ0, `
tm
0 , αtm

0 , `te
0 , αte

0 ) where ρ0 ∈ Sh is the initial shared

store mapping that returns ⊥ for every variable, `tm
0 ∈ Lcl(tm) is the initial local

store mapping of the main thread tm, αtm
0 ∈ Ctl(tm) is the initial control state of tm,

`te
0 ∈ Lcl(te) is the initial local store mapping of the event thread te, αte

0 ∈ Ctl(te) is

the initial control state of te. The program configuration changes with an input event

or with the execution of one operation by one of the concurrent threads. Next, we

define the input events and operations.

Operations and Input Events

Given a thread t, an operation that t can execute is represented as opt(a) where

a = a0, a1, . . . , al is the argument sequence of op. (To simplify the discussion, we

assume that these operations are performed by method calls, which is a reasonable

assumption in object oriented programming.) The argument a0 holds the return value

of the method call and a1 holds the exceptions thrown during the operation. There

are five types of operations: local operations, shared operations, thread creation,

thread termination, and environment interaction operations. We will use op to denote

any of these kinds of operations.
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Shared operations are the operations through which threads interact with each

other. These operations are either a read from a shared variable or a write to a shared

variable. Recall that a shared variable can be either a concurrency controller instance

or a shared data protected by a controller. Based on the concurrency controller

pattern, all of the shared operations are known beforehand. A shared operation

performed by t with an argument sequence a is defined as sopt(a) : Sh × Ctl(t) →

Sh × Ctl(t).

The thread creation operation is a special type of interaction that is used for the

creation of explicit threads. Let t be the thread that creates the explicit thread t′ with

the operation tcopt(a) where a is the sequence of arguments passed to t′. We define

this type of operation as tcopt(a) : Sh × Lcl(t) × Ctl(t) → Sh × Lcl(t) × Ctl(t) ×

Lcl(t′) × Ctl(t′). With a thread creation operation there are zero or more program

variables that become visible to more than one thread. Let tcopt(a)(ρi, `
t
i, α

t
i) =

(ρi+1, `
t
i+1, α

t
i+1, `

t′

0 , αt′

0 ) be a thread creation operation where ρi, ρi+1 ∈ Sh, `t
i, `

t
i+1 ∈

Lcl(t), αt
i, α

t
i+1 ∈ Ctl(t), `t′

0 ∈ Lcl(t′) is the initial local store mapping for thread t′,

and αt
0 ∈ Ctl(t′) is the initial control state of t′. Let also v ∈ V be a program variable

where `t
i(v) 6= ⊥ and ρi(v) = ⊥ . If v is an argument passed to t′, then `t

i+1(v) = ⊥

and ρi+1(v) = `t
i(v). Note that, the only influence of a thread creation operation on

the shared variables is to change their visibility. Another effect of a thread creation

operation is the change in the number of threads within the program configuration.

Let tcopt(a) be a thread creation operation, c be the program configuration just be-

fore tcopt(a), and c′ be the program configuration just after the execution of this

operation. Then the set of threads at the next configuration is c′(T ) = c(T ) ∪ {t′}.
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Also, c′ contains the local store mappings and the control state of all the threads

existing in c and the new created thread (Lcl(t′) and Ctl(t′)). The other type of

operation that changes the number of threads in a program is the termination oper-

ations (tdopt). If c and c′ are the program configurations right before and after the

execution of a termination operation tdopt, respectively, then c′(T ) = c(T ) \ {t}.

Environment interaction operations are the operations that a thread performs to

communicate with its environment and that are not shared operations. The envi-

ronment interaction operation types are 1) GUI operations, 2) file read and write

operations, 3) socket operations, and 4) command line argument read. For example,

a GUI operation is an invocation of a method of a GUI object. However, if this GUI

object is shared then any method call to this object is classified as a shared operation.

The environment interaction operations do not affect the shared variables directly.

A thread can reflect the effect to the shared variables with shared operations after

an environment interaction. An environment interaction operation performed by t is

defined as eopt(a) : Lcl(t) × Ctl(t) → Lcl(t) × Ctl(t).

The other form of environment interaction is input events. The input events

are triggered outside of the program. For example, a button click event is an input

event that is triggered by a user and delivered to the program. We denote an input

event as e(ea) where ea is the attribute sequence of the event. The input events for

a single program are the GUI events. An input event has zero or more attributes.

These events are handled by the event thread te; therefore, a GUI event affects the

configuration of te. Since the input events are triggered outside of the program, we

assume that they do not affect the shared variables directly. These events change
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the local store of te and te can later alter the shared variables by performing shared

operations. The formal definition of an input event for single programs is e(ea) :

Lcl(te) × Ctl(te) → Lcl(te) × Ctl(te).

Local operations are the operations that change only a thread’s local store map-

ping and its control state, and that are not environment interaction operations. Given

a thread t, a local operation performed by t is defined as lopt(a) : Lcl(t)× Ctl(t) →

Lcl(t) × Ctl(t).

Execution of a Single Program

We will define the transitions in a single program P with a relation RP : C×C where

C is the set of configuration in P . These transitions occur with an input event or with

the execution of one operation by one of the concurrent threads. Let (c, c′) ∈ RP

be a transition of the program P with an operation opt or event e. The configuration

c is the program configuration just before opt (or e), and the configuration c′ is the

program configuration just after the completion of opt (or e). Below we define a

number of transition relations for each operation types and input events to aid the

definition of R. Then we give the definition of R based on these relations.

We introduce the following notations. Given a program configuration c, c(Sh) ∈

Sh denotes the shared store mapping at the configuration c. Given a thread t ∈ T

and a program configuration c, c(Lcl(t)) ∈ Lcl(t) denotes the local store mapping

of t and c(Ctl(t)) ∈ Ctl(t) denotes the control state of t at the configuration c.

We define Rsopt , the transition relation for the execution of a shared operation by
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a concurrent thread t with the argument sequence a, as

Rsopt(a) = {(c, c′)|c, c′ ∈ C ∧ sopt(a)(c(Sh), c(Ctl(t))) = (ρ, αt)

∧ c′(Sh) = ρ ∧ c′(Ctl(t)) = αt ∧ c′(Lcl(t)) = c(Lcl(t))

∧ (∀t′ ∈ c(T ), t′ 6= t ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′)))}

Recall that a shared operation is either a concurrency controller action execution

or a shared data method invocation. As discussed in Section 3.2.1, a thread t can

be blocked while executing a concurrency controller action. Let sopt(a) be such a

shared operation. In this case, the transition with this shared operation is not taken

until the thread t completes the action. Meanwhile, other threads of the program

change the program configuration.

We define Rlopt , the transition relation for the execution of a local operation by

a concurrent thread t with the argument sequence a, as

Rlopt(a) = {(c, c′|c, c′ ∈ C ∧ lopt(a)(c(Lcl(t)), c(Ctl(t))) = (`t, αt)

∧ c′(Sh) = c(Sh) ∧ c′(Ctl(t)) = αt ∧ c′(Lcl(t)) = `t

∧ (∀t′ ∈ c(T ), t′ 6= t ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′)))}

Recall that, local operations do not affect the shared variables. Therefore, modeling

a local operation execution as an atomic execution does not influence the correctness

of the model with respect to synchronization behavior.

We define Reopt, the transition relation for the execution of an environment in-
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teraction operation by a concurrent thread t with the argument sequence a, as

Reopt(a) = {(c, c′|c, c′ ∈ C ∧ eopt(a)(c(Lcl(t)), c(Ctl(t))) = (`t, αt)

∧ c′(Sh) = c(Sh) ∧ c′(Ctl(t)) = αt ∧ c′(Lcl(t)) = `t

∧ (∀t′ ∈ c(T ), t′ 6= t ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′)))}

For thread creation operation we define the transition relation Rtcopt , where t is the

thread performing the operation tcop and t′′ is the thread created with that operation.

This definition is as follows.

Rtcopt(a) = {(c, c′|c, c′ ∈ C

∧ tcopt(a)(c(Sh), c(Lcl(t)), c(Ctl(t))) = (ρ, `t, αt, `t′′

0 , αt′′

0 )

∧ c′(Sh) = ρ ∧ c′(Lcl(t)) = `t ∧ c′(Ctl(t)) = αt

∧ c′(Lcl(t′′)) = `t′′

0 ∧ c′(Ctl(t′′)) = αt′′

0 ∧ c′(T ) = c(T ) ∪ {t′′}

∧ (∀t′ ∈ c(T ), t′ 6= t ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′)))}

We define Rtdopt , the transition relation for termination operation as

Rtdopt(a) = {(c, c′|c, c′ ∈ C ∧ tdopt(a)(c(Sh), c(Lcl(t)), c(Ctl(t))) = (ρ)

∧ c′(Sh) = ρ ∧ c′(T ) = c(T ) \ {t}

∧ (∀t′ ∈ c(T ), t′ 6= t ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′)))}

Based on these definitions, we define the transition relation for an operation op with

argument sequence a which is performed by a thread t as

Ropt(a) = Rsopt(a) ∪ Rlopt(a) ∪ Reopt(a) ∪ Rtcopt(a) ∪ Rtdopt(a)
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We define a transition relation Re(ea) which corresponds to the execution of the

input event e with an attribute sequence ea as follows.

Re(ea) = {(c, c′|c, c′ ∈ C ∧ e(ea)(c(Lcl(te)), c(Ctl(te))) = (`te , αte)

∧ c′(Sh) = c(Sh) ∧ c′(Lcl(te)) = `te ∧ c′(Ctl(te)) = αte

∧ (∀t ∈ c(T ), t 6= te ⇒ c′(Lcl(t)) = c(Lcl(t))

∧ c′(Ctl(t)) = c(Ctl(t)))}

Finally, the transition relation RP is the union of all of the input event and op-

eration execution transition relations for all of the input events in the program and

operations performed by all of the threads.

RP =
⋃

opt(a)∈OP t,t∈T Ropt(a) ∪
⋃

e(ea)∈E Re(ea)

where T is the set of threads, E is the set of events for all event attribute sequences,

and OP t is the set of operations that a thread t can perform with any argument

sequences.

An execution of program P is defined as follows. P starts with the initial con-

figuration c0 = (ρ0, `
tm
0 , αtm

0 , `te, αte
0 ). The program configuration is updated with

input events and operations according to the transition relation RP defined above.

We represent one step program execution with an input event e whose attribute se-

quence is ea as c
e(ea)
−−−→ c′ where (c, c) ∈ Re(ea). Similarly, we denote one step

program execution with an operation op whose argument sequence is a and per-

formed by thread t as c
opt(a)
−−−→ c′ where (c, c) ∈ Ropt(a). A program execution

xp = x0, x1, . . . , xi, xi+1, . . . is a sequence where x0 = c0

op
tm
0

(a0)
−−−−−→ c1 and each

element xi in this sequence is of the form xi = ci
label
−−→ ci+1 with (ci, ci+1) ∈ RP

and label is an operation or input event.
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3.3.2 Projections on Concurrent Programs

Having defined the execution of concurrent programs, we now define two projection

functions so that we can form the basis for interface and behavior verifications.

First we introduce a product interface machine Ip for concurrency controller

interfaces. Given k controller interface instances I1, I2, . . . , Ik of k concurrency

controller instances where Ii = (Qi, q0i
, {}, Σi, δi, Fi) and 1 ≤ i ≤ k, we define

the product machine as Ip = (Qp, q
p
0, V

p, Σp, δp, F p). The set of states in Ip is

Qp = Q1 ×Q2 × · · · ×Qk. The initial state of Ip is q
p
0 = (q01

, q02
, . . . , q0k

). The set

of interface variables of this product machine is V p =
⋃

1≤i≤k Vi, the input alphabet

is Σp =
⋃

1≤i≤k Σi, and the set of final states is F p = {qp
0}. The transition relation

δp is defined as follows. Given a state q ∈ Qp and an integer 1 ≤ i ≤ k, let q[i] ∈ Qi

denote the ith element of q. The transition (q, σ, q ′) is in δp if and only if q, q′ ∈ Qp

and ∃1 ≤ i ≤ k, s.t. (q[i], σ, q′[i]) ∈ δi ∧ (∀1 ≤ j ≤ k, j 6= i ⇒ q[j] = q′[j]).

Note that, this product machine encodes the last assumption stated at the beginning

of Section 3.3.1.

Here we introduce our first projection function Π1 : Xp × T → SOp where

Xp is the set of all program executions, T is the set of threads, and SOp is a

set of shared operation sequences. Given a program execution xp = x0, x1, . . .

where xp ∈ Xp and a thread t, the function Π1(xp)(t) removes from xp the con-

figurations, input events, and the operations other than the shared operations per-

formed by t. The projection Π1(xp)(t) is formally defined recursively as follows.

Let cj be the first program configuration from which t performs a shared opera-

tion. I.e., the shared operation at cj

sopt
0
(a0)

−−−−→ cj+1 is the first shared operation per-
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formed by t. The projection Π1(x0, . . . , xj−1) is the empty sequence. The projec-

tion Π1(x0, . . . , xj) is sopt
0(a0). The projection Π1(x0, . . . , xj, . . . , xl+1) for l > j

is Π1(x0, . . . , xj, . . . , xl), sop
t
z(az) if xl+1 is cl+1

sopt
z(az)

−−−−−→ cl+2. Otherwise, the pro-

jection is Π1(x0, . . . , xj, . . . , xl+1) = Π1(x0, . . . , xj, . . . , xl).

Recall that, based on the design for verification approach, the shared operations

are known and explicit in the program. Moreover, these operations are either con-

troller actions or shared data operations since only concurrency controllers and the

shared data protected by these controllers are accessed by more than one thread

based on the concurrency controller pattern. Therefore, the result of this projection

function is a sequence of controller actions and accesses to the shared data protected

by these controllers in the order they are performed by t.

Using the product machine definition Ip and the projection Π1 we give the fol-

lowing definition to be used as the correctness criteria during the interface verifica-

tion.

Definition 3.3.1 (Thread Interface Correctness) Let I0, . . . Ik be the interfaces of

the concurrency controllers used by a thread t and Ip be the product machine of

these interfaces. The thread t is interface correct if for all xp ∈ Xp, Π1(xp)(t) is a

legal sequence of the product machine Ip.

Before introducing the projection function to be used to form the basis for be-

havior verification of a concurrency controller, we define thread obedience to the

interface of a controller. First we extend the definition of Π1 with a concurrency

controller attribute. Given a program execution sequence xp, an interface I , and a
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thread t, Π1(xp)(t)(I) returns the sequence of controller actions in the order they

appear in xp. The recursive definition of this projection is similar to the one above.

The only difference is that the sequence changes with the operations performed by t

that are executions of actions defined in the controller whose interface is I instead of

all the shared operations performed by t. Using this projection function, we define

thread obedience as follows.

Definition 3.3.2 (Thread Obedience) Given a thread t and a controller interface I

t obeys I if for all execution sequences xp ∈ Xp, Π1(xp)(t)(I) is a legal sequences

of I .

Note that, thread obedience is weaker than the thread correctness since it considers

only one controller interface.

Now we define the second projection function Π2. Given a program execution

xp = x0, x1, . . . where xp ∈ Xp and a concurrency controller CC = (Γ, IC, A, I),

the function Π2(xp)(CC) computes a projection of xp on the concurrency controller

CC. Let n be the maximum concurrent thread number in a program execution xp ∈

Xp. Let also cj be the program configuration that has the initial state of the controller

CC. (I.e., cj is the first configuration where there exists a store mapping that maps

the concurrency controller to a value other then ⊥ or uninitialized.) The projection

Π2(xp)(CC) is computed recursively as follows. Π2(x0, ..., xj−1)(CC) is the empty

sequence. Π2(x0, . . . , xj)(CC)=
∏

γ∈Γ `t
j(γ) ×

∏n
q0 where q0 is the initial state

of I , n is the maximum number of threads in the execution (Note that there is one

interface state per thread), and t is the thread that has initialized the controller. The

projection Π2(x0, . . . , xj, . . . , xl+1)(CC) is Π2(x0, . . . , xj, . . . , xl)(CC) if xl+1 is

74



Chapter 3. Formal Models

not cl+1
sopt(a)
−−−−→ cl+2 for some t ∈ T where sop is an execution of an action of CC.

(Recall that, the controller variables of CC are private and can only be accessed or

modified with the actions of CC. Therefore, we only consider the operations that

are an execution of an action of CC.) Otherwise, it is computed, assuming that the

threads obey I , as follows. Let act ∈ A be the action that is performed by t with the

operation sopt(a). Let also, for each concurrent thread tz ∈ T and tz 6= t, qtz be the

interface state of tz at the last element of the sequence Π2(x0, . . . , xj, . . . , xl)(CC),

and let qt be that of t. The next interface state for each thread tz other than t is q′tz =

qtz . The next interface state (q′t) of t is computed from the transition (qt, act, q′) ∈ δ

and q′t = q′. We can determine the next interface state q ′t since δ is deterministic (see

Section 3.1). Finally, Π2(x0, . . . , xj, . . . , xl+1)(CC) is Π2(x0, . . . , xj, . . . , xl)(CC),

(
∏

γ∈Γ ρl+1(γ) × q′t ×
∏

t∈T ∧tz 6=t q
′
tz

).

The condition that all threads obey to I is required since the computation of Π2

relies on this assumption to construct such a sequence. If one of the threads violates

this condition, the projection computation cannot find a next interface state for that

thread at the violation point and cannot construct such a sequence.

Theorem 3.3.3 Let Xp be the set of all executions of P . Given a concurrency con-

troller CC = (Γ, IC, A, I), if all the threads that use CC obey I = (Q, q0, V, Σ, δ, F )

then
⋃

xp∈Xp
{Π2(xp)(CC)} is the subset of the set of execution paths in T (CC)(n),

where n is the maximum number of threads.

The proof relies on the constructive definition of the projection function Π2.

Recall that at any execution of P , the controller variables (γ ∈ Γ) are accessed or
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modified only by the actions of CC. These actions are the shared operations, which

are considered during the projection computation. Also, if all threads obey I , based

on Definition 3.3.1, the access sequence to CC by each thread is a legal sequence

of I . The interface I specifies the most general legal thread access to CC that are

considered by the transition system T (CC)(n). Therefore, there is a projection for

each execution sequence and any two consecutive elements of the projection result

is a tuple in RT . The proof is as follows.

To show the subset relation, we have to show that for any xp ∈ Xp Π2(xp)(CC)

is an execution path of T (CC)(n) if all threads obey I . For this purpose, we need to

show that if all the threads using CC obey I based on Definition 3.3.2, then 1) each

element of the sequence produced by Π2(xp)(CC) is an element of ST , and 2) for

any two consecutive elements of the sequence Π2(xp)(CC), say pi and pi+1, there is

a tuple (si, si+1) ∈ RT .

The first condition holds trivially by the definition of the projection function

since each element of the projection is in
∏

γ∈Γ DOM(γ)×
∏

n Q which is the defini-

tion of ST . Note that, the first element of the sequence resulting from Π2(xp)(CC)

is an element of IT due to the projection function definition. Also, in the projection

result, the uncreated threads are at initial interface state, which is the case in IT , and

the interface state of terminated threads do not change.

Now we examine the second condition. Let pi, pi+1 be two consecutive elements

of Π2(xp)(CC). Consider the controller variables in pi and pi+1. Let sopt be the

shared operation performed by some thread t that is used during the computation of

pi+1 and let ρi, ρi+1 be the shared store mappings before and after the operation sopt,
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respectively. According to the definition of projection function, sop is an action

of CC. In the following discussion, we denote this action as act. Let qt
i be the

interface state of t in pi and qt
i+1 be the interface state of t in pi+1. According

to the definition of the projection function, the interface states of all other threads

are the same in both pi and pi+1. If t obeys I , then according to Definition 3.3.1

there is a transition (qt
i , act, qt

i+1) ∈ δ. Moreover, there is a tuple (si, si+1) ∈ RT

where si+1(γ) = ρi+1(γ) and si(γ) = ρi(γ) for all γ ∈ Γ, si+1(Q)(t) = qt
i+1,

si(Q)(t) = qt
i , and si+1(Q − t) = si(Q − t). Therefore, (pi, pi+1) ∈ RT if t obeys

I .

Theorem 3.3.3 leads to the following.

Corollary 3.3.4 Given a concurrency controller CC = (Γ, IC, A, I) and a pro-

gram P that has an instance of CC accessed by n threads, the ACTL properties

verified on transition system T (CC)(n) for the concurrency controller CC are pre-

served in P if all the threads are interface correct.

To show that the ACTL properties of T (CC)(n) are preserved in the program

P we need to show that T (CC)(n) simulates P [29]. For this purpose we define a

simulation relation H ⊆ C ×ST where C is the configuration set of P and ST is the

state set of T (CC)(n). This relation is as follows. H = {(c, s) | c ∈ C ∧ s ∈ ST ∧

(∃xp = x0, x1, . . . , xi, · · · ∈ Xp s.t. xi = ci
label
−−→ c ∧ Π2(x0, x1, . . . , xi)(CC) =

s0, s1, . . . , s)} where Xp is the set of executions of P . Such a simulation function

exists if all the threads are interface correct since the set of projection Π2 results for

any xp ∈ Xp is a subset of the transition system T (CC)(n) according to Theorem
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3.3.3.

Based on this corollary, the behavior verification of a concurrency controller is

performed on the T (CC)(n) in our framework.

3.3.3 Model for Distributed Programs

A distributed program is a collection of a number of single programs running on

different machines. We classify distributed programs into two categories: 1) dis-

tributed programs DP whose participants communicate through remote procedure

calls, 2) distributed programs DPA whose participants communicate through asyn-

chronous messaging. We assume that the number of participants is constant during

the execution of distributed programs. In this section, we first introduce an abstract

model for DP , and then continue with an abstract model for DPA.

Program Model for Distributed Programs with Remote Method Invocations

A distributed program with remote method invocations DP =(P1, P2, . . . , Pk) is

a tuple of single programs running on different machines (in Java different JVMs),

where k ≥ 1 is the number of single programs in DP . The model for a single

program Pi in DP where 1 ≤ i ≤ k is the same as in Section 3.3.1. Due to the

remote procedure calls, however, we need to add the following to the model of single

program Pi participating DP : RMI threads, RMI operations, and RMI events.

In a distributed program DP , the runtime environment receiving the remote call

creates implicit threads to serve these remote calls. The RMI specification [87, 81]

states that “remote method invocation on the same remote object may execute con-
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currently”. We assume that the runtime environment creates an implicit thread for

each RMI connection. Therefore, we add one implicit thread (called RMI thread trj
)

per participant Pj ∈ DP to the implicit threads of a participant Pi ∈ DP where

1 ≤ j ≤ k and j 6= i.

A remote method invocation works as follows. Suppose a thread t of Pi invokes

a remote method published by Pj. This request is delivered to the runtime environ-

ment of Pj and handled with an implicit thread tri
. During this process, the scheduler

for Pj may schedule other threads of Pj, as discussed in the model for concurrent

programs. In the mean time, the thread t stalls until a response from Pj is received.

In this scenario we differentiate the invocation performed within Pi from the effect

on Pj. We call the remote invocation an RMI operation, and the effect on the other

side an RMI event. Below we define these operations and events.

The input events associated with Pj participating DP are the GUI events (see

Section 3.3.1) and the RMI events. An RMI event influences the configuration of an

RMI thread tr. In our model, an RMI event affects the local store of tr and later while

handling the event, tr reflects the effects on shared store with shared operations. We

define an RMI event captured by tr as er(ea) : Lcl(tr)×Ctl(tr) → Lcl(tr)×Ctl(tr)

where ea is the attribute sequence of the RMI event.

RMI operations are one of the operation types a thread within Pi can perform.

An RMI operation is a method invocation on another participant program of DP .

We define an RMI operation performed by a thread t with an argument sequence a

as ropt(a) : Lcl(t) × Ctl(t) → Lcl(t) × Ctl(t). 1

1The handler for the remote object might be in the shared store of Pi. In that case, the operations
on this object are considered as shared operations. This is a similar approach to the one we used for
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Let T Pi be the finite set of threads at Pi and ShPi be the set of shared store

mappings at Pi. The set of configuration of Pi is defined as {cPi | cPi ∈ ShPi ×
∏

t∈T Pi (Lcl(t) × Ctl(t))}. We denote this set as CPi . Note that the thread set T Pi

includes the main thread, event thread, all the explicit threads, and the implicitly

created RMI threads.

The initial configuration of Pi participating DP is cPi

0 = (ρ0, `
tm
0 , αtm

0 , `te
0 , αte

0 ,

`
tr0
0 , α

tr0
0 , `

tr1
0 , α

tr1
0 , . . . , `

trk

0 , α
trk

0 ). Here ρ0 ∈ ShPi is the initial shared store

mapping of Pi, `tm
0 ∈ Lcl(tm) is the initial local store mapping of the Pi’s main

thread, `te
0 ∈ Lcl(te) is the initial local store mapping of the Pi’s event thread. For

1 ≤ j ≤ k, `
trj

0 ∈ Lcl(trj
) is the initial local store mapping of the RMI thread serv-

ing calls initiated by Pj and targeted to Pi. Finally, αtm
0 ∈ Ctl(tm), αte

0 ∈ Ctl(te),

and α
trj

0 ∈ Ctl(trj
) are the initial control states of the main thread, event thread, and

RMI threads, respectively.

Before defining executions of Pi, we define transition relations for RMI opera-

tions and RMI events. The relation for execution of an RMI operation rop(a) with

argument sequence a is as follows.

Rropt(a) = {(c, c′) | c, c′ ∈ CPi ∧ ropt(a)(c(Lcl(t)), c(Ctl(t))) = (`, α)

∧ c′(Sh) = c(Sh) ∧ c′(Lcl(t)) = ` ∧ c′(Ctl(t)) = α

∧ (∀t′ ∈ c(T Pi), t′ 6= t ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′))}

The relation for an RMI event with an attribute sequence ea captured with an

environment operations.
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RMI thread tr within Pi is

Rer
(ea) = {(c, c′) | c, c′ ∈ CPi ∧ er(a)(c(Lcl(tr)), c(Ctl(tr))) = (`tr , αtr)

∧ c′(Sh) = c(Sh) ∧ c′(Lcl(tr)) = `tr ∧ c′(Ctl(tr)) = αtr

∧ (∀t′ ∈ c(T Pi), t′ 6= tr ⇒ c′(Lcl(t′)) = c(Lcl(t′))

∧ c′(Ctl(t′)) = c(Ctl(t′))}

In the program Pi, transition from one configuration to another is performed

according to the following relation.

RPi =
⋃

opt(a)∈OP t,t∈T Pi Ropt(a) ∪
⋃

Re(ea)

where the set of events E includes RMI events for all attribute sequences as well

as the GUI events discussed earlier, and the set of operations OP t performed by

t ∈ T Pi includes RMI operations performed by t with any argument sequence as

well as the operations discussed in Section 3.3.1. The execution of Pi is defined

similar to the execution of a single program in Section 3.3.1.

The set of configuration of DP = (P1, P2, . . . , Pk) is {c | c ∈
∏

1≤i≤k C
Pi}. The

initial configuration of DP is c0 =
∏

1≤i≤k cPi

0 where cPi

0 is the initial configuration

of Pi. The transition from one configuration of DP to another is defined with the

following relation.

RDP =
⋃

1≤i≤k RPi

An execution of DP starts from the initial configuration c0 defined above. Dur-

ing the execution, transitions are performed according to the RDP . A program exe-

cution is a sequence xDP = x0, x1, . . . , xi, xi+1, . . . where xi = ci
label
−−→ ci+1 with

(ci, ci+1) ∈ RDP . Here label is either an operation performed by one of the threads
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in one of the participating programs, or an input event handled by te or tr in one of

the participating programs.

Program Model for Distributed Programs with Asynchronous Messaging

A distributed program DPA whose participants communicate through asynchronous

messaging is a tuple DPA = (P1, Θ1, . . . , Pk, Θk, class(M)). where k is the number

of participants, class(M) is the finite set of message classes, Pi for 1 ≤ i ≤ k is

a participant program same as in DP , and Θi is the configuration set of the input

message queue of Pi.

The set of configurations of DPA = (P1, Θ1, . . . , Pk, Θk, class(M)) is {c | c ∈
∏

1≤i≤k(C
Pi × Θi)}. We denote this set as CDPA . We introduce two notations. We

use c(Pi) to denote the local configuration of Pi at a global configuration c ∈ CDPA .

We use c(Θi) to denote the value of the input queue of Pi at a global configuration

c ∈ CDPA .

The initial configuration of DPA is c0 =
∏

1≤i≤k(c
Pi

0 ×〈〉) where cPi

0 is the initial

configuration of Pi and 〈〉 is the empty queue.

To define asynchronous messaging among the participant programs, we intro-

duce two new kinds of operations: asynchronous message send operations (comS)

and asynchronous message receive operation (comR). We define these operations

as follows. Let Pi be the participant of DPA sending a message instance m ∈ M

where sender(m) = Pi. This is performed with an asynchronous send operation

comSPi(m) : CPi × Θj → CPi × Θj where Θj is the configuration set of the input

message queue of Pj and receiver(m) = Pj. We define an asynchronous message re-
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ceive operation performed by the participant program Pj as comRPj (a) : CPj×Θj →

CPj ×Θj where a = a0, a1, . . . , al is the argument sequence of the operation and the

argument a0 ∈ M is a message instance.

The transition from a configuration of DPA to another when a participant pro-

gram Pi performs an asynchronous send operation with message m is defined with

the following relation.

RcomSPi(m) = {(c, c′) | c, c′ ∈ CDPA ∧ (∃1 ≤ j ≤ k, s.t.

comSPi(m)(c(Pi), c(Θj)) = (cPi, append(c(Θj), 〈m〉))

∧ c′(Pi) = cPi ∧ (∀1 ≤ z ≤ k, z 6= i ⇒ c′(Pz) = c(Pz))

∧ c′(Θj) = append(c(Θj), 〈m〉)

∧ (∀1 ≤ z ≤ k, z 6= j ⇒ c′(Θz) = c(Θz)))}

The transition from a configuration of DPA to another when a participant pro-

gram Pj performs an asynchronous receive operation with an argument sequence a

is defined with the following relation.

RcomRPj (a) = {(c, c′) | c, c′ ∈ CDPA ∧ first(c(Θj)) = m

∧ comRPj(c(Pj), c(Θj)) = (cPj , Θ) ∧ c(Θj) = append(Θ, 〈m〉))

∧ c′(Pj) = cPj ∧ c′(Θj) = Θ

∧ (∀1 ≤ z ≤ k, z 6= j ⇒ c′(Pz) = c(Pz) ∧ c′(Θz) = c(Θz)))}

Finally, we define a relation RDPA as follows.

RDPA = RcomR ∪ RcomS ∪
⋃

1≤i≤k RPi

where RPi is the same as in DP except that the definitions of the RPi relations have

to be extended to preserve the state of the message queues.

83



Chapter 3. Formal Models

We define an execution of DPA as follows. The execution starts from the initial

configuration c0. The transition from one configuration to another is performed

according to RDPA . We denote an execution as a sequence xDPA
= x0, x1, . . . ,

xi, xi+1, . . . where xi = ci
label
−−→ ci+1 and (ci, ci+1) ∈ RDPA

. In this definition label

is one of the followings: an asynchronous send operation, an asynchronous receive

operation, another kind of operation such as a local operation performed by a thread

of one participant program, and an input event to a participant program. We denote

the set of all program execution sequences as XDPA
.

We formalize an asynchronously communicating composite web service as a

DPA. In our approach, such web services are implemented based on the peer con-

troller pattern. According to this pattern, each participant program has only one

peer controller. (We will use the terms participant program, participant peer, and

peer interchangeably.) On the other hand, a peer program may have more than one

concurrency controller. However, a shared data object is protected only by one con-

currency controller. In short, there might be more than one concurrency controller

in a peer program, but there is only one peer controller in a peer program.

3.3.4 Projections on Distributed Programs

In this section we define two projection functions so that we can form the basis for

interface and behavior verifications for composite web services which are distributed

programs communicating with asynchronous messaging (DPA).

Given a program DPA = (P1, Θ1, . . . , Pk, Θk, class(M)) and an execution

of this program xDPA
= x0, x1, . . . where xDPA

∈ XDPA
, the projection func-
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tion Π3(xDPA
) is defined as follows. Let cj be the first program configuration

from which a participant program performs an asynchronous send operation with

any message instance (i.e., the operation at cj

comS0(m0)
−−−−−−→ cj+1 where class(m0) ∈

class(M) is the first asynchronous send operation performed by any of the partic-

ipant programs.). Π3(x0, ..., xj−1) is the empty sequence. Π3(x0, . . . , xj) = m0

where m0 is the message instance in the operation comS0(m0). The projection

Π3(x0, . . . , xj, . . . , xl+1) = Π3(x0, . . . , xj, . . . , xl) if xl+1 is not cl+1
comSPi(m)
−−−−−−→ cl+2

for some participant Pi where class(m) ∈ class(M). Otherwise, the projection

Π3(x0, . . . , xj, . . . , xl+1) = Π3(x0, . . . , xj, . . . , xl), m where class(m) ∈ class(M)

is the message instance used in the operation comSPi(m) performed by the partici-

pant Pi.

The output of a projection Π3(xDPA
) for an execution sequence xDPA

∈ XDPA
is

a sequence of message instances in the order they are sent. Note that, this sequence is

the conversation generated by the execution xDPA
. Let W = (class(M), I1, I2, . . . ,

Ik) be the composite web service specification for DPA where Ii is the peer interface

of participant Pi. Below we will define the obedience of a participant to its peer

interface, and show that the projection Π3 of any execution sequence of DPA is a

conversation generated by the transition system T (W ) if the participants obey their

peer interfaces.

To define the obedience to a peer interface, we first introduce another projection

function Π4. Given a program execution xDPA
= x0, x1, . . . where xDPA

∈ XDPA
, a

program P participating DPA, and a peer interface I , the projection Π4(xDPA
)(P )(I)

is defined recursively as follows. Let cj be the first program configuration from
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which P performs an asynchronous send operation with any message instance or

an asynchronous receive operation. The projection Π4(x0, . . . , xj)(P )(I) is the

empty sequence. For all l ≥ j, the projection is computed recursively as follows.

The projection Π4(x0, . . . , xj, . . . , xl+1) = Π4(x0, . . . , xj, . . . , xl), ?m if xl+1 =

cl+1
comRP (a)
−−−−−→ cl+2 where a0 = m and class(m) ∈ class(M). The projection

Π4(x0, . . . , xj, . . . , xl+1) = Π4(x0, . . . , xj, . . . , xl), !m if xl+1 = cl+1
comSP (m)
−−−−−→

cl+2 where a0 = m and class(m) ∈ class(M). Otherwise, the projection is

Π4(x0, . . . , xj, . . . , xl+1) = Π4(x0, . . . , xj, . . . , xl).

Definition 3.3.5 (Peer Obedience) Given a peer program P participating DPA and

a peer interface I , P obeys I if for all execution paths xDPA
∈ XDPA

the projection

Π4(xDPA
)(P )(I) is a legal sequences of I .

Based on Π3 definition above and the obedience in Definition 3.3.5, we give the

following theorem.

Theorem 3.3.6 Let DPA = (P1, Θ1, P2, Θ2, . . . , Pk, Θk, class(M)) be a distributed

program with asynchronous messaging and let XDPA
be the set of all executions of

DPA. Given a composite web service specification W = (class(M), I1, I2, . . . , Ik)

for DPA,
⋃

xDPA
∈XDPA

{Π3(xDPA
)} is the subset of the conversation set generated

by T (W ) = (IT, ST, RT ) if for all 1 ≤ i ≤ k the participant Pi obeys Ii.

First, since the set of message classes are the same in DP and W , the elements

of the projection result are the elements of the T (W )’s conversations.

Now, we need to show that the projection Π3(xDPA
) for each xDPA

∈ XDPA

is a conversation generated by T (W ) if all the participant peers obey their peer
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interface. Let con be the result of Π3(xDPA
) for an execution sequence xDPA

∈

XDPA
. Since the participant peers obey their interfaces, by Definition 3.3.5, these

peers send or receive messages in an order specified by their interfaces. Recall

that, the transition system T (W ) includes all possible message exchange orderings

of these interfaces. Therefore, there is an execution path s0, s1, . . . of T (W ) that

corresponds to xDPA
. The conversation generated by this execution path is the same

as con since the projection considers only the sent messages and outputs a message

sequence in the order they are sent. Therefore, con is an element of the conversation

set of T (W ).

3.4 Thread Isolation

In this section we present our thread isolation techniques so that we can perform

the interface verification for each thread separately. Given a concurrent thread t in a

program, we denote the isolated program for t as P ′. Since there is only one thread,

a configuration of P ′ has only the control state of t and the local store mapping of t

in addition to shared store mapping, i.e., CP ′

= {c|Sh× c ∈ Lcl(t)×Ctl(t)}. In this

section, we define how we construct the isolated program P ′ in detail.

We isolate a thread by modeling the interactions with its environment and with

other threads by using stubs, drivers and controller interfaces. Below we explain

how we model these interactions and show how we generate an isolated program for

Java threads.
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The isolation techniques introduce nondeterminism. We define a function choose

to be used for modeling nondeterminism in the rest of this section. The function

choose takes a set as argument and returns one element of the set nondeterministi-

cally.

3.4.1 Modeling Environment Interaction Operations with Stubs

One form of thread-environment interaction is through environment interaction op-

erations (eop). As discussed in Section 3.3.1 and 3.3.3, there are four types of such

operations in a distributed program DP : GUI operations, file read and write opera-

tions, socket operations, and RMI operations. We use stubs to model each of these

environment interaction operation types. A stub for an operation type abstracts the

effect of the environment through that operation while conservatively preserving the

influences on the thread execution with respect to the interface verification correct-

ness criteria.

Let eopt(a) be an environment interaction operation performed by a thread t with

the argument sequence a where a0 holds the return value of the method call and a1

holds the exceptions thrown during the operation. This operation (which is a method

invocation) alters the state of the target objects, updates the control state of t, and

may influence the rest of the execution of t with the return value of the method call

and the exceptions thrown during the method call. While modeling such operations

we do not store the state of the target objects and use nondeterminism instead. We

use stubs to model such operations. The stub (stub(a)) produces all possible return

values in DOM(a0) and throws all combinations of possible exceptions in DOM(a1).
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With these stubs, the effects of the environment are preserved. Given an environment

interaction operation eopt performed by t, the stub of this operation is defined as

stub(a) : Lcl(t)×Ctl(t) → P(Lcl(t)×Ctl(t)). The range is a power set since there

is a thread configuration for each value returned from the method invocation and for

each exception thrown (or not thrown). The possible control states (α ∈ Ctl(t)) are

the program point following the method call and the exception handling point.

Here we define one step execution of an isolated program P ′ with respect to t

from a configuration c with stub(a) where a is the argument sequence. We define

the following relation

Rstub(a) = {(c, c′)|c, c′ ∈ CP ′

∧ choose(stub(a)(c(Lcl(t)), c(Ctl(t)))) = (`, α)

∧c′(Lcl(t)) = ` ∧ c′(Ctl(t)) = α ∧ c′(Sh) = c(Sh)}

This relation defines the transitions from a configuration to another with a stub(a).

We denote one step execution from c with stub(a) with c
eop(a)
−−−→ c′ where (c, c′) ∈

Rstub(a) and eop(a) is the operation replaced by stub(a). Note that, because of the

nondeterminism (choose), there are a number of executions for an isolated program

P ′ even though there is only one thread and one possible thread scheduling.

We realize these abstractions for environment interaction operations for Java

program as follows. First we need to identify such operations in a Java program

statically. RMI operations are the invocations of the methods of a remote object.

Therefore, the identification of remote operations becomes identification of remote

objects and their methods. In Java, the remote objects are instances of the classes

that implements java.rmi.Remote. The invocations of remote object binding and

look up methods are also considered as RMI operations. Unlike the first ones, the

89



Chapter 3. Formal Models

latter methods are predetermined; they are the methods of java.rmi library.

The GUI operations are predetermined. For example, in Java, the methods for

GUI operations are in the graphical libraries such as java.awt and javax.swing.

(We assume that any graphical method outside the graphical library eventually

reaches a method within the library. If this assumption does not hold, then such

methods should be identified as well.) Similarly, the methods for file operations are

within the java.io.

The socket operations are predetermined as well. Here we explain how socket

operations are performed in Java. There are two types of communication proto-

cols: TCP and UDP. Java provides a java.net.Socket class for TCP communi-

cations and a java.net.DatagramSocket class for UDP communications. For

TCP communications, a program reads data from a Socket as a stream through

a java.io.Reader object. (A typical Java program reads this stream through

an object of BufferedReader class, which is a subclass of Reader.) Sending

data is performed through an OutputStream object associated with the Socket.

For UDP communications, programs read packets from a DatagramSocket via a

DatagramPacket. Sending data is performed via DatagramSocket objects.

The next step is the abstraction via replacement of these operations with stubs.

For Java programs, we achieve these abstractions by stub class substitutions. A

stub of class contains every accessible method declaration of that class. The invoca-

tion of a method in a stub class by t realizes the stub explained above. We imple-

mented choose with the JPF’s nondeterminism utilities Verify.random(int) and

Verify.randomBool(). The nondeterminism utilities force JPF to search exhaus-
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tively for every possible choice. Therefore, at verification time, the nondeterminism

in the code results in an exhaustive search, not in random testing.

As an example consider a GUI operation with an invocation of the method

isRowSelected of a table object (of class javax.swing.JTable). The stub

of this operation should produce every possible thread configurations. We realize

this stub operation with a call to the following method of the stub class for the table.

public boolean isRowSelected(int row)
throws IllegalArgumentException{

if(Verify.randomBool()) throw new IllegalArgumentException();
return Verify.randomBool();

}

We have developed generic stub classes for the file, socket, and GUI operations

since these operations are predetermined. For RMI operations we automatically

generate stubs. Our generator inspects the remote interface to collect the RMI op-

erations, and then synthesizes a stub class for the RMI objects. In addition to these

operation stubs, since JPF is only able to handle pure Java, we also replace all calls

to native code with pre-implemented stubs.

3.4.2 Modeling Shared and Asynchronous Communication

Operations with Interfaces

In a program written based on the two DFV patterns, the shared operations and

asynchronous communication operations are explicit. These operations are known

beforehand. As discussed in Section 3.3, the shared operations are the invocations

of the methods of shared objects which are either concurrency controller instances
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or shared data objects protected by a concurrency controller. With controller in-

terfaces and shared data stubs we can model the shared operations performed by a

thread t and therefore abstract the threads with whom t interacts. The asynchronous

communication operations are known at verification time as well. These operations

are the invocations of peer controller actions. With peer interfaces we can model

the asynchronous communication operations performed by a peer P and therefore

abstract the other peers with whom P interacts. Below we first discuss modeling

shared operations, and then continue with modeling asynchronous communication

operations.

One category of shared operations is concurrency controller action invocations.

We abstract the controller action invocations with the corresponding interface method

invocations (si(a)). For example, the call to r enter action of BBRWController

is abstracted with the call to r enter method of BBRWStateMachine (see Figures

2.3 and 2.7). The definition of an interface method invocation is as follows. Let

CC = (Γ, IC, A, I) be a concurrency controller with I = (Q, q0, V, Σ, δ, F ) and let

act ∈ A be the action associated with sop(a). We define si(a) : Sh × Ctl(t) →

Sh × Ctl(t) ∪ {Error} for sop(a) as

si(a) ≡ assert(∃q ∈ Q, s.t. (cur, act, q) ∈ δ)

∧cur := q ∧ (cur, act, q) ∈ δ ∧ q ∈ Q

where cur ∈ Q denotes the current interface state t is in. Given a program configu-

ration c, the value of cur in c is c(Sh(cur)). When the assertion fails the function

si(a) returns Error. We define the transition from one configuration to another with
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si(a) as

Rsi(a) = {(c, c′)|c, c′ ∈ CP ′

∧ (si(a)(c(Sh), c(Ctl(t))) = Error ∧ c′ = cE)

∨ (si(a)(c(Sh), c(Ctl(t))) = (ρ, α) ∧ c′(Sh) = ρ

∧ c′(Ctl(t)) = α) ∧ c′(Lcl(t)) = c(Lcl(t))}

where cE denotes an error configuration. We represent one step execution from c

with si(a) modeling sop(a) as c
sop(a)
−−−→ c′ where (c, c′) ∈ Rsi(a).

The other category of shared operations is the shared data method invocations.

We abstract such invocations with the corresponding data stub method invocations

(sstub(a)). For example, the call to insert method of DataBufferImpl is ab-

stracted with a call to insert method of DataBufferStub. We define a data stub

method invocation as sstub(a) : Sh × Ctl(t) → P(Sh × Ctl(t)) ∪ {Error}. Given

a shared store mapping ρ and a control state α, the stub sstub(a)(ρ, α) for sopt(a)

returns Error if the current interface state t is in is not a legal state to perform sop,

which is defined in the interface specification. In other words, let Q′ ⊆ Q be the

legal interfaces states to perform sop on a shared data. Then, sstub(a)(ρ, α) returns

Error if ρ(cur) 6∈ Q′.

We define the transition from one configuration to another with sstub(a) as

Rsstub(a) = {(c, c′)|c, c′ ∈ CP ′

∧ (sstub(a)(c(Sh), c(Ctl(t))) = Error

⇒ c′ = cE) ∧ (sstub(a)(c(Sh), c(Ctl(t))) 6= Error

⇒ choose(sstub(a)(c(Sh), c(Ctl(t)))) = (ρ, α)

∧ c′(Sh) = ρ ∧ c′(Ctl(t)) = αc′(Lcl(t)) = c(Lcl(t)))}

where cE denotes an error configuration. We represent one step execution from c

with sstub(a) modeling sop(a) as c
sop(a)
−−−→ c′ where (c, c′) ∈ Rsstub(a). Note that
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since P ′ contains only the thread t, the variables appearing in ρ ∈ Sh are accessed

only by t.

In the concurrency controller pattern, the shared operations are encapsulated in

the concurrency controller classes and shared data classes (shown as Controller

and Shared in Figure 2.2). We realize the above shared operation abstractions by

substituting controller interface machines for concurrency controllers and data stubs

for the shared data protected by these controllers. In Figure 2.2, the data stub is

displayed as SharedStub and the interface machine is displayed as Controller-

InterfaceMachine. The methods of ControllerInterfaceMachine imple-

ment the si(a), and the methods of SharedStub implements the sstub(a) explained

above. The function choose used in these definitions is realized with nondetermin-

ism mechanism of JPF as discussed in the preceding section.

Controller interface machines and data stubs are local to t, i.e., they appear only

in the local store mappings ` ∈ Lcl(t). By replacing concurrency controllers with

interface machines and data objects with data stubs instances the shared objects are

elided and modeled with local variables.

Similar to the shared operations, the asynchronous communication operations

are explicit and known at verification time. These operations are the executions of

peer controller actions. Given a composite web service DPA =(P1, Θ1, . . . , Pk, Θk,

class(M)) we can isolate each participant program Pi for 1 ≤ i ≤ k by using their

peer interfaces. With peer interfaces we can model the asynchronous communication

operations (comS and comR) performed by a peer Pi and therefore abstract the other

peers with whom Pi interacts.
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Given an asynchronous send operation comS performed at Pi by an application

thread 2 t with a message instance m ∈ M , we define scomS(m) : Lcl(t)×Ctl(t) →

Lcl(t) × Ctl(t) ∪ {Error} for this operation as follows. Let I = (Q, q0, V, δ, F ) be a

peer interface for Pi and ` be the local store mapping when the operation is activated.

Also let η0, η1, . . . , ηl be a sequence of values where for 1 ≤ z ≤ l, ηz = `(vz) is the

value of interface variable vz ∈ V .

scomS(m) ≡ assert(∃q′ ∈ Q, s.t. (cur, !class(m), g, u, q′) ∈ δ

∧ g(attr(m), η0, η1, . . . , ηl)) ∧ (cur, !class(m), g, u, q) ∈ δ

∧ g(attr(m), η0, η1, . . . , ηl)) ∧ v′
0, v

′
1, . . . , v

′
l := u(η0, η1, . . . , ηl)

∧ cur := q ∧ q ∈ Q

where cur ∈ Q denotes the current peer interface state the application thread t is in

and for 1 ≤ z ≤ l, v′
z ∈ V . When the assertion fails, the function scomS(m) returns

Error. We define the transition from one configuration to another with scomS(m) as

RscomS(m) = {(c, c′)|c, c′ ∈ CP ′

∧ (scomS(m)(c(Lcl(t)), c(Ctl(t))) = Error

∧ c′ = cE) ∨ (scomS(m)(c(Lcl(t)), c(Ctl(t))) = (`, α)

∧ c′(Lcl(t)) = ` ∧ c′(Ctl(t)) = α) ∧ c′(Sh) = c(Sh)}

where cE denotes an error configuration. We represent one step execution from a

configuration c with scomS(m) modeling comS(m) as c
comS(m)
−−−−→ c′ where (c, c′) ∈

RscomS(m).

Given an asynchronous receive operation comR performed at Pi with an argu-

ment sequence a, we define scomR : Lcl(t)×Ctl(t) → P(Lcl(t)×Ctl(t))∪{Error}

2According to the peer controller pattern, the application threads are session based. The applica-
tion threads within a program Pi do not affect each other. Moreover, each application thread should
obey the peer interface.
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for this operation as follows. Let I = (Q, q0, V, δ, F ) be a peer interface for Pi.

scomR(a) ≡ assert(∃q′ ∈ Q, s.t. (cur, ?class(m), g, u, q′) ∈ δ)

∧ (cur, ?class(m), g, u, q) ∈ δ ∧ v′
0, v

′
1, . . . , v

′
l := u(η0, η1, . . . , ηl)

∧ a0 := choose({mi | class(mi) = class(m)})

∧ cur := q ∧ q ∈ Q

where m ∈ M , a0 is the first element of a that represents the return value of the

Java method implementing scomR, for 1 ≤ z ≤ l, v ′
z ∈ V , for 1 ≤ z ≤ l, ηz is

the value of the interface variable vz ∈ V mapped by the local store mapping at the

configuration when the operation is activated, and cur ∈ Q denotes the current peer

interface state the application thread t is in. In this definition, a0 is assigned to a

message instance with arbitrary attribute values. We define the transition from one

configuration to another with scomR(a) as

RscomR(a) = {(c, c′)|c, c′ ∈ CP ′

∧ (scomR(a)(c(Lcl(t)), c(Ctl(t))) = Error

∧ c′ = cE) ∧ (scomR(a)(c(Lcl(t)), c(Ctl(t))) 6= Error

⇒ choose(scomR(a)(c(Lcl(t)), c(Ctl(t)))) = (`, α)

∧ c′(Lcl(t)) = ` ∧ c′(Ctl(t)) = α) ∧ c′(Sh) = c(Sh)}

where cE denotes an error configuration. We represent one step execution from a

configuration c with scomR(a) modeling comR(a) as c
scomR(a)
−−−−−→ c′ where (c, c′) ∈

RscomR(a).

These abstractions for asynchronous operations are realized by substitutingCom-

municationInterface for CommunicationController (see Figure 2.12). The

methods of CommunicationInterface implement scomS and scomR via the fi-
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nite state machine implementation StateMachine provided with the framework

(see Section 2.2.4).

3.4.3 Modeling Thread Initialization and Input Events

with Drivers

Drivers are necessary to transform a thread execution to a stand-alone program exe-

cution. As discussed in Section 3.3, there are three types of threads: explicit threads,

implicit threads, and the main thread. We define different types of drivers for each

of these categories.

The driver for an explicit thread t is responsible for setting the initial config-

uration of t and instantiating the thread. In other words, an explicit thread driver

constructs the initial configuration c0 = (`0, α0) of the isolated program P ′ for t.

For the implicit threads, a driver models the execution of the implicit thread by

producing all possible input event sequences related to that kind of thread. Recall

that there are two kinds of implicit threads (tr and te) and two kinds of input events:

the RMI events that are handled by an RMI thread tr, and the GUI events that are

handled by the event thread te. Let E be the set of available input events with any

event attribute sequence at a program configuration c. The available RMI events are

all RMI events unless there is a state machine specifying a legal RMI event sequence.

The available GUI events are the events related to the GUI objects that are visible

to the users of the program at the configuration c. We give the following relation to
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define a transition from a configuration with an input event.

Re = {(c, c′)|c, c′ ∈ CP ′

∧ choose(E)(c(Lcl(t)), c(Ctl(t))) = (`, α)

∧c′(Lcl(t)) = ` ∧ c′(Ctl(t)) = α ∧ c′(Sh) = c(Sh)}

where t is either the event thread or an RMI thread. Note that, because of the nonde-

terminism with choose, a program isolated with such a driver for an implicit thread

has a number of different execution sequences including the executions of the im-

plicit thread at the original program. Therefore, we achieve a conservative abstrac-

tion of the implicit threads.

For the main thread, a driver models the environment interaction of command

line argument read. Let eop be the command line argument read. In an execution

sequence of P this operation appears at x0 : c0
eoptm(a)
−−−−−→ c1 where a is the argument

sequence and a0 holds the values provided by the command line. (Actually, a0 holds

these values in an array.) Since this is an environment interaction operation, it is

modeled with the corresponding stub(a) discussed in Section 3.4.1. The driver of

the main thread first executes the stub(a) and then performs the operations of the

main thread (by calling the main method).

Here we discuss how we realize these models with drivers for Java programs

and how we generate drivers for each thread. The driver for the event thread te first

launches the GUI components, and finds all the visible and enabled GUI objects

that have registered event listeners. This is the initialization of the program, i.e,

constructing the initial configuration of P ′. After the initialization, the driver enters

a loop generating the input event sequence. At each iteration of the loop, the driver

first chooses one of these GUI objects, chooses an event, and then calls the listeners

98



Chapter 3. Formal Models

for that event. In other words, at each iteration, the driver changes the program

configuration as defined in the relation Re above. We automatically generate an

event thread driver and expect the user to perform data value assignments using the

results of a data dependency analysis explained in the next section. During driver

generation the GUI component launch mechanism is created by copying the relevant

part from the application code, all possible user event types are identified by finding

all different event listener types in the code.

The driver of an RMI thread tr performs initialization and produces all possible

input event sequences in a loop by calling every remote method with every possible

value for the elements of the method’s argument sequence. In other words, after

initialization, the driver changes the program configuration according to Re at each

iteration of a loop. We automatically generate the driver for an RMI thread using

the remote Java interfaces that define signatures of remote methods. The generator

inspects these remote interfaces to collect the RMI events. The generator also exam-

ines the concrete class implementing the remote interface to synthesize a code for

initializations. If the concrete class looks up another RMI component (i.e. if there

is a call to Naming.lookup(String) method), the generator creates the code for

registering the RMI stub of corresponding component to the stub of the Naming

class. Then, the generator puts an instantiation of the given concrete class into the

driver code. After the generation of the driver, the user can modify the value assign-

ments depending on the results of a dependency analysis which will be discussed in

Section 3.4.4.

The driver for a main thread is straightforward. The driver chooses one of the
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possible values for command line arguments and invokes the mainmethod. We gen-

erate a skeleton for such drivers and expect the user to alter the value assignments.

To generate a driver for an explicit thread, our generator inspects the constructor of

the thread. Then, it synthesizes the code to create the constructor arguments and to

initiate the thread execution. This code is a call to the thread constructor followed

by a call to the thread’s run method. The driver does not call the start method

which in turn will call run, since it creates another thread in the JVM. To avoid the

new thread creation, the driver calls run directly.

Modeling Thread Creation and Termination Operations

The explicit thread creation operation tcop is modeled with a one-time-written stub.

With this stub the effect of tcop is reflected on the creator thread t. Since the isolated

program P ′ for t has no other thread, the stub operation does not alter the shared

store mapping. The effect of tcop on the created thread t′ is modeled in the isolated

program for t′ with the explicit thread driver discussed in the preceding section. The

relation for the stub stc : Lcl(t)×Ctl(t) → Lcl(t)×Ctl(t) that is used by the isolated

creator thread t is

Rstc = {(c, c′)|c, c′ ∈ CP ′

∧ stc(Lcl(t), Ctl(t)) = (`, α)

∧c′(Lcl(t)) = ` ∧ c′(Ctl(t)) = α ∧ c′(Sh) = c(Sh)}

The thread creation operation is abstracted with public void start() that

resides in the provided stub class for java.lang.Thread. This stub method does

nothing. The effect of this method is that the caller thread t updates its control state.

Finally, the effect of thread termination in an isolated program is the termination
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of the program since there are no other threads. Therefore, we do not abstract thread

terminations and leave them as is.

3.4.4 Data Dependency Analysis

Some elements of the argument sequence of operations and events that are passed

to a thread via drivers and stubs may not influence the synchronization behavior of

the thread. These influences are the influences on the execution of shared operations

sop that might lead to an interface violation. In other words, we need an analysis to

determine data independence with respect to interface verification. We implemented

a data dependency analysis to identify such elements of the argument sequence of all

the events and operations that are modeled with the preceding isolation techniques.

The analysis is multiple backward traversals on the program dependence graphs

[83]. The starting point of each traversal is determined as follows. For each method

in the program, if there are branching statements that determine whether or not a con-

currency controller or a shared data method is called, then each of these statements

is a starting point of a backward traversal. These starting points are the statements

that control the execution of a shared operation and computed using the control flow

graph of the method. During the traversal the control and data dependency edges

are followed backward and the visited definition sites are collected. The visited

statements are marked to avoid entering infinite loops. The traversal should be inter-

procedural and capture the implicit dependencies between the methods of the same

class. Such dependencies occur when one method uses the value of a class field and

another method sets the value of that field. For example, a get and a set method of
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the same class have such implicit dependency. The result of this procedure is a back-

ward dependence tree per starting point whose vertices are the collected definition

sites. The leaves are the influencing argument sequence elements and a path in the

tree shows how these elements control the execution of shared operations.

We implemented this analysis using the Soot Java optimization framework [93],

which uses a 3-address representation for Java. The analysis determines which state-

ments, directly or indirectly, affect the reachability of invocation of a method that

belongs to a concurrency controller or a shared data class. The analysis we im-

plemented is context insensitive. In the implementation, instead of computing the

program dependence graph, the control and data dependencies are computed on the

fly. To capture the implicit dependencies, before the traversals, we compute for

each class field the set of methods updating its value (and the value of its elements).

The implemented on the fly backward traversal and definition site collection is a re-

cursive backward dependence tree construction. The root of the tree is the current

statement. At the beginning the current statement is the starting point statement. For

each definition site of the variables in the statement and each branch site affecting

the statement, we find the r-values used at those sites. If it is a local variable, we

compute its backward dependency tree recursively and add this tree as a child. If it

is a class field, we add the recursively computed backward dependency trees of each

definition site of that class field as children. If it is a return value of another method,

the recursively computed backward dependency tree of the callee’s return statement

is added as a child. If it is a parameter of the method, we find the call sites by using

the call graph of the program and add their recursively computed dependency trees
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as children.

The analysis results are used in the construction of drivers and stubs. If an el-

ement of the argument sequence a of an operation implemented in a stub does not

influence the synchronization behavior, a constant value with the correct type is

given to it in the stub implementation. Similarly, if an element of ea for an input

event e does not influence the synchronization behavior, a constant value with the

correct type is given to it when constructing the event e in the driver implementa-

tion. For the elements that might influence the synchronization behavior there are

two possibilities. If the domain of such a value is finite (e.g. boolean) we enumerate

all possible values and choose one value using JPF’s nondeterminism utilities. Oth-

erwise, the analysis results are inspected and necessary values are provided by the

user.

3.4.5 Discussion on Isolation Techniques

In this section we show that the interface verification can be performed on the iso-

lated programs for each thread separately based on our isolation technique. We first

give the execution definition for a single thread. Then we give the properties of iso-

lated programs and give a theorem that enables modular interface verification of a

program.

Execution and Configuration of a Thread

The configuration of t is ct ∈ Sh × Lcl(t) × Ctl(t). We denote this set of configura-

tions as Ct. An execution of a general thread is a sequence of thread configurations
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and operations performed by that thread. We define the following relation.

Rt
op = {(ct

i, ct
j) ∈ Ct ∧ (∃sopt(a)(ct

i(Sh), ct
i(Ctl(t))) = (ρ, αt)

∧ct
j(Sh) = ρ ∧ ct

j(Lcl(t)) = ct
i(Lcl(t)) ∧ ct

j(Ctl(t)) = αt)

∨(∃lopt(a)(ct
i(Lcl(t)), ct

i(Ctl(t))) = (`t, αt)

∧ct
j(Sh) = ct

i(Sh) ∧ ct
j(Lcl(t)) = `t ∧ ct

j(Ctl(t)) = αt)

∨(∃eopt(a)(ct
i(Lcl(t)), ct

i(Ctl(t))) = (`t, αt)

∧ct
j(Sh) = ct

i(Sh) ∧ ct
j(Lcl(t)) = `t ∧ ct

j(Ctl(t)) = αt)

∨(∃tcopt(a)(ct
i(Sh), ct

i(Lcl(t)), ct
i(Ctl(t))) = (ρ, `t, αt, `t′, αt′)

∧ct
j(Sh) = ρ ∧ ct

j(Lcl(t)) = `t ∧ ct
j(Ctl(t)) = αt)}

During an execution of a general thread t, the transition from a configuration to

another is based on the relation Rt = Rt
op.

As noted in the beginning of this section, there are two kinds of special threads:

the main thread and the implicitly created thread. The main thread (tm) is created

when the program starts. The execution of the main thread begins with an environ-

ment interaction: reading the command line arguments. The rest of the execution is

the same as a general thread execution.

One implicitly created thread is the event thread te. Event thread is created by the

runtime environment (e.g. JRE) if there are visible GUI components in the program.

For simplicity, we assume that te is created at the initial configuration of the program

P . Whenever a GUI event occurs, te processes that input event and executes the

event handlers that are implemented by the developers. These event handlers are
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can contain local operations or shared operations. We define the following relation.

Rte
e = {(cte

i , cte
j )|cte

i , cte
j ∈ Cte ∧ (∃e(ea)(cte

i (Lcl(te)), cte
i (Ctl(te))) = (`te , αte)

∧cte
j (Sh) = cte

i (Sh) ∧ cte
j (Lcl(te)) = `te ∧ cte

j (Ctl(te)) = αte)

where e is a GUI event. The configuration of an event thread te is updated during an

execution according to the relation Rte = Rte
op ∪ Rte

e .

The other implicitly created threads are the RMI threads. RMI threads are cre-

ated by the runtime environment to serve the remote calls triggered by other pro-

grams. We define the following relation.

Rtr
e = {(ctr

i , ctr
j )|ctr

i , ctr
j ∈ Ctr ∧ (∃e(ea)(ctr

i (Lcl(tr)), ctr
i (Ctl(tr))) = (`tr , αtr)

∧cte
j (Sh) = ctr

i (Sh) ∧ cte
j (Lcl(tr)) = `tr ∧ cte

j (Ctl(tr)) = αtr)

where e is an RMI event. The configuration of an RMI thread tr is updated during

an execution according to the relation Rtr = Rtr
op ∪ Rtr

e .

An execution sequence of thread t is represented as xt = x0, x1, . . . , xi, xi+1, . . .

where xi = ct
i

label
−−→ ct

i+1 with (ct
i, ct

i+1) ∈ Rt and label is an operation opt(a)

with an argument sequence a performed by t or e(ea) with an attribute sequence ea

captured by t. Given a thread t in P and an execution sequence xp of the program

P , the execution of t in this sequence is denoted as xp[t], i.e., xt = xp[t].

The Property of Isolated Programs and Interface Verification

In this section we give a relationship between an isolated program execution and

original thread execution. Then, we give a theorem that enables modular interface

verification of a program. Recall that interface verification checks thread interface
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correctness. Since there is only one thread at an isolated program, in the rest of

the discussion, we will call an isolated program interface correct when the isolated

thread is interface correct.

We first summarize the transition relation for an isolated program here. During

an execution of an isolated program P ′ for an explicit thread or the main thread, the

transition from one configuration to another is based on the relation RP ′

= Rstub ∪

Rsi ∪ Rsstub ∪ Rstc ∪ Rlopt where t is either the main thread or an explicit thread.

During the execution of an isolated program for an RMI thread or the event thread,

the transition from one configuration to another is based on the relation RP ′

= Re ∪

Rstub ∪ Rsi ∪ Rsstub ∪ Rstc ∪ Rlopt where t is either the event thread or an RMI

thread. If there are asynchronous communication operations in the original program,

RscomS and RscomR are added to the relations RP ′

. An execution sequence of P ′ is

xp′ = x0, x1, . . . , xi, . . . where xi = c
label
−−→ c′ with (c, c′) ∈ RP ′

and label is an

operation or an event with any argument sequence. We denote the set of execution

sequences of P ′, including the empty execution sequence, as XP ′ .

Based on the single thread execution in the preceding discussion and the isolation

techniques presented in this section, we give the following theorem.

Theorem 3.4.1 Given a thread t of a program P and the isolated program P ′ with

respect to t, {Π1(xp)(t)|xp ∈ Xp} ⊆ {Π1(xp′)(t)|xp′ ∈ Xp′} where Xp is the set of

executions of P and Xp′ is the set of executions of P ′.

During the isolation, the local operations are preserved and all other operations

are abstracted. When we remove all of the controller variables from the V of the
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original program and put the variable cur, then the transition relation for each ab-

stracted operation is a superset of the transition relation for the original operation,

and the transition relation for the local operations remains the same. Also, the tran-

sition relation for events in an isolated program subsumes the transition relation for

events captured by a thread t i.e, Rt
e ⊆ Re. Therefore, Rt ⊆ RP ′

. Because of this

subset relationship, the set of execution sequences of the thread t is subsumed by the

set of execution sequences of the isolated program P ′.

Let xt be an execution of the thread t in the original program P where xt = xp[t]

and xp ∈ Xp. The execution sequence xt is an element of Xp′ . Since Π1(xp)(t) for

xp ∈ Xp only concerns the executions of t, Π1(xp)(t) = Π1(xp[t])(t). Therefore,

the projection Π1(xp)(t) is an element of {Π1(xp′)(t)|xp′ ∈ Xp′}.

Using this theorem we can claim that the interface verification result of t in

isolated program P ′ holds on the t in the original program P and perform interface

verification after we isolate each thread. We state this property as follows.

Theorem 3.4.2 Given a program P and a set of isolated programs P ′
t for each

thread t of P , if every P ′
t is interface correct then all of the threads in the original

program P are interface correct, i.e., there is no interface violation in the original

concurrent program P .

We are going to prove this theorem by contradiction using Definition 3.3.1 and

Theorem 3.4.1. Suppose the claim is not true, i.e., there is a thread t at P that is

not interface correct and every isolated program is interface correct including the

isolated program P ′
t . Since t is not interface correct, there is an execution xp and
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a projection Π1(xp)(t) which is not a legal sequence of the product of interfaces in

P according to Definition 3.3.1. Let this product interface be I . Then, according to

Theorem 3.4.1, this Π1(xp)(t) is an element of {Π1(x
′
p)(t) | x′

p ∈ X ′
p} where X ′

p is

the set of executions of P ′
t . Therefore, there is a execution projection of the isolated

program P ′
t which is not a legal sequence of I . This means that the isolated program

P ′
t is not interface correct which is a contradiction.

Based on Theorem 3.4.2, we perform interface verification on each isolated pro-

gram separately. This modularity improves the interface verification significantly by

eliminating the possible thread interleavings.

A similar argument is valid for interface verification of composite web services.

Theorem 3.4.3 Given a peer program P participating DPA and the corresponding

isolated program P ′ with peer interface I , {Π4(xDPA
)(P )(I)|xDPA

∈ XDPA
} ⊆

{Π4(xp′)(P ′)(I) | xp′ ∈ Xp′} where XDPA
is the set of executions of DPA and X ′

p

is the set of executions of P ′.

The proof is similar to the proof of Theorem 3.4.1. Similar to the proof of Theorem

3.4.1, the isolated peer program P ′ generates more conversations (i.e., has more

behavior) than the original peer program DPA since the relations RscomS and RscomR

at P ′ subsume the relations RcomS and RcomR at DPA. Since the projection Π4 for an

execution sequence is a conversation and each conversation of DPA is a conversation

of P ′, {Π4(xDPA
)(P )(I)|xDPA

∈ XDPA
} ⊆ {Π4(xp′)(P ′)(I) | xp′ ∈ Xp′}

Theorem 3.4.4 Given a program DPA and a set of isolated peer programs P ′ for

each participant program P , if every P ′ obeys its peer interface then there is no
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interface violation in the original distributed program DPA.

The proof is similar to the proof of Theorem 3.4.2. If the claim is not correct, we

can show a contradiction using Definition 3.3.5 and Theorem 3.4.3.

3.5 How to Perform Interface Verification

We present how to find interface violations by using the model checker Java

PathFinder (JPF) [99]. Interface verification is performed on isolated programs and

uses controller interfaces encoded as finite state machines. This verification tech-

nique is used to check both thread interface correctness and obedience of peer im-

plementations to their peer interfaces.

JPF is an explicit and finite state model checker for Java. It enables the verifi-

cation of arbitrary pure Java implementations without any restrictions on data types.

JPF supports property specifications via assertions that are embedded in the source

code. It exhaustively traverses all possible execution paths for assertion violations.

If JPF finds an assertion violation during verification, it produces a counter-example

which is a program trace leading to that violation. In addition, JPF provides (cur-

rently) two nondeterminism utilities: Verify.random and Verify.randomBool.

These utilities are used in stub and driver implementations discussed in Section 3.4

as well as in the finite state machine implementations. At verification time, JPF

systematically analyze the program for every value created by these utilities.

The interface verification with JPF relies on the assertions in the finite state ma-

chine implementation StateMachine (see Figure 2.12 and 2.2). For concurrency
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controllers, there are additional assertions in the stubs of shared data (SharedStub

in Figure 2.2) that complements the controller interface specification. Recall that

we can specify properties in JPF using assertions in the source code. We use this

feature of JPF and perform interface verification with the assertions embedded in the

StateMachine classes.

To perform interface verification with JPF, we substitute controller interface

specifications for the controller classes. For peer controllers, we replace the asyn-

chronous communication mechanism with CommunicationInterface in Figure

2.12. For the concurrency controllers, we replace the concurrency controller class

with ControllerStateMachine in Figure 2.2 and shared data class with Shared-

Stub class. Because of these substitutions, the action executions are directed to the

methods of StateMachine that embed assertions. If there is an assertion violation,

then there is an interface violation and JPF outputs the counter-example leading to

that violation.

Now we describe this general methodology for peer controllers with more detail.

The peer implementations are verified for one session since each session is indepen-

dent and does not affect other sessions in the peer controller pattern. We replace

CommunicationController with CommunicationInterface via source-to-

source transformations (the classes are displayed in Figure 2.12). Since they both

implement the same Java interface Communicator, there is no other modification

necessary in the source code. In this transformed code, each send and receive op-

eration is directed to the sendTransition and receiveTransitionmethods of

StateMachine class that is used by the CommunicationInterface. The method
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sendTransition invoked with a message instance to send. This method com-

putes the set of next interface states using the SendTransition instances added

by the CommunicationInterface. The method asserts that this set of next states

is not empty. If the set is empty, then this transition is illegal and JPF reports

the error with a counter-example. The method receiveTransition computes

the set of possible receive transitions available in the current interface state. Dur-

ing this computation it uses the ReceiveTransition instances defined by the

CommunicationInterface. This method then asserts that this set of possible

receive transitions is not empty. A peer implementation conforms to its interface if

JPF does not report any assertion violations.

For the concurrency controllers the details of this general methodology is as fol-

lows. We replace Controller classes with ControllerStateMachine classes

implementing the same ControllerInterface Java interface and shared data

classes with SharedStub classes implementing the same SharedInterface Java

interface. With this transformation, the concurrency controller actions are directed to

transition method of StateMachine and the shared data accesses are directed

to the shared stub methods. Recall that the shared stub methods have assertions on

the controller interface states. In addition, we isolate the concurrent threads with

the thread isolation techniques presented in Section 3.4. With this process we can

perform the interface verification on a single thread without considering the possible

interleavings with other threads (see Theorem 3.4.1). JPF model checks this isolated

program. When an action of concurrency controller is invoked, the transition

method of StateMachine asserts that this action execution is valid at the current
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interface state using the transitions defined by ControllerStateMachine. When

a shared stub method is invoked, JPF checks if this access is allowed at the cur-

rent interface state which is defined as an assertion within the SharedStub class.

A concurrent thread implementation is interface correct if JPF does not report any

assertion violations.

During the interface verification with JPF, we achieve improvements in the effi-

ciency due to the following reasons. The peer interfaces are finite state machines and

abstract away the asynchronous messaging details; therefore, using Communica-

tionInterface instead of CommunicationController reduce the state space

of the system significantly. Another space reduction comes from considering only

control attributes for message instances. The third factor in the reduction of the

state space for web services is the verification of a peer implementation for one

session. For concurrent programs, the efficiency is improved because of the state

space reductions as well. The usage of controller interfaces instead of concurrency

controllers reduce the state space dramatically since ControllerStateMachine

classes do not contain the controller variables, locks and associated synchronization

statements. Another factor is the usage of shared data stubs that do not contain actual

data manipulation operations. Moreover, the thread isolation techniques enable us

to perform interface verification on each thread separately. This isolation eliminates

the need to consider all possible thread interleavings. This elimination leads to a

significant improvement in the efficiency and scalability.
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3.6 Composition of Interfaces

In the discussions above, we assumed that when a thread t uses more than one con-

currency controller, say CC1 and CC2, t does not execute an action of CC2 if it is

not at the final state of the interface of CC1. On the other hand, if we compose these

two concurrency controllers, than we can interleave their actions. Moreover, we can

also combine and execute their actions simultaneously. In this section, we discuss

the composition of concurrency controllers.

Interfaces of different concurrency controllers can be composed to form more

complex concurrency controllers [11, 12]. Recall that, a controller interface defines

the rules about the order of controller action executions by each user thread. In

an interface composition, actions of different concurrency controllers can be inter-

leaved or they can be combined and executed simultaneously. We call the latter

synchronous composition. We show that if the composed interface is a refinement

of the original interface, then the ACTL properties of the original concurrency con-

troller are preserved.

In this section, we will use the BB-RW example for illustration. This synchro-

nization policy is realized as one concurrency controller in Section 2.1.1 and the

discussions above are illustrated on this one concurrency controller realization. We

could also specify this controller as a composition of BB and RW controllers.

The RW and the BB concurrency controllers can be composed in several different

ways. Three of these compositions are given in Figure 3.2. In Figure 3.2(a), when

a thread is writing, it could execute arbitrary number of produce and consume
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d1
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d2
w_enter

consumeproduce

(a)

(c)

produce, w_enter

consume, w_enter
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e2

(b)

consume

produce
e3

w_exit

r_exit

r_enter

f1

f0

f2

w_exit

r_exit

r_enter

w_exit

r_exit

r_enter

Figure 3.2: Composed interfaces

actions. In the interface given in Figure 3.2(b), however, when a thread is writing, it

should execute either one produce or one consume action before it exits writing.

There are two synchronously composed actions in Figure 3.2(c), one of them is the

synchronous composition of produce and w enter actions and the other one is the

synchronous composition of consume and w enter actions.

114



Chapter 3. Formal Models

3.6.1 Composed Concurrency Controller Semantics

Let CC1, CC2, . . . , CCk be k concurrency controller specifications with disjoint

variables and actions, such that CCi = (Γi, ICi, Ai, Ii) and Ii =(Qi, q0i
, {}, Ai, δi,

Fi) for 1 ≤ i ≤ k. Let CCc = (Γc, ICc, Ac, Ic) be the composed concurrency con-

troller where Γc =
⋃

1≤i≤k Γi, ICc =
∧

1≤i≤k ICi, Ac =
⋃

1≤i≤k Ai. The state space

of a composed concurrency controller is defined similar to individual controllers de-

fined in Section 3.2.1 by taking the Cartesian product of all the variable domains and

the composed interface. The guards and the updates defining the actions of individ-

ual concurrency controllers are extended to the Cartesian product of the domains of

all the variables in the composed component in a straightforward way: an update for

an individual concurrency controller preserves the values of the variables of the other

concurrency controllers. Note that, all parts of a composed concurrency controller

other than its interface Ic is determined by the individual concurrency controllers

that are composed.

Let the interface of the composed concurrency controller be Ic = (Qc,q0c
, {}, Σc,

δc, Fc). Given Ac =
⋃

1≤i≤k Ai, the set of composed actions CA ⊆ 2Ac is defined as

follows: For each composed action ca = {act1, act2, . . . , actr} ∈ CA, for each Ai,

|ca ∩ Ai| ≤ 1 and r ≥ 1, i.e., each composed action ca contains at most one action

from each Ai. Then the input alphabet of the composed concurrency controller

is Σc = CA. The transition relations are only send transitions with no guarding

conditions and update functions, similar to the individual concurrency controllers. If

a transition of a composed interface is labeled by a singleton set, then that transition

corresponds to executing a single action from an individual component. On the other
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hand, a transition which is labeled by more than one action corresponds to executing

multiple actions from different concurrency controllers synchronously. Note that

a composed action can have a mixed set of blocking and nonblocking actions. A

thread executing a composed action has to wait until all the blocking actions become

executable.

Let T (CCc)(n) = (IT, ST, RT ) be the transition system of the composed con-

currency controller CCc = (Γc, ICc, Ac, Ic). The initial states IT and the set of

states ST of the transition system T (CCc)(n) is based on Γc and ICc similar to

the semantics of individual concurrency controllers discussed in Section 3.2.1. To

define the transition relation RT of a composed concurrency controller we need to

define the semantics for the transitions of the form (q, ca, q ′) ∈ δc where ca ∈ CA.

We do this by defining a set of composed update functions for each composed ac-

tion. The composed update function corresponds to synchronous execution of all

the individual actions in the corresponding composed action.

Given an action acti, let IND(acti) = j if acti ∈ Aj (acti is an action from

the individual component CCj). Given a state s ∈ ST , and a composed action

ca = {act1, act2, . . . , actr} ∈ CA, COMP(ca)(s) is defined as follows:

• If there exists a blocking action acti ∈ ca such that for all guarded commands

gc ∈ acti.GC, gc.g(s(Γ)) is FALSE, then COMP(ca)(s) = ∅.

• Otherwise, for all actions acti ∈ ca = {act1, act2, . . . , actr} choose a guarded

command gci ∈ acti.GC such that gci.g(s(Γ)) is TRUE. If there is no such

guarded command for an action acti (which implies that acti is non-blocking)

let gci be gcI , a guarded command with a TRUE guard and an identity update
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function. The composed update function is

uc(s(Γ)) =
∧

1≤i≤r

gci.u(s(ΓIND(acti)))

The COMP(ca)(s) is the set of all such composed update functions.

Given a transition (q, ca, q′) we define the following:

RT u
(q,ca,q′) = {(s, s′) | (s, s′ ∈ ST ) ∧ (∃uc ∈ COMP(ca)(s), s′(Γc) = uc(s(Γc)))

∧ (∃1 ≤ t ≤ n, s(Qc)(t) = q ∧ s′(Qc)(t)q
′ ∧ s′(Q − t) = s(Q − t))}

Finally, the overall transition relation RT of T (CCc)(n) is the following.

RT =
⋃

(q,ca,q′)∈δc
RT(q,ca,q′)

3.6.2 Refinement Relation

In this section, we define a refinement relation for interfaces. We will use this re-

finement relation to check whether a composition preserves properties verified on

individual controllers. If a composed interface is a refinement of another interface

then the ACTL properties verified on the original controller is preserved by the com-

posed controller.

Let CC1, CC2, . . . , CCk, be k concurrency controller specifications, and let CCc =

(Γc, ICc, Ac, Ic) be a composition of these concurrency controllers and let Ic =

(Qc,q0c
, {}, Σc, δc, Fc). be the composition interface. We use Ic � Ii to denote that

the composed interface Ic is a refinement of the interface Ii.
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Definition 3.6.1 Ic � Ii if and only if there exists a mapping H : Qc → Qi such

that for all qc ∈ Qc and for all q ∈ Qi, H(qc) = q implies that, qc = q0c
⇒ q ∈ q0i

and for each (qc, ca, q′c) ∈ δc,

( a ∈ ca ∧ a ∈ Ai ⇒ ∃(q, a, q′) ∈ δi, H(q′c) = q′)

∧ (ca ∩ Ai = ∅ ⇒ ∃(q, ε, q′) ∈ δi, H(q′c) = q′)

∧ (ca ∩ Ai 6= ∅ ∧ (∃j 6= i, b ∈ ca ∩ Aj ∧ blocking(b)) ⇒ ∃(q, ε, q) ∈ δi)

Let CCi be one of the controllers in the composition of the composed controller

CCc. Let T (CCc)(n) = (ITc, STc, RTc) be the transition system for CCc and

T (CCi)(n) = (ITi, STi, RTi) be the transition system for CCi. Given a mapping

H : Qc → Qi between the interface states of the CCc and CCi we define a projection

function Ψ : STc → STi such that, given sc ∈ STc, Ψ(sc)(Γi) = sc(Γi) and

for all 1 ≤ t ≤ n, Π(sc)(Qi)(t) = H(sc(Q)(t)). Observe that, for any atomic

property p ∈ APi, sc |= p if and only if Ψi(sc) |= p. We can generalize the

projection function to paths such that given a path exec = sc
0, s

c
1, . . . in T (CCc)(n),

Ψ(exec) = Ψ(sc
0), Ψ(sc

1), . . . .

Lemma 3.6.2 If Ic � Ii, then for all paths exe of CCc, the projection Ψ(exe) is a

path in CCi where projection Ψ is based on the mapping function H from Definition

3.6.1 that shows that Ic � Ii.

Based on the above lemma we can prove the following theorem:

Theorem 3.6.3 Given a concurrency controller CCc = (Γc, ICc, Ac, Ic) which is

a composition of concurrency controllers CC1, CC2, . . . , CCk, CCc preserves all

ACTL properties of CCi, 1 ≤ i ≤ k, if Ic � Ii.
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Let Ψ denote the refinement projection based on the mapping function H from

Definition 3.6.1 that shows that Ic � Ii. In order to prove that the ACTL properties

of CCi are preserved in CCc it is sufficient to show that for all s ∈ STc, Ψ(s) |=

Af ⇒ s |= Af assuming that f is of the form Fp, Gp, pUq, and Ψ(s) |= p ⇒ s |= p

and Ψ(s) |= q ⇒ s |= q. Note that Ψ(s) |= p ⇒ s |= p when p is an atomic property

of the concurrency controller CCi. If we can prove the claim above, we can show

by structural induction that Theorem 3.6.3 holds.

We are going to prove the above claim using proof by contradiction. Suppose

the claim is not true, i.e. Ψ(s) |= Af ∧ s 6|= Af . Note that, s 6|= Af implies

that s |= E¬f which means that there exists a path exe in CCc starting at s which

satisfies ¬f . Then, according to the Lemma 3.6.2, there exists a path Ψ(exe) in CCi

starting at Ψ(s) which satisfies E¬f which is a contradiction.

Using Theorem 3.6.3, we are able to verify the ACTL properties of the indi-

vidual concurrency controllers modularly before composing them. If we can show

that the refinement relation holds, then the verified properties are preserved in the

composed system. However, above theorem cannot be used for properties that refer

to variables of different individual concurrency controllers. Such a property can be

verified on the transition system of the composed concurrency controller CCi after

the composition.
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3.7 Related Work

De Alfaro et al. [31] introduce interface automata to formalize temporal aspects

of software component interfaces. Later, this formalization is used for specifying

interfaces as a set of constraints and algorithms for interface compatibility checking

is presented by Chakrabarti et al. [27, 18]. We use finite state machines to specify

interfaces and our approach to interface checking can be seen as a special case of

the interface compatibility checking. However, unlike Chakrabarti et al., we do not

require each method to be annotated with interface constraints and also our goal is

to verify both the controller behavior and conformance to interface specifications.

Whaley et al. [100] also model interfaces as finite state machines. The authors

extract such interfaces from programs using both static and dynamic analysis. Their

approach is, however, a reverse engineering approach where interfaces are automat-

ically extracted from existing code. We use interfaces both for specification and

automated verification.

Rajamani et al. [86] address the conformance of an implementation model to

a specification for asynchronous message passing programs. Unlike the interface

verification in our framework, their conformance check requires a model extraction

from the implementation. Moreover, their approach does not separate the interface

and the behavior verification steps.

There has been some work on thread modular verification and automated envi-

ronment generation. Flanagan et al. [44] presents a thread-modular reasoning and

verifies each thread separately with respect to safety properties. The effects of other
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threads are modeled as environment assumptions whereas we use stubs and drivers

to reflect these effects. Besides, we check the thread behavior against the interface

rules and leave the assurance of the safety properties to behavior verification.

Godefroid et al. [50] converts an open reactive program into to a closed program

by inserting nondeterminism into the code and eliminating procedure arguments.

Unlike this work, we have restrictions on the environment interactions caused by

controllers via interfaces. Stoller [94] transforms distributed programs communi-

cating with RMI into one program for model checking. Unlike this centralization

approach, we apply thread modular model checking, decouple the remote processes,

and reduce the state space. The techniques presented by Tkachuk et al. [95, 96]

generate environments for software components by using side effect and points-to

analyses. Although the techniques we discuss for thread isolation are similar to

these, we base our techniques on the controller interfaces and the design for verifi-

cation approach.

The graphical user model introduced by Dwyer et al. [38] is similar to our

generic GUI driver. Unlike our GUI driver, their model creates all types of user

events after choosing a GUI object. The actual event thread in Java, on the other

hand, dispatches only one user event at a time. The other difference is that our

driver is used for interface verification whereas their model is used for analyzing

user interaction orderings.

Data independence is first formalized by Wolper [101]. A data independent pro-

gram does not use a certain set of values to make control decisions. According to

Wolper, when the program uses such values only to input, copy, and output, we can
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replace the domain of this data with a smaller and finite set. Lazic [67] extends the

data independence to allow values of data independent variables to appear in equal-

ity testing. These studies focus on identifying the data types of which the general

behavior of the program is independent. We are interested in determining the ele-

ments of argument sequence of which the synchronization behavior of the program

is independent.
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Design for Verification of Concurrent
Programming

This chapter presents the design for verification (DFV) approach for concurrent pro-

gramming based on the concurrency controller pattern. The goal of this approach

is to eliminate synchronization errors in a concurrent program. In this chapter, we

present an assume-guarantee style verification technique based on the concurrency

controller pattern given in Section 2.1 in Chapter 2. We show that model check-

ing techniques can be effective in finding synchronization errors in safety critical

software when they are combined with the DFV approach.

Our assume-guarantee verification approach presented in this chapter exploits

the modularity of the concurrency controller design pattern, i.e., decoupling of the

concurrency controller behavior from the threads that use the controller. The be-

havior of a concurrency controller can be verified with respect to arbitrary number

of threads and with unbounded variables and parameterized constants using infinite

state model checking techniques. The threads that use the controller classes can be
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checked for interface violations using finite state model checking techniques which

allow verification of arbitrary thread implementations without any restrictions.

In this chapter, we also demonstrate the application of the DFV with concurrency

controllers to two real-life concurrent software systems. The first one is a Concur-

rent Editor implementation with remote procedure calls and complex synchroniza-

tion constraints that uses a client-server architecture. The Concurrent Editor allows

multiple users to edit a document concurrently as long as they are editing different

paragraphs. Concurrent Editor maintains a consistent view of the shared document

among the client nodes and the server. The second one is a safety critical air traffic

control software called Tactical Separation Assisted Flight Environment (TSAFE).

On this safety critical software we have conducted an experimental study investigat-

ing the effectiveness of the presented DFV approach. We have reengineered TSAFE,

created 40 faulty versions of TSAFE using fault seeding, and used our verification

approach for finding the seeded faults.

The organization of this chapter is as follows. Section 4.1 introduces the Con-

current Editor. Section 4.2 discusses TSAFE and the reengineered version in detail.

Section 4.3 explains the assume-guarantee style modular verification based on the

concurrency controller pattern. This section also presents the verification results for

both software systems and discusses the experimental study performed on TSAFE.

124



Chapter 4. Design for Verification of Concurrent Programming

Server Client

<<RMI>>
GUIMediator

SharedDocument LocalDocument

Figure 4.1: Concurrent Editor architecture

4.1 Concurrent Editor

Concurrent Editor is a distributed system that consists of a server node and a number

of client nodes (one client node per user). In other words, the Concurrent Editor is

a DP = (P1, P2, . . . , Pk) where P1 is the program running on the server node and

P2, . . . , Pk are the programs running on client nodes. Each node in this structure has

its own copy of the shared document (Figure 4.1).

Concurrent Editor allows multiple users to edit a document concurrently as long

as they are editing different paragraphs and maintains a consistent view of the shared

document among the client nodes and the server. Users get write access to para-

graphs of the document by clicking on the WriteLock button in the graphical user

interface (GUI). Figure 4.2 shows a screen shot. When WriteLock button is clicked,

it generates a request for write access to the paragraph the cursor is on. When the

request is granted, the color of the paragraph is changed to indicate that it is editable.

A user can edit a paragraph only if she has the write access to that paragraph. Mul-

tiple users are able to edit different paragraphs of the document concurrently, i.e.,

each user is able to see the changes made by the other users as they occur. If a user
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wants to make sure that a paragraph does not change while reading it, she clicks the

ReadLock button in the GUI. When a user has read access to a paragraph, other

users can also have read access to that paragraph, but no other user can have write

access to that paragraph. When a user has write access to a paragraph, no other user

can have read or write access to that paragraph. All users have a copy of (and can

see) the whole document, including the paragraphs they do not have read or write

access. The GUI also provides ReadUnlock and WriteUnlock buttons to release

the read and write accesses, respectively. Finally, the document is saved only when

a consensus is reached among all client nodes.

Figure 4.2: Concurrent Editor screen shot

Designing and Implementing the Concurrent Editor

When the above specification is given to a Java programmer, she has to consider

both concurrent and remote accesses to the shared document. One can handle the
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remote access using the Java remote method invocation (RMI) and a collaborative

infrastructure where all client nodes register to a mediator through which the clients

communicate [81] (see Figure 4.1).

A number of synchronization issues need to be considered to handle the concur-

rent access to the shared document. Let us first focus on coordinating concurrent

access to a single paragraph in the shared document. A naive solution is to declare

all methods of the paragraph as synchronized, which is obviously not efficient. If

mutual exclusion is enforced at every method, a client node requesting a read access

will be blocked by another client node requesting the same access. The programmer

needs to use a reader-writer lock (RW) to achieve a more efficient synchronization. A

common methodology is encapsulating the synchronization policy within the shared

data implementation, e.g., implementing the write method of the paragraph so that

it acquires and releases the write lock implicitly. However, this methodology con-

tradicts with the requirements of the Concurrent Editor, since it forces the write lock

to be acquired at every write request. Therefore, the programmer needs to separate

the lock acquisition from the actual write operation. A welcome side effect of this

separation is that the programmer can change the paragraph implementation without

affecting the synchronization policy. Similarly, one synchronization policy could be

replaced with another without changing the paragraph implementation.

Here we describe another synchronization constraint. While protecting the shared

document, we cannot afford to suspend a client. Otherwise, the whole application

will stall due to the collaborative infrastructure. To prevent the stalling of a client

node, we need a separate worker thread to acquire the locks from the server node.
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Figure 4.3: Concurrent Editor class diagram

This way, whenever the server node forces the requesting thread to wait it does not

suspend the client node. The use of a worker thread generates the need for a buffer

for passing the requests between the client node and the worker threads, and the

buffer needs to be protected by a synchronization policy. It is clear that the accesses

to this buffer should be mutually exclusive. In this application, however, a mutual-

exclusion (mutex) lock is not enough. We need a conditional wait for worker threads

when the buffer is empty. We also need to put a bound to the buffer size to provide

a reasonable response time to the user. Therefore, we protect this buffer by using a

bounded buffer synchronized with a mutex lock (BB-MUTEX). In this synchroniza-

tion policy, if a thread wants to take an item from the buffer it would wait while the
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buffer is empty. This policy also restricts the number of threads accessing the buffer,

e.g., at any given time only one producer or consumer thread can access the buffer.

We have implemented the Concurrent Editor based on the concurrency controller

pattern while considering the above constraints and issues. Figure 4.3 shows the

class diagram of our Concurrent Editor implementation using the concurrency con-

troller pattern. The server node has a document of type ServerDocument. Mutu-

ally exclusive access to server document is ensured by a mutex controller (MUTEX).

The server document consists of a number of paragraph elements. Each paragraph

is associated with a unique reader-writer controller (RW) coordinating the read and

write accesses to that paragraph. This node also has a barrier controller (BARRIER)

which is used whenever a save request is issued by one of the users. A document is

saved to disk only if a consensus is reached among all the users of the document.

A client node has a GUI with an editable text area and seven buttons (see Figure

4.2). The text area is of type JTextPane containing a document of type Client-

Document. Both the text pane and the document are protected with mutex con-

trollers (MUTEX). The text of the client document is a copy of the server document.

There is an event thread (EventDispatchThread) running on the client side. The

event thread is automatically created by the Java Virtual Machine (JVM) to capture

the events related to the GUI [82]. In addition to the event thread, each paragraph

element in the client document is associated with a unique worker thread created

by the event thread. Each worker thread handles the communication with the RW

controller of the corresponding paragraph in the server node. The communication

between the event thread and the worker thread for a paragraph is via a communica-

129



Chapter 4. Design for Verification of Concurrent Programming
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Figure 4.4: Sequence diagram for inserting text

tion buffer associated with that paragraph. The access to this buffer is controlled by

a bounded-buffer mutex controller (BB-MUTEX).

Figure 4.4 shows a sequence diagram that represents the behavior of the Con-

current Editor during an insertion of a character into the text. For simplicity, the

sequence diagram shows two client nodes and the server. We assume that the client

node that does the character insertion has the write access to the paragraph. The

event thread on client node 1 inserts the character typed by the user into the client

document. Then, the event thread of client 1 makes a remote call to the server’s

broadcast method. On the server side, this invocation results in a change in the

server document and an RMI call to other client’s notify method. On the second

client node’s side, the character is inserted into the client document after acquiring

the mutex lock.

The Concurrent Editor implementation consists of 2800 lines of Java code with

17 class files, 5 controller classes, and 7 Java interfaces. We used concurrency con-
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trollers to coordinate the interaction among multiple threads. Hence, we imple-

mented the Concurrent Editor without writing any Java synchronization operations.

In implementing the Concurrent Editor we used the following controllers: mutex

controller (MUTEX), reader-writer controller (RW), barrier controller (BARRIER),

and bounded-buffer with mutex lock controller (BB-MUTEX). We have discussed

the usage of these controllers above. The interfaces of these controllers are given in

Figure 4.5. For example, the interface of the RW controller has three states: IDLE,

READ, and WRITE with IDLE being the initial state.

IDLE

WRITE

READ

IDLE CS

HUNGIDLE

(a) Reader−Writer (b) BB−Mutex (c) Barrier

r_exit

w_exit

w_enter

r_enter produce_acquire

release

consume_acquire

b_enter

b_exit

Figure 4.5: Controller interfaces used in Concurrent Editor

4.2 TSAFE

The Automated Airspace Concept that is being developed by NASA researchers

automates the decision-making in air traffic control by giving the responsibility of

determining conflict free trajectories for aircraft to a software system [39, 40]. Es-

tablishing dependability of such complex systems is extremely difficult, yet it is

essential for automation in this domain. Earlier efforts in automating the air traffic

control system have resulted in costly failures due to the inability of the contrac-
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tors in making the software components highly dependable [41]. To avoid a similar

fate, the designers of the Automated Airspace Concept at NASA use a failsafe short

term conflict detection component in their system, which is responsible for detecting

conflicts in flight paths of the aircraft within one minute from the current time. If

a short term conflict is detected, this component takes over the trajectory synthesis

function to direct the aircraft to a safe separation. Since the goal of this component

is to provide failsafe conflict detection and resolution capability, it has to be highly

dependable, even more than the rest of the system [39, 40].

The Tactical Separation Assisted Flight Environment (TSAFE) software is a par-

tial implementation of this component. Based on the design proposed by NASA

researchers a version of TSAFE was implemented at MIT [36]. Later on, as a part

of the NASA’s High Dependability Computing Project, TSAFE software was inte-

grated into an experimental environment at the Fraunhofer Center for Experimen-

tal Software Engineering, Maryland [69]. The TSAFE experimental environment

contains software artifacts including requirements specifications, design documen-

tations, source code (Java), as well as faults that can be seeded into various artifacts

for several versions of TSAFE.

We used a distributed client-server version called TSAFE III that performs the

following functions: 1) Display aircraft position, i.e., indicate where the aircraft is

located at a certain time, 2) Display aircraft planned route, i.e., indicate the route that

the aircraft intends to follow according to the flight plan, 3) Display aircraft future

projected route trajectory, i.e., display the probable trajectory that the aircraft will

follow, 4) Indicate conformance problems, i.e., indicate whether a flight is conform-
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Figure 4.6: TSAFE architecture

ing to the planned route or blundering.

The TSAFE III implementation consists of 21,057 lines of Java source code in

87 classes. Figure 4.6 shows the architecture of TSAFE III. The server stores the

trajectories of the flights in a flight database. The feed parser thread in the server re-

ceives updates of the locations of the flights periodically from the radar feed through

a network connection and updates the trajectory database. A computation compo-

nent in the server implements the trajectory synthesis and conformance monitoring

functions. The client implements the display functionality in a GUI. Multiple clients

can connect to the server at the same time via RMI. A timer thread at the server pe-

riodically prompts the clients to access the flight database to obtain the current data.

Reengineering TSAFE

We reengineered the TSAFE software as follows: 1) We identified all the synchro-

nization statements (synchronized, wait, notify, notifyAll) in the TSAFE

code and we also identified the shared data these statements are used to protect, 2)
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We developed the concurrency controllers implementing the synchronization pol-

icy required for accessing these shared data, 3) We replaced all the synchronization

statements in the TSAFE code with calls to the appropriate concurrency controller

classes. All the synchronization statements in the reengineered TSAFE code are in

the helper classes provided by the concurrency controller pattern.

Here we discuss one of the synchronization requirements and the concurrency

controller solution for that requirement. In TSAFE, the flight database is accessed

by multiple threads which may cause failures in its functionality if the threads are

not properly synchronized. For example, while the thread running the feed parser

is updating the trajectory database, a thread serving an RMI call from a client may

be reading it. If such an interaction occurs, an aircraft’s location may be displayed

incorrectly on the client GUI. Since the client GUI provides the interaction between

the human air traffic controllers and the TSAFE system, displaying incorrect infor-

mation on it could have disastrous effects. To prevent such synchronization problems

in Java programs, Java programmers declare the methods of such classes to be syn-

chronized. However, this is not an efficient solution for this case. If the methods of

the database are synchronized, then at any given time at most one client thread can

access the database. Since client threads never update the database, this synchro-

nization is unnecessary and may slow down the GUI displays. A more appropriate

synchronization policy for such cases is to use a reader-writer lock. Using a reader-

writer lock multiple readers can access a shared resource at the same time, but a

writer can access the shared resource only alone. A programmer can implement this

solution and protect the flight database with an RW controller. The programmer also
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needs to make sure that the appropriate methods of the reader-writer lock class are

called before accessing the database.

The flight database implementation in TSAFE is called RuntimeDatabase.

The methods of the RuntimeDatabase class were synchronized in the original

version. Two of these methods are: insertFlight, which updates the database

by inserting a flight, and selectFlight, which is used to read the information

about a flight. In the reengineered code the methods of the RuntimeDatabase are

not synchronized. During the reengineering process, we specified the constraints

on accessing the flight database based on the interface states of the RW controller

with a RuntimeDatabase Stub. (This class corresponds to the SharedStub in

the pattern diagram given in Figure 2.2). With the assertions in the methods, this

stub class specifies that, for example, a thread has to call w enter before calling

insertFlight and it has to call w enter or r enter before calling the method

selectFlight.

In the reengineered TSAFE code there are two concurrency controller classes.

One of them is the RW controller described above. The other one is a MUTEX con-

troller implementing a mutex lock with acquire and release actions. In the

reengineered TSAFE code, there are 2 instances of the RW controller and 3 instances

of the MUTEX controller protecting 6 shared data instances.

The interfaces of the two concurrency controllers we used while reengineering

TSAFE are shown in Figure 4.7. The interface of the MUTEX controller shown in

Figure 4.7(b) has two states: IDLE and CS with IDLE being the initial state. The

RW controller is the same concurrency controller we have used for the Concurrent
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Figure 4.7: Controller interfaces used in reengineered TSAFE

Editor. The interface of this controller shown in Figure 4.7(a) has three states with

IDLE being the initial state.

4.3 Verification of Concurrency Controllers

In this section, we present our modular and assume-guarantee style verification ap-

proach based on the concurrency controller pattern. The verification consists of two

steps: 1) Behavior verification: Verification of the properties of the concurrency

controller classes assuming that the user threads obey to the controller interfaces;

2) Interface verification: Verification of the threads that use the concurrency con-

trollers to make sure that they access the methods of the controllers and the shared

data in the order specified by the controller interfaces and the data stubs.

4.3.1 Behavior Verification

We verify the behavior of a concurrency controller using the Action Language Ver-

ifier [23]. We automatically translate the concurrency controllers written based

on the concurrency controller pattern into Action Language. The behavior veri-
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fication is based on the concurrency controller semantics and the projections dis-

cussed in Chapter 3, i.e, the transition system T (CC)(n), where n user threads and

CC = (Γ, IC, A, I) is the concurrency controller, and the projection function Π2.

(See Section 3.2 and Section 3.3.2 for more detail.)

Action Language Verifier (ALV) is an infinite state symbolic model checker and

can verify specifications with unbounded integer variables. ALV takes a specifi-

cation in Action Language and a set of Computation Tree Logic (CTL) formulas

as input. This model checker uses conservative approximation techniques such as

widening and truncated fixpoint computations to conservatively verify or falsify in-

finite state specifications with respect to the given CTL formulas [23].

We use the BB-RW controller discussed in Chapter 2 to demonstrate the verifica-

tion approach. An implementation of this concurrency controller (BBRWControl-

ler) with five actions and four controller variables is given in Figure 2.3. The

controller interface for BB-RW is given in Figure 2.6(a). Recall that the behavior of

a concurrency controller is specified using the instances of Action class in a guarded

command style, and the required execution order of these actions are specified with

its controller interface. Using this ordering and the definition of actions, each con-

troller action is automatically translated to the atomic actions of the Action Lan-

guage. The automatically generated Action Language specification for the BB-RW

is given in Figure 4.8.

An atomic action in the Action Language defines one execution step using current-

state values for the variables (denoted as unprimed variables) and next-state values

(denoted as primed variables). Our tool translates the guard expression to a formula
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module main()
integer nR; boolean busy; integer count;
parameterized integer size;
module BBRW()
enumerated pc {IDLE,READ,WRITE};
initial: nR=0 and busy=true and pc=IDLE;
r_enter: pc=IDLE and !busy and nR’=nR+1 and pc’=READ;
r_exit_0: pc=READ and true and nR’=nR-1 and pc’=IDLE;
r_exit_1: pc=READ and !(true) and nR’=nR-1 and pc’=IDLE;
w_enter_produce: pc=IDLE and nR=0 and !busy and count<size

and busy’=true and count’=count+1 and pc’=WRITE;
w_enter_consume: pc=IDLE and nR=0 and !busy and count>0

and busy’=true and count’=count-1 and pc’=WRITE;
w_exit_0: pc=WRITE and true and busy’=false and pc’=IDLE;
w_exit_1: pc=WRITE and !(true) and busy’=false and pc’=IDLE;
BBRW: r_enter | r_exit_0 | r_exit_1 | w_enter_produce

| w_enter_consume | w_exit_0 | w_exit_1;
endmodule
main: BBRW()| BBRW()| BBRW() | BBRW();

endmodule

Figure 4.8: Automatically generated Action Language specification for BB-RW

on current-state values, and the update expression to a formula on current-state and

next-state values. As an example, consider the blocking action w enter produce

in the BBRWController class. In the constructor, this action is defined with one

guarded command. The guard expression of this guarded command is (nR==0 &&

!busy && count>size), and the update expression is busy = true; count

= count + 1. In the interface of the controller the transition associated with

w enter produce changes the thread’s state from IDLE to WRITE. Using this infor-

mation, the translator constructs the atomic action w enter produce shown in the

automatically generated Action Language specification in Figure 4.8. A nonblock-

ing action in the concurrency controller class is translated into two atomic actions:
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one represents the execution when the guard is true, and the other represents the

execution when the guard is false. For example, the nonblocking w exit action in

the BBRWController class is translated into w exit 0 and w exit 1 in the Action

Language specification shown in Figure 4.8.

A controller specification in Action Language consists of a main module and

a submodule. Each instantiation of the submodule corresponds to a thread. The

variables of the main module correspond to the controller variables of the concur-

rency controller. In the above example, the main module has a submodule called

BBRW. Submodule BBRW models the user threads and corresponds to a process type

(a thread class in Java). Submodule BBRW has one local enumerated variable. This

enumerated variable (pc) keeps track of the thread state which is represented by a

state of the controller interface. This is the only information we need to know about

a thread to verify the controller implementation. A thread can be in one of the inter-

face states. Each instantiation of a module will create different instantiations of its

local variables.

Since Action Language Verifier can handle infinite state systems we are able

to verify concurrency controllers with unbounded integer variables (such as nR) or

parameterized constants (such as size). When a specification has a parameterized

constant it is verified for all possible values of, for example, size. Currently, the

variable types supported by the Action Language are integer, boolean, enumerated

and heap. Therefore, we have to restrict the controller variables to these types to

verify them with ALV (we use static integers as enumerated variables in the con-

troller implementations). On the other hand, since controller variables only need to
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store the state information required for synchronization, these basic types have been

sufficient for modeling concurrency controllers we have encountered so far.

Parameterized Verification

We use an automated abstraction technique, called counting abstraction [34], to ver-

ify the behavior of a concurrency controller with respect to arbitrary number of

threads. Implementation of counting abstraction for Action Language specifications

is presented by Yavuz-Kahveci et al. [105]. The basic idea is to define an abstract

transition system in which the local states of the threads (corresponding to the states

of the interface) are abstracted away, but the number of threads in each interface

state is counted by introducing a new integer variable for each interface state.

Given a concurrency controller CC = (Γ, IC, A, I) with an interface I =

(Q, q0, V, Σ, δ, F ), the parameterized transition system for that concurrency con-

troller T (CC)(p) = (ITp, STp, RTp), where p is a parameterized constant, is de-

fined as follows: The set of states of the parameterized system is defined as STp =
∏

γ∈Γ DOM(γ) ×
∏

cv∈CV DOM(cv) ∧ (
∑

cv∈CV cv = p), where CV is the set of in-

teger variables introduced by the counting abstraction. Each cv ∈ CV corresponds

to an interface state q ∈ Q and represents the number of threads in the interface state

q. The initial states and the transition relation of the parameterized system can be

defined using linear arithmetic constraints on these new variables [105]. Below is

the parameterized Action Language specification generated for BB-RW.

module main()
integer nR; boolean busy; integer count;
parameterized integer size;
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parameterized integer numInstance;
module BBRW()
integer IDLE,READ,WRITE;
initial: nR=0 and busy=true;
initial: IDLE=numInstance and READ=0 and WRITE=0;
restrict:numInstance>0;
r_enter: IDLE>0 and !busy and nR’=nR+1

and READ’=READ+1 and IDLE’=IDLE-1;
r_exit_0: READ>0 and true and nR’=nR-1

and IDLE’=IDLE+1 and READ’=READ-1;
r_exit_1: READ>0 and !(true) and nR’=nR-1

and IDLE’=IDLE+1 and READ’=READ-1;
w_enter_produce: IDLE>0 and nR=0 and !busy and count<size

and busy’=true and count’=count+1
and WRITE’=WRITE+1 and IDLE’=IDLE-1;

w_enter_consume: IDLE>0 and nR=0 and !busy and count>0
and busy’=true and count’=count+1
and WRITE’=WRITE+1 and IDLE’=IDLE-1;

w_exit_0: WRITE>0 and true and busy’=false
and IDLE’=IDLE+1 and WRITE’=WRITE-1;

w_exit_1: WRITE>0 and !(true) and busy’=false
and IDLE’=IDLE+1 and WRITE’=WRITE-1;

BBRW: r_enter | r_exit_0 | r_exit_1 | w_enter_produce
| w_enter_consume | w_exit_0 | w_exit_1;

endmodule
main: BBRW();

endmodule

In this parameterized specification, for example, the integer variable IDLE de-

notes the number of threads in the interface state IDLE. A parameterized integer

constant, numInstance, denotes the number of threads. This parameterized con-

stant is restricted to be positive. When the specification is verified with ALV the

results hold for any valuation of this parameterized constant (i.e. the results are

valid for any number of threads).

In the rest of this chapter, we call the Action Language specification generated by

using the counting abstraction technique as an abstract specification, and the speci-
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Table 4.1: Properties of the RW controller

RP1 AG(busy ⇒ nR = 0)

RP2 AG(busy ⇒ AF (¬busy))

RP3 AG(¬busy ∧ nR = 0 ⇒ AF (busy ∨ nR > 0))

RP4 ∀x AG(nR = x ∧ nR > 0 ⇒ AF (nR 6= x))

RP5 AG(pc = WRITE ⇒ AF (pc = IDLE))

RP6 AG(¬(pc1 = READ ∧ pc2 = WRITE))

RP7 AG(¬(pc1 = WRITE ∧ pc2 = WRITE))

RP8 AG(pc1 = READ ⇒ nR > 0)

RP9 AG(pc1 = WRITE ⇒ busy)

RP10 AG(WRITE > 0 ⇒ AF (WRITE = 0))

RP11 AG(¬(READ > 0 ∧ WRITE > 0))

RP12 AG(¬(WRITE > 1))

RP13 AG(WRITE = 1 ⇔ busy)

RP14 ∀x AG(READ = x ∧ READ > 0 ⇒ AF (READ 6= x))

RP15 AG(READ = nR)

fication generated without using the counting abstraction as a concrete specification.

Concurrency Controller Properties

In order to verify the concurrency controllers with ALV we need a list of proper-

ties to specify the correct behavior of the controllers. We allow the CTL properties

for the controllers to be either inserted directly to the generated Action Language

specification or written as annotations in the controller classes (which are then auto-

matically inserted into the Action Language translation).
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The properties for the RW controller are shown in Table 4.1. The properties RP1–

4 only refer to the controller variables. For example, the global property RP1 states

that whenever busy is true nR must be zero. The remaining properties refer to both

the controller variables and to the states of the threads. Note that the representation

of the thread state is different in the concrete and the abstract Action Language

specifications. The properties RP5–9 are for concrete specifications and refer to

concrete thread states. For example, the property RP5 states that whenever a thread

is in the WRITE state it will eventually reach the IDLE state. The properties RP10–15

are for the parameterized instances and refer to the integer variables which represent

the number of threads in a particular state. For example property RP15 states that

at any time the number of threads that are in the reading state is the same as the

value of the variable nR. Note that, two of the properties shown in Table 4.1 contain

universally quantified integer variables. We are able to check such properties using

ALV by declaring the universally quantified variables as parameterized constants.

Table 4.2 shows the properties for the MUTEX controller. The properties MP1

and MP2 only refer to the controller variables. The remaining properties refer to both

the controller variables and to the states of the threads. The properties MP3–7 are

for concrete specifications and refer to concrete thread states. The properties MP8–

12 are for the instances with counting abstraction and refer to the integer variables

IDLE and LOCKED which represent the number of threads in the interface state IDLE

and LOCKED, respectively.

Table 4.3 shows the properties we have verified using ALV on the rest of the

concurrency controllers that we have used in the Concurrent Editor and that are in-
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Table 4.2: Properties of the MUTEX controller

MP1 AG(busy ⇒ AF (¬busy))

MP2 AG(¬busy ⇒ AF (busy))

MP3 AG(pc = LOCKED ⇒ AF (pc = IDLE))

MP4 AG(¬(pc1 = LOCKED ∧ pc2 = LOCKED))

MP5 AG(pc = LOCKED ⇒ busy)

MP6 AG(¬busy ⇒ pc = IDLE)

MP7 AG(¬(pc1 = LOCKED ∧ pc2 = LOCKED))

MP8 AG(LOCKED > 0 ⇒ busy)

MP9 AG(¬busy ⇒ IDLE > 0)

MP10 AG(LOCKED > 0 ⇒ AF (IDLE > 0))

MP11 AG(!(LOCKED > 2))

MP12 AG(LOCKED ≥ 0 ∧ LOCKED ≤ 1)

troduced in Chapter 2. The concurrency controllers given in this table are as follows.

AIRPORT is the concurrency controller for an Airport Ground Traffic Control simu-

lation program mentioned in Section 2.1.2, BB is a bounded buffer, BB-MUTEX is a

bounded buffer with a mutex lock, BB-RW is a bounded buffer with a reader-writer

lock, and BARRIER is a controller for barrier synchronization. Note that, the con-

troller BB-MUTEX should also satisfy the properties of MUTEX. The property given

in the Table 4.3 is an additional property tailored for BB-MUTEX. Similarly, BB-RW

should satisfy the properties of RW and the two additional properties given in this

table.
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Table 4.3: Properties of the remaining concurrency controllers

Controller Property

BB AG(count ≥ 0 ∧ count ≤ size)

BB-MUTEX ∀x AG((count = x ∧ LOCKED > 0) ⇒ AX(count = x))

BARRIER ∀x AG((HUNG = x ∧ count < limit) ⇒ AX(HUNG ≥ x))

BB-RW ∀x AG((nR > 0 ∧ count = x) ⇒ AX(count = x))

BB-RW-2 ∀x AG(¬busy ∧ count = x ⇒ AX(count 6= x ⇒ busy))

AIRPORT AG(numRW16R ≤ 1 ∧ numRW16L ≤ 1)

AIRPORT-2 AG(numC3 ≤ 1)

Behavior Verification Results

We applied the presented behavior verification technique with ALV for the concur-

rency controllers introduced in Chapter 2 and for the concurrency controllers used

in the Concurrent Editor and TSAFE. Table 4.4 shows the ALV performance for

two generated instances of each these concurrency controllers: one concrete in-

stance with 2 threads and one parameterized instance using counting abstraction.

The verification results for the parameterized instances are stronger compared to

the concrete cases since they indicate that the verified properties hold for arbitrary

number of threads. We verified all of the associated properties given above with

ALV for each concrete and parameterized concurrency controller instance. In this

table, the columns Time and Memory show the time and memory consumed for the

verification of concrete instances without any faults. The last two columns (P-Time

and P-Memory) show the time and memory consumed for the verification of the
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Table 4.4: Behavior verification performance of concurrency controllers for con-

crete instances with 2 threads and for parameterized instances

Instance Time (s) Memory(MB) P-Time(s) P-Memory(MB)

RW 0.17 1.03 8.10 12.05

MUTEX 0.01 0.23 0.98 0.03

BARRIER 0.01 0.64 0.01 0.50

BB-RW 0.13 6.76 0.63 10.80

BB-MUTEX 0.63 1.99 2.05 6.47

AIRPORT 0.51 45.57 0.83 61.50

parameterized instances.

In these experiments, the behavior verification took a small amount of time and

used a fraction of the memory. The reason is that the Action Language specifica-

tions generated from the concurrency controllers are quite simple. Note that, there is

no model extraction to generate these specifications since the Controller classes

encode the concurrency behavior explicitly, hence serve a model for the synchro-

nization policy. Therefore, there are no irrelevant details in the generated Action

Language specifications. Moreover, there are no environment generation for the

concurrency controllers because of the ControllerStateMachine classes. The

developer has implemented the most general acceptable call sequences to the con-

currency controller, which is the environment of the concurrency controller.
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4.3.2 Interface Verification

During interface verification, we check that the assumption of the behavior verifi-

cation is satisfied by the user threads of the concurrency controllers: each thread

that uses a controller obeys the interface of that controller. In Chapter 3, we have

discussed the formalizations for this verification and the thread interface correctness

concepts. The threads should follow the action orderings defined at the interfaces

of the concurrency controllers and should access the shared data protected by these

controllers at the allowed interface states specified in the data stubs. In the same

Chapter, we have explained how to perform interface verification with JPF. When

there is an interface violation, JPF outputs a counter-example execution trace that

leads to the violation. We have also explained that such verification can be per-

formed on each concurrent thread separately with the thread isolation techniques.

In this section, we first illustrate the thread isolation on the Concurrent Editor and

TSAFE. Then we show the interface verification results for each concurrent thread

in both examples.

Both TSAFE and Concurrent Editor are comprised of a server node and a client

node. First we present the thread isolation for TSAFE, and then we continue with

the thread isolation for the Concurrent Editor.

The TSAFE’s client node is a program that consists of a main thread and two

implicitly created threads. The main thread instantiates the GUI objects and estab-

lishes RMI connection to the TSAFE server. The implicitly created threads are the

event thread that handles GUI events and the RMI thread that handles incoming RMI

events triggered by the server. The environment of the main thread are modeled only
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GUI component stubs and a stub for the java.rmi.Naming class both of which are

provided by our framework as generic stubs. The event thread is isolated with GUI

component stubs and an automatically generated driver (see Section 3.4 in Chapter

3). This driver instantiates GUI component stubs and creates all possible GUI events

to the event thread. Since TSAFE’s client has a large number of GUI components

and JPF exhausts memory for all possible event lengths, this driver only generates all

possible GUI event sequences of length 2. The client node has 2 RMI operations and

4 RMI events. These RMI operations and events are modeled with an automatically

generated RMI stub and RMI driver (see Section 3.4 in Chapter 3). The generated

driver registers an RMI stub of the TSAFE server node, and instantiates the client

node. Then it produces all possible RMI events for all possible event sequences.

The TSAFE server is a program with two implicitly created threads, a main

thread, and an explicitly created thread. The implicitly created threads are the RMI

threads and the event thread. The explicitly created thread is the feed parser thread

which reads messages from a socket and updates the flight database. The main

thread creates a set of GUI components and instantiates the main application. The

main thread does not launch the actual TSAFE application. The launching is done by

clicking a Launch button in the GUI. Only after this click event an RMI connection

and a feed socket is opened. In other words, the event thread performs the launch.

Since this task does not involve concurrency, we have omitted these operations while

creating the environment of the event thread. The other responsibility of the event

thread in the server node is to handle the events created by a timer. Whenever a

timer event occurs, all of the registered TSAFE clients are notified. Therefore, the
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event thread driver first finds the Timer object, and then calls its registered listener

in an infinite loop. The other explicit threads are the RMI threads, one per client.

While modeling an RMI thread, we have modified the generated driver due to the

launch mechanism in the server component and our objective of not modifying the

application code. We have inserted a code that finds the launch button and sends

a click event into the RMI driver. Finally, the feed parser thread is isolated with

thread creation operation stubs and socket operation stubs. The feed parser thread is

created at launch by the event thread and uses TCP sockets to get data supplied by

an external feed source. We have modeled this external feed source by applying the

TCP modeling methodology (see Section 3.4 in Chapter 3).

The client node of Concurrent Editor contains a main thread, two implicit threads,

and explicitly created worker threads. The main thread does not modify any shared

data. This thread only instantiates the client application and opens an RMI connec-

tion. The main thread is isolated with GUI component stubs and RMI connection

stubs, similar to the isolation of the main threads above. The isolation of the event

thread is achieved with a driver that produces all possible GUI events for the event

sequence of length at most 2. The RMI thread is responsible for serving 5 different

RMI event types. The RMI driver produces all possible event sequences with these

event types. The rest of the threads are worker threads. Note that these threads share

the same class definition. Therefore, we can perform interface verification on one

worker instance and generalize the result for all worker threads since we reflect the

influences of other threads with isolation process. The worker threads are isolated

with thread creation operation stubs and concurrency controller interfaces which are
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used for isolation of all threads.

The server node of Concurrent Editor has only a main thread and an RMI thread

per client. The isolation of these threads is similar to the preceding discussion. The

RMI thread, however, is different from the other RMI threads discussed above. This

RMI thread serves the RMI events for two types of remote objects. One is the server

object in the collaboration framework used. The remote call to this object creates 7

kinds of RMI events. The other one is the remote RW controller. The remote call to

this object creates 4 kinds of RMI events.

After the thread isolation, we performed interface verification on each thread

separately. Table 4.5 shows the JPF performance for interface verification of each

isolated thread. The first 3 columns show the results for Concurrent Editor threads

and the last 3 columns show the results for TSAFE threads. The threads of Concur-

rent Editor are denoted with the prefix CE and the threads of TSAFE are denoted

with the prefix T. The server threads are labeled with Server and the client threads

are labeled with Client. For example TServer-Feed denotes the feed parser thread at

the server node of TSAFE.

During the interface verification of Concurrent Editor we have discovered several

interface violation errors. One group of these errors was caused by not calling the

correct controller method before accessing the shared data. Another group of errors

was a violation of the controller call sequence because of the incorrectly handled

exception blocks. This experiment shows the necessity of the interface verification

and also shows that such errors can be captured in a realistic system such as the Con-

current Editor. The interface violations on TSAFE experiments will be discussed in
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Table 4.5: Interface verification performance with thread isolation

Concurrent Editor TSAFE

Node-Thread Time(s) Memory(MB) Node-Thread Time(s) Memory(MB)

CEServer-Main 2.77 3.20 TServer-Main 67.72 17.08

CEServer-RMI 185.85 67.14 TServer-RMI 91.79 20.31

CEClient-Main 2.92 3.87 TServer-Event 6.57 10.95

CEClient-RMI 229.18 127.94 TServer-Feed 123.12 83.49

CEClient-Event 1636.62 139.48 TClient-Main 2.00 2.32

CEClient-Worker 19.47 5.36 TClient-RMI 17.06 40.96

TClient-Event 663.21 33.09

Section 4.4. We will show our verification technique is scalable to even larger and

real systems such as TSAFE.

To demonstrate the effectiveness of our modular verification approach, we veri-

fied two of the concurrency controllers with JPF without using controller interfaces

as stubs. Table 4.6 shows two of these examples, BB-RW and AIRPORT (see Section

2.1). The interfaces of these controllers are given in Figure 2.6 in Chapter 2. For

this experiment, the user threads are kept simple. The threads execute concurrency

controller actions and invoke the shared stub methods in an infinite loop. There are

no other computations. In this experiment, the threads obey the controller interfaces.

We used both depth-first and breadth-first search heuristics of JPF. The column la-

beled TN-S shows the number of user threads and the buffer size (for BB-RW). The

memory usage is shown in the column labeled M, and the execution time is displayed

in the column labeled T. For the BB-RW case it is not possible to verify the original
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specification using a program checker such as JPF since the size of the buffer is an

unspecified constant. To evaluate the performance of JPF we picked a fixed buffer

size in the experiments reported in Table 4.6. JPF runs out of (512MB) memory

(denoted by ↑) for buffer size 5 and 2 user threads for both heuristics because of

the state space explosion. For the AIRPORT case the performance of JPF drops dra-

matically when the number of user threads increases because of the increase in the

number of possible interleavings. JPF runs out of 512MB memory for 4 user threads

for this example. On the other hand, the presented interface verification for the very

same threads is performed successfully without exhausting the memory. The threads

of BB-RW are verified in 2.74 seconds and used 1.43 MB memory. The threads of

AIRPORT are verified in 3.33 seconds and used 2.15 MB memory. When using con-

troller interfaces as stubs and thread isolation, the reachable state spaces become

finite and we do not have to consider all possible thread interleavings. Therefore,

we have achieved a significant state space reduction; thus, a dramatic improvement

in the efficiency of the interface verification.

4.3.3 Finding the Shared Objects

The verification approach presented in this chapter relies on the assumption that the

programmer knows all of the shared data that are accessed by more than one thread

and protects them with a concurrency controller. When the programmer fails to

identify all of the shared data, the verification results will not be helpful. Similar

errors happen in standard Java programming when programmers do not use the Java

synchronization primitives to protect access to shared objects. While reengineering
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Table 4.6: Performance of JPF without using interfaces as stubs

DFS BFS

Instance TN-S T(s) M(MB) T(s) M(MB)

BB-RW 2 – 1 23.65 23.81 48.67 17.11

BB-RW 2 – 2 63.89 57.53 161.11 55.58

BB-RW 2 – 3 174.35 150.11 505.76 141.28

BB-RW 2 – 4 520.71 333.06 1542.68 329.13

BB-RW 2 – 5 ↑ ↑ ↑ ↑

BB-RW 3 – 2 ↑ ↑ ↑ ↑

AIRPORT 2 25.79 24.61 57.39 23.59

AIRPORT 3 1430.44 329.71 880.37 309.71

AIRPORT 4 ↑ ↑ ↑ ↑

TSAFE we found such an error where a shared variable used for RMI connection

was not synchronized. We fixed this error by introducing a mutex controller. Such

situations can be handled with an escape analysis technique. Escape analysis tech-

niques are used to identify the objects which escape from a thread’s scope and be-

come accessible by another thread. Such analysis can be used to identify the objects

which need to be protected.

Consider the following example with two threads sharing a DataBuffer pro-

tected by a BB-RW controller. (The concurrency controller and the data buffer im-

plementations are given in Section 2.1.1.)

class Th1 extends Thread{
private DataBuffer buffer;
private BBRWInterface controller;
....
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public void run(){
....
java.lang.Object obj=new Object();
controller.w_enter_produce();
buffer.put(obj);
controller.w_exit();
....

}
}
class Th2 extends Thread{

private DataBuffer buffer;
private BBRWInterface controller;
....
public void run(){
....
controller.w_enter_consume();
Object obj=buffer.take();
controller.w_exit();
....

}
}
class MainClass {

....
public static void main(String args[]){
....
DataBuffer buffer=new DataBufferImpl(size);
BBRWInterface controller=new BBRWController();
....
t1=new T1(buffer, controller);
t2=new T2(buffer, controller);
t1.start(); t2.start();

}
}

In this example, the object pointed by obj is shared and the programmer has

failed to protect it by a concurrency controller. (This situation is explained in the

next discussion.) The escape analysis tools we use identified the following objects

that may escape from a thread’s scope: 1) the DataBufferImpl instance created

by the main thread, including the internal data array used in the implementation
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of this buffer and the argument of the insert method of this object, 2) the con-

troller BBRWController, including the Action instances, the GuardedCommand

instances, exception objects, and the vector holding the guarded commands, 3) the

object created by the Th1 instance in the run method, which is the same as the ar-

gument of insert method of the buffer, and 4) system objects that are instantiated

once and only read by the threads such as java.security.Permission objects.

The escape analysis techniques we investigated so far [19, 60] either do not scale

to programs as big as TSAFE and Concurrent Editor or identify too many objects as

shared. We think that this is a promising direction for future research.

How to handle Collections

When the shared data are collections (such as a vector, set, or a buffer whose ele-

ments are also objects), using a concurrency controller to protect only the collection

instance is not sufficient. The shared collections may cause other objects to become

shared as well. When an object is inserted into a shared collection by one thread, an-

other thread can get the same object from that collection. The example presented in

the preceding discussion shows an example for this situation. Because of the shared

collection DataBuffer, obj becomes a shared data.

The objects that become shared through a collection should also be protected.

One solution is to protect them with new controller instances, use shared stubs

to define the access rules, and use the stubs only for these instances during inter-

face verification. For the above example, we implement an ObjectStub that has

one stub method for every method of java.lang.Object that asserts when the
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method can be executed. This stub class corresponds to SharedStub in Figure 2.2.

Finally, before interface verification, we change the creation of obj statement exe-

cuted by t1 to obj=new DateStub(controller); without changing the other

java.lang.Object instantiations. In fact, this procedure is followed for all shared

data classes where not all of their instantiations are shared by multiple threads.

4.4 Experimental Study with Fault Seeding

We conducted an experimental study with the goal of investigating the effectiveness

of the presented DFV approach on safety critical air traffic control software. For this

study we used the reengineered TSAFE implementation explained in Section 4.2.

We created 40 new versions of the TSAFE source code by fault seeding. The seeded

faults were created to resemble the possible errors that can arise in using the concur-

rency controller pattern such as making an error while writing a guarded command

or forgetting to call a concurrency controller method before accessing shared data.

We used both infinite and finite state verification techniques for detecting these faults

based on our modular verification strategy supported by the concurrency controller

pattern. The experimental study demonstrated the effectiveness of this modular ver-

ification strategy. During this experimental study we also developed a classification

of the faults that can be found using the framework presented in this chapter.

During the experimental study we performed on TSAFE, we have collaborated

with the developers of TSAFE testbed and formed two teams: 1) The University

of California at Santa Barbara (UCSB) team which consists of the developers of
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the presented verification technology and 2) The Fraunhofer Center for Experimen-

tal Engineering, Maryland (FC-MD) team which consists of the developers of the

TSAFE testbed.

Experiment Setup

First, the UCSB team reengineered the TSAFE software as described in Section 4.2

and generated the drivers and the stubs for thread isolation as explained in Section

4.3.2. The reengineering of the TSAFE software using the concurrency controllers

was done in 8 hours by the author of this dissertation (5.5 hours for the server com-

ponent and 2.5 hours for the client component).

The UCSB team sent the reengineered TSAFE code to the FC-MD team. The

FC-MD team created modified versions of TSAFE using fault seeding. The FC-

MD team created two types of faults: controller faults were created by modifying

the controller classes and interface faults were created by modifying the order of

the calls to the methods of the controller classes. Each modified version contained

either no faults, or one controller fault, or one interface fault, or one controller and

one interface fault.

There are four types of controller faults: 1) initialization faults (CI) which were

created by modifying the initialization statements in the controller classes, 2) guard

faults (CG) which were created by modifying a guard in a guarded command, 3)

update faults (CU) which were created by modifying an assignment in a guarded

command, 4) blocking/nonblocking faults (CB) which were created by making a

nonblocking action blocking or visa versa.
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Table 4.7: Faulty versions

Fault Type TSAFE Versions

CI v2, v4

CG v3, v6

CU v7, v13, v14, v16, v24, v25

CB v5, v21, v28, v34

IM v7, v8, v10, v11, v15, v22, v23, v29

ICV v1, v26, v27, v30, v31, v32, v33, v35–40

ICN v12, v17, v18, v19, v20

Interface faults are categorized as: 1) modified-call faults (IM) which were gen-

erated by removing, adding or swapping calls to the methods of the controllers. 2)

conditional-call faults which were generated by adding a branch condition in front

of a method call to a controller. The conditional-call faults are further categorized

as: a) program-variable faults (ICV) in which the created branch conditions used ex-

isting program variables, b) new-variable faults (ICN) in which the created branch

conditions used new variables that were declared during fault creation.

After the fault seeding, the FC-MD team sent the modified versions back to the

UCSB team. Table 4.7 shows the fault distribution for the forty modified versions

of TSAFE (v1–40). The modified version v9 did not contain any faults. The UCSB

team did not know the faults and which types of faults were in which version (or if

there was any fault in a version). However, the UCSB team knew about the fault

classification.
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Results and Discussion

We ran the experiments in three batches with 25 (v1–25), 10 (v26–35) and 5 (v36–

40) modified versions. After the verification of each batch both teams discussed the

results. This allowed us to improve the experimental setup during the study and also

helped us identify and focus on the weaknesses of the verification techniques.

As shown in Table 4.7, there were a total of 14 controller faults and 26 inter-

face faults in versions v1–40. When we verified the controllers in versions v1–40

with ALV we found 12 faults in the controllers. The faults that were not found by

ALV were the faults in versions v5 and v13 which were spurious faults, i.e., they

are modifications in the controller classes which do not cause any failures in the

controller behavior. For example, the modification in v13 changed an assignment in

the w exit action of the RW controller from busy=false to busy=!busy. How-

ever, this modification does not cause any failures since busy is always true when

w exit is called. The modification in v5 changed the release action in the MUTEX

controller from blocking to nonblocking. Again this modification does not change

the behavior of the controller since the guard of the release action is true, i.e., it

never blocks.

In this experiment, we generated three instances of RW and MUTEX controllers

for behavior verification: two concrete instances with 8 and 16 threads and a param-

eterized instance using counting abstraction. The verification and falsification of

these instances are displayed in Table 4.8. The instances are suffixed with 8, 16, and

P in the table to denote the concrete instances with 8 and 16 threads, and the param-

eterized instance, respectively. For the MUTEX controller we checked 7 properties
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Table 4.8: Verification and falsification performance for the concurrency controllers

of TSAFE

Controller Instance Verify Falsify

M(MB) T(s) M(MB) T(s)

RW-8 6.36 2.36 3.26 0.34

RW-16 24.13 27.41 10.04 1.61

RW-P 12.05 8.10 5.03 1.51

MUTEX-8 0.41 0.02 0.19 0.02

MUTEX-16 1.08 0.05 0.54 0.04

MUTEX-P 0.98 0.03 0.70 0.12

on the concrete instances (MP1–MP7 in Table 4.2) and 7 properties on the param-

eterized instance (MP1, MP2 and MP8–12 in Table 4.2). For the RW controller

we checked 10 properties on the concrete instances (RP1–10 in Table 4.1) and 11

properties on the parameterized instance (RP1–4 and RP11–17 in Table 4.1). Both

verification and falsification of the MUTEX controller is more efficient compared to

RW controller since it is a smaller specification with less number of variables. For

the parameterized instances, the performances of both verification and falsification

are typically between the concrete cases with 8 and 16 threads. Note that, even the

verification results for the parameterized instances are stronger compared to the con-

crete cases, for falsification the results of the concrete and parameterized instances

are equivalent. Both of them generate a counter-example behavior demonstrating

the fault. It is possible for the concrete instances to miss a fault. However, in our ex-

periments we did not observe this. Every fault that was found by the parameterized
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instance of a controller was also found by the instance with 8 threads. Hence, our

experiments indicate that concrete instances can be used for efficient and effective

debugging of the controller behavior. After eliminating all the faults by the concrete

instances, one could use the parameterized instances to guarantee correct behavior

for arbitrary number of threads.

Among the 26 interface faults, interface verification using JPF identified 21 of

them. Two of the faults (v22 and v33) that were not caught by JPF were spurious

faults. However, the faults in versions v18, v19, and v20 were real faults which

can cause failures but were not found by JPF. (We will discuss these faults in detail

below.) The verification performance of JPF for interface verification of each thread

of TSAFE is given on the rightmost three columns of Table 4.5 and the falsification

performance results are shown in Table 4.9. Main threads do not have access to any

controllers or shared objects so they cannot have any synchronization faults. We still

list the verification time for the main threads to indicate the time it takes JPF to cover

their state space. Typically falsification time with JPF is better than the verification

time. This is expected since in the presence of faults JPF quits after finding the first

fault without covering the whole state space. However, in some of the instances,

JPF consumed more resources for falsification since the inserted faults either caused

the execution of a piece of code which was not executed otherwise, or created new

dependencies which increased the range of values used in the environment. Still,

overall, falsification performance is better than the verification performance, espe-

cially for the more challenging verification tasks such as the TClient-Event thread

and the TServer-Feed thread.
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Table 4.9: Thread falsification performance

Node-Thread M(MB) T(s)

TClient-Main – –

TClient-Event 12.2 15.63

TClient-RMI 42.64 10.12

TServer-Main – –

TServer-Event 9.56 6.88

TServer-RMI 24.74 29.43

TServer-Feed 94.72 18.51

Fault Categorization: One of the outcomes of this experimental study was a clar-

ification of the types of faults that can be verified using the presented approach. For

example, during behavior verification we only check for errors in the initialization

statements, guards, updates and blocking/nonblocking declarations. If a program-

mer changes the predefined helper classes (such as the Action class) and makes an

error, the presented approach cannot find such an error. However, such errors can be

avoided by using the automated optimization step since that step only uses the ini-

tialization statements, guards, updates and blocking/nonblocking declarations, i.e.,

the parts verified during behavior verification.

Completeness of the Controller Properties: Another problem we identified dur-

ing the experimental study was the difficulty of listing all the properties that are

relevant to the behavior of a controller. The initial set of properties we had about

concurrency controllers was all about the controller variables did not relate the in-

terface states to the variables of the controllers. During the experimental study we
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quickly realized that we needed to specify more properties to find all faults that can

be introduced. Eventually, the set of properties we identified found all the seeded

faults; however, they are not guaranteed to find all possible faults. Our experience

in this experimental study suggests that one could test the completeness of a set of

properties for a controller by inserting faults to the controller and checking the mod-

ified controller with respect to the specified properties as we did in this experimental

study. This is similar to mutation testing for measuring the effectiveness of a test

set.

Difficulty of Finding Deep Faults: Finally, we would like to discuss the only real

faults that were missed by the presented verification approach: the interface faults in

versions v18, v19, and v20. The versions v17, v18, v19, and v20 were all created by

adding a branch condition in front of a method call to a controller. The added branch

condition tests if the value of a variable is less than a constant. If not, the call to the

controller method is skipped. The variable in the branch condition is initialized to

zero and is incremented every time the control reaches the inserted branch condition.

The only difference between the faults in versions v17, v18, v19, and v20 was the

constant value in the branch conditions which was 100, 1000, 10000, and 100000,

for versions v17, v18, v19, and v20, respectively. Interface verification with JPF

identifies the fault in v17 however misses the faults in v18, v19, v20. Clearly, these

are convoluted faults. This fault type was suggested by the UCSB team as a way

to challenge the interface verification step. These faults demonstrate that there is a

limit to the depth of the faults that can be identified using explicit state verification

techniques without running out of memory. In order to deal with this type of faults
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symbolic analysis of the branch conditions may be necessary.

Thread Isolation: When we automatically isolate threads by generating environ-

ment models which allow maximum amount of nondeterminism, JPF runs out of

memory. The user needs to provide some guidance in limiting the input domains

and the input length. The dependency analysis we used was crucial for this task.

Without dependency analysis it is not possible to identify what part of the input may

be relevant to the synchronization behavior. One can approach this problem also

from the design for verification perspective by developing interfaces for threads.

We use the controller interfaces to model the environments of the concurrency con-

trollers and shared data. Similarly, one can think of using interfaces for modeling

the environments of threads.

4.5 Related Work

Assume guarantee style verification of software components has also been studied

by Pasareanu et al. [85] in which LTL formulas are used to specify the environment

(i.e., the interface) of a component. In our approach, on the other hand, the interface

of a controller is a finite state machine. The controller behavior is verified assum-

ing that the threads obey the finite state machines specifying the interface of that

controller.

Model checking finite state abstractions of programs has been studied by sev-

eral researchers [4, 25, 26, 37]. We present a modular verification approach where

behavior and interface checking are separated based on the interface specification
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provided by the programmer. Also, we use infinite state verification techniques for

behavior verification instead of constructing finite state models via abstraction.

Yavuz-Kahveci et al. [105] specify concurrency controllers directly in Action

Language. We eliminate the overhead of writing specifications in a specification

language by introducing the concurrency controller pattern. Also, the authors do not

address controller interfaces and interface verification to check the assumptions of

concurrency controller behavior on the code.

Magee et al. [71] model concurrent programs as a finite state Labeled Transition

System (LTS) written using a process algebra notation. The authors use a model

checker called the Labeled Transition System Analyzer (LTSA) to verify the con-

current behavior model using finite state verification techniques. These techniques,

however, cannot handle models with parameterized constants and unbounded vari-

ables and, most importantly, for arbitrary number of threads. Our approach can

handle infinite-state concurrency controllers which can not be modeled using the

LTSA approach. Note that the finite state machines we use to model the controller

interfaces only specify how the controller should be used by user threads, not the

controller behavior.

In Chapter 2 we have discussed related work regarding to the concurrency con-

troller pattern. The verification aspects of these works are also related to the DFV

approach presented here.
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Design for Verification of
Asynchronously Communicating
Web Services

This chapter presents a design for verification (DFV) approach for developing reli-

able web services based on the peer controller pattern. The focus is on composite

web services that consist of asynchronously communicating peers. In this frame-

work, our goal is to automatically verify properties of interactions among such peers.

The peer controller design pattern eases the development of such web services and

enables a modular, assume-guarantee style verification strategy. In this design pat-

tern, each peer is associated with a behavioral interface description, which specifies

how that peer interacts with other peers (see Section 2.2 in Chapter 2). The interface

of a peer can be viewed as a contract between that peer and other peers which in-

teract with it. These peer interfaces are finite state machines that are crucial for the

verification approach presented in this chapter. In addition to verification, these peer

interfaces are also used for automated BPEL specification generation to publish for
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interoperability.

In this chapter we show that if the developers use the peer controller pattern,

then by using model checking techniques, we can automatically check the proper-

ties of a composite web service (behavior verification) and the conformance of the

peer implementations to their interfaces (interface verification). The interface veri-

fication is performed with Java PathFinder [99] by using peer interfaces as stubs for

asynchronous communication components. This approach solves the environment

generation problem in this context and enables verification of each peer in isolation,

improving the efficiency of the interface verification significantly. The behavior ver-

ification is performed with the explicit and finite state model checker SPIN [58],

which allows us to model asynchronous messaging. We check safety and liveness

properties of the composite web service specification using the conversation model

[46] (see Section 2.2.3).

Since SPIN is a finite state model checker, the size of the message queues needs

to be bounded. Such bounded verification guarantees correctness only with respect

to the set bounds. Moreover, model checking a composite web service that commu-

nicates asynchronously with unbounded queues is undecidable [46]. Note that, this

is not just a theoretical problem. Asynchronous messaging is supported by messag-

ing platforms such as Java Message Service (JMS) [64], Microsoft Message Queuing

Service (MSMQ) [77], and Java API for XML Messaging (JAXM [63]) where the

message queues are not bounded.

We adapt the synchronizability analysis proposed by Fu et al. [47] to our frame-

work in order to verify properties of composite web services in the presence of
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unbounded queues. A composite web service is called synchronizable if its con-

versation set does not change when asynchronous communication is replaced with

synchronous communication. We check the sufficient conditions for synchronizabil-

ity proposed by Fu et al. [47] based on the peer controller pattern. This automated

synchronizability check enables us both to reason about the global behavior with

respect to unbounded queues and to improve the efficiency of the behavior verifica-

tion (by removing the message queues, and hence, reducing the sate space, without

changing the conversation behavior).

In this chapter, after the presentation of the above modular verification approach,

we show that hierarchical state machines (HSMs) can be used to specify the peer in-

terfaces. HSMs provide a compact representation that reflects the natural hierarchy

of the service behavior and can specify concurrent executions of operations. We dis-

cuss how we extend the presented modular verification approach, automated BPEL

specification generation, and the synchronizability analysis to HSMs.

5.1 Composite Web Service Examples

To illustrate the DFV approach for web services based on the peer controller pattern,

we use the following examples: a Loan Approval service, a book and CD ordering

service, a Travel Agency service, and a Purchase Order Handling service.

Loan Approval service is explained in Section 2.2.1 in Chapter 2. A brief sum-

mary of this example is as follows. A customer requests a loan for some amount.

If the amount is small, the loan request is approved. For large amounts, a risk as-
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Figure 5.1: Peer interfaces of Loan Approval service

sessment service decides a risk level. The loan request is approved when the risk

level is low and denied when the risk level is high. The Loan Approval service is

composed of three peers: CustomerRelations through which customers make loan

requests, LoanApprover that realizes the loan service, and RiskAssessor that calcu-

lates and provides risk information. The peer interfaces of these peers are given here

in Figure 5.1 again for convenience.

The second example is a composite web service (BookCD Order) where a client

can order several books and CDs that are delivered by a supplier service. The client

peer places arbitrary number of CD and book orders. After ordering the products,

the client requests a checkout. The supplier calculates the total price and sends a bill

to the client. Client sends the payment and gets a receipt from the supplier. This

example is composed of two peers, Client and Supplier peers. The messages that are
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exchanged among these peers are: orderBook, orderCD, CheckOut, Bill, Payment,

and Receipt. These messages have a number of fields (attributes); however, none

of them is a control attribute, which influence the communication logic (i.e. the

interface). The peer interfaces defining the contracts of these peers are shown in

Figure 5.2.

(b) Supplier(a) Client

!Payment ?Bill
!CheckOut

!orderBook!orderCD

?Receipt ?CheckOut
!Bill

?orderCD ?orderBook

?Payment
!Receipt

Figure 5.2: Peer interfaces of Book and CD Ordering service (BookCD Order)

The next example is the Travel Agency service. This service reserves a hotel,

a car and a flight according to a request coming from a customer. A travel agent

gets the travel information from the customer. The travel information is a number

of dates and vacation destinations. After getting this information, the travel agent

starts the accommodation and transportation reservations. These reservations are

made concurrently and do not have any dependency between them. The transporta-

tion reservation books a car and a flight if the customer wants a transportation reser-

vation. The bookings of the car and the flight also occur concurrently to complete

the task in a timely manner. A flight reservation could be one-way or round-trip de-

pending on the request. Finally, an itinerary is sent to the customer. Travel Agency

is composed of five peers: Customer, TravelAgent, CarReserve, HotelReserve, and

FlightReserve. The Customer peer provides the information about the customer
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request to the TravelAgent with the place, date, process, transportResv, and trans-

portNoResv messages. The TravelAgent arranges reservations according to the re-

quests of the Customer and responds to the Customer with the travelInv message.

The other three services perform specific reservation requests. The HotelReserve

communicates using the reqHotel, and hotelInv messages, the CarReserve using the

reqCar, and carInv messages and the FlightReserve using the reqFlight, and flight-

Inv messages. Among these messages, only the reqFlight and transportResv have

a control attribute, which influence the communication logic. The control attribute

of reqFlight message is a boolean roundTrip field, and the control attribute of the

transportResv message is an enumerated flight field whose domain is {roundtrip,

oneway}. Note that, it is quite tedious to define the peer interfaces for this exam-

ple with finite state machines because of the concurrent execution requirements. To

specify the interfaces of these peers, we use HSMs which will be discussed in Sec-

tion 5.5.

The last example is the Purchase Order Handling service described in the BPEL

1.1 specification [20]. In this example, a customer makes a purchase order to a ven-

dor. The vendor calculates the price for the order including the shipping fee, arranges

a shipment, and schedules the production and shipment. The vendor uses an invoic-

ing service to calculate the price, a shipping service to arrange the shipment, and

a scheduling service to handle scheduling. To respond to the customer in a timely

manner, the vendor performs these three tasks concurrently while processing the

purchase order. There are two control dependencies among these three tasks that the

vendor needs to consider: The shipping price is required to complete the final price
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calculation, and the shipping date is required to complete the scheduling. After these

tasks are completed, the vendor sends the final invoice to the customer. The web ser-

vice for this example is composed of five peers: CRelations, Purchasing, Shipping,

Scheduling, and Invoicing. Customers order products using the CRelations peer.

The CRelations peer communicates with the Purchasing peer which plays the role

of the vendor described above. The Purchasing peer responds to the CRelations

with a replyOrder message. The remaining services are the ones that the Purchasing

peer uses to process the product order. The Shipping peer communicates with re-

qShipping, and schedule messages, the Scheduling peer with productSchedule, and

shippingSchedule messages, and the Invoicing peer with initialize, shippingPrice,

and invoice messages. None of these messages have control attributes that influ-

ence this communication logic. Similar to the Travel Agency example, we will use

HSMs to define the peer interfaces for the Purchase Order Handling system due to

the concurrent execution requirements and dependencies.

In all of the composite web services described in this section, the communica-

tion among the peers is through asynchronous messaging. These services can pro-

cess more than one customer request at a time. Each customer request is processed

according to the associated control logic described above.

5.2 Conversations and Synchronizability

While analyzing the interactions of peers in a composite web service, we use the

conversation model [22, 46, 47] explained in Section 2.2.3 in Chapter 2. A conver-
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sation is the sequence of messages exchanged among peers, recorded in the order

they are sent. A conversation is complete if at the end of the execution each peer

ends up in a final state and each message queue is empty. For simplicity, we call a

complete conversation a “conversation” for the rest of this chapter. The notion of

a conversation captures the global behavior of a composite web service where each

peer executes correctly according to its interface specification, and every message

ever sent is eventually consumed. It is reasonable to assume, based on the messaging

frameworks provided by the industry [64, 77, 63], that no messages are lost during

transmission.

In Chapter 3, we have defined conversations generated by a composite web ser-

vice based on the peer interfaces. For example, one conversation generated by the

Loan Approval system is as follows: request(amount=large), check(amount=large),

risk(level=high), approval(accept=false). (The control attribute of a message is

written next to the message in parenthesis.) Another sample conversation is the

following which is generated by the BookCD Order service. orderCD, orderBook,

orderCD, CheckOut, Bill, Payment, Receipt. (The messages in the BookCD Order

service have no control attributes as discussed in Section 5.1.)

Using the conversation model, we analyze the interactions of a composite web

service by verifying properties on conversations generated by that web service through

model checking techniques. Fu et al. [46] discuss the extension of temporal logic

properties to specify properties of conversations. A composite web service satisfies

an LTL property if all the conversations generated by the service satisfy the property.

Consider the two services that generate the above conversations. During the
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execution of the Loan Approval service the input queue of each peer contains at

most one message. However, this may not always be the case such as the case with

BookCD Order service. The BookCD Order service specification has an infinite

state space when the input message queues are not bounded. In fact, model checking

conversations of a composite web service that communicates asynchronously with

unbounded queues is undecidable [46].

This problem is addressed by Fu et al. [46, 47]. A technique called synchro-

nizability analysis was developed to identify asynchronously communicating finite

state machines (which are the peer interfaces of a composite web service in this

context) which can be verified using finite state model checking techniques auto-

matically. Fu et al. present a set of sufficient conditions on the control flows of

these state machines, so that they generate the same set of conversations under both

the synchronous and asynchronous communication semantics. Since LTL proper-

ties are defined over conversations, if these synchronizability conditions are satis-

fied, the verification results using synchronous semantics hold for the usual asyn-

chronous semantics for web services. The composite web service is synchronizable

if it satisfies these conditions. In other words, if a composite web service is syn-

chronizable, we can model check the service with respect to conversation properties

by replacing asynchronous communication (with unbounded message queues) with

synchronous communication that does not change the conversation set generated by

the composite web service. Note that, verification of a system which consists of syn-

chronously communicating finite state machines is decidable since the state space of

the composed system is finite. In fact, the state space of the composed system can
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be constructed by taking the Cartesian product of the states of the individual state

machines.

We adapt the synchronizability analysis to our framework based on the peer con-

troller pattern in order to reason about interactions and verify conversation properties

with respect to unbounded message queues. In the following sections, we discuss

the synchronizability conditions and their realization in our framework in detail.

5.3 Verification of Composite Web Services

In this section, we present our modular and assume-guarantee style verification tech-

nique for a composite web service based on the peer controller pattern. Our goal is to

automatically verify conversation properties and to analyze the interactions among

the asynchronously communicating peers. The presented approach exploits the ex-

plicit peer interface definitions. The verification consists of two steps: 1) Behavior

verification: Verification of the global behavior of the composite system using the

conversation model assuming that the peers obey their peer interfaces. 2) Inter-

face verification: Verification of the peer implementations to make sure that each

peer conforms to its peer interface, which defines the order of messages the peer

can send and receive. This verification strategy solves the environment generation

problem for the peers and improves the efficiency of verification and hence, makes

automated verification of realistic web services feasible. We use the Loan Approver

service to illustrate the presented verification approach.
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5.3.1 Behavior Verification

We use the model checker SPIN [58] during behavior verification of a composite

web service written based on the peer controller pattern. The peer controller pat-

tern, presented in Section 2.2, dictates explicit implementations of peer interfaces

as state machines and implementations of message stubs that only preserve con-

trol attributes of a message instance. Since a peer interfaces define the behavior

of a peer and since the peer implementations assumed to obey their interfaces, we

can verify safety and liveness properties of a composite service by using only the

peer interfaces. The behavior verification is based on the peer controller semantics

and the projections discussed in Chapter 3, i.e., the transition system T (W ), where

W = (class(M), I1, I2, . . . , Ik) is a composite web service specification with k

peers and the peer interfaces I1, . . . , Ik, and the projection function Π3 (see Section

3.2.2 and Section 3.3.4 for details).

SPIN is an explicit and finite state model checker for concurrent systems. The

input to SPIN is a bounded model of a system written in Promela, which is the speci-

fication language of SPIN, and a set of LTL properties. SPIN focuses on proving the

correctness of process interactions. Processes can interact with each other through

shared variables and message passing through communication channels. Because of

this channel structure, which is suitable for modeling the asynchronous messaging

among the web services, we choose the model checker SPIN in behavior verification

for composite web services.

We have implemented a translator that takes the peer interface implementations

(corresponding to CommunicatorInterface in the pattern displayed in Figure
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2.12) and the message stubs (corresponding to MessageStub in the pattern) as in-

put, and automatically generates a specification in Promela. Here we explain this

translation with the aid of Loan Approval service, which comprise of three peers.

Given the message stub implementations and the three peer interface implementa-

tions, the translator generates a Promela specification with three process types; one

process type for each peer interface. The following is an excerpt from the generated

specification.

#define size 5
/*message names*/
mtype ={requestType, approvalType, nocheckType, checkType,riskType}

/*data domains*/
mtype ={undef1,small,large}//amount domain
mtype ={undef2,low,high}//level domain
...//other data domains

/*message types*/
typedef approval{ bool accept; }
typedef request{ mtype amount; }
...//other message types
message lastmsg;//holds the last message

/*channels*/
chan customerQ=[size] of {mtype,message}
chan approverQ=[size] of {mtype,message}
chan assessorQ=[size] of {mtype,message}

proctype LoanApprover(){
short state=0;
nocheck nocheckmsg; check checkmsg;
approval approvalmsg; risk riskmsg; request requestmsg;
message msg;
do
::state==0 ->
if
::approverQ?[requestType,msg]->/*receive*/

approverQ?requestType,msg;
requestmsg.amount=msg.requestmsg.amount;
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state=1;
fi

::...//other transitions
::state==3 ->

if
::riskmsg.level==low ->/*guardV*//*send*/

approvalmsg.accept=true;/*guardP*/
msg.approvalmsg.accept=approvalmsg.accept;
atomic{

/*update function*/
lastmsg.approvalmsg.accept=approvalmsg.accept;
customerQ!approvalType,msg; }
state=5;

::riskmsg.level==high ->/*guardV*//*send*/
approvalmsg.accept=false;/*guardP*/
msg.approvalmsg.accept=approvalmsg.accept;
atomic{

/*update function*/
lastmsg.approvalmsg.accept=approvalmsg.accept;
customerQ!approvalType,msg; }
state=5;

fi
::state==5 ->break; /*final state*/
od;

}
proctype CustomerRelations(){...}
proctype RiskAssessor(){...}
init{...}

The first part of this specification declares constants, types and global channels.

The message name domain is defined with mtype which is the enumerated type

in Promela. The domains of the control attributes are defined similarly. The mes-

sage types are declared as type constructs (typedef) holding the values of control

attributes. The global variable lastmsg holds the last message transmitted. This

variable is of type message which combines all the message types defined. The

global channel variables are the asynchronous communication channels simulating

the input message queues of the peers. In this example, the size of the channels is re-
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stricted to 5, which is given as an input to the specification generator. These channels

are defined to carry elements consisting of a message name and a message.

The second part is a set of process type definitions. In Promela, the proctype

keyword is used for defining a concurrent process. One concurrent process def-

inition is generated per peer. These definitions are used for defining the behav-

ior of a peer by implementing the state machine specified by the peer interface

CommunicationInterface. In the generated Promela code, each process defi-

nition has a local variable named state. This variable holds the current state of the

state machine. A process also has one local variable for each message type it sends or

receives. The body of a process is a single loop which nondeterministically chooses

an operation to execute depending on the state. At each state, there is a conditional

selection of sending, receiving and terminating operations. At verification time, one

of the operations whose enabling condition is true is selected nondeterministically.

The last part is the init block which instantiates the concurrent processes.

Let us consider the process type LoanApprover. The body of this process

encodes the finite state machine given in Figure 5.1(b). This excerpt shows one

example for each of the receiving, sending and terminating operations in that order.

State 5 is a final state of the loan approver peer. Therefore, when the state is

5, the loop is terminated. When the state is 0, the process has a receive choice.

If there is a request type message in the approver queue, the receive operation is

enabled. This condition is implemented with approverQ?[requestType,msg]

statement which does not alter the queue contents. When this condition holds, the

request message is taken from the queue, the message contents are stored in the local
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request message variable, and the state is updated. This fragment corresponds to the

transition from state 0 to state 1 with ?request in Figure 5.1(b).

When the state is 3 the process has two send choices. The first choice corre-

sponds to the send transition with an approval message class and a guarding con-

dition g = gv ∧ gp where gv ≡ vrisk.level = low and gp ≡accept=true. This

guarding condition is described in the communication stub of the loan approver peer

as last risk.level()==low for guardV and as approval.accept() ==true

for guardP (see Section 2.2.4). This Promela code fragment checks the risk level,

sets the accept field of the approval message to true, and constructs a message to

be sent. Next, atomically lastmsg is updated and the approval message is sent. Fi-

nally, the state is updated. The second choice corresponds to the send transition with

approval message class where the guarding condition is gv ≡ vrisk.level = high and

gp ≡ accept=false.

Using this automatically generated specification, we can check the LTL proper-

ties about the global behavior of the composite web service using the conversation

model. The set of atomic properties are the predicates on the messages. LTL prop-

erties are constructed from atomic properties, boolean logic operators (∧, ∨, ¬ ) and

temporal logic operators (G: globally, F: eventually, U: until). An example property

for the Loan Approval service is as follows: “Whenever a request message with a

large amount is sent, eventually an approval message (with accept or reject) will be

sent.”

SPIN is an explicit state model checker, and therefore, the sizes of the channels

need to be bounded. For example, in the above Promela specification the sizes of
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the channels are bounded with the size constant. Bounding the sizes of the com-

munication channels, however, poses a problem since the verification results only

hold as long as the channel sizes remain within the set bounds. Next, we address

this problem.

Behavior Verification with Unbounded Message Queues

Bounded verification using SPIN can only give developers a certain level of con-

fidence. It cannot ensure freedom of bugs with respect to the LTL properties we

are considering. While the general problem of modeling checking a composite web

service that communicates asynchronously with unbounded queues is undecidable

[46, 47], as noted in Section 5.2, we can identify the services that can be verified in

the presence of unbounded queues with synchronizability analysis. If a composite

web service is synchronizable, the service can be verified by replacing asynchronous

communication (with unbounded message queues) with synchronous communica-

tion without changing the conversation set [45].

Synchronizability analysis uses two sufficient conditions to restrict control flows

of the state machines: 1) synchronous compatibility and 2) autonomous condition.

Synchronous compatibility condition requires that, if we construct a state machine

which is the Cartesian product of the peer interfaces, there should not be a state in

the product machine in which one peer is ready to send a message, but the receiver

for that message is not in a state where it can receive it. The autonomous condition

requires that at any state, a peer has exactly one of the following three choices: 1)

to send, 2) to receive, or 3) to terminate. Note that the autonomous condition still
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allows nondeterminism. A peer can chose which message to send nondeterministi-

cally.

We have implemented these sufficient conditions for synchronizability based on

the peer controller pattern. Given the peer interface implementations with Communi-

cationInterface classes, we automatically check the synchronizability of the

composite service. If the composition is synchronizable, the Promela code with

synchronous communication is generated. Otherwise, the reason of the condition

violations is displayed. Note that, when the synchronizability conditions are not

met, bounded verification can still be used.

The Promela code generated for a synchronizable service has two differences

from the Promela code given above. First, the queue (channel) size is fixed to 0

which in Promela means that processes should synchronize when exchanging mes-

sages. The other difference is the implementation of the receive operations. Instead

of inquiring the queue contents, the messages are received first and the appropri-

ate action is performed depending on the message type. We need this modification

because when the channel size is 0, the channels do not store messages. Therefore

the inquiry peerQ?[msgtype, msg] always returns false. Below, we give parts of

the Promela specification generated from the peer interfaces of the Loan Approval

service for synchronous communication illustrating the difference from the previous

Promela code.

...//global definitions

/*channels*/
chan customerQ=[0] of {mtype,message}
chan approverQ=[0] of {mtype,message}
chan assessorQ=[0] of {mtype,message}
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proctype LoanApprover(){
...// local definitions

do
::state==0 ->
if
::approverQ?msgtype,msg; /*receive*/

if
::msgtype==requestType ->
requestmsg.amount=msg.requestmsg.amount;
requestmsg.fortest=msg.requestmsg.fortest;
state=1;

fi;
fi

::...//other transitions
::state==5 ->break; /*final state*/
od;

}
proctype CustomerRelations(){...}
proctype RiskAssessor(){...}
init{...}

With the aid of this automated synchronizability analysis, we can both reason

about the global behavior with respect to unbounded queues and improve the effi-

ciency of the behavior verification. Since the messages are not buffered, the state

space of the specification is reduced that can lead to a significant improvement in

the behavior verification.

5.3.2 Interface Verification

The goal of interface verification is to make sure that each peer implementation

conforms to its peer interface, which defines the order of messages the peer can

send and receive. In the loan approval service, for example, an approver thread

should not send a check message to the RiskAssessor before getting a loan request
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with a large amount. In other words, during interface verification, we check if the

assumption of the behavior verification is satisfied.

In Chapter 3, we have discussed the formalizations for the interface verification

and the interface correctness criterion. In the same Chapter, we have explained how

to perform interface verification with JPF by using CommunicationInterface

classes defining the peer interfaces via the provided StateMachine class. For each

peer, we use its peer interface implementation as a stub for communication con-

troller that realizes the asynchronous communication mechanism. Since these peer

interfaces are finite state machines and abstract the asynchronous messaging with

other peers, the efficiency of the interface verification is improved significantly.

In addition to verifying each peer implementation separately, we further improve

the efficiency of the interface verification by checking a peer implementation for one

session. Since, in the peer controller pattern, each session is independent and does

not affect other sessions, it is sufficient to check the peer implementations for one

session.

To perform the interface verification, the communication controller and message

instances are replaced with communication stub and message stubs by a source-to-

source transformation. With this transformation the asynchronous communication

mechanism, which cannot be handled by JPF, is abstracted away. However, we still

need to write a small driver to instantiate the service. The reason is that JPF requires

standalone programs as input, but a peer is a servlet which does not have a main

method. This simple driver class contains only a main method that consists of three

statements: 1) instantiating the communicator stub, 2) instantiating an application
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thread, and 3) starting the application thread. After these steps, the resulting program

is given to JPF to search for interface violations. Note that, using these stubs and

the driver we close the environment of a peer. Our verification approach solves the

environment generation problem and enables verification of each peer in isolation.

5.4 BPEL Generation

Given a composite web service whose peers are implemented based on the peer

controller pattern, we generate BPEL specifications from the peer interfaces auto-

matically. As discussed earlier, the peer interfaces are specified with finite state

machines. In this section, we present our automated BPEL generation from peer

interfaces.

Before creating BPEL files, our generator creates one WSDL with all message

type definitions and one WSDL per peer defining its port type, partner link types

and bindings. These WSDL specifications are used in BPEL files. Then, we create

one BPEL file per peer. The specification contains partner links definitions to access

other peers, variable declarations, and behavior description of the peer. In the vari-

able declaration, one variable per message type is defined to store the last message

content.

Here we give the mapping of send transitions and receive transitions to BPEL

activities. Consider the transitions originating from a state. If these transitions are

send transitions, the corresponding BPEL fragment consists of a switch clause

which has one case for each different send transition. The condition of case corre-
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sponds to the guardV expression (gv) of guarding condition of a send transition. The

inner activity of this case block contains an assignment which corresponds to the

guardP (gp) of the guarding condition, one invoke statement, and another assignment

statement that updates the state variable, in this order.

Consider the send transition from state 3 to state 5 with the label !approval

[risk.level=low/accept=true] shown in Figure 5.1(b). This is the send transition

(3,!approval, g, u, 5) where u is the update function and g = gv ∧ gp is the guard

condition with gv ≡ vrisk.level = low and gp ≡ accept = true in the Loan Ap-

prover service. The code generated for this transition is:

<case condition="getVariableData(’risk’, ’level’)=’low’">
<sequence>
<assign> <copy>

<from expression="’true’"/>
<to variable="approval" part="accept"/>

</copy> </assign>
<invoke partnerLink="CustomerRelations"

portType="ns1:CustomerRelationsPT"
operation="ns1:approval"
inputVariable="approval">

</invoke>
<assign> <copy>

<from expression="’5’"/> <to variable="state"/>
</copy> </assign>

</sequence>
</case>

In the case of receive transitions originating from a state, there are two kinds of

resulting BPEL code fragments. If there is a single receive transition, a receive

statement is generated. For example, for the transition from state 2 to state 3 with

the label ?risk in the LoanApprover interface, the generated code is:

<sequence>
<receive partnerLink="RiskAssesor"
portType="ns3:RiskAssessorPT"
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operation="ns2:risk" variable="risk">
</receive>
<assign> <copy>

<from expression="’3’"/> <to variable="state"/>
</copy> </assign>

</sequence>

If there are multiple receive transitions, we use the pick construct which has

one onMessage per receive transition. For example, the initial state (state 0) of

Figure 5.1(c), defining the interface of Risk Assessor peer, has two outgoing receive

transitions: one is targeted to state 1 with the label ?check, and the other is targeted

to state 2 with the label ?nocheck. The generated code fragment is:

<pick>
<onMessage partnerLink="LoanApprover"
portType="ns2:LoanApproverPT"
operation="ns3:check" variable="check">
<assign> <copy>
<from expression="’1’"/> <to variable="state"/>

</copy> </assign>
</onMessage>
<onMessage partnerLink="LoanApprover"
portType="ns2:LoanApproverPT"
operation="ns3:nocheck" variable="nocheck">
<assign> <copy>
<from expression="’2’"/> <to variable="state"/>

</copy> </assign>
</onMessage>

</pick>

When the interface is nondeterministic, we generate abstract BPEL processes.

There are two situations that requires nondeterminism: 1) when there exists both

send and receive transitions originating from one state, 2) when the guarding con-

ditions of the send transitions originating from one state are not disjoint. We create

nondeterminism by adding an extra variable, using only opaque assignments to this
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variable, and selecting the choices based on the value of this extra variable. Ac-

cording to the BPEL 1.1 specification, an opaque assignment to a variable sets a

nondeterministic value chosen from the value space of the variable.

The following is an excerpt from the BPEL specification generated for the peer

interface of LoanApprover given in Figure 5.1(a).

<process name="LoanApprover" ...>
<partnerLinks> ... </partnerLinks>
<variables> ...

<variable name="state" type="xsd:string"/>
<variable name="exit" type="xsd:string"/>

</variables>
<sequence>

...<!--receive loan request, and
set ’1’ to state and create and instance -->

<assign>
<copy><from expression="’no’"/> <to variable="exit"/></copy>

</assign>
<while condition="exit!=’no">

<switch>
<case condition="state=’1’">

<sequence>
...<!--send check or nocheck message -->
</sequence>

</case>
...<!--other choices -->
<case condition="state=’5’">

<assign><copy>
<from expression="’yes’"/>
<to variable="exit"/>

</copy></assign>
</case>

</switch>
</while>
</sequence>

</process>

The specification contains two special variables. The variable state represents

current state, and the variable exit is used for termination condition. The process
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Figure 5.3: Hierarchical state machines

description is a while loop that terminates depending on the value of exit. The

body of the loop selects a case block based to the value of state.

Each block contains a subactivity. If the interface state is specified as final, the

local exit variable is set. Otherwise, the corresponding send or receive activities

are performed whose code fragment construction is discussed above.

5.5 Verifiable Web Services with Hierarchical

Interfaces

Finite state machines are powerful enough to specify behavioral interfaces of typical

web services and they are suitable for automated reasoning. However, behavioral

interfaces represented as finite state machines may contain a large number of states

and may be hard to understand since they lack high-level structure. In this section,

we propose using hierarchical state machines (HSMs) to specify the peer interfaces.
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Figure 5.4: Peer interfaces for Travel Agency

With HSMs we achieve a compact representation that 1) reflects the natural hierar-

chy of the service behavior, 2) can specify concurrent executions of operations, and

3) is suitable for automated verification.

In this section, we will use the Travel Agency and Purchase Order Handling

services for illustration. These examples are introduced in Section 5.1. The HSMs

specifying the peer interfaces for the Travel Agency and the Purchase Order Han-

dling services are shown in Figures 5.4 and 5.5, respectively.

The class diagram in Figure 5.3 shows the structure of the HSMs. An HSM

state can either be an atomic state or a composite state with substates. There are

two types of composite states: And and Or states. In Figures 5.4 and 5.5, composite

states are shown as rectangles and atomic states are shown as circles. The substates

of And states are separated using dashed lines. Each Or state has a unique default

substate (shown with an arc without a source). Each state has an attribute called
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final which denotes if it is a final state (final states are shown with double lines).

We assume that each HSM has a root state at the top of the state hierarchy, which is

an Or state (we do not show this root state in the figures).

The transitions of an HSM are partitioned into send and receive transitions sim-

ilar to flat peer interfaces. Similar to send transitions of flat peer interfaces, the

send transitions of HSMs have guarding conditions which are specified with the

same syntax at the flat peer interfaces. Consider the Travel Agency service. Re-

call that, in this example, a flight reservation could be for a one-way or a round

trip flight depending on the request of the customer. To realize this requirement,

the TravelAgent peer has two send transitions that correspond to these two cases.

One of these send transitions is (x13, !reqFlight, g1, u1, x14) with the guarding con-

dition g1 = g1
v ∧ g1

p where g1
v ≡ vtransportResv.flight = oneway, g1

p ≡roundTrip

= false, attr(reqFlight) = {roundTrip}, attr(transportResv) = {flight},

and vtransportResv.flight is an interface variable of the peer interface of the Travel

Agent peer. The other send transition is (x13, !reqFlight, g2, u2, x14) with the guard-

ing condition g2 = g2
v ∧ g2

p where g2
v ≡ vtransportResv.flight =roundtrip and

g2
p ≡roundTrip = true.

Finally, in HSMs, dependency arcs can connect states to transitions. A transition

can only be taken if the current configuration of an HSM contains the states that are

the sources of all the dependency arcs that point to that transition (formal description

is given below). In Figure 5.5, there are two dependency arcs. One of them implies

that the transition from a9 to a10 can only be taken if the current configuration con-

tains the states a9 and a6. The other dependency arc implies that the transition from
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Figure 5.5: Peer interfaces for Purchase Order Handling

a13 to a14 can only be taken if the current configuration contains a13 and a7.

HSMs are a variation of Statecharts [52]. The differences are, in HSMs 1) the

transitions are triggered by the send or receive operations instead of events, 2) the

guarding conditions of transition are defined on message contents, and 3) depen-

dency arcs are used instead of predicates on states in the guards of the transitions.

We also restrict the HSMs so that: 1) the labels of the substates of an And state are

disjoint, 2) there are no transitions between the substates of an And state, and 3)

an HSM can leave a state only if that state is exit-ready which means that all of its

substates are final states.

The Travel Agency service is a composition of five peers, and one can specify the
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interfaces of these peers with five HSMs as shown in Figure 5.4. (For readability, the

guarding conditions for send transitions are not shown in the figure.) Let us consider

the peer interface of the TravelAgent given in Figure 5.4(a). The root state (which

is not shown in the figure and is an Or state) has three substates: x1, x2 and x19. The

states x1 and x19 are atomic states, x1 is a default state and x19 is a final state. The

state x2 is an And state and has two substates x3 and x4 which are Or states. The

substates of x3 are x5, x6 and x7. The state x7 is an And state and its substates are

x8 and x9 which are Or states.

HSMs provide a compact model which represents the natural hierarchy in the

interface behavior. Consider the peer interface of the TravelAgent peer given in

Figure 5.4(a). This interface is specified with 19 states (excluding the root state)

and 13 transitions. If we specify this interface with a flat finite state machine there

would be 35 states and 78 transitions.

The HSM Model

Here we define the HSM model formally. An HSM is a tuple I = (Q, C, c0, F, δ,

M, D) where Q is the set of states (including the root state), C is the set of config-

urations, c0 ∈ C is the initial configuration, F ⊆ C is the set of final configurations,

δ is the transition relation, M is the set of messages, and D is the set of dependency

arcs. We use class(M) to denote the set of message classes and for each message

m ∈ M we use class(m) to denote the message class of m. For each composite

state q ∈ S, we use sub(q) to denote its substates. For a substate q, super(q) de-

notes its superstate. We use sub+(q) and super+(q) to denote all the descendants
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and ancestors (respectively) of the state q in the state hierarchy. We also define the

following: sub∗(q) = sub+(q) ∪ {q} and super∗(q) = super+(q) ∪ {q}. Given a

state q, type(q) ∈ { Atomic, Or, And } denotes its type.

A configuration c ∈ C ∪Csub is a tree whose nodes are states from Q. We denote

the root node of a configuration c as root(c). We use C to denote the configurations

whose root is the root state, and the rest of the configurations are called subcon-

figurations, denoted by Csub. Given a configuration c and a state q that appears in

q, subconf(q, c) is the set of subtrees (subconfigurations) of c for which the root

node is a substate of q, i.e., c′ ∈ subconf(q, c) ⇒ super(root(c′)) = q. We use

subconf+(q, c) to denote all the subtrees of the state q in c. All configurations have

to satisfy the following constraints: 1) The root state of all the configurations in c

is root; 2) Children of a node in a configuration are substates of that node; 3) All

the leaf nodes in a configuration are Atomic states; 4) Each Or state in a configura-

tion has exactly one child which is one of its substates; and 5) Each And state in a

configuration has all of its substates as its children.

The transition relation δ is partitioned into send transitions δS and receive tran-

sitions δR. A send transition is of the form (r, !z, g, u, r′) ∈ δS where r ∈ Q is the

source state, r′ ∈ Q is the target state, z ∈ class(M) is the message class of the

message that is being sent, u is the update function similar to the update function in

peer interfaces with flat state machines, g = gv ∧ gp is the guarding condition, gv is

the condition defined on the contents of the latest instances of the messages that have

been transmitted, and gp is the condition defined on the contents of the message that

is being sent. A receive transition is of the form (r, ?z, g, u, r′) ∈ δR where r ∈ Q is
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the source state, r′ ∈ Q is the target state, z ∈ class(M) is the message class of the

message that is being received, u is the update function, and g is the guarding con-

dition that always returns TRUE. A dependency arc d ∈ D is a state-transition pair,

i.e., D ⊆ Q× δ. A transition can only be taken in a configuration which contains all

the states that are the source of a dependency arc that points to that transition.

In the initial configuration c0, all the states which are substates of an Or state

are default states. A configuration c is a final configuration (i.e., c ∈ F ) if all the

states in c which are substates of an Or state are final states. We call a state q in

a configuration c exit-ready if all the states in subconf(q, c) which are substates of

an Or state are final states. A configuration c is a final configuration if root(c) is

exit-ready. A transition from a state in a configuration can only be taken if that state

in that configuration is exit-ready.

The execution of an HSM starts from the initial configuration and continues by

transitioning to a next configuration of the current configuration until one of the fi-

nal states is reached. In Figure 5.7 we show the next configuration computation for

HSMs. Given a current configuration and a message, the takeReceiveTrans function

computes all the next configurations after receiving that message, and the takeSend-

Trans function computes all the next configurations after sending that message using

the recursive functions next and construct.

5.5.1 Interactions of Hierarchical Interfaces

In this section, we discuss the semantics of a composite web service based on the

peer controller pattern whose interfaces are defined with HSMs. In our model,
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takeSendTrans(m:Message, C:set of Configurations)
returns a set of Configurations

N : set of Configurations
for each c in C add all elements of next(c,m,“send”) to N

store the content of m as the latest transmitted message of its type
return N

takeReceiveTrans(m:Message, C:set of Configurations)
returns a set of Configurations

N : set of Configurations
for each c in C add all elements of next(c,m,“receive”) to N

store the content of m as the latest transmitted message of its type
return N

next(c:Configuration, m:Message, direction:String)
returns a set of Configurations

T : set of Transitions; R, N : set of Configurations
if direction = “send” then T := findSendTrans(c,m)
else T := findReceiveTrans(c,m)
if T 6= φ then

if type(root(c)) = Atomic or c is exit-ready then
for each t ∈ T where q′ is the target of t

find qa s.t. qa ∈ super∗(root(c)) ∩ super∗(q′)
and sub(qa) 6∈ super∗(root(c)) ∩ super∗(q′)

add construct(q′,qa) to R

return R

if T = φ and type(root((c)) = Atomic then return φ

for each c′ ∈ subconf(root(c),c)
N := next(c′,m,direction)
for each c′′ ∈ N

make a copy of c replacing c′ with c′′

add the copy to R

else if c is exit-ready then add c′′ to R

return R

Figure 5.6: Next configuration computation, part 1
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findSendTrans(c:Configuration, m:Message)
returns a set of Transitions

T : set of Transitions
for each t = (q1, !class(m), gv ∧ gp, u, q2) ∈ δS s.t. q1 = root(c)

if there is a dependency (qd, t) ∈ D s.t. qd is not in c then
continue

if the contents of the latest transmitted messages satisfy gv

and the contents of m satisfy gp then
add t to T

return T

findRecvTrans(c:Configuration, m:Message)
returns a set of Transitions

T : set of Transitions
for each t = (q1, ?class(m), g, u, q2) ∈ δR s.t. q1 = root(c)

if there is a dependency (qd, t) ∈ D s.t. qd is not in c then
continue

add t to T

return T

construct(qt,q:State) returns a Configuration
c: Configuration;
set root(c) to c
if type(q) = And then

for each q′ ∈ sub(q) add construct(qt,q′) to subconf(q,c)
else if type(q) = Or then

if q ∈ super+(qt)
find q′ ∈ sub(q) s.t. q′ ∈ super∗(qt)

else let q′ ∈ sub(q) be the default state
add construct(st,s′) to subconf(q,c)

else subconf(q,c) := φ

return c

Figure 5.7: Next configuration computation, part 2
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HSMs interact with each other by exchanging messages through FIFO queues. We

assume that each HSM is associated with an input message queue and the messages

are delivered without any error (i.e., no duplicate, lost or modified messages during

transmission). When a message m is sent from the peer i to the peer j, the message

m is inserted to the end of the input message queue of the peer j, and the configura-

tion of the peer i is updated according to the takeSendTrans function given in Figure

5.7. A peer receives a message by consuming the first element of its input mes-

sage queue and updates its current configuration according to the takeReceiveTrans

function given in Figure 5.7.

Formally, a composite service with hierarchical interfaces is a tuple HW =

(class(M), I1, . . . , Ik) where class(M) is a finite set of message classes, M is a

finite set of messages, k is the number of participating peers, for each 1 ≤ i ≤ k,

Ii = (Qi, Ci, c0i
, Fi, δi, Mi, Di) is an HSM defining the interface of peer i, and M =

⋃

1≤i≤k Mi.

We define the execution semantics of a composite service as a transition system

T (HW ) = (IT, CT, RT ) where CT is the set of configurations, IT ⊆ CT is the

set of initial configurations, and RT is the transition relation of the system. The set

of configurations is defined as CT = C1×Θ1×· · ·×Ck×Θk where k represents the

number of peers in the composition and Θi is the set of configurations of the input

queue of peer i.

We introduce the following notation. Given a configuration c ∈ CT and a peer

identifier i, c(C i) denotes the configuration of the peer interface Ii in configuration

c, and c(Θi) denotes the configuration of the input queue Θi in configuration c.

198



Chapter 5. Design for Verification of Asynchronously Communicating Web Services

The set of initial configurations of T (CS) is defined as

IT = {c | c ∈ CT ∧ (∀1 ≤ i ≤ k, c(Θi) = 〈〉 ∧ c(Ci) = c0i
)

We define the following relation for a send transition which sends a message m:

RT!m = {(c, c′) | c, c′ ∈ CT ∧ (∃1 ≤ i ≤ k, c′i ∈ Ii.takeSendTrans(m, ci)

∧c(Ci) = ci ∧ c′(Ci) = c′i ∧ (∀1 ≤ j ≤ k, j 6= i, c′(Cj) = c(Cj)))

∧receiver(m) = Ip ∧ c′(Θp) = append(c(Θp), 〈m〉)

∧(∀1 ≤ l ≤ k, l 6= p, c′(Θl) = c(Θl))}

We define the following relation for a receive transition which receives a message

m:

RT?m = {(c, c′) | c, c′ ∈ CT ∧ (∃1 ≤ i ≤ k, c′i ∈ Ii.takeReceiveTrans(m, ci)

∧c(Ci) = ci ∧ c′(Ci) = c′i ∧ (∀1 ≤ j ≤ k, j 6= i, c′(Cj) = c(Cj))

∧ first(c(Θi)) = m ∧ append(〈m〉, c′(Θi)) = c(Θi)

∧(∀1 ≤ l ≤ k, l 6= i, c′(Θl) = c(Θl)))}

Finally, the transition relation RT for the T (HW ) is

RT =
⋃

m∈M

(RT!m ∪ RT?m)

Having defined the execution semantics of a composite service whose peer in-

terfaces are HSMs, we can define the conversations generated by executions of a

composite service. An execution sequence exe = c0, c1, ... is a sequence of con-

figurations where for each i ≥ 0, (ci, ci+1) ∈ RT and c0 ∈ IT . The conver-

sation conv(exe) generated by an execution sequence exe is defined recursively
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as follows: The conversation conv(c0) is the empty sequence. The conversation

conv(c0, c1, ..., cn, cn+1) is equal to conv(c0, c1, ..., cn), m if there exists a queue

configuration Θj such that cn+1(Θj) = append(cn(Θj), 〈m〉), and it is equal to

conv(c0, c1, ..., cn) otherwise. A conversation is a complete conversation if in the

last configuration of the execution sequence each peer is in a final configuration and

all the message queues are empty.

5.5.2 Synchronizability Analysis for Hierarchical Interfaces

In this section we present a synchronizability analysis for composite web services

whose peer interfaces are specified as HSMs. This analysis checks the two sufficient

conditions for synchronizability on HSMs without flattening. Since, on average, the

number of states and transitions in an HSM are less than an equivalent flat finite state

machine, the analysis performed on HSMs is more efficient.

Checking Autonomous Condition

The autonomy checking algorithm is given in Figure 5.8. The base condition is that

given a state, all the transitions originating from that state should be either send

transitions or receive transitions. If this condition is satisfied, then we investigate

whether all of the substates of that state satisfy this condition as well.

The function simpleAutonomy in Figure 5.8 first checks this base condition. If

there are no failures, it examines the transitions whose source and target states do

not share the same superstate. For each composite state q, the transition type from q

should be the same as the transition type from its final substates to the states that are
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autonomy() returns boolean
for each q ∈ sub(root)

status := simpleAutonomy(q)
if status = “fail” return false
if q is final return finalStateCheck(q)

return true

simpleAutonomy(q:State) returns String
mystatus:String
mystatus := “none”
if there is a send transition from q then

mystatus := “send”
if there is a receive transition from q then

if mystatus = “send” then return “fail”
else mystatus := “receive”

for each q′ ∈ sub(q)
status := simpleAutonomy(q′)
if status = “fail” then return “fail”
if there exists a transition t from q′

s.t. target of t is not in sub+(q) then
if status = “send” and mystatus = “receive” then return “fail”
if status = “receive” and mystatus = “send” then return “fail”
if status 6= “none” then mystatus := status

return mystatus

finalStateCheck(q:State) returns boolean
if there exists a transition from q then return false
for each q′ ∈ sub(q)

if q′ is final and finalStateCheck(q′) = false then return false
return true

Figure 5.8: Autonomy check

not the substates of q. For example, adding a receive transition with source state a14

and target state a15 to the peer interface in Figure 5.5(a) would violate the autonomy.

On the other hand, adding a send transition with the same source and target states

does not violate the autonomous condition.
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synchronous(Peers: set of HSMs) returns boolean
inspect:set of Configuration arrays, a, b:Configuration array
sendConf, recvConf:set of Configurations, legal:boolean
inspect := φ

for each Ii ∈ Peers a[i] := Ii.c0

add a to inspect
while inspect 6= φ do

remove one element from inspect and write it to a

for each Message m ∈ M

for each Ii ∈ Peers
legal := false
sendConf := Ii.takeSendTrans(m, {a[i]})
if sendConf6= φ then

for each Ij ∈ Peers s.t. Ij 6= Ii

recvConf := Ij .takeReceiveTrans(m,{a[j]})
if recvConf 6= φ then

legal=true
for each sc ∈ sendConf

for each rc ∈ recvConf
let b be a copy of a

set b[i] to sc and b[j] to rc

add b to inspect
if legal=false then return false

return true

Figure 5.9: Synchronous compatibility check

The autonomy check algorithm first invokes the simpleAutonomy for all substates

of the root. If no failures are reported, the algorithm checks that there are no config-

urations in C that follow the configurations in the final configuration set (F ) of the

HSM in question. If no violations are found, the algorithm concludes that the HSM

is autonomous.
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Checking Synchronous Compatibility Condition

To check the synchronous compatibility of the peers in a composite web service, we

search for the illegal configurations in the Cartesian product of the peer interfaces.

The configurations of this product are tuples with the domain C1 × · · · × Ck where

k is the number of peers in the composition and C i is the configuration set of peer

i for 1 ≤ i ≤ k. Let ci denote the configuration for peer interface Ii at a product

configuration. A configuration in the product is illegal if Ii.takeSendTrans(m, ci)

returns a nonempty set while for all other peers Ij .takeReceiveTrans(m, cj) is empty.

The synchronous compatibility checking algorithm is given in Figure 5.9.

5.5.3 BPEL Generation from Hierarchical Interfaces

We have implemented a translator that takes HSMs defining the peer interfaces and

automatically creates a BPEL specification for each participant peer to publish. The

translator first synthesizes WSDL specifications, which are the connectivity con-

tracts, and then generates the BPEL specifications. A generated BPEL specification

contains partner link definitions to access other peers, variable declarations, and be-

havior description of the peer.

To reflect the hierarchy of the peer interface, the behavior description in a gen-

erated BPEL specification consists of nested scopes. Each scope has two local vari-

ables. The variable state represents current state in the scope, and the variable

exit is used for exiting the scope. Each scope is a while loop that terminates de-

pending on the value of exit. The body of the loop is a switch activity whose
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case conditions are defined on the value of the state.

A case block implementing the operations at the corresponding state, consists

of two activities. The type of the first activity depends on the type of the state. If the

state is of type And, a flow is generated that has one subactivity per its substate. If

the state is of type Or, a new scope is generated and this inner scope’s local state

is set to the default substate. The second activity corresponds to the transitions

originating from this state. The mappings of send and receive transitions to BPEL

code fragments are similar to the mapping discussed in Section 5.4. In this second

activity, if the state is an exit-state then the local exit variable is set.

The following is an excerpt from the BPEL specification generated from the

implementation of the peer interface in Figure 5.4(a). This excerpt shows the code

fragment synthesized for state x2.

<case condition="state=’x2’">
<sequence>
<flow>

<scope>
<variables> ...</variables>
<!-- define fresh state and exit variable-->
<sequence>
...<!--initialize state and exit variables-->
<while condition="exit!=’yes’">

<switch>
<case condition="state=’x7’">
<sequence>
<flow>
...<!--car reservation-->
...<!--flight reservation-->

</flow>
<assign><copy>

<from expression="’yes’"/> <to variable="exit"/>
</copy></assign>

</sequence>
</case>
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...<!--cases when state is ’x5’ or ’x6’-->
</switch>

</while>
</sequence>

</scope>
<scope>

...<!--hotel reservation -->
</scope>

</flow>
...<!--send travelInv, and assign ’x19’ to state-->

</sequence>
</case>

If there are transitions whose source and target states are not siblings, the trans-

lator identifies these transitions during preprocessing and flattens that portion of the

HSM.

When there are dependency arcs in a peer interface, the translator generates one

link [20] per arc. The translator places the link target and link source inside the

corresponding send or receive fragments. Consider the dependency arc in Purchas-

ing peer (Figure 5.5(a)) which implies that to take the transition from a9 to a10 the

current configuration has to contain the state a6. For this dependency arc, the trans-

lator puts the link source inside the activity that sets the state to a6, and puts the link

target into the fragment corresponding to the transition from a9 to a10.

5.6 Experiments and Verification Results

In this section, we present the experimental results on all of the composite web ser-

vices introduced in Section 5.1 that are implemented based on the peer controller

pattern. We implemented the peer interfaces of the Loan Approval and the BookCD
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Order services by using the StateMachine class, which is flat finite state machine

implementation. The peer interfaces of the Travel Agency and the Purchase Order

Handling services are implemented by using the HSM class, i.e., the peer interfaces

at these composite web services are specified with HSMs. We verified these imple-

mentations using the modular verification approach presented in this chapter. In our

approach, by exploiting the structure of the peer controller pattern, verification of the

peer implementations with respect to their interfaces is performed separately from

the verification of the conversations (i.e., the global behavior) of the composite web

service. As we demonstrate below, this is crucial for feasibility of the automated

verification of composite web services.

Next, we first discuss the behavior verification results in our experiments with

these examples. Then, we continue with interface verification discussion.

Based on our modular verification approach, we verified the global behavior

of the Loan Approval service with the SPIN model checker using the conversation

model. An example property we verified during behavior verification is the fol-

lowing: “Whenever a request message with a small amount is sent, eventually an

approval message accepting the loan request will be sent.” The behavior verification

took less than one second and used 1.49MB memory. During the behavior verifica-

tion, we observed that the reachable state space of the Loan Approval system is finite

(154 states). Independent of the size of the message queues, during any execution,

there is at most one message in each queue at any state; therefore, increasing the size

of message queues did not increase the state space. Note that, this experimental ob-

servation is not a proof that the results we obtained using bounded verification will

206



Chapter 5. Design for Verification of Asynchronously Communicating Web Services

hold for the Loan Approval service when unbounded message queues are used. To

guarantee this, we used synchronizability analysis. Our automated synchronizabil-

ity analyzer identified Loan Approval service as synchronizable. Therefore, we were

able to verify Loan Approval service using synchronous communication, and since

it is synchronizable, the verification results are guaranteed to hold when unbounded

message queues are used.

On the other hand, during the execution of the BookCD Order service, the num-

ber of messages in the message queues is not bounded. We have verified the be-

havior of this example with different queue sizes. As shown in Figure 5.10, the

state space increases exponentially with the size of the queues. In fact, the number

of reachable states for this example is infinite if unbounded queues are used. The

exponential growth in the state space affects the performance of SPIN significantly.

SPIN ran out of memory when the queue size was set to 15. On the other hand,

our automated synchronizability analyzer has identified this example as synchroniz-

able. Therefore, we can verify this composite service by replacing asynchronous

communication with synchronous communication without changing the conversa-

tion set generated by this composite web service. With synchronous communication

there are only 68 states and the behavior verification have succeeded in a fraction

of a second and used 1.49 MB memory. Since with synchronous communication

the messages are not buffered, the state space of the specification is reduced and

this reduction leads to a significant improvement in the efficiency of the behavior

verification and avoids the state space explosion in this example.

Another composite web service with infinite state space is the Travel Agency
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Figure 5.10: Effect of the queue sizes on the state space

service. During behavior verification of this example with asynchronous commu-

nication, we observed that for the Travel Agency service the state space increases

exponentially with the size of the queues. This exponential growth affected the

performance of the SPIN model checker and it ran out of memory for queue size

12. We applied the synchronizability analysis to the Travel Agency example, and

identified that it is synchronizable. Therefore, we were able to verify the Travel

Agency service with synchronous communication without affecting its conversation

set. With the synchronous communication state space contains only 8911 states, and

the behavior verification with SPIN succeeded in 0.38 seconds and used 5.15 MB

memory.

The behavior verification results for the Purchase Order Handling service show

that the synchronizability analysis is not only useful for unbounded behavior veri-

fication but also for improving the efficiency of the verification performance. We

observed that the Purchase Order Handling service has finite set of reachable states
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since there is at most one message at each queue at any state during any execution.

The behavior verification with asynchronous communication used 6.78 MB mem-

ory in 0.59 seconds for different queue sizes. During these experiments with asyn-

chronous communication, increasing the size of message queues did not increase

the state space which is 10105 states. We applied the synchronizability analysis and

identified that the five HSMs given in Figure 5.5, are synchronizable. With syn-

chronous communication there are only 1562 states, and behavior verification with

SPIN took 0.08 seconds and used 2.01 MB memory.

After the behavior verification, we performed the interface verification on these

examples. The interface verification performance is displayed in Table 5.1. The

first part shows the JPF performance for the examples whose peer interfaces are

specified as flat state machines (Loan Approval and BookCD Order), the second

part shows the performance for the examples whose peer interfaces are specified as

HSMs (Travel Agency and Purchase Order Handling). In this table, the interface

verification for TravelAgent and Purchasing peers are given when the corresponding

peer is implemented as one thread. One can use multiple threads for implementing

the TravelAgent and Purchasing peer to exploit the concurrency introduced by the

And state in the interface specification. For such an implementation, we need to

verify that the combined behavior of the concurrent threads conform to the peer

interface. One can use the modular verification approach presented in Chapter 4 and

verify the concurrent threads separately.

Using peer interfaces as communication stubs and abstracting away the non-

control attributes of messages with message stubs have lead to a significant im-
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Table 5.1: Interface verification performance

Loan Approval Service BookCD Order Service

Peer Time(s) Memory(MB) Peer Time(s) Memory(MB)

CustomerRelations 8.86 3.84 Client 3.64 4.84

LoanApprover 9.65 4.70 Supplier 3.43 4.63

RiskAssessor 8.15 3.64

Travel Agency Service Purchase Order Handling Service

Peer Time(s) Memory(MB) Peer Time(s) Memory(MB)

Customer 5.63 4.92 CRelations 4.63 3.73

HotelReserve 4.76 3.95 Invoicing 4.54 4.22

CarReserve 4.61 3.74 Shipping 4.81 3.91

FlightReserve 4.83 3.89 Purchasing 5.00 7.69

TravelAgent 9.72 19.69 Scheduling 4.83 3.76

provement in the efficiency of the interface verification. Also isolating the peers

with simple drivers described above and verifying only one session improved the

efficiency further. Therefore, in both examples JPF spent less than 10 seconds and

used less than 5 MB memory.

We also tried to verify the whole Loan Approval service using JPF without sepa-

rating the interface and behavior verification steps. The first problem is that JPF can-

not handle asynchronous communication among peers. To overcome this problem,

we wrote some Java code that simulates the JAXM provider and the asynchronous

input queues. In this simulation, for each peer (aside from the application thread)

there is a concurrent queue instance and a thread which is activated whenever a
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message arrives in the queue. We ran JPF on this simulation program for only one

session. JPF ran out of memory without producing a conclusive result. Hence, with-

out using the modular approach proposed in this chapter, JPF is unable to verify

properties of the Loan Approval service.

Our experiments show that the modularity in the verification process based on

the peer controller pattern improves the efficiency of verification of composite web

services significantly. We can verify asynchronously communicating web service

implementations using reasonable amount of time and memory which are otherwise

too large for a Java model checker to handle. With the aid of synchronizability

analysis, during behavior verification, we can reason about the global behavior with

respect to unbounded queues and perform the behavior verification efficiently. Fur-

thermore, the usage of stubs during the interface verification causes a significant

reduction in the state space, thus improving the performance of the verification pro-

cess.

5.7 Related Work

Recently, some researchers have used existing model checking tools to assure re-

liability of web services. Nakajima [79] and Fu et al. [47] verify a given web

service flow (specified in WSFL and BPEL respectively) by using the explicit state

model checker SPIN [58]. Foster et al. [56] use the Labeled Transition System Ana-

lyzer (LTSA) for inferring the correctness of the web service compositions which are

specified using message sequence charts. Narayanan et al. [80] verify web services
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using a Petri Net model generated from a DAML-S description of a service. An

extended Petri Net model is proposed by Verbeek [98] for verification of workflows

and analyzing inheritance relations among models. These earlier verification efforts

focus on the specification level and do not address the correctness of individual peer

implementations. Verification of the communication flow does not guarantee that a

composite web service behaves according to its specification unless we can ensure

that each peer obeys its published contract (this requirement is called conformance

by Meredith et al. [76]). In the DFV approach presented in this chapter, both inter-

action behavior and interface conformance are verified.

Statecharts, which are a general form of our HSM model, have been used to de-

scribe web service behavior [8, 73, 70]. Their aim is to declare service compositions.

Unlike these studies, we use HSMs not only for specifying web services but also for

verifying their global interaction properties.

Chapter 2 has discussed related work regarding to the peer controller pattern.

The verification aspects of these works are also related to the DFV approach pre-

sented here.
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Conclusion

This dissertation presents a Design for Verification (DFV) approach for concurrent

programming to eliminate synchronization errors in concurrent Java programs and

for composite web services to automatically analyze interaction properties between

the participating peers. The approach is realized via two design patterns that decou-

ple behavior and interface specifications. Based on this decoupling we have devel-

oped a modular assume-guarantee style verification strategy. We use Java PathFinder

[99] for interface verification in both application domains. We use the Action Lan-

guage Verifier [23] for behavior verification of concurrency controllers and, we use

SPIN [58] for behavior verification of composite web services. Modularization of

the verification task improves the scalability of the verification and helps us combine

different approaches to verification with their associated strengths.

Our experiments with two-real life concurrent applications demonstrated the ef-

fectiveness, the applicability, and the scalability of our DFV for concurrent program-

ming. The experimental study on TSAFE with fault seeding resulted in a classifi-

cation of faults that our technique can identify. During these case studies the inter-
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face verification was the most challenging part whereas domain specific behavior

verification was more efficient. Due to behavior encapsulation of the concurrency

controller pattern, the extracted behavior model was compact and suitable for auto-

mated verification. The interface verification was the bottleneck even though it is

performed on isolated threads. On the other hand, we have achieved a significant

improvement in interface verification because of the thread isolation and usage of

controller interfaces as stubs. Without these techniques a model checker like Java

Pathfinder cannot handle these examples at all. On the whole, the presented verifi-

cation technique was able to find almost all of the seeded faults. The isolation and

substitution of controller interfaces has a dramatic impact on the efficiency of the

interface verification.

In the second application domain, which is the composite web services, we can

reason about the global behavior with respect to unbounded queues and improve the

efficiency of the behavior verification because of the adaption of the synchronizabil-

ity analysis proposed in [47]. Also, using the peer interfaces in place of the asyn-

chronous communication component abstracts the asynchronous messaging leading

to a significant improvement in the efficiency of the interface verification. In this do-

main, another benefit of explicit peer interfaces is that they can be used to improve

interoperability. To support this, we automatically generate BPEL specifications

from the peer interfaces. We extend the peer interfaces to HSMs to reflect the nat-

ural hierarchy of the peer behavior. Our experiments with several composite web

service instances show that the DFV approach for asynchronously communicating

web services enables the verification of the web service implementations as well as
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the properties of interactions among the participant peers using reasonable amount

of time and memory.

The presented DFV approach is a significant step toward the scalability of au-

tomated software verification. Our experiments on both concurrent programs and

web services show that automated software model checking can become feasible for

real-life applications when the presented DFV principles are applied.

Currently, we use ACTL properties in the DFV approach for concurrent pro-

gramming. Although the model checker we use can perform CTL verification, in

the current formalism we have showed that the ACTL properties of controller be-

havior are preserved in the program if all the threads are interface correct. In the

future, with some assumptions on the scheduler, we may be able to use full CTL

properties in the DFV approach for concurrent programming.

Another future direction is automated discovery of forgotten shared objects. We

would like to extend our verification framework with an escape analysis technique

to handle such situations. Escape analysis techniques are used to identify the ob-

jects which escape from a scope (thread or method). The publicly available escape

analysis tools we experimented so far [19, 60] either do not scale to programs as big

as TSAFE or identify too many objects as shared. In the future we plan to develop

a specialized escape analysis to identify the objects which need to be synchronized

without considering one-time-written shared objects.

In the long run, we would like to investigate ways to apply the DFV principles

to other aspects of software systems. In this direction we would like to extend the

DFV approach to other programming paradigms such as sequential programming
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and aspect oriented programming with new verifiable design patterns.
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