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Abstract

Formal Specification and Verification of Asynchronously

Communicating Web Services

by

Xiang Fu

As web services are paving the way to the next generation of electronic commerce,

how to ensure design correctness for critical web services has been an important

issue. This dissertation develops various automatic verification and analysis tech-

niques for the validation of asynchronously communicating web services.

The formal verification of web services faces several special challenges: (1)

lack of a formal model to characterize a composition of web services, (2) the

undecidability of LTL verification due to the asynchronous communication, and

(3) the expressive XPath based XML data manipulation, which is not supported

directly by model checkers.

We establish a simple automata-theoretic model to study the global behaviors

of a web service composition. Each individual web service (a peer) is specified

using a finite state automaton, and is equipped with an unbounded FIFO queue to

store incoming messages. The notion of conversations is developed to characterize

global behaviors. Each conversation is a sequence of messages that are exchanged

among peers, recorded in the order in which they are sent. Linear Temporal

Logic (LTL) is naturally extended to specify desired properties on conversations.
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We show that, due to the asynchronous communication, LTL verification for an

arbitrary web service composition is undecidable.

To avoid the complexity caused by asynchrony, a synchronizability analysis

is developed for web service compositions. Sufficient conditions are proposed to

identify synchronizable web service compositions which generate the same set

of conversations under both the synchronous and asynchronous communication

semantics. Obviously, the LTL verification for synchronizable web service com-

positions can be conducted using the synchronous communication semantics. A

similar realizability analysis is developed for a top-down specification approach

based on conversation protocols.

A Guarded Automata (GA) model is developed to specify web services with

XML data. Algorithms are developed to translate Guarded Automata to Promela

(the input language of model checker SPIN), including the handling of XPath

based data manipulation operations. This allows verification of web services at

a great level of detail. Analyses and verification algorithms presented in this

dissertation are implemented in the Web Service Analysis Tool (WSAT).
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Chapter 1

Introduction

Web services [4, 32, 54, 67] are paving the way to the next generation of elec-

tronic commerce, because they are able to support automatic discovery and con-

venient integration of services, regardless of implementation platforms and across

boundaries of business entities. For critical web services, where multi-million dol-

lar transactions are carried out every day, any design error can cause potentially

great losses, and ad-hoc repairs after failures are not acceptable. Hence it is de-

sirable to statically ensure the correctness of web service designs before services

are deployed. The goal of this research is to build an automatic verifier which can

prove or disprove a web service design (or a composition of multiple web services)

will satisfy a certain set of preset service properties.

Model checking [23] is one of the most promising techniques to achieve the

above goal. Since behavior signatures (control flows and data manipulation se-

mantics) of web services are published using standards such as BPEL4WS [12],

it is possible to construct a formal model for each web service design and feed
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it to a model checker. Desired properties, e.g., “eventually something good will

happen” and “some bad event never happens”, can be conveniently expressed

using temporal logic [31]. Given a formal model and its desired properties, model

checking conducts an exhaustive exploration (either explicitly or symbolically) of

all possible behaviors of the model. Compared with other validation approaches

such as testing, model checking gives designers absolute confidence when desired

properties are verified. In addition, when a desired property is not satisfied,

model checking will generate an error-trace which shows, step by step, how the

property is violated by the model. Considering that web services are essentially

distributed system and that designers of a composite web service sometimes do

not have control over every component, it will be extremely hard to repeat the

same error even if testing has reported a bug. The exact error trace reported by

model checking is a big advantage over testing, because the error trace provides

invaluable information to designers for understanding and removing bugs.

The formal verification of web services, however, is rather different than the

verification of a general software system, due to the special characteristics of

web services. To understand the special challenges that this work faces, in the

following, we give a short introduction of the web service technology.

1.1 Web Services

While browser based web applications have been very successful in electronic

commerce, for Business to Business (B2B) applications, the difficulty of integrat-

ing business processes across heterogeneous platforms has been a major hurdle

in creating value-added composite services by integrating existing services.

2
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Figure 1.1. Web Service Standards Stack

The emerging web service technology is designed to overcome the challenge

of automating business process interactions. The key is the use of a stack of

standardized protocols (as shown in Fig. 1.1). For example, data transmission

among web services is always wrapped using XML [26] format, so that services

implemented on different platforms can communicate using a common language.

XML Schema [82] provides the type system for XML documents, and SOAP [74]

is a framework to further standardize the structured type declaration for XML

messages. Web services themselves are described using public standards. Each

web service has to publish its invocation interface, e.g., network address, ports,

functions provided, and the expected XML message format to invoke the service,

using the WSDL [80] standard. The behavior signature of each web service, i.e.,

control flows, data manipulation semantics and service qualities, can be described

using one of many competing standards such as BPEL4WS [12], WSCI [79],

and OWL-S [24]. The specification and functionality description of each web

service are registered in a UDDI [75] registry, which allows each web service to be

discovered by other services. Although web services can be implemented using

different enterprise solutions, e.g., Microsoft .Net [60], J2EE [77], and embedding

Java in executable BPEL4WS processes [25], the use of standardized protocols

3



allows automatic discovery, invocation and composition of web services regardless

of implementation platforms and languages.

Web services are essentially distributed systems, however, departing from

traditional tightly coupled systems like CORBA [68], web services are loosely

coupled. Communication among web services is asynchronous – for each message

exchanged, its sender and receiver do not have to synchronize the send and the

receive actions. A message is stored in the message buffer of its receiver before

it is consumed and processed. For each web service, its message buffer (usually a

FIFO queue) is provided by the underlying message delivery platform such as Java

Message Service (JMS) [52] and Microsoft Message Queuing Service (MSMQ)

[64]. Such asynchronous messaging is very common for web services, especially for

those (e.g. loan processing services) which require human intervention that may

take minutes even days to complete. In addition, asynchronous communication,

as put by Adam Bosworth, “is robust in the face of failure or delay. If another

application happens to be unavailable or taking a long time, the system will still

work. No application will become a single point of failure in the system. It is

also robust in the face of change or diversity” [11].

1.2 Contributions

The characteristics of the web service technology have led to several chal-

lenges facing the effort of model checking web services: (1) Although numerous

competing web service standards have been and are being proposed by the indus-

try, many fundamental problems are not well defined and well understood. For

example, one question is how to characterize the global behaviors of web service

4



compositions? Should both “send” and “receive” events be modeled? Another

interesting question is how to extend temporal logics to reason about global be-

haviors of web service compositions? We need to resolve these questions in order

to construct a formal model for web service compositions. (2) As we mentioned

earlier, asynchronous communication is one of the advantages of the web service

technology over traditional tightly coupled systems. This nice property, however,

makes most interesting problems in analyzing web service compositions unde-

cidable. Based on an earlier result [13], we can show that even if XML data

semantics are abstracted away and each web service is modeled using a simple

finite state machine, the composition of these asynchronously communicating fi-

nite state machines is Turing equivalent. It is not hard to see that the general

problem of LTL verification for asynchronous composition of web services is un-

decidable [39]. (3) While the strength of web services relies on the use of XML,

the tree-structured XML data and the expressive XPath based data manipula-

tion are not supported directly by model checkers. Earlier efforts in this area,

for example, the use of LTSA to model check BPEL4WS web services [36] and

the petri-net approach to analyze web services [65], have concentrated on the

abstract control flows of web services only, and data semantics were abstracted

away.

This dissertation tackles the above challenges in the following ways.

(1) An Automata-Theoretic Modeling Approach: A simple and for-

mal specification framework is developed to specify and reason about the global

behaviors of a composition of web services. A web service composition is a closed

system which consists of a finite set of communicating web services. Each indi-

vidual web service (a peer) is specified using a Finite State Automaton (FSA),

5



and is equipped with an unbounded FIFO queue to store incoming messages. To

characterize global behaviors of a web service composition, we assume there is a

virtual watcher which listens silently to the network and records every send event.

A conversation is a sequence of send events recorded by the watcher, where at

the end of the run that generates this sequence, each peer stays in a final state

and each input queue is empty. The notion of a conversation defines a “good

global behavior” where each peer executes correctly according to its automaton

specification, and there is no loss of information (i.e., each message ever sent is

eventually consumed by its receiver). Clearly the set of “good behaviors” can

be captured by the conversation set of a web service composition. Linear Tem-

poral Logic (LTL) can be naturally extended to specify desired properties on

conversations.

Based on the simple automata-theoretic model, we have several interesting

theoretical observations. For example, the conversation set of an arbitrary web

service composition is always context sensitive, and it is always closed under

projection and join [16]. The expressiveness of bottom-up specified web service

compositions motivates a top-down specification approach called conversation

protocol. A conversation protocol [16, 39] is a single FSA which specifies the de-

sired set of conversations but does not specify the implementation details of each

peer. A conversation protocol, though weaker than a bottom-up specified web

service composition, has several nice properties during analysis [16]. However,

not every conversation protocol is realizable, i.e., some conversation protocol may

not have a corresponding web service composition which generates exactly the

same set of conversations as specified by the protocol. This dissertation gives a

set of sufficient conditions to identify realizable conversation protocols.

6



To model real-world web services with XML data semantics, the automata-

theoretic model is extended to a Guarded Automata (GA) model [41]. Each GA

can have XML message contents and a finite set of XML local variables. Each

transition of a GA is strengthened with an XPath guard, which determines both

the transition condition as well as the assignments over message contents and

local variables. GA is a very powerful model, and most static BPEL4WS web

services can be translated into GA without any loss of data semantics [40].

(2) Synchronizability and Realizability Analyses: For bottom-up spec-

ified web service compositions, the asynchronous communication and unbounded

input queues cause the undecidability of LTL verification, even if each peer is

a standard FSA without data semantics. We develop a special analysis called

“synchronizability analysis” [40] to avoid the undecidability. A set of sufficient

synchronizability conditions are proposed to restrict control flows of each peer in

a web service composition. When these conditions are satisfied, a web service

composition is synchronizable, i.e., it generates the same set of conversations un-

der both asynchronous and synchronous communication semantics. Since LTL

properties are defined over conversations, and the synchronous composition of

FSA peers is their Cartesian product (which is also an FSA that recognizes a

regular language), the LTL verification for a synchronizable web service compo-

sition can be simply conducted using the synchronous communication semantics.

In addition, if each peer is specified using a Deterministic Finite State Automa-

ton (DFSA), and if the synchronous composition does not have deadlock, the

asynchronous composition of all peers is guaranteed to be free of deadlock and

unspecified message receptions. This guarantees a safe LTL verification, because

all global behaviors generated will be “good” behaviors that are captured by

7



conversations.

There is a similar analysis called “realizability analysis” [39] for top-down

specified conversation protocols. We have a set of sufficient realizability con-

ditions to identify a realizable conversation protocol. The realizability analysis

allows a 3-step specification and verification strategy: (1) a conversation protocol

is specified using a realizable FSA, (2) desired LTL properties are verified on the

conversation protocol, and (3) peer implementations are synthesized from the

protocol.

In [42], we extend the realizability analysis to the Guarded Automata model,

and synchronizability analysis is extended in a similar way. We have several inter-

esting observations. For example, the realizability of a GA conversation protocol

(i.e., the protocol is specified using a Guarded Automaton) does not depend on

the realizability of its skeleton (which is generated by dropping message con-

tents and transition guards from the GA). However, a GA conversation protocol

is guaranteed to be realizable if its skeleton satisfies the realizability conditions

and one additional condition. We also develop iterative refined analysis for one of

the realizability conditions called “autonomous condition”, and symbolic analysis

algorithms are designed for other conditions.

(3) Handling of XML Data Manipulation: To completely verify web

services with XML data semantics, web service designs specified using popular

industry standards (e.g. BPEL4WS) are first translated into an intermediate

representation called Guarded Automata (GA) [40]. Then GA are translated into

Promela processes [41], where Promela is the input language of model checker

SPIN [50]. SPIN is used as our back-end model checker to conduct the LTL

8
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verification. The translation from BPEL4WS to GA is straightforward, however,

the translation from GA to Promela has to deal with many tricky issues. We

have to first develop a type mapping from XML Schema to the type system

of Promela. Then based on this type mapping, algorithms are developed to

translate an XPath expression to a segment of Promela code. For each XPath

expression, its Promela translation is essentially a symbolic execution of that

XPath expression over an XML Schema type. Special handling has to be paid to

XML Schema types with multiple occurrences, function calls like position() and

last(). For example, each appearance of position() function will be mapped

into a corresponding integer variable. During the symbolic execution of the XPath

expression, the value of that integer variable will be carefully updated so that

when the position() is called the corresponding integer variable contains the

right return value. The handling for last() is even more complicated.

The project Web Service Analysis Tool (WSAT) implements and integrates

all1 the analysis and verification algorithms presented in this dissertation. Fig.

1.2 presents the general architecture of WSAT. The front-end of WSAT accepts

input specified using popular industry standards such as BPEL4WS and WSDL,

as well as top-down specified conversation protocols. Then BPEL4WS web ser-

1At the moment of filing this dissertation, implementation has not included the symbolic
analysis algorithms in Chapter 4.
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vices are translated into GA, where synchronizability analysis (or realizability

analysis) is applied. GA are then translated into Promela, where SPIN is called

to conduct LTL verification at the back-end. The use of Guarded Automata as

the intermediate representation allows a very flexible architecture of WSAT. More

web service specification languages (e.g. WSCI and OWL-S) can be supported

at the front-end, and more model checking modules (e.g. symbolic verification

modules) can be added at the back-end, without changing the front-end.

1.3 Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces a

simple and abstract model of web service composition, and several interesting

theoretical observations are provided. Chapter 3 presents the synchronizability

and realizability analyses, which help to avoid the undecidability caused by asyn-

chrony during verification. Chapter 4 extends the model to a GA model, and

discusses the realizability analysis in the extended model. Chapter 5 discusses

the expressive power hierarchy of web service compositions, which is influenced

by the arithmetic constraints used in guards and the interconnection pattern of

peers. Chapter 6 presents the GA model with XML data semantics, and dis-

cusses the translation from BPEL4WS standard to the GA model. Chapter 7

presents how to handle XML data manipulation in LTL verification, and briefly

introduces the Web Service Analysis Tool (WSAT). Chapter 8 concludes.
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Chapter 2

A Formal Model for Web Service

Compositions

This chapter presents a simple specification framework [16, 39, 40] to formally

model the composition of interacting web services. A web service composition is a

closed1 system where a finite set of interacting (individual) web services commu-

nicate with each other via asynchronous messaging. We consider the problem of

how to characterize the global behaviors generated by a web service composition,

as well as how to reason about their correctness, e.g., can they meet a certain

preset system goal that is expressed using temporal logic? We provide several

initial theoretical observations of the model, which motivate the realizability and

synchronizability analyses discussed in later chapters. Note that the model pre-

sented in this chapter is a contentless one, where XML message contents are

1In our earlier work [16, 39, 40], a web service composition is denoted using terms “composite
e-service” or “composite web service”. In this dissertation, we distinguish the concept of open
system from closed system, depending on whether the system exchanges messages with outside
world. A closed system is called a “composition”, and an open system is called a “composite
service”.
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abstracted away. The model will be extended in Chapter 4 and 6 to address this

problem.

In our framework, an observable global behavior of a web service composi-

tion is captured by the notion of a conversation, and the set of all observable

behaviors forms the conversation set. A conversation [16] is the global sequence

of messages that are exchanged among peers, recorded in the order in which they

are sent. Such message-oriented behavior modeling is not only simple, but more

importantly, it requires web services to reveal the least amount of information

that is necessary to make meaningful compositions. Thus complex internal states

(e.g. in legacy systems) can be hidden. In addition, conversations immediately

permit the usage of Linear Temporal Logic (LTL) [31] to express properties of

web service compositions [39].

We have some interesting observations of the conversation set of a web service

composition. For example, it is shown in [16] that the conversation set of a web

service composition (where each peer is specified using a standard finite state

automaton) is always context sensitive but may not be context-free. Later, in [39],

LTL model checking for a web service composition is proved to be undecidable.

In [16], we also present a closure property for conversation sets, which plays an

important role in the comparison of the expressive power of the conversation

oriented framework and Message Sequence Chart (MSC) graphs [7].

The high complexity associated with analyzing bottom-up specified web ser-

vice compositions prompts an alternative top-down specification approach. In

[16, 39], we propose the notion of a conversation protocol, which specifies the

set of desired global behaviors of a web service composition, given its intercon-
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nection pattern. While most industry web service standards (e.g. WSDL [80],

BPEL4WS [12], and WSCI [79]) favor the bottom-up fashion, a conversation pro-

tocol does resemble, however still differs from, industry initiations such as IBM

Conversation Support [51] and MSC [63]. The difference concerning the modeling

perspective between a conversation protocol and an MSC leads to rather different

decidability results in the realizability analysis for the two modeling approaches.

The chapter is organized as follows. We will first introduce the general notion

of a composition schema, which specifies the static interconnection pattern of a

web service composition. Then we discuss the specification of each peer, i.e., each

participant of a web service composition. Next we discuss how to characterize

global behaviors of a web service composition, and introduce the notion of a

conversation. We then present several theoretical observations on conversation

sets, motivated by which, we propose the top-down specification approach called

conversation protocol. We give a short discussion of related work, and present a

comparative study of MSC. Finally we study a variation of our model for reactive

web services which have behaviors of infinite length.

2.1 A General Composition Architecture

In this section we describe a paradigm for modeling web service composi-

tions. While abstract and focusing primarily on global behaviors, our paradigm

is based on the fundamental constructs of the web services as promoted by, e.g.,

BPEL4WS [12], WSCI [79], IBM’s Web services Toolkit [76], Microsoft’s .Net [60],

Java Message Service [52], Microsoft Message Queuing Service [64] and other in-

dustrial products and proposals. It also follows the model adopted by much of the
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research on web service composition [28, 65], work on web service programming

languages [5, 35], and the AZTEC prototype [22].

Fig. 2.1 shows a natural (though informal) way to specify a composition of web

services. For each web service composition, its specification consists of two parts:

a composition schema and a set of peer implementations. A composition schema

specifies the set of peer prototypes and the set of message classes exchanged

among peers. Each peer implementation describes the (abstract) control flows

of each individual peer prototype. As communication is asynchronous, each peer

is equipped with a FIFO queue to store incoming messages. We assume that

there is a virtual watcher which records the sequence of messages as they are

sent by the peers. The sequence of messages recorded by the watcher is called a

conversation. (Note that the virtual watcher is a construct we use to reason about

the interactions among different peers and it is not implemented.) A conversation
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can be regarded as a linearization of the message events, similar to the approach

used in defining the semantics of Message Sequence Charts [63] in [7]. We now

formalize the above descriptions with the definitions below.

Definition 2.1 A composition schema is a tuple (P,M) where P = {p1, . . . , pn}

is a set of peer prototypes, and the alphabet M is a set of message classes.

Each peer prototype pi = (M in
i ,M

out
i ) is a pair of disjoint sets of message classes

(M in
i ∩Mout

i = ∅), and let Mi = M in
i ∪Mout

i be the alphabet of pi. M satisfies

the following:
⋃

i∈[1..n]

M in
i =

⋃

j∈[1..n]

Mout
j = M

Implied by the above definition, each message class is transmitted on a single

directional peer to peer channel, and a peer cannot send a message back to itself.

At this moment, we assume that message classes do not have contents. But later

in Chapter 6, we will show that each message class can be associated with a type

for its contents which is declared using XML Schema [82].

Definition 2.2 A web service composition is a tuple S = 〈(P,M), A1, . . . ,An〉,

where (P,M) is a conversation schema, n = |P |, and each Ai is the peer

implementation (or simply “peer”) for the corresponding peer prototype pi =

(M in
i ,M

out
i ) ∈ P . The alphabet of Ai is Mi = M in

i ∪Mout
i .

The above definition is a general notion of web service compositions where

we do not specifically restrict the expressive power of peer implementations. In

this chapter, we will study two types of web service compositions whose peers

are specified using standard Finite State Automata (FSA) and Büchi Automata,
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respectively. In later chapters, we will also introduce web service compositions

whose peers are specified using Guarded Automata (to bring in the message

contents).

A web service composition is also called a “composition” for short. For differ-

ent types of web service compositions, the naming rule is based on the automata

that are used to specify peers. For example, the three types of web service compo-

sitions mentioned above will be called “FSA composition”, “Büchi composition”,

and “GA composition”, respectively.

Example 2.1 Fig. 2.1 shows a web service composition that consists of four

peers: a retail store that plans to replenish its inventory, its bank, and two ware-

houses that supply goods. In a (simplified) typical scenario (where the peer imple-

mentation will be given in the next section), the store requests an authorization

from the bank; after receiving the approval from the bank, the store can send

one or more orders to the warehouses. When a warehouse receives an order, it

responds by billing the bank for the amount on the order, and sends the store a

receipt. The bank, in turn, makes a payment after receiving a bill. Clearly, let

S = (P,M) be the composition schema of Fig. 2.1, |P | = 4, and |M | = 10. For

peer prototype store, its input alphabet is {ok,receipt1,receipt2}, and its output

alphabet is {authorize,order1,order2}. In the rest of the chapter, to save space,

we represent each message class using the bold letter in its name. For example,

k stands for ok, and a stands for authorize.
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2.2 Peers

Fig. 2.2 illustrates an abstraction of an individual web service (called here

a peer). Roughly, a peer can be viewed as a “program” that decides, based on

the received messages and the messages already sent, if a new message should

be sent, and/or if the session should terminate. Note that each peer is equipped

with a FIFO queue to store incoming messages, as the communication among web

services is asynchronous. This modeling resembles industry messaging platforms

such as JMS [52] and MSMQ [64], which provide XML message delivery.

In the following technical discussions, we consider a special family of peers

called “FSA peers”2, where each peer is described using a standard nondeter-

ministic Finite State Automaton (FSA). The simplicity of FSA allows very in-

teresting theoretical observations. On the other hand, as we will show in Section

6, when extended to the Guarded Automata model, our framework can capture

most industry web service designs. At this moment, as message classes do not

have contents, the FSA peer can be regarded as the abstract control flow of an

individual web service design. This is illustrated by Fig. 2.3, where the message

classes effectively dictate the actions to be taken by each peer and consequently

2An FSA peer is essentially the Mealy peer in [16].
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the responses. Formally, an FSA peer is defined as follows.

Definition 2.3 Let S = (P,M) be a composition schema, pi ∈ P be a peer

prototype, and let pi = (M in
i ,M

out
i ). An FSA peer Ai which implements pi is a

standard nondeterministic Finite State Automaton Ai = (Mi, Ti, si, Fi, δi) where

Mi = M in
i ∪Mout

i . Here Ti is a finite set of states, si ∈ T is the initial state,

Fi ⊆ T is a set of final states, and δi : Ti × (Mi ∪ {ε}) → 2Ti is a transition

relation. A transition τ ∈ δi can be one of the following three types: (1) a

send-transition of the form (t1, !α, t2) which sends out a message α ∈ M out
i , (2)

a receive-transition of the form (t1, ?β, t2) which consumes a message β ∈ M in
i

from its input queue, and (3) an ε-transition of the form (t1, ε, t2).

Definition 2.4 A web service composition is an FSA web service composition if

all of its peers are FSA peers.

Example 2.2 Fig. 2.3 shows the peer implementation for each peer prototype in

Fig. 2.1. (The implementation for Warehouse2 is analogous to the implementation

for Warehouse1.) Studying the peer implementation of Warehouse1, it is not hard

to see that the timing of sending receipt1 from Warehouse1 to Store is independent

of the timing of the corresponding messages bill1 and payment1 between Bank
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and Warehouse1. Obviously, we can have a more restrictive implementation for

Warehouse1 by enforcing the sending of payment1 after bill1.

Remark: Given an FSA peer, if we drop all “!” and “?” from its transitions,

and the resulting FSA (which can be regarded as a standard FSA that accepts

words, instead of generating words) is a Deterministic Finite State Automaton

(DFSA), then we call such a peer a DFSA peer. For example, each peer in Fig.

2.3 is a DFSA peer.

2.3 Conversations

We now formally define the notion of conversations to capture the global ob-

servable behaviors of an FSA composition. Let S = 〈(P,M),A1, . . . ,An)〉 be an

FSA composition where n = |P |, its global configuration (or simply configuration)

is a (2n+ 1)-tuple of the form

(Q1, t1, ..., Qn, tn, w)

where for each j ∈ [1..n], Qj ∈ (M in
j )∗, tj ∈ Tj and w ∈ M∗. Here ti, Qi are

the local state and queue contents of peer Ai respectively, and w is the global

watcher content at this configuration. For each configuration ci, we use gw(ci) to

denote its watcher content.

Let the set of states, transition relation, and etc. of a peer Ai be all labeled

with subscript i, e.g., δi is the transition relation of peer Ai. For two config-

urations c = (Q1, t1, ..., Qn, tn, w) and c′ = (Q′
1, t

′
1, ..., Q

′
n, t

′
n, w

′), we say that c

derives c′, written as c→ c′, if one of the three types of actions is executable:
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• (Peer Aj executes an ε-move) there exists 1 ≤ j ≤ n such that

1. (tj, ε, t
′
j) ∈ δj,

2. Q′
j = Qj,

3. for each k 6= j, Q′
k = Qk and t′k = tk, and

4. w′ = w.

• (Peer Aj consumes an input) there exists 1 ≤ j ≤ n and α ∈M in
j such that

1. (tj, ?α, t
′
j) ∈ δj,

2. Qj = αQ′
j,

3. Qk = Q′
k for each k 6= j,

4. t′k = tk for each k 6= j, and

5. w′ = w.

• (Peer Aj sends an output to peer Ak and writes to the watcher) there exists

1 ≤ j, k ≤ n and β ∈M out
j ∩M in

k such that

1. (tj, !β, t
′
j) ∈ δj,

2. Q′
k = Qkβ,

3. Q′
l = Ql for each l 6= k,

4. t′l = tl for each l 6= j, and

5. w′ = wβ.

The above three actions can be denoted by c
ε→ c′, c

?α→ c′, and c
!β→ c′, respec-

tively. We denote by ∗→ the reflexive and transitive closure of →.
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Definition 2.5 Let S = 〈(P,M),A1, . . . ,An〉 be an FSA web service composi-

tion, a configuration list γ = c0, c1, . . . , ck is a run of S if it satisfies the first two

of the following three conditions, and γ is a complete run if it satisfies all the

three conditions.

1. c0 = (ε, s1, . . . , ε, sn, ε) is the initial configuration where si is the initial state

of Ai for each i ∈ [1..n].

2. for each j ∈ [0..k − 1], cj → cj+1.

3. ck = (ε, t1, . . . , ε, tn, w) is a final configuration where ti is a final state of Ai

for each i ∈ [1..n].

A word w over M is a conversation of S if there exists a complete run γ ′

(let its last configuration be c′) such that w = gw(c′). The conversation set of S,

written as C(S), is the set of all conversations for S.

Example 2.3 Let S1 be the FSA web service composition presented in Fig. 2.1

and Fig. 2.3. It can be verified that C(S1) can be captured by the following

expression:

ak sh((o1 sh(r1,b1p1))
∗, (o2 sh(r2,b2p2))

∗).

Here sh is an shuffle operator which, given two words w1 and w2, generates a set

of new words by inserting each letter of w1 into w2 while maintaining their relative

order in w1. For example, sh(r1,b1p1) = {r1b1p1,b1r1p1,b1p1r1}. Obviously,

sh can be extended to work on two word sets by taking the union of the results

of applying the shuffle operator on any pair of words from the two word sets.
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We call a finite run completable if it is the prefix of a complete run. During a

complete run, a peer is said to terminate at some configuration ci if after ci the

peer does not take any transitions, and its local state at ci is a final state. During

a run, a peer is said to be receptive to a message α at configuration ci if there is a

transition which starts from the state of the peer at ci and consumes α. During a

run, a peer is said to be stuck at configuration ci if the peer is not receptive to the

message at the head of the input queue, and none of the transitions starting from

the state of the peer at ci is a send-transition or ε-transition. A configuration ci

is said to be a deadlock configuration, if there is no cj such that ci → cj, and at

configuration ci there is at least one peer not in final state.

Notice that the notion of “complete run” and “conversation” captures the

“good behaviors” generated by a web service composition where each peer law-

fully executes according to the FSA specification, and each message transmitted

is eventually consumed. There might be “bad runs” where some peer gets stuck

by an unexpected message, or the whole system gets into a deadlock. Hence for

a web service composition S, its conversation set C(S) does not really cover all

possible behaviors of S. But later as we show in Chapter 3, a synchronizability

(realizability) analysis can guarantee that C(S) covers all possible behaviors.

2.4 Linear Temporal Logic

Now given the notion of conversations, it is easy to extend Propositional Lin-

ear Temporal Logic (LTL) [31] into the framework to describe desired properties

of a web service composition. For a conversation w = w0, w1, w2, . . . , wn, let

wi denote the i-th message in w, and wi = wi, wi+1, wi+2, . . . the i-th suffix of
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w. Extending the definitions in [31] and [23], we define the LTL properties on

conversations as follows. Given a composition schema (P,M), the set of atomic

propositions is defined as the power set of message classes, i.e., AP = 2M . LTL

properties are constructed from atomic propositions in AP , logical operators

∧,∨,¬, and LTL operators X,G,U,F. Given LTL formulas φ, and ϕ, an atomic

proposition ψ ∈ AP , and a word w ∈ M ∗ (let w = w0, . . . , wn), the syntax and

semantics of LTL formulas can be defined as follows:

w |= ψ iff w0 ∈ ψ

w |= ¬φ iff w 6|= φ

w |= φ ∧ ϕ iff w |= φ and w |= ϕ

w |= φ ∨ ϕ iff w |= φ or w |= ϕ

w |= Xφ iff |w| > 1 and w1 |= φ

w |= Gφ iff for all 0 ≤ i ≤ n, wi |= φ

w |= φUϕ iff there exists 0 ≤ j ≤ n, such that wj |= ϕ and,

for all 0 ≤ i < j, wi |= φ

w |= Fφ iff w |= MUφ

Intuitively, temporal operators X, G, U and F mean “next”, “globally”,

“until”, and “eventually”, respectively. We say that a web service composition

S satisfies an LTL formula φ, i.e., S |= φ, if and only if, for each conversation

w ∈ C(S), w |= φ.

2.5 Conversation Set is Context Sensitive

One natural question concerning a conversation set is: since each peer is

specified using a finite state machine, is every conversation set a regular language?
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The following is a counter example.
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Figure 2.4. The FSA Composition for Example 2.4

Example 2.4 Fig. 2.4 shows an FSA composition S with two peers. Peer p1

sends requests a while p2 responds with one b message for each a message. Since a

messages can be temporarily stored in the queue of p2, the C(S) consists of words

with the same number of a’s as b’s and each b has a corresponding a that occurs

somewhere beforehand. Note that C(S)∩ (a∗b∗) = {anbn | n ≥ 0}, therefore C(S)

is not regular. However, C(S) is context free because it can be recognized by a

pushdown automaton.

Interestingly, if an FSA composition is restricted to the synchronous communi-

cation mode (i.e., for each message, the corresponding send and receive action are

synchronized, and there are no queues), it is easy to observe that its conversation

set is always regular. However the assumption of synchronous communication or

bounded buffer size may not work for web services. Web services are designed

to communicate via asynchronous messaging, and messaging platforms like JMS

and MSMQ can provide unbounded buffer size as long as there are enough system

resources available.

Using an idea similar to that in Example 2.4, one can easily construct a three-

peer FSA composition S ′ which generates a non-context-free conversation set as

follows. Peer p′1 is a single state FSA which, from its initial state, can either
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send out a message a to peer p′2 or receive a message c from peer p′3 (just like

the p1 in Fig. 2.4); peer p′2 sends a corresponding message b to peer p′3 for each

a received; peer p′3 sends a message c to peer p′1 for each b received. Clearly

C(S ′) ∩ (a∗b∗c∗) = {anbncn | n ≥ 0}, hence C(S ′) is context sensitive but not

context free. The following theorem summarizes the above discussion.

Theorem 2.5 Let S be an arbitrary FSA composition.

(a) C(S) is always context sensitive.

(b) If the computations of conversations are restricted to only allow queues

with length bounded by a fixed constant, then the restricted conversation

set Cbounded(S) is regular.

Proof: To prove part (a), we can construct a multi-tape Linear Bounded Au-

tomaton (LBA) to simulate the FSA composition S. The LBA has one tape for

each input queue, and it simulates the transition of each peer. It is not hard to

see that, given a word w, the LBA can accept w with the sum of the sizes of all its

tapes bounded by the length of w. Since each LBA recognizes a context-sensitive

language, it immediately leads to the conclusion in part (a). For part (b), we can

simply construct an FSA to simulate the composition of all peers by encoding the

queue contents into states (since queue length is bounded, the number of states

is finite). It follows that Cbounded(S) is regular.

Theorem 2.5 highlights differences between the synchronous communication

models in I/O and interface automata and the asynchronous model described

here. In fact, given a set of finite state peers, LTL model checking is undecidable.
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Theorem 2.6 Given an FSA composition S and an LTL property φ, determining

if S |= φ is undecidable.

Proof: As a two-peer FSA composition is essentially a system of two Communi-

cating Finite State Machines (CFSM) in [13], directly from the CFSM’s Turing

equivalence result in [13], for each Turing Machine TM we can construct a two-

peer FSA composition S that simulates TM and exchanges a special message (say

mt) once TM terminates. Thus TM terminates if and only if the LTL formula

S |= M U {mt} is true. Here U is the temporal operator meaning “until” [23],

and the meaning of the formula is “eventually message mt will appear”.

2.6 Closure Properties of Conversation Sets

In this section, we introduce several interesting observations on the closure

properties of a conversation set. We show that a conversation set is always closed

under a special swapping operator named “prepone” , and it is closed under pro-

jection/join. However, the combination of these two operators is still not strong

enough to capture every conversation set. We then introduce a “local prepone”

operator, which, combined with join, can formulate a succinct mathematical char-

acterization for the conversation set produced by any FSA web service composi-

tion. Notice that, the simple mathematical characterization, however, does not

imply that to enumerate or to analyze the conversation set for an arbitrary FSA

composition (e.g. to verify a safety property) is decidable.
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2.6.1 Closure Under Prepone

We now return to the phenomenon exposed by Example 2.4. A close exam-

ination indicates that the primary reason for this behavior is that the message

queue of a peer serves as a “buffer” for the input: while conversations monitor

the arrival of messages at the queues, the messages may not be read right away.

To understand this effect, we introduce a swapping operator prepone as follows.

Definition 2.6 Let M be the alphabet of an FSA web service composition S,

operator prepone is a function from M ∗ to 2M∗

. Let w = w′m1m2w
′′ be a word

in M∗, where m1 is a message from pi to pj and m2 is a message from px to py.

If either (1) {pi, pj} and {px, py} are disjoint, or (2) pi = py and pj 6= px, then

prepone(w) includes the word w′m2m1w
′′.

Intuitively, the operator prepone allows two messages in a conversation to be

swapped if the senders and receivers are completely disjoint, or a later message

to a peer can arrive in the queue earlier than an outgoing message from the

peer, because the outgoing message cannot depend on a later arrived message.

It is important to note that prepone applies to the global sequence of messages

observed by the watcher. If L is a language over M , we define prepone(L) to

be the smallest language that contains L and is closed under prepone. The

following interesting property holds for prepone.

Lemma 2.7 For each web service composition S, prepone(C(S)) ⊆ C(S) (clo-

sure under prepone).

Proof: It suffices to show that given a conversation w, if w′ ∈ prepone(w),

then w′ is also a conversation. To prove the above argument, we can construct a
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complete run γ′ for w′, by modifying the complete run γ for w.

Now suppose that w = uαβv and w′ = uβαv, where α and β are the pair

of messages which satisfy the conditions to apply the prepone operator. Now let

the complete run γ be written as

γ = c0 → · · · → ci
!α→ ci+1 → . . . → ck

!β→ ck+1 → . . . → cn.

Since the α and β are consecutive messages in the conversation, from configu-

ration ci+1 to ck, each action is either a consume or an ε transition. Note that

consume and ε actions are internal transitions which do not affect other peers.

We can permute the actions between ci+1 and ck (however, keep the relative order

of actions of the same peer), without affecting the rest of γ. The action sequence

between ci+1 and ck of γ will be re-arranged so that it consists of three subse-

quences: seq1 where all actions are taken by the sender or the receiver of α;

seq2 where all actions are taken by a peer which is neither the sender/receiver

of α, nor the sender of β; seq3 where all actions are taken by the sender of β.

Note that after action sequence is re-arranged, the contents of ci+1 to ck should

be adjusted accordingly.

Now by the two alternative conditions to apply the prepone operator, the sets

of actions involved in seq1, seq2, seq3 are pairwise disjoint. (Notice that in the

second condition of Definition 2.6, i.e., “pi = py and pj 6= px”, the “pi = py”

makes seq2 to be disjoint with seq3.)

Now we can construct γ ′ from γ. First, we copy the parts: c0 to ci, and ck+1

to cn, from γ to γ′. Then the action sequence of the middle part (i.e., ci to ck+1)

of γ′ is the following:

seq2 seq3 !β !α seq1 (2.1)
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Note that since seq1, seq2, and seq3 are pairwise disjoint, the above swap of

these subsequences is feasible. The rest of the construction is to properly reset

the contents of configurations from ci to ck+1 according to Equation 2.1.

2.6.2 Closure Under Join

The second closure property of a conversation set concerns combining “local

views” of peers into global conversations, this is reminiscent of the join operator

in the relational database model.

Example 2.8 Consider a composition schema S that has four peer prototypes

p1, p2, p3, p4, and three messages p1 → p2 : a, p3 → p4 : b, and p4 → p3 : c.

Is there any FSA composition on schema S that generates the regular language

{a, bc}? Note that the peer groups {p1, p2} and {p3, p4} are in fact independent;

there is no communication possible between them. Hence any FSA composition

that generates {a, bc} also generates each of ε, abc, bac, and bca.

The above example suggests that if two global behaviors have exactly the

same local views, they are indistinguishable. Next we formalize the concept of

“projection” and “join” as below. For a composition schema S = (P,M), given

a word w ∈M∗, πi(w) denote the projection of w to the alphabet Mi of the peer

prototype pi, i.e., πi(w) is a subsequence of w obtained from w by removing all the

messages which are not in Mi. When the projection operation is applied to a set

of words the result is the set of words generated by application of the projection

operator to each word in the set. Given a composition schema (P,M) where

n = |P |, let L1 ⊆M∗
1 , . . . , Ln ⊆M∗

n, the join operator is defined as follows:

join(L1, . . . , Ln) = {w | w ∈ M ∗,∀i ∈ [1, n] : πi(w) ∈ Li}.
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It is not hard to infer the following:

L = join(L1, . . . , Ln) ⇒ ∀i ∈ [1..n] : πi(L) ⊆ Li. (2.2)

Given a language L ⊆M ∗, the join closure is defined as follows:

joinc(L) = join(π1(L), . . . , πn(L))

We have the following result:

Lemma 2.9 For each FSA composition S: joinc(C(S)) ⊆ C(S).

To prove the above lemma, we can show that for each word w in joinc(C(S)),

and for each peer prototype pi, there is a “complete local execution” of the peer

for πi(w). Then we can construct a global run which simulates each local run,

and generates w. The complete proof is essentially a part of the proof of Lemma

2.14. In fact, Lemma 2.9 is an implication of Lemma 2.14.

2.6.3 Combining Prepone and Join

We can combine the closure of prepone and join. Lemmas 2.7 and 2.9 imme-

diately imply the following.

Lemma 2.10 Let S be an FSA composition and its alphabet is M . Given a

language L ⊆ M ∗, let closure(L) denote the minimal superset of L that is closed

under prepone and joinc. The following holds:

L ⊆ C(S) ⇒ closure(L) ⊆ C(S)

Essentially, the above lemma states that if we know that a set of conversations

can be generated by an FSA composition, then the closure of that set should
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Figure 2.5. The Composition Schema for Example 2.11

also be generated by that FSA composition. One interesting question is that

given L, is it always possible to synthesize an FSA composition S ′ such that

C(S ′) = closure(L)? The answer is negative. Consider the following example.

Example 2.11 In Fig. 2.5 we present a composition schema that consists of

three peers. Consider the language L = {ab, bac} (L is described using an FSA

in Fig. 2.5). It is obvious that closure(L) = L.

Suppose S is an FSA composition where closure(L) = C(S). Consider the

local run on peer p2 for the conversation bac. The send of c must be after the

send of b, however the consumption of a may be after the send of c. This implies

that bac or bca or both must be accepted by p2 (if we drop the “!” and “?” from

p2 and regard p2 as a standard FSA which accepts words). Similarly we can infer

that ab must be accepted by p1.

If bac is recognized by p2, consider the scenario that p1 takes the local ex-

ecution path ab and p2 takes the path bac. It is not hard to see that abc is a

conversation, since p2 sends b while having a in its input queue. Similarly for

the case bca is accepted by p2, we can also show that abc is a conversation. Now

conversation abc is not contained in closure(L), and hence closure(L) 6= C(S).
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The following proposition summarizes Example 2.11

Proposition 2.12 There exists a composition schema (P,M) and a language

L ⊆M∗ such that for each FSA composition S over schema (P,M):

C(S) 6= closure(L).

2.6.4 Local Prepone and ws-closure

One reason that not every language L closed under closure can be a conversa-

tion set is that the prepone operator (which is applied to global conversations)

is too weak. Consider the projection of the conversation abc on p2 in Example

2.11. If it is not accepted by p2, it must be the result of applying one or more

“prepone” like swaps on an accepted word. Since p2 must accept bac or bca, as

argued in Example 2.11, it is not hard to see that abc can be generated from

an accepted word of p2, by doing one swap on b and a for bac or applying two

swaps (swap a with c and then swap a with b) for bca. Note that this type of

swap differs from prepone since the former is applied locally instead of globally.

Secondly, we allow the receiver of the first message and the sender of the second

message to be the same, which is forbidden in prepone. We call this type of

swap a local prepone.

Definition 2.7 Let pi be a peer of an FSA composition S, a local prepone oper-

ator lpi is a function from M ∗
i to 2M∗

i , and for each word w in M ∗
i if w can be

written as w = w′m1m2w
′′, where pi is the sender of m1 and the receiver of m2,

then the word w′m2m1w
′′ is included lpi(w).
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Definition 2.8 Given a composition schema (P,M) where n = |P |, and a lan-

guage L ⊆M ∗. The ws-closure of L, written as wsc(L), is defined as follows:

wsc(L) = join(lp∗
1(π1(L)), . . . , lp∗

n(πn(L))),

where lp
∗
i represents the reflexive and transitive closure of lpi, for each peer

prototype pi.

Since local prepone is less restrictive than global prepone, it immediately fol-

lows that closure(L) ⊆ wsc(L). Next we are going to present a simple mathemat-

ical characterization of the conversation set for any arbitrary FSA composition,

using the local prepone and join operators. Before the presentation of this result,

we need to study the local execution of each peer during a run.

2.6.5 Local Execution

The definition of → given for a web service composition has the effect of

generating words. Now to study the local execution of each peer, we define a

kind of converse for each individual FSA peer which has the effect of consuming

words. Let Ai be an FSA peer (Mi, Ti, si, Fi, δi) which implements peer prototype

pi. A local (l-)configuration of Ai is a triple (t, u, v) ∈ Ti × (M in
i )∗ ×M∗

i . In an

l-configuration (t, u, v), t is the current state of the peer Ai, u is the sequence of

messages in the input queue of Ai, v is a sequence of “future messages” including

the incoming messages not yet in the queue of Ai and the messages to be sent

out by Ai (i.e., v represents the remaining portion of a conversation projected to

the messages visible to Ai).
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Figure 2.6. The FSA Composition for Example 2.11

We define (t, u, v) →i (t′, u′, v′) for a pair of l-configurations (t, u, v) and

(t′, u′, v′) if one of the following holds for some a ∈M in
i and some b ∈M out

i :

• (Consuming a message from the queue) u = au′, v = v′, and (t, ?a, t′) ∈ δi,

• (Sending a message) u = u′, v = bv′, and (t, !b, t′) ∈ δi,

• (ε-move) u = u′, v = v′, and (t, ε, t′) ∈ δi, or

• (En-queuing a message) t = t′, u′ = ua, v = av′.

Definition 2.9 Given an FSA composition 〈(P,M),A1, . . . ,An〉 where n = |P |,

let γi = c0, c1, . . . , ck be a list of l-configurations for peer Ai. γi is a local (l)-run

of Ai if c0 can be written as c0 = (si, ε, w) where si is the initial state of Ai,

w ∈ M∗
i , and ca →i ca+1 for each 0 ≤ a < k. γi is a complete local run if the

following additional condition is satisfied: ck = (q, ε, ε) where q is a final state of

Ai. When γi is a complete l-run, we call w, the word in the initial l-configuration

of γi, a complete local execution of Ai.

Example 2.13 Fig. 2.6 is one FSA composition that generates each word of

L = {ab, bac} in Example 2.11. Let A1,A2,A3 be the peer implementation
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for p1, p2, p3, respectively. Study the conversation abc, its projection to peer

prototype p2, i.e., abc, is a complete local execution of A2, because there exists a

corresponding complete local run of A2 as follows.

(t1, ε, abc) →2 (t1, a, bc) →2 (t2, a, c) →2 (t3, ε, c) →2 (t4, ε, ε)

Basically, the above local run consists of 4 steps: (1) message a enters the

input queue of A2, (2) message b is sent out by A2, (3) message a is consumed,

and (4) message c is sent out.

Lemma 2.14 Let S = 〈(P,M),A1, . . . ,An〉 be an FSA composition. Given a

word w ∈ M∗, if for each i ∈ [1..n], πi(w) is a complete local execution of Ai,

then w is a conversation of S. The converse is also true.

Proof: In the following, we give the proof for the proposition “if projection of w

to each peer is a complete local execution, then w is a conversation”. The proof

of the converse is trivial.

Let w = α1 · · ·αm. Since for each i ∈ [1..n], the projection πi(w) is a complete

local execution, there exists a corresponding complete l-run γi for πi(w). We show

that w is a conversation by constructing a complete run which simulates each γi.

The construction has (m + 1) phases. Phase 0 is the initialization phase where

we simulate in the global run the initial ε-moves of each pi until it advances to an

l-configuration that is ready to do a send-message action or an enqueue-message

action. Then in each phase j, we simulate the transmission of message αj, where

only the sender and receiver of αj are involved. We start with the sender of

αj. We execute the send-αj action, and its follow-up actions such as ε-moves
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and consume-message actions, until we encounter an enqueue-message or send-

message action on a message αj′ where j ′ > j. Then we turn to the receiver of αj,

execute the enqueue-αj action and the follow-up actions until an action related

to a later message is reached.

To prove the correctness of the above process, we need to show that after each

phase the simulation can always continue, and that at the end of the simulation,

the global configuration is consistent with the l-configuration of each peer at the

end of its local run. They are guaranteed by the following induction assumption:

prior to the phase j (j ∈ [1..m + 1]) of the simulation, the following statement

(denoted as P ) is true: for each peer Ai, its complete local run is simulated up

to a l-configuration (ti, w1, w2) where w2 = πi(αj, . . . , αm), and either ti is a final

state or the next action in the local run of Ai is a send action or an en-queue

action. Obviously, P is satisfied at the end of phase 0. When P holds at the

beginning of the phase j where j ∈ [1..m], the simulation at phase j (which

simulates the actions of the sender and the receiver of αj) guarantees that P

holds at the end of phase j (i.e., the beginning of phase j + 1).

2.6.6 Characterize Conversation Set

We now discuss how to use local prepone and join to characterize the conver-

sation set for an arbitrary FSA web service composition.

Lemma 2.15 Let S = 〈(P,M),A1, . . . ,An〉 be an FSA web service composition.

For each i ∈ [1..n], a word w ∈M ∗
i is a complete local execution of Ai if and only

if w ∈ lp
∗
i (L(Ai)).
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Proof: We prove by induction (on the number of the times lpi operator is

applied) that w ∈ lp
∗
i (L(Ai)) is a sufficient condition for w being a complete

local execution. It suffices to show that if a word w is contained in lpi(w
′) for

some complete local execution w′, w is also a complete local execution. The proof

of the claim is straightforward, because we can always construct an l-run for w

by modifying the l-run of w′.

Next we prove that w ∈ lp
∗
i (L(Ai)) is a necessary condition. We show that

for any complete local execution w, we can always find w′ ∈ L(Ai) such that

w ∈ lp
∗
i (w

′), by applying “reverse prepone” procedure finitely many times. We

briefly describe the procedure below. Consider the l-run c0 →i · · · →i cn of the

complete local execution w. Let (qa, u1, αu2) →i (qa+1, u1, u2) be the first send-

message action such that input queue is not empty, i.e., |u1| > 0. Since !α is

the first such send-message action, w can be written as w = w1u1αu2, where w1

includes those eagerly processed messages before the arrival of any message in

u1. Now let w1 = w1αu1u2. Obviously, w ∈ lp
|u1|
i (w1). w1 is also a complete

local execution, because we can construct the corresponding local run for w1 by

modifying the local run for w. Repeat the above procedure, until we cannot find

a send-message action with a non-empty queue, then we get a list w0, w1, ..., wk

where w0 = w, wk ∈ L(Ai), and for each 0 ≤ j < k, wj ∈ lp
∗
i (w

j+1). Note that

wk is an accepted word of Ai because all messages are consumed eagerly during

the l-run for wk, i.e., whenever a message is sent out by Ai, its input queue is

empty. Hence we have w ∈ lp
∗
i (L(Ai)).

Lemma 2.14 and Lemma 2.15 immediately imply the following theorem.
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Theorem 2.16 Given an FSA composition S = 〈(P,M),A1, . . . ,An〉, the con-

versation set generated by S can be characterized using the following formula:

C(S) = join(lp∗
1(L(A1)), . . . , lp

∗
n(L(An)))

2.6.7 Regular Core

Now consider the following problem: given an FSA composition S, can we

find a regular language L as its core such that wsc(L) = C(S)? The following

example provides a negative answer.

!a
p1

!b

!c

?a

p2

?c

?b

p3

p1

p2

p3

a

b

c

Figure 2.7. The FSA Composition for Example 2.17

Example 2.17 Consider the FSA composition shown in Fig. 2.7, which consists

of 3 peers, p1, p2, p3. Intuitively, p1 sends, say i messages of class a, to p2, a

message b to p3, and then halt; p2 responds to each a message by sending one c

message to p3; p3 expects b at the beginning and then consumes all c messages. It

is not hard to see that the only way for p3 to halt is for p2 to keep all a messages

in its queue till after p1 sends b to p3. Thus L = {aibci | i ≥ 0} is its conversation

set.

Notice that none of the message pairs (a, b), (b, c), and (a, c) can satisfy the

condition to apply global prepone or local prepone operators. In addition, the
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projection of a word aibci (i ≥ 0) to p2 is aici, which requires the matching of the

number of a’s and c’s. This implies that we cannot construct any new word from

the projections of any three different words aibci, ajbcj, and akbck where i, j, k

are pairwise unequal. The above observation immediately leads to the following

property for each subset L′ of L:

L′ = closure(L′) = wsc(L′)

This implies that the conversation set of Fig. 2.7 does not have a regular core.

We summarize Example 2.17 as follows.

Proposition 2.18 There exists an FSA web service composition S such that

C(S) 6= wsc(L) for each regular language L.

2.7 Topdown Approach: Conversation Proto-

cols

Proposition 2.18 suggests that adding asynchronous communication signifi-

cantly increases the power of finite state machines. This unsettling fact moti-

vates us to look for an essentially “weaker” mechanism to describe web service

compositions. As attention has to be given on the global behaviors of web ser-

vice compositions, and LTL properties are defined on conversations. It may be

“cheaper” and more direct to provide a specification of the global behaviors, and

leave the specification of peers blank.

Definition 2.10 Let S = (P,M) be a composition schema. An FSA conver-

sation protocol over S is a tuple P = 〈(P,M),A〉 where A is a finite state
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automaton on alphabet M . We let L(P) = L(A), i.e., the language recognized by

A.

Definition 2.11 Let S = (P,M) be a composition schema, and let FSA con-

versation protocol P and FSA composition S be both over schema S. We say S

realizes P if C(S) = L(P). An FSA conversation protocol P is realizable if there

exists an FSA composition that realizes P.

We are interested in the following question: given an FSA conversation pro-

tocol P, is it always possible to construct an FSA composition that realizes P?

In the following we show the answer is negative.

Example 2.19 Let (P,M) be a composition schema which consists of four peers

p1, p2, p3 and p4. Its alphabet M consists of two messages a which is from p1

to p2 and b which is from p3 to p4. Suppose P is an FSA conversation protocol

over (P,M) where L(P) = {ab}. It is clear that any peer implementation which

generates conversation ab can also generate ba as well, because there is no way to

let p3 and p1 synchronize their send operation. Hence the conversation protocol

P is not realizable.

The above example can be summarized using the following proposition.

Proposition 2.20 There exist FSA conversation protocols that are not realiz-

able.

Note that although an FSA conversation protocol may be not realizable, we

can always find an FSA composition S ′ such that the protocol is the “regular

core” of C(S ′).
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Proposition 2.21 For any FSA conversation protocol P which is over some

composition schema S that has n peer prototypes, there is an FSA composition

S over S such that P is the regular core of S, i.e.,

C(S) = wsc(L(P))

Proof: Let P = 〈(P,M),A〉. We can construct the FSA web service composition

S = 〈(P,M),A1, . . . ,An〉 as follows. Each peer implementation Ai is essentially

the projection of A to peer prototype pi: replace all edges in A that are irrelevant

to pi by ε moves, change edges of messages sent to pi as receive-transitions,

and change edges of messages sent by pi as send-transitions. It is clear that

L(Ai) = πi(L(A)) for each peer prototype pi. Then by Theorem 2.16, we have

C(S) = join(lp∗
1(L(A1)), . . . , lp

∗
n(L(An))), hence C(S) = wsc(L(P)).

2.8 Modeling of Reactive Web Services

This section studies a variation of our model [39] to specify reactive web

services, which may have infinitely long interactions. We use Büchi automata [15]

to specify such services. Different from a standard FSA, a Büchi automaton’s

acceptance condition requires that some final state in the automaton is visited

infinitely often during the run for an accepted word. Note that in our Büchi

automaton specification for a peer, there may exist ε transitions, hence a Büchi

peer (as an automaton to recognize words) can accept both finite and infinite

words. Given an alphabet Γ, let Γω denote the set of infinite words on Γ, Γ≤ω =

Γ∗ ∪ Γω. Formally, a reactive web service composition is defined as follows.

Definition 2.12 A Büchi web service composition (or “reactive composition”)
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is a tuple 〈(P,M),A1, . . . ,An〉 where n = |P |, and (P,M) is the composition

schema. For each i ∈ [1..n], peer implementation Ai is a Büchi automaton repre-

sented as the tuple (Mi, Ti, si, Fi, δi) where Mi, Ti, si, Fi, and δi are the alphabet,

set of states, initial state, final states and transition relation, respectively. A tran-

sition can be one of the three types: (t1, !a, t2), (t1, ?b, t2), and (t1, ε, t2), where

t1, t2 ∈ Ti, a ∈ M out
i , and b ∈ M in

i . A word w ∈ M≤ω
i is accepted by Ai if there

exists a corresponding run for w such that a final state is visited infinitely many

times.

In the following, we briefly present the technical results on the reactive (Büchi)

composition model. Since most results are similar to those of the non-reactive

(FSA) composition model, we only give the detail proof for the different parts

between the two models. First, we have to redefine the notions of complete run

and conversation. Note that the definition of a global configuration is the same

for both the Büchi and the FSA composition models.

Definition 2.13 Let S = 〈(P,M),A1, . . . ,An〉 be a Büchi composition, and let

γ = c0c1c2 · · · be a finite or infinite sequence of configurations. γ is a run if it

satisfies the first two of the following four conditions. γ is a complete run if it is

an infinite configuration sequence that satisfies all of the four conditions.

1. c0 = (ε, s1, . . . , ε, sn, ε) (si is the initial state of pi for each i ∈ [1..n]),

2. for each 0 ≤ i < |γ| − 1, ci → ci+1,

3. for each ` ∈ [1..n] and each i ≥ 0, there exist j > i and k > i such that

(a) tj` is a final state, where tj` is the state of p` in cj, and
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(b) either Qk
` is empty or head(Qk

` ) 6= head(Qi
`) if Qi

` 6= ε, where Qi
` and

Qk
` are the queue contents of p` in ci and ck respectively.

4. for each i ≥ 0, there exists j > i such that gw(ci) 6= gw(cj).

An infinite word w ∈ Σω is a conversation of S if there exists a complete run

c0c1c2 · · · of S such that for each i ≥ 0, gw(ci) is a finite prefix of w. Let C(S)

denote the set of conversations of S.

In Definition 2.5, Condition (3) requires that during a complete run the Büchi

acceptance condition of each peer should be met, and all messages stored in

input queues should be eventually consumed; Condition (4) specifies that global

message exchange should always eventually advance. During a complete run,

a peer is said to terminate at some configuration ci if after ci the peer takes ε

transitions only and some final state is visited infinitely often. The notions of

“completable run”, “stuck”, and “receptive” are the same as the FSA composition

model.

2.8.1 Conversation Set Is Not ω-Regular

Consider the Büchi composition in Fig. 2.8, which consists of three peers: an

Investor, an Online Stock Broker, and a Research Department. In each round

of message exchange, Online Stock Broker sends a list of RawData to Research

Department for further analysis, where for each RawData one Data is generated

and sent to Investor. Messages EndofRdata, Start, and Complete are intended to

synchronize the three peers. Finally, Investor acknowledges Online Stock Broker

with Ack so that a new round of data processing can start. This seemingly simple
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Figure 2.8. Fresh Market Update Service

example produces a non ω-regular set of conversations. Consider its intersection

with an ω-regular language (R∗ESD∗CA)ω where each message is represented

by its initial capital letter. It is easy to infer that the result is (RiESDiCA)ω,

because each Data sent by Research Department should match a RawData, and

note that during each round all RawData are stored in the queue of Research

Department before the first Data is sent. In addition, Start should arrive earlier

than Data, otherwise Investor gets stuck. Because the number of R’s and D’s

must be equal in the intersection, by an argument similar to pumping lemma, the

conversation set can not be recognized by any Büchi automata. The following

proposition summarizes the above discussion.

Proposition 2.22 There exists a Büchi composition S such that C(S) is not

accepted by any Büchi automaton.

2.8.2 LTL Model Checking

The LTL properties defined on infinite conversations are slightly different from

the FSA model. Given LTL formulas φ, and ϕ, an atomic proposition ψ ∈ AP ,

and a word w ∈Mω, the syntax and semantics of LTL formula can be defined as
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follows:

w |= ψ iff w0 ∈ ψ

w |= ¬φ iff w 6|= φ

w |= φ ∧ ϕ iff w |= φ and w |= ϕ

w |= φ ∨ ϕ iff w |= φ or w |= ϕ

w |= Xφ iff w1 |= φ

w |= Gφ iff for all i ≥ 0, wi |= φ

w |= φUϕ iff there exists j ≥ 0 such that wj |= ϕ and,

for all 0 ≤ i < j, wi |= φ

w |= Fφ iff w |= MUφ

Similarly, a Büchi composition S satisfies an LTL property φ if and only if

each conversation w in C(S) satisfies φ. Following the same argument for the FSA

composition model, we have the undecidability result of the LTL model checking

for the reactive model.

Theorem 2.23 Given a Büchi composition S and an LTL property φ, determin-

ing if S |= φ is undecidable.

2.8.3 Characterization of Conversation Sets

We now discuss how to characterize the conversation set for an arbitrary Büchi

composition. The idea is similar to that of the FSA composition model, however,

the definition of complete local execution and local prepone have to be redefined.

Definition 2.14 Given a Büchi composition 〈(P,M),A1, . . . ,An〉 where n =

|P |, a local (l-)configuration of Ai is a triple (t, u, v) ∈ Ti × (M in
i )∗ ×M≤ω

i . Let
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γi = c0, c1, . . . be an infinite list of l-configurations for peer Ai. γi is a complete

local (l)-run of Ai if the following conditions are satisfied by γi:

1. Let c0 be written as c0 = (si, ε, w). si is the initial state of Ai, and

2. cj →i cj+1 for each j ≥ 0, and

3. for each j ≥ 0, there exists k > j such that ck can be written as (t, u, v)

where t is a final state of Ai, and

4. for each j ≥ 0, there exists k > j such that if cj = (t, u, v) and ck =

(t′, u′, v′), then u′ = ε or u0 6= u′0 (u0 and u′0 are the first message of u and

u′, respectively).

The word w ∈M≤ω, which appears in the initial l-configuration of γi, is called a

complete execution of Ai.

Lemma 2.24 Let S = 〈(P,M),A1, . . . ,An〉 be a Büchi composition. Given a

word w ∈ Mω,3 if for each i ∈ [1..n], πi(w) is a complete local execution of Ai,

then w is a conversation of S. The converse is also true.

Proof: The proof is almost the same as the proof for Lemma 2.14: construct

the global run to simulate each local run for the projection of the word. The

induction in the proof of Lemma 2.14, which shows that the simulation process

can always proceed, works for the reactive model too, because a message cannot

stay in queue for an infinite long time period (as required in Definition 2.13 and

Definition 2.14).

3Note that the use of Mω (instead of M≤ω) ensures the satisfaction of the condition 4 in
Definition 2.13

46



We now define a swap closure operator which is essentially the “infinite”

reflexive and transitive closure of local prepone operators for infinite words.

Let pi = (M in
i ,M

out
i ) be a peer prototype. Given a word w ∈M≤ω

i , the swap

closure of w at pi, written as sci(w), is a subset of 2M
≤ω
i which includes every

word w′ satisfying the following conditions:

1. πM in
i

(w′) = πM in
i

(w), and

2. πMout
i

(w′) = πMout
i

(w), and

3. for each integer j ≥ 0, the number of input messages (of pi) in the prefix

w0 . . . wj of w is no greater than that of the prefix w′
0 . . . w

′
j of w′. (wj and

w′
j are the j-th message in w and w′, respectively.)

Lemma 2.25 Let S = 〈(P,M),A1, . . . ,An〉 be a Büchi composition. For each

i ∈ [1..n], a word w ∈ M≤ω
i is a complete execution of Ai if and only if w ∈

sci(L(Ai)).

Proof: It suffices to show that for each word w ∈ M≤ω
i , and its corresponding

l-run γi: if w′ ∈ sci(w), we can construct a corresponding l-run γ ′
i for w′ from

γi. The l-run γ′i can be defined as an reordering of γi such that when excluding

the enqueue-actions from the two l-runs, the sequence of ε-moves, send-actions

and consume-actions is the same for γi and γ′i. The only difference is that the

enqueue-actions of γ ′i are “preponed” forward, which, still allows the γ ′
i to proceed

following the logic (on send- and consume-actions) of γi, because for a consume-

action in γi, its corresponding enqueue-action in γ ′i can always happen earlier.
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Lemma 2.24 and Lemma 2.25 immediately lead to the following theorem.

Theorem 2.26 For each Büchi composition S = 〈(P,M),A1, . . . ,An〉, its con-

versation set C(S) = join(sc1(L(A1)), . . . , scn(L(An))).

2.8.4 Büchi Conversation Protocols

We can also specify reactive compositions in a top-down fashion, where a

Büchi automaton specifies the desired set of conversations. We call a Büchi

automaton nonredundant if for each of its states there is an accepted word whose

run traverses through the state.

Definition 2.15 Given a composition schema (P,M), a Büchi (or reactive) con-

versation protocol P is a tuple 〈(P,M),A〉. A is a nonredundant Büchi automa-

ton (without ε-transitions) on alphabet M . The conversation set defined by P is

the language accepted by A, i.e., L(P) = L(A).

Similar to FSA conversation protocols, we can define the realizability of a

Büchi conversation protocol.

Definition 2.16 Let P and S be a Büchi conversation protocol and a Büchi web

service composition over a composition schema S, respectively. We say S realizes

P if C(S) = L(P). A Büchi conversation protocol is realizable if there exists a

Büchi composition that realizes it.

The projection of a Büchi conversation protocol to its peers is similar to that

of a FSA conversation protocol. Given a Büchi automaton A over a composition
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schema S = (P,M), and a peer prototype pi ∈ P , the projection of A onto pi,

written as πi(A), is a Büchi automaton Ai obtained from A by replacing each

move for a message not in the alphabet of pi by an ε-move. Note that, due to

the existence of ε-move, L(πi(A)) may contain words of finite length.

2.9 Related Work

In approaches such as CSP [49], I/O automata [57] and interface automata

[3], the communicating processes execute a send and a corresponding receive ac-

tion synchronously, while in our model, messages are stored in FIFO buffer first.

Our model of web service compositions is slightly different than the Communi-

cating Finite State Machines (CFSM) model in [13], and almost identical to its

variation named Single-Link Communicating Finite State Machines (SLCFSM)

[69], except that both Büchi automata and standard FSA are used in our model.

In SLCFSM and our model, messages are exchanged through a virtual common

medium and stored in the queue associated with the receiver, whereas in [13]

each pair of communicating machines use isolated communication channels and

each channel has its own queue. The idea of using CFSM with FIFO queues to

capture indefinite delay of messages (signals) is similar to many other published

models like Codesign Finite State Machine [20], and Kahn Process Networks [53].

Other formalisms like π-Calculus [61] and the recent Microsoft Behave! Project

[72] are used to describe concurrent, mobile and asynchronously communicating

processes. Finally, [10] studies “quasi-realtime” automata with queues. These

are single automata with one or more queues, where an automaton can write a

bounded number of letters on the queue(s) for each input letter read. In [10], the
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input and queue alphabets may be different; in our framework the alphabets are

identical.

Brand and Zafiropulo have shown in [13] that CFSM with perfect FIFO queues

are as powerful as Turing Machines. Thus it is not hard to infer that LTL model

checking on our web service composition model is undecidable. This undecidabil-

ity result is caused by the unbounded FIFO queues, and in [33], many problems

are proved to be undecidable even for two identical communicating processes. The

transaction sequential consistency problem in [8] provides another perspective for

understanding the queue effect, where independent transactions are allowed to

commute (which resembles the prepone operator). Although FIFO is the most

popular assumption about network environment for web services, industry mes-

saging platforms can provide services with different qualities. For example, Java

Message Service [52] allows users to tune the priority, expiration date, and persis-

tence of messages to deliver. Undoubtedly, different communication assumptions

lead to different analysis complexity for communicating systems. For example,

in [2], it is shown that, if perfect FIFO channels are replaced by lossy channels,

many problems of analyzing CFSM become decidable. As one of our future re-

search plans, it is interesting to study the variations of our current framework

with different network assumptions (e.g. FIFO, non-lossy but reordering, and

lossy message delivery).

While most industry solutions (e.g. BPEL4WS and WSCI) favor bottom-

up specifications, there are efforts to specify distributed systems in a top-down

fashion, for example the IBM conversation support project [51] and the Message

Sequence Chart model [63]. The notion of conversation protocol resembles those

industry initiations, however, there are still interesting differences. In the fol-
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lowing, we give a comparative study on the expressive power of our conversation

oriented model and the MSC graph model [7].

2.9.1 Comparison with Message Sequence Charts

In this section, we discuss the expressive power of three specification ap-

proaches for a composition of web services: the top-down FSA conversation pro-

tocol, the bottom-up FSA composition, and the MSC graph model.

MSC Graphs

MSC [63] is a widely used scenario specification approach for concurrent sys-

tems. An MSC consists of a finite set of peers, where each peer has one single

sequence of send/receive events of messages (e.g. peer B in Fig. 2.9(a) has the

sequence of ?α !β). We call that sequence the event order of that peer. There

is a bijective mapping (represented using arrows in Fig. 2.9) that matches each

pair of send and receive events. Given an MSC M , its language L(M) is the set

of linearizations of all events that follow the event order at each peer. Essentially

L(M) captures the “join” of local views from each peer. A formal definition of

MSC can be found in [7].

α

β

A B C

α

β

A B DC A B
α

(a) (b) (c)

α
A B

α

α

(d)

Figure 2.9. MSC Example
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Example 2.27 Fig. 2.9 (a) and (b) are two MSCs, and let them be Ma and Mb

respectively. Obviously L(Ma) = {!α ?α !β ?β}, and L(Mb) = { !α ?α !β ?β,

!α !β ?α ?β, !α !β ?β ?α, !β ?β !α ?α, !β !α ?β ?α, !β !α ?α ?β }.

An MSC Graph [7] is a finite state automaton, and each node of the graph

is associated with an MSC. Given an MSC graph G, a word w is accepted by G,

if and only if there exists an accepted path of G, and w is a linearization of the

MSC that is the result of concatenating MSCs along that path.

Example 2.28 Fig. 2.9(c) presents an MSC graph G which consists of a sin-

gle state. A linearization !α !α ?α ?α !α ?α belongs to L(G) because if we

run G by traversing the transition twice, we shall connect the MSC associated

with the state three times, and the resulting MSC is Fig. 2.9(d). Obviously

!α !α ?α ?α !α ?α is one of the linearizations of Fig. 2.9(d). Actually the lan-

guage L(G) can be described using the following [7]:

L(G) = {(!α | ?α)∗ | |!α| = |?α| ∧ for any prefix |!α| ≥ |?α|}.

Note that semantics of MSC graph is not the concatenation of the language of

the MSCs of each passed states.

We now present some properties of MSC graphs, which will be useful in the

later comparison of expressive power. Given a linearization ` that consists of

send and receive events, πsend(`) returns a sequence of send events by deleting

receive events in `. Since πsend(`) contains send events only, we remove “!” for

each event in πsend(`) for simplicity.

Lemma 2.29 Given an MSC M , we can always construct an FSA A such that

L(A) = πsend(L(M)).
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Proof: Enumerate and collect the πsend(`) of each linearization ` of M . Ob-

viously, the set is a finite set of words, which can be recognized by an FSA.

Based on Lemma 2.29, and the following restrictive join closure operator, we

are able to construct an FSA for each MSC graph.

Definition 2.17 Given a composition schema (P,M) where n = |P |, and a

language L ⊆M ∗, the restrict join closure of L, written as rjoinc(L) is defined

as follows:

rjoinc(L) = {w | there exists a word w′ ∈M∗s.t.∀i ∈ [1..n] : πi(w) = πi(w
′)}

Obviously, for any language L, rjoinc(L) ⊆ joinc(L). With rjoinc, we

have the following lemma.

Lemma 2.30 Given two MSCs M1 and M2 on a same composition schema

(P,M) where n = |P |, and let A1 and A2 be the corresponding FSA that specifies

their projection on send events respectively, then the following is true:

πsend(L(M1 ◦M2)) = rjoinc(L(A1 ◦ A2))

Here “◦” is the concatenation operator. M1 ◦M2 is a new MSC graph by con-

catenating the event order for each peer prototype, and A1 ◦ A2 is a new FSA

constructed from A1 and A2 by linking each final state of A1 to the initial state

of A2 with ε-transition, and making each state which is originally a part of A1 a

non-final state.
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Proof: For each peer prototype pi, let `i,1 and `i,2 denote the event order of pi

in M1 and M2 respectively. For each linearization ` of M1 ◦M2, we have

∀i ∈ [1..n] : πi(`) = `i,1 ◦ `i,2 (2.3)

Now for each word w ∈ L(A1 ◦A2), w can be written as w = w1 ◦w2 where w1 ∈

L(A1) and w2 ∈ L(A2). Since A1 and A2 are the corresponding FSA for M1 and

M2 respectively, for each i ∈ [1..n]: πi(w) = πsend(`i,1), and πi(w) = πsend(`i,1).

Combined with Equation 2.3, this immediately leads to the following:

∀i ∈ [1..n] ∀` ∈ L(M1 ◦M2) ∀w ∈ L(A1 ◦ A2) : πi(πsend(`)) = πi(w) (2.4)

Then πsend(L(M1 ◦M2)) = rjoinc(L(A1◦A2)) can be inferred from Equation

2.4 directly.

Lemma 2.31 For each MSC graph G there is a corresponding FSA A such that

πsend(L(G)) = rjoinc(L(A)).

Proof: Now given an MSC graph G, we can always construct an FSA A for G

as follows: replace each MSC in each state of G with the corresponding FSA as

shown in Lemma 2.29, properly connect the final states and initial states of neigh-

boring FSAs by ε transitions. Now to prove that the resulting FSA does capture

the projection of the linearization set to send-events, we need a strengthened ver-

sion of Lemma 2.30: given k MSCs M1,M2, . . . ,Mk and their corresponding FSA

A1,A2, . . . ,Ak, then πsend(L(M1 ◦M2◦· · ·◦Mk)) = rjoinc(L(A1◦A2◦· · ·◦Ak)).

Its proof is straightforward, based on the proof of Lemma 2.30.
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Expressive Power

At the first glance, the difference between the MSC graph framework and

the conversation oriented framework is trivial – the MSC model captures receive

events while the conversation oriented model does not. This different model-

ing perspective is caused by the different application domain of the two models.

In web service composition, we care only about “observable behaviors”, while

message consumption is regarded as internal operations inside each peer. The

seemingly trivial difference, however, leads to interesting and significant differ-

ences in the technical results of realizability analysis in Chapter 3. But first let

us study the relative expressive power of the two models.

MSC graph vs. Conversation Protocol:

Example 2.32 Let Ma and Mb be the two MSCs in Fig. 2.10. Obviously

πsend(L(Ma)) = πsend(L(Mb)) = {αβ, βα}. But L(Ma) 6= L(Mb) because in Ma

the ?α precedes the ?β, while in Mb the ?β is before ?α.

α β

A B C

α β

A B C

(a) (b)

Figure 2.10. Two MSC examples

Example 2.32 can be summarized as follows.

Proposition 2.33 There exist two MSCs M1 and M2, and one conversation

protocol P where L(M1) 6= L(M2) however πsend(L(M1)) = πsend(L(M2)) =

L(P).
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Consider the conversation protocol which specifies one single conversation

αA→B γC→A. No MSC graph can capture the scenario described by this conver-

sation protocol, because there is no way to enforce the send of α to precede γ.

Hence we have the following proposition.

Proposition 2.34 There exists a conversation protocol P where for any MSC

graph G, the following is true: πsend(L(G)) 6= L(A).

Generally the above two Propositions imply that conversation protocol and

MSC graph are incomparable with regard to expressive power: there are two

different MSC graphs where conversation protocols cannot distinguish the differ-

ence; whereas there are conversation protocols which have no equivalent MSC

graphs.

MSC Graph vs. Bottom-up FSA compositions:

Now we show that the MSC Graph model and the bottom-up specified FSA

composition model are incomparable concerning the expressive power.

A B
a

b

C A B

a

b
C

c

A B C

Figure 2.11. The MSC Graph for Proposition 2.35

Proposition 2.35 There exists an MSC graph G such that for any FSA com-

position S, C(S) 6= πsend(G).
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Proof: LetG be the MSC graph presented in Fig. 2.11. Obviously, πsend(L(G)) =

{ab, bac}. Recall that {ab, bac} is the language discussed in Example 2.11, any

FSA composition that generates ab and bac will generate abc as well. Hence,

there does not exist an FSA composition S such that C(S) = πsend(L(G)).

A converse question is: given a bottom-up web service composition S, can its

conversation always be captured by an MSC graph? The following proposition

gives a negative answer.

Proposition 2.36 There exist an FSA composition S such that for each MSC

Graph G: C(S) 6= πsend(L(G)).

Proof: We have shown that the FSA composition in Fig. 2.7 produces the conver-

sation set {anbcn | n > 0}. Now suppose that there is an MSC graph G such that

πsend(L(G)) = {anbcn | n > 0}. By Lemma 2.31, there exists an FSA A such that

rjoinc(L(A)) = {anbcn | n > 0}. However it is shown in Example 2.17 that for

each subset L′ of {anbcn | n > 0}, wsc(L′) = L′, which follows that rjoinc(L′) =

L′. Then we get L(A) = rjoinc(L(A)) = wsc(L(A)) = {anbcn | n > 0}, and

this contradicts with the fact that A is a finite state automaton.
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Chapter 3

Realizability and

Synchronizability Analyses

It is shown in Chapter 2 that not every conversation protocol is realizable,

i.e., given an arbitrary conversation protocol there may not exist web service

compositions that can realize it. On the other hand, the general problem of

deciding if a web service composition satisfies an LTL property is undecidable.

In addition, even if we can prove that the conversation set of a web service

composition satisfies a certain LTL property, designers still have no absolute

confidence, because the conversation set may not capture all possible behaviors

of the web service composition (due to the possible existence of deadlock and

unspecified message reception). This chapter provides a solution to solve all the

above problems.

In [39], we propose several sufficient conditions to restrict the control flows of a

Büchi conversation protocol. When these conditions are satisfied, it is possible to
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implement the protocol using a set of finite state peers. In particular, the synthe-

sized peers will conform to the protocol by generating only those conversations

specified by the protocol. Our results enable a top-down verification strategy

where (1) A conversation protocol is specified by a realizable Büchi automaton;

(2) The properties of the protocol are verified on the realizable conversation pro-

tocol; and (3) The peer implementations are synthesized from the protocol via

projection.

Interestingly, for non-reactive FSA conversation protocols, we can achieve

better results than those on Büchi conversation protocols. Additional good prop-

erties, e.g., freedom of unspecified message reception and freedom of dead-lock,

can be guaranteed for the synthesized peers from an FSA conversation proto-

col. The difference between the two models results from the inequivalence of

nondeterministic and deterministic Büchi automata.

Following the idea of realizability analysis, we derive a similar verification

strategy called “synchronizability analysis” [40] for bottom-up specified web ser-

vice compositions. When a set of synchronizability conditions are satisfied, an

FSA web service composition will generate the same set of conversations under

both the asynchronous and the synchronous communication semantics. LTL ver-

ification can be conducted using the synchronous communication semantics, and

the verification results hold for the usual asynchronous communication seman-

tics. The synchronizability analysis can be extended to the Büchi web service

compositions as well.

Since we have to cover both the FSA and the Büchi models, this chapter

is organized as follows. We first introduce the realizability analysis for Büchi
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conversation protocols, then additional analysis results are presented for FSA

conversation protocols. Finally we introduce the synchronizability analysis for

FSA web service compositions, and briefly summarize the similar results on the

Büchi model.

3.1 Realizability Analysis for Büchi Conversa-

tion Protocols

This section presents the realizability analysis for Büchi conversation pro-

tocols. We first pay a short revisit to the realizability problem, and present a

powerful weapon to prove a conversation protocol cannot be realizable. Then we

introduce three sufficient conditions that can guarantee realizability. Finally, we

discuss how “restrictive” these conditions are in real-world applications.

3.1.1 Revisit Realizability

From a Büchi conversation protocol, we can always synthesize a Büchi web

service composition by projecting the protocol to each peer prototype. Formally,

the projected composition is defined as follows.

Definition 3.1 Let P = 〈(P,M),A〉 be a Büchi conversation protocol where

n = |P |. The projected composition of P, written as SPROJ
P , is a Büchi web

service composition SPROJ
P = 〈(P,M),A1, . . . ,An〉 such that for each 1 ≤ i ≤ n :

Ai = πi(A).

60



Next we show that a Büchi conversation protocol is realizable if and only if

it can be realized by its projected composition.

Theorem 3.1 A Büchi conversation protocol P is realizable if and only if it is

realized by SPROJ
P (i.e., L(P) = C(SPROJ

P )).

Proof: Since L(P) = C(SPROJ
P ) directly leads to the realizability of P, and

L(P) ⊆ C(SPROJ
P ) is obvious. We only have to prove the following statement: if

P is realizable, then C(SPROJ
P ) ⊆ L(P).

Now suppose P = 〈(P,M),A〉, n = |P |, and SPROJ
P = 〈(P,M),A1, . . . ,An〉.

Since P is realizable, let S ′ = 〈(P,M),A′
1, . . . ,A′

n〉 be a Büchi composition which

realizes P. As L(P) = C(S ′), by Theorem 2.26, we have

L(A) = join(sc1(L(A′
1)), . . . , scn(L(A′

n))).

Then by Equation 2.2, for each i ∈ [1..n], πi(L(P)) ⊆ sci(L(A′
i)). Since Ai =

πi(P), the following is true:

∀1 ≤ i ≤ n : L(Ai) ⊆ sci(L(A′
i)) (3.1)

Now apply sci on both sides of Equation 3.1. Because sci is idempotent, we

have sci(L(Ai)) ⊆ sci(L(A′
i)) for each i ∈ [1..n]. This immediately leads to the

following:

join(sc1(L(A1)), . . . , scn(L(An))) ⊆ join(sc1(L(A′
1)), . . . , scn(L(A′

n))).

Hence we get C(SPROJ
P )) ⊆ C(S ′) = L(P), which concludes the proof.

Theorem 3.1 is a powerful tool to prove a conversation protocol is not realiz-

able. Note that, however, the general problem of deciding whether C(SPROJ
P ) =

L(A) may not be decidable.
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3.1.2 Realizability Analysis

This section presents the main result of this chapter. We introduce three suf-

ficient conditions that can guarantee the realizability of a conversation protocol.

We write w1 � w2 to denote a word w1 being a prefix of w2 (w1 may be equal

to w2). Let L∗
�(A) include all finite prefixes of L(A) for a Büchi automaton A.

Obviously, L∗
�(A) is regular. For each nonredundant Büchi automaton A we

can construct a standard FSA, written as A∗, to recognize L∗(A). A∗ can be

constructed by making each state of A a final state.

Lossless join condition: Let us first study the following motivating example

for the lossless join condition.

Example 3.2 Consider a composition schema S = (P,M) with four peer pro-

totypes, p1, p2, p3, p4, where M out
1 = M in

2 = {α}, M out
3 = M in

4 = {β}, and

M in
1 = Mout

2 = M in
3 = Mout

4 = ∅. Let P = 〈S,A〉 be a Büchi conversation

protocol where A = (M,T, s, F,∆) is a Büchi automaton with M = {α, β},

T = {0, 1, 2}, s = 0, F = {2}, and ∆ = {(0, α, 1), (1, β, 2), (2, β, 2)}. P is not

realizable, because there is no communication between p1 and p3, hence, there is

no way for them to make sure that α is sent before any β is sent1.

A formal proof of why P is not realizable can be based on Theorem 3.1.

Consider the projected composition SPROJ
P of the conversation protocol P in

Example 3.2. SPROJ
P can generate a conversation βαβω which does not belong

to L(P). By Theorem 3.1, P is not realizable. Motivated by the fact that

βαβω belongs to joinc(L(P)), we propose a lossless join condition to enforce a

1Notice that Example 3.2 is essentially the reactive version of Example 2.19.
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conversation protocol to be “complete” so that it includes all words in the join

of its projections to peer prototypes. For example, when an additional transition

(0, β, 0) is added into the transition relation of P in Example 3.2, it becomes

complete (w.r.t. the join of projections) and realizable.

Definition 3.2 A Büchi conversation protocol P is lossless join if

L(P) = joinc(L(P)).

Given a Büchi conversation protocol P, the decision procedure for the lossless

join condition is straightforward. Obtain SPROJ
P from P, and then construct

the Cartesian product (a generalized Büchi automaton [45] with multiple sets

of accepting states) of the projections A1, . . . ,An that are projected from P.

Then verify whether the resulting product is equivalent to A. Since the resulting

product may contain ε transitions, we have to first check if it accepts words of

finite length (note that the original protocol accepts infinite words only) and

then eliminate ε-transitions from the product. The check of acceptance of finite

words is to look for states from which there is an infinite ε path traveling through

at least one final state infinitely many times. The elimination of ε-transitions

can be achieved by ε-transition elimination algorithm for standard FSA. After

eliminating ε-transitions, we can convert the product from a generalized Büchi

automaton to a standard Büchi automaton, and then conduct the equivalence

check.

Synchronous compatible condition: Let us first revisit the Fresh Market

Update example presented in Chapter 2. For the convenience of reading, Fig. 3.1

presents the peer implementations of the Fresh Market Update example, which
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Figure 3.1. Fresh Market Update Service

originally appeared in Fig. 2.8. We have argued in Chapter 2 that the example is

bad because its conversation set is not ω-regular. In fact it is even worse. Con-

sider the peer Investor, it is possible that message Data arrives earlier than Start,

and then Investor gets stuck. This scenario (under the asynchronous communi-

cation assumption) is similar to the case of “illegal state” [3] in the synchronous

composition of peers. During the synchronous composition of a set of peers, for

each message transmitted, its sender and receiver must synchronize their send

and receive actions, and hence peers do not need input queues to store incoming

messages because they are consumed immediately. The synchronous composition

in [3] is actually the Cartesian product of peers in our context. Formally, given

a Cartesian product of peers, an illegal state, is a state in the product where

some peer is ready to send out a message α but the receiver of α is not ready to

receive it (i.e., none of the transitions starting from the local state of the receiver

consumes the message α). In the following, we define the synchronous compatible

condition, to prevent illegal states in the synchronous composition of peers. We

will show later, when combined with other conditions, the synchronous compat-

ible condition ensures realizability for conversation protocols, and in addition, it

prevents peers getting stuck for non-reactive web service compositions.
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Given a Büchi composition S = 〈(M,P ),A1, . . . ,An〉, S is said to be syn-

chronous compatible if the Cartesian product of A1, . . . ,An does not have illegal

state. For example, we can make the Fresh Market Update example synchronous

compatible by the following changes: (1) introduce an additional message Ack2

to synchronize the three peers in a lock-step fashion (i.e., for each Data received,

Investor sends an Ack2 to Online Stock Broker, and Online Stock Broker does

not send out the next RawData until the Ack2 is received), and (2) move the

transition for Start in Online Stock Broker so that Start is sent before the first

RawData in each round of message exchange.

A conversation protocol P is synchronous compatible if its “determinized”2

SPROJ
P is synchronous compatible. Formally, the condition is defined as below.

Definition 3.3 Let P = 〈(P,M),A〉 be a Büchi conversation protocol, and n =

|P |. P is said to be synchronous compatible if for each word w ∈ M ∗ and each

message α ∈M out
a ∩M in

b for a, b ∈ [1..n], the following holds:

(∀i ∈ [1..n], πi(w) ∈ πi(L
∗
�(A))) ∧ πa(wα) ∈ πa(L

∗
�(A))

⇒ πb(wα) ∈ πb(L
∗
�(A)).

The decision procedure of the synchronous compatible condition for a Büchi

conversation protocol P proceeds as follows: construct SPROJ
P from P. Treat

every peer in SPROJ
P as a standard FSA, and make each state a final state, and

then determinize each peer. Construct the Cartesian product of all peers, and

check if there is any illegal state. P is not synchronous compatible if an illegal

state is found.
2Note that a nondeterministic Büchi automaton can not always be determinized. In the

check of synchronous compatible condition, each Büchi peer is regarded as a standard FSA
when it is determinized.
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Figure 3.2. Ambiguous Execution

Autonomous condition: The combination of lossless join and synchronous

compatibility is still not strong enough to guarantee a realizable protocol. Con-

sider the example presented in Fig. 3.2. On the left side of the figure is the

Büchi conversation protocol, and on the right side is its projection to each peer.

It is easy to verify that the protocol in Fig. 3.2 satisfies both lossless join and

synchronous compatible condition. However it is not a realizable protocol. Think

about one possible execution of the composition of these peers. At the begin-

ning, peer B sends a message β to peer A, and β is stored in the input queue

of peer A. Then peer A sends message α to peer B, and βα is recorded by the

global watcher. Now peer B continues to execute the left path of the protocol,

consumes the α in the queue; and peer A executes the right path of the protocol,

consumes the β, and sends out γ. Eventually, a non-specified conversation βαγαω

is generated, without being noticed by any of the peers involved. By Theorem

3.1, it directly follows that the conversation protocol on the left of Fig. 3.2 is not

realizable.

Take a close look at the execution paths of all peers, which are shown us-

ing dotted arrows in Fig. 3.2. It is clear that the abnormal conversation is the
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result of “ambiguous” understanding of the protocol by peers, and the racing

between A and B at the initial state is the main cause. Consequently, we in-

troduce an autonomous condition to restrict racing conditions, so that at any

point each peer has exactly one choice to receive, or to send, or to terminate

(unlike in Fig. 3.2 peer A can either send out α or receive β at the initial state).

Note that here the “determinism” about send/receive/terminate action does not

restrict the nondeterministic decision on which message to send, once the next

action is determined to be a send action. In the following we formally define this

autonomous condition.

Let P = 〈(P,M),A〉 be a Büchi conversation protocol and n = |P |. A peer

prototype pi ∈ P is output-ready (input-ready) at a word w ∈ M ∗
i if there exists

a word w′α ∈ L∗
�(A) such that α is an output (respectively, input) message of pi

and πi(w
′) = w. Similarly pi is terminate-ready at a word w ∈M ∗

i if there exists

a word w′ ∈ L(A) such that πi(w
′) = w.

Definition 3.4 A Büchi conversation protocol P = 〈(P,M),A〉 is autonomous

if for each peer prototype pi ∈ P and for each finite prefix w ∈ L∗
�(A), pi at πi(w)

is exactly one of the following: output-ready, input-ready, or terminate-ready.

we can check the autonomous condition for a Büchi conversation protocol P =

〈(P,M),A〉 as follows. For each peer prototype pi ∈ P , let Ai = (Mi, Ti, si, Fi,∆i)

be the corresponding peer in SPROJ
P , and let T ′

i ⊆ Ti include each state s where

an infinite ε path starting at s passes at least one final state for infinitely many

times. Construct prefix automaton A∗
i for each Ai by making each state in Ai

a final state. Determinize A∗
i by a standard determinization algorithm for finite

state automata. Each state s′ of determinized A∗
i corresponds to a subset of Ti,
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and we denote it by Ti(s
′). For each state s′, when Ti(s

′) ∩ T ′
i is not empty,

we require that there is no outgoing transitions starting from s′. If Ti(s
′) ∩ T ′

i

is empty, then the outgoing transitions from s′ are required to be either all for

output messages or all for input messages. The complexity of the above check

is EXPTIME because of the determinization procedure. The following lemma

summarizes the complexity of checking three realizability conditions.

Lemma 3.3 To check if a Büchi conversation protocol P = 〈(P,M),A〉 satisfies

the lossless join, synchronous compatible, and autonomous conditions can be

determined in EXPTIME in the size of A.

We now proceed to present the main result (Theorem 3.5), which shows that

if the realizability conditions are satisfied, a conversation protocol is realizable.

Lemma 3.4 If a Büchi conversation protocol P is synchronous compatible and

autonomous, the following two statements are both true for each conversation

w ∈ C(SPROJ
P ).

1. during any complete run of w, each message is consumed eagerly, i.e., a

peer never sends or terminates when its queue is not empty, and

2. for each peer prototype pi, πi(w) ∈ πi(L(P)).

Proof: We first introduce an important fact about “eager consumption” of

messages. Given a run γ of a Büchi composition 〈(P,M),A1, . . . ,An〉, for each

peer Ai, the word generated by (the local run of) Ai during γ is the path traversed

by Ai during γ. For example, consider the run which generates the word βαγαω

in Fig. 3.2. The local run of peer A generates αβγαω, which is the path pointed
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by the dotted arrows in Fig. 3.2. Since a word generated by the local run of a

peer Ai is the path traversed by Ai, it is not hard to see that the word always

belongs to L(A′
i) ∪ L∗

�(Ai) (where A′
i is the Büchi automaton generated from

Ai by making every state a final state). If each message is consumed eagerly

during γ, it is not hard to see that for the conversation of γ, its projection to

each peer is the word generated by that peer during γ. (Note that if a message

is not consumed “eagerly”, the above property is not guaranteed. For example,

as we have argued earlier, for the conversation βαγαω generated by Fig. 3.2, the

local run of peer A is αβγαω which is not the projection of the conversation to

A. This is because message β is not consumed eagerly and it is stored in the

queue of A when α is being sent.) From the above fact, it is not hard to see that

if statement (1) is true, then statement (2) is true.

Now we concentrate on the proof for statement (1) by contradiction. Assume

that for conversation w = α0α1 . . . there is a complete run γ where a message αm

from Ax to Ay is the first message that is not consumed eagerly. Since for each

a < m, αa is consumed eagerly by its receiver, the projection of word α0 . . . αm−1

to each peer is the word generated by that peer during γ. Hence for each peer Ai

we have πi(α0 . . . αm−1) ∈ πi(L(A∗)). We also know that since the input queue of

Ax is empty when it sends out αm, πx(α0 . . . αm) is contained in πx(L(A∗)). Now,

by synchronous compatible condition, πy(α0 . . . αm) should also be contained in

πy(L(A∗)), hence Ay is input ready at word πy(α0 . . . αm−1).

According to the assumption that message αm is not consumed eagerly, there

are three possibilities: 1) peer Ay sends out a message (let it be αn) during run

γ when αm is still in its input queue, 2) peer Ay terminates and never consumes

αm, and 3) peer Ay is stuck by message αm. As Cases 2 and 3 are directly
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refuted by their conflicts with the definition of a complete run, in the following,

we discuss Case 1 only. Now, consider peer Ay in the run γ. Its local run up to the

send of αn generates the word πy(α0 . . . αm−1αn) and hence πy(α0 . . . αm−1αn) ∈

πy(L(A∗)). Thus peer Ay is output ready at word πy(α0 . . . αm−1). Combined

with the proved fact that Ay is input ready at the same word, this contradicts

with the autonomous condition. Therefore the assumption is false, and statement

(1) is true.

The statement (2) of Lemma 3.4 implies the following theorem.

Theorem 3.5 A Büchi conversation protocol is realizable if it satisfies the loss-

less join, synchronous compatible, and autonomous conditions.

Following Lemma 3.3 and Theorem 3.5, we get a three step specification and

verification strategy. (1) A conversation protocol is specified by a realizable Büchi

automaton; (2) Desired properties are verified on the conversation protocol; (3)

The peer implementations are synthesized from the conversation protocol.

3.1.3 Discussion of Realizability Conditions

In the following we discuss several interesting issues about the realizability

conditions presented in this chapter. First we show that all the three realizabil-

ity conditions are independent concepts, i.e., neither of them can be expressed

as a boolean combination of the other two conditions. Next, we prove that the

three conditions are not redundant, in the sense that, for any two of the three

realizability conditions, there exists a non-realizable Büchi conversation protocol

which satisfies those two realizability conditions but not the remaining realiz-
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Figure 3.3. Examples for Lossless Join and Synchronous Compatibility

ability condition. In other words, missing any one of the realizability conditions

will not guarantee realizability. Finally, we show how these conditions fit into

practical applications.

In Fig. 3.3, we show two non-realizable Büchi conversation protocols P1 and

P2. It is easy to verify that P1 satisfies autonomous condition and synchronous

compatible condition, however it violates the lossless join condition, because word

(γα)ω is contained in join(πA(L(P1)), . . . , πD(L(P1))). Also note that (γα)ω will

be generated by SPROJ
P1

, and by Theorem 3.1, P1 is not realizable.

P2 fails the synchronous compatible condition. The reason is that for empty

word ε, πC(εγ) is contained in πC(L(P∗
2 )) however πA(εγ) 6∈ πA(L(P∗

2 )). Con-

cerning the lossless join condition and autonomous condition, it is not hard to

see that P2 satisfies both of them. Consider SPROJ
P2

, it is not hard to see that

γααω is one of the conversation generated by SPROJ
P2

, however it not contained in

L(P2), and hence by Theorem 3.1, P2 is not realizable.

As we have shown, the non-realizable conversation protocol in Fig. 3.2 is one

example where synchronous compatible and lossless join conditions are satisfied

while autonomous condition is violated. As a summary of the above discussion

of Fig. 3.2 and Fig. 3.3, we have the following two propositions.

Proposition 3.6 Each of the lossless join, synchronous compatible, and au-
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tonomous conditions is not equivalent to any boolean combination of the other

two conditions.

Proposition 3.7 For each of the lossless join, synchronous compatible and au-

tonomous conditions, there exists a non-realizable conversation protocol which

violates that condition while satisfying the other two.

Now, the next question is, how restrictive are the realizability conditions?

We present some facts as a partial answer to this question. It is not hard to see

that lossless join condition is a necessary condition for the realizability; however

autonomous condition is not. For example, the protocol P3 in Fig. 3.4 is realiz-

able but not autonomous. Synchronous compatible condition is not a necessary

condition for realizability either. Consider the protocol P4 shown in Fig. 3.4. It

is not synchronous compatible because at the initial state peer B is not recep-

tive to message γ. However, the protocol is realizable, because αγαω is the only

conversation successfully generated by the composition of peers which follow the

protocol. (Note that, during the run of γαω, peer B is always stuck and hence

the word does not count as a conversation.) The Proposition 3.8, given below,

summarizes the above discussion.
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Proposition 3.8 Lossless join is a necessary condition for realizability while

autonomous condition and synchronous compatible condition are not.

The three realizability conditions in Theorem 3.5 may seem restrictive, how-

ever, they are satisfied by many real life web service applications. We verified

that four out of the six examples listed on the IBM Conversation Support site [51]

satisfy the conditions, and the other two examples both violate the autonomous

condition. For instance, one “Meta Conversation” example in [51], allows the two

peers in a meta conversation to race at the beginning to decide who initiates the

conversation first. Unfortunately, our autonomous condition forbids such racing.

In fact, except restricting the racing between send and receive actions, our real-

izability conditions allow a certain level of parallelism, which makes it acceptable

for many web service applications.

3.2 Realizability Analysis for FSA Conversation

Protocols

For FSA conversation protocols, the notions of “lossless join”, “synchro-

nous compatible”, and “autonomous” conditions can be defined by replacing

the “Büchi” with “FSA”, in Definition 3.2, 3.3, 3.4, respectively. For FSA con-

versation protocols, the decision procedures for the synchronous compatible and

autonomous conditions are the same as those for Büchi conversation protocols.

In addition, the check for the lossless join condition is even simpler, because we

do not have to check if the Cartesian product accepts both infinite and finite

words, and we do not have to convert from a generalized Büchi automaton to
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a standard Büchi automaton (because the Cartesian product of FSA is a single

standard FSA).

The non-reactive version of Lemma 3.4 and Theorem 3.5 are as follows. We

omit the proof for these two results here, because they are exactly the same as the

proof for their reactive version (notice that the change of acceptance condition

of automata does not affect each proof).

Lemma 3.9 If an FSA conversation protocol P is synchronous compatible and

autonomous, the following two statements are both true for each conversation

w ∈ C(SPROJ
P ).

1. during any complete run of w, each message is consumed eagerly, i.e., a

peer never sends or terminates when its queue is not empty, and

2. for each peer prototype pi, πi(w) ∈ πi(L(P)).

Theorem 3.10 An FSA conversation protocol is realizable if it satisfies the loss-

less join, synchronous compatible, and autonomous conditions.

Note that the result of Theorem 3.10 is still not good enough. Although an

FSA conversation protocol can be realized by its projections, there is still no guar-

antee that the composition of projections does not generate “bad runs” where a

peer can be stuck by an unspecified message event. In the following we present a

strengthened result for FSA conversation protocols. We show that when realiz-

ability conditions are satisfied, we determinize each projection of the conversation

protocol, and every partial run of the composition of these deterministic projec-

tions is a completable run. Interestingly, the same result cannot be applied to
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reactive conversation protocols, due to the inequivalence of nondeterministic and

deterministic Büchi automata.

Theorem 3.11 Given a synchronous compatible and autonomous FSA conver-

sation protocol P = 〈(P,M),A〉, let Let SD,PROJ
P = 〈(P,M),A1, . . . ,An〉 be the

determinized projected composition which is obtained by determinizing each peer

in SPROJ
P , then the following statements are true:

1. During any (complete or partial) run of SD,PROJ
P , for each configuration, if

the input queue of a peer Ai is not empty and let α be the message at the

head of the queue, Ai must be in a non-final state which is receptive to α.

2. If both A and A∗ are lossless join, then every run of SD,PROJ
P is completable.

Proof: We assume that γ is the shortest run violating statement (1), and let

w = α0α1 . . . αm be the corresponding watcher content. Let Ax, Ay be the sender

and receiver of αm respectively. By a similar argument of Lemma 3.4, we can show

that Ay is input ready (for message αm) at πy(α0 . . . αm−1), and πy(α0 . . . αm−1) is

the word generated by the local run of Ay. As Ay is a Deterministic Finite State

Automata (DFA), after running πy(α0 . . . αm−1), it advances to a unique state

in DFA, and this state is receptive to message αm. In addition, by autonomous

condition the state is not a final state. Hence the assumption is false and we have

proved statement (1).

We provide a constructive proof for statement (2). Given a (partial) run γ of

SD,PROJ
P , and w the corresponding watcher content, we can construct a complete

run where γ is its prefix. According to statement (1), each message ever sent is

receptive by its receiver. Thus, by making each peer consume its queue content, γ
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Figure 3.5. Three Motivating Examples

can be extended to a run γ ′ so that all queues are empty in the last configuration

of γ′. Now for each peer Aa, πa(w) ∈ πa(L(A∗)). Since A∗ is lossless join, w is

contained in L(A∗), i.e, w is a prefix of some word w′ ∈ L(A). We can always

find a run η for w′ s.t. during η each message is consumed immediately after it

is sent. Concatenate γ ′ and the part of η after producing w in the watcher, we

get an extension of γ which is a complete run.

Theorem 3.11 suggests that specifying peers using DFSA has special bene-

fits in avoiding unspecified message receptions. In addition, making the prefix

automaton lossless join can avoid dead-lock. These are both very natural and

non-restrictive requirements for web service designs.

3.3 Synchronizability Analysis

This section presents a synchronizability analysis for bottom-up specified web

service compositions. Synchronizability analysis can help us avoid undecidability

that is caused by the asynchronous communication. We start with a motivating
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example, and then we introduce the technical results of the analysis. Finally,

we present a relaxation of autonomous condition, which can also be applied to

realizability analysis.

Consider the three example FSA compositions given in Fig. 3.5. Each FSA

composition consists of two peers: a requester and a server. For each “request”

message (represented as ri) sent by the requester, the server will respond with a

corresponding “acknowledgment” (ai). However this response may not be imme-

diate (e.g. in Example 1). Finally the “end” message (e) concludes the interaction

between the requester and the server.

In [40], we can verify properties of these examples by translating them to

Promela. However, as discussed in [40], we need to bound the sizes of the input

queues (communication channels in Promela) to be able to verify a web service

composition using SPIN, since it is a finite state model checker. In fact, based

on the undecidability of LTL verification (Chapter 2), it is generally impossible

to verify the behavior of a web service composition with unbounded queues.

In general, best we can do is partial verification, i.e., to verify behavior of a web

service composition for queues with a fixed length. Note that the absence of errors

using such an approach does not guarantee that the web service composition is

correct. Interestingly, in this section we will show that, Examples 2 and 3 are

different from Example 1 in Fig. 3.5 in that the properties of Examples 2 and 3

can in fact be verified for unbounded message queues, whereas for Example 1 we

can only achieve partial verification.

First, note that in Example 1 the requester can send an arbitrary number of

messages before the server starts consuming them. Hence the conversation set
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of Example 1 is not a regular set [16]. Actually it is a subset of (r1|r2|a1|a2)
∗e

where the number of ri and ai messages are equal and in any prefix the number

of ri messages is greater than or equal to the number of ai messages [16]. It is

not surprising that we cannot map the behavior of Example 1 to a finite state

process. Another problem with Example 1 is the fact that its state space increases

exponentially with the sizes of the input queues. Hence, even partial verification

for large queue sizes becomes intractable.

In Example 2 the requester and server processes move in a lock-step fash-

ion, and it is easy to see that the conversations generated by Example 2 is

(r1a1 | r2a2)
∗e, i.e., a regular set. In fact, the web service composition described

in Example 2 has a finite set of reachable states. During any execution of Ex-

ample 2, at any state, there is at most one message in each queue. Based on the

results we will present in this section, we can statically conclude that properties

of Example 2 can be verified using synchronous communication (in other words,

using input queues of size 0).

Unlike Example 2, Example 3 has an infinite state space as Example 1. In

other words, the number of messages in the input queues for Example 3 is not

bounded. Similar to Example 1, the state space of Example 3 also increases

exponentially with the sizes of the queues. However, unlike Example 1, the

conversation set of Example 3 is regular. Although Example 3 has an infinite

state space, we will show that the properties of Example 3 can also be verified

for arbitrary queue sizes.

We can experimentally demonstrate how state spaces of the examples in Fig.

3.5 change with the increasing queue sizes. In Fig. 3.6 we present the size of
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the reachable state space for the examples in Fig. 3.5 computed using the SPIN

model checker for different input queue sizes. The x-axis of the figure is the size

of the input queues, and y-axis displays the number of reachable states computed

by SPIN. As shown in the figure, the state space of Example 2 is fixed (always 43

states), however the state spaces of Examples 1 and 3 increase exponentially with

the queue size. Below we will show that we can verify behaviors of Examples 2

and 3 for arbitrary queue sizes, although best we can do for Example 1 is partial

verification. In particular, we will show that the communication among peers for

Examples 2 and 3 are “synchronizable” and we can verify their properties using

synchronous communication and guarantee that the verified properties hold for

asynchronous communication with unbounded queues.

3.3.1 Synchronous Communication

To further explore the differences of Examples 2 and 3 from Example 1, we

define an alternative “synchronous” semantics for web service compositions dif-

ferent than the one in Section 2. Intuitively, the synchronous semantics restricts

that each peer consumes its incoming messages immediately. Therefore, there is
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no need to have the input message queue.

Recall that an FSA composition S is a tuple S = 〈(P,M),A1, ...,An〉 where

each automaton Ai describes the behavior of a peer. In a global configuration

(Q1, t1, ..., Qn, tn, w) of S, Qj’s (j ∈ [1..n]) are the configurations of the input

queues. We now define a configuration of an FSA composition with the syn-

chronous communication semantics, or sc-configuration, as a tuple (t1, ..., tn, w),

which differs from a configuration by dropping all input queues.

When peers interact with each other through asynchronous communication,

a send operation inserts a message to the input queue of the target peer and a

receive operation removes the message at the head of the input queue. The defini-

tion of the derivation relation between two sc-configurations is modified from the

asynchronous case so that a send transition can only be executed instantaneously

with a matching receive operation, i.e., sending and receiving of a message occur

synchronously. We call this semantics the synchronous communication semantics

for an FSA web service composition.

The definitions of the watcher and the conversation set are modified accord-

ingly. In particular, given an FSA composition S, let Csyn(S) denote the conversa-

tion set under the synchronous communication semantics. An FSA composition

is synchronizable if its conversation set remains the same when the synchronous

communication semantics is used, i.e., C(S) = Csyn(S).

Clearly, if an FSA composition is synchronizable, then we can verify its be-

havior without any input queues and the results of the verification will hold for

the behaviors of the FSA composition in the presence of asynchronous communi-

cation with unbounded queues. In the following we will give sufficient conditions
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for synchronizability. Based on these conditions, we can show that Examples 2

and 3 in Fig. 3.5 are indeed synchronizable.

3.3.2 Synchronizability Analysis

We propose two sufficient synchronizability conditions to identify synchro-

nizable web service compositions. These two conditions are essentially the two

conditions in the realizability analysis for conversation protocols.

1) Synchronous compatible condition: An FSA composition 〈(P,M),

A1, . . . ,An〉 is synchronous compatible if for each i ∈ [1..n], each word w ∈ M ∗,

and each message α ∈M out
a ∩M in

b :

(∀i ∈ [1..n] πi(w) ∈ L(A∗
i )) ∧ πa(wα) ∈ L(A∗

a) ⇒ πb(wα) ∈ L(A∗
b),

where A∗
i is the prefix automaton of Ai.

2) Autonomous condition: An FSA composition 〈(P,M),A1, . . . ,An〉 is au-

tonomous if for each peer Ai, and for each word w ∈M ∗
i , exactly one of the fol-

lowing three statements holds: (a) w is accepted by Ai. (b) there exists β ∈M in
i

s.t. wβ ∈ L(A∗
i ). (c) there exists α ∈M out

i s.t. wβ ∈ L(A∗
i ).

Theorem 3.12 An FSA web service composition is synchronizable if it satisfies

the synchronous compatible and autonomous conditions.

Proof: Let S be an FSA composition which satisfies the synchronous compatible

condition and the autonomous condition. By Lemma 3.9, the projection of each

conversation to a peer prototype pi is an accepted word of Ai. This immediately

leads to the following:

C(S) ⊆ join(L(A1), . . . , L(An)) (3.2)
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Now by Theorem 2.16, the conversation set of S can be captured by the formula:

C(S) = join(lp∗
1(L(A1)), . . . , lp

∗
n(L(An))) (3.3)

Since for each i ∈ [1..n], L(Ai) ⊆ lp
∗
i (L(Ai)), combining Equations 3.2 and 3.3,

we have C(S) = join(L(A1), . . . , L(An)), which is accepted by the Cartesian

product (i.e., the synchronous composition) of all peers.

Note that both Examples 2 and 3 in Fig. 3.5 are synchronizable whereas

Example 1 is not (it violates the autonomous condition). Hence, we can verify

the properties of Examples 2 and 3 using synchronous communication (which

can be achieved in SPIN by restricting the communication channel lengths to 0)

and the results we obtain will hold for behaviors generated using asynchronous

communication with unbounded queues.

Similar to the realizability on FSA conversation protocols, synchronizability

analysis on FSA compositions also has additional good properties. The results

are summarized in the following theorem.

Theorem 3.13 Given a synchronous compatible and autonomous FSA compo-

sition S = 〈(P,M),A1, . . . ,An〉, if for each i ∈ [1..n], Ai is a Deterministic Finite

State Automaton, then the following statements are true:

1. During any (complete or partial) run of S, for each configuration, if the

input queue of a peer Ai is not empty and let α be the message at the head

of the queue, Ai must be in a non-final state which is receptive to α.

2. Let A be the (non-minimized) Cartesian product of A1, . . . ,An. If A has

no deadlock, then S is free of deadlock.
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Proof: The proof for statement (1) is exactly the same as the proof for the state-

ment (1) of Theorem 3.11. Now we prove the statement (2) by contradiction. If

there is a deadlock in a run γ for S, by the definition of deadlock, at the last

configuration of γ, each peer stays in a state where either there is no outgoing

transition, or all outgoing transitions are receive-actions. Since each peer is a

DFSA, by statement (1), during the run γ, each message is consumed eagerly,

hence for γ we can always construct a γ ′ where each message is consumed imme-

diately (i.e., the size of the input queue of each peer never exceeds 1). By merging

the neighboring (and also the corresponding) pair of send and receive actions in

γ′, we get a run in the Cartesian product which leads to a sc-configuration (where

each peer stays in the same local state as that of the last configuration of γ). Now

this sc-configuration is a deadlock state, which contradicts with the assumption

that the Cartesian product is free of deadlock.

Relaxing the Autonomy Condition. During our effort to translate from

BPEL web services to automata model in [40], the flow construct in BPEL spec-

ification generates the Cartesian product of its flow branches when it is translated

to the automata. Unfortunately, such flow constructs are likely to violate the

autonomous condition given above. For example, assume that there are two

branches inside a flow statement, and each branch is a single invoke operation

which first sends a request and then receives response. In the automaton transla-

tion, there will be a state with one transition for sending out the request for one

of the branches and another transition for receiving the response for the other

branch. Note that such a state violates the autonomous condition. However, even

the corresponding peer sends out a message while its input queue is not empty,
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since the Cartesian product of the flow branches includes all the permutations

of the transitions in different branches we can show that there is an equivalent

computation where the send operation is executed when the queue is empty, af-

ter the receive operation. We can generalize this scenario and we can relax the

autonomous condition to single-entry single-exit permutation blocks. A permu-

tation block has no cycles and no final states and contains all the permutations

of the transitions from its entry to its exit. Then, we relax the autonomous con-

dition by stating that all the states in a permutation block (including the entry

but excluding the exit) satisfy the autonomous condition.

3.3.3 Synchronizability Analysis for Büchi Compositions

The synchronizability analysis for Büchi compositions has exactly the same

results as FSA compositions, because the different acceptance condition for Büchi

automata does not affect the proof for the reactive version of Theorem 3.12 and

Theorem 3.13. The only difference is that the Cartesian product of Büchi peers

is a generalized Büchi automaton, which can be converted into a standard Büchi

automaton. We simply list these two theorems in the following, and omit the

proof for them.

Theorem 3.14 A Büchi web service composition is synchronizable if it satisfies

the synchronous compatible and autonomous conditions.

Theorem 3.15 Given a synchronous compatible and autonomous Büchi compo-

sition S = 〈(P,M),A1, . . . ,An〉, if for each i ∈ [1..n], Ai is a deterministic Büchi

automaton, then the following statements are true:
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1. During any (complete or partial) run of S, for each configuration, if the

input queue of a peer Ai is not empty and let α be the message at the head

of the queue, Ai must be in a state which is receptive to α, and which does

not have an infinite ε-path traversing through final states.

2. Let A be the (non-minimized) Cartesian product of A1, . . . ,An. If A has

no deadlock, then S is free of deadlock.

3.4 Related Work

To the best of our knowledge, the notion of realizability on open/concurrent

systems was first studied in the late 80’s (see [1, 70, 71]). In [1, 70, 71], realizability

problem is defined as whether a peer has a strategy to cope with the environment

no matter how the environment decides to move. The concept of realizability

studied in this chapter is rather different. In our model, the environment of

an individual peer consists of other peers whose behaviors are also governed by

portions of the protocol relevant to them. In addition, our realizability requires

that implementation should generate all (instead of a subset of) behaviors as

specified by the protocol.

A closer notion to the realizability in this chapter is the concept of “weak

realizability” of Message Sequence Chart (MSC) Graphs studied in [7]. How-

ever, the MSC Graph model captures both “send” and “receive” events, while in

our web service composition model we are interested in the ordering of “send”

events only. We have shown in Chapter 2 that the two models are not com-

parable concerning expressive power. Later in this section, we will show that
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the realizability analysis for the two model are essentially different. A notion of

well-formedness is defined in [69] for SLCFSM, which is a necessary condition

for freedom of deadlocks and freedom of unspecified receptions. The realizabil-

ity conditions proposed in this chapter are sufficient conditions for realizability,

and for standard FSA conversation protocols, combined with the conditions in

Theorem 3.11, these conditions are the sufficient conditions to guarantee freedom

of deadlocks, and freedom of unspecified message receptions. It is interesting to

note that state space reduction techniques such as fair reachability analysis [56]

for CFSM have a similar idea to balance execution steps among machines, and

there are sufficient and necessary conditions to identify finite fair reachable state

space so that the detection of some specific logic errors such as deadlock and

unspecified receptions is decidable. Our results differ from the fair reachability

analysis in that we support general LTL model checking, and allow arbitrary in-

terconnection patterns among peers (fair reachability analysis in [56] requires a

cyclic shape of interconnection).

In the following, we give a detail comparative study of the realizability analysis

for MSC graphs and our work in [39, 37, 40].

3.4.1 Comparison with MSC Graph

In [6, 7], weak and safe realizability problems were raised on MSCs (a finite set

of MSCs) and MSC graphs respectively. Alur et al. showed that the decision of

realizability for MSCs is decidable, however it is not decidable for MSC graphs.

They gave the following sufficient and necessary conditions for the decision of

realizability.
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1. An MSCs (MSC graph) M is weakly realizable if and only if L(M) is the

complete and well-formed join closure of itself. (Here complete means each

send event has a matching receive event, and well-formed means each receive

event has a matching send event.)

2. An MSCs (MSC graph) M is safely realizable if and only if condition 1 is

satisfied and prefix(L(M)) is the well-formed join of itself. Safe realizabil-

ity is the weak realizability plus deadlock freedom during composition of

peers.

These two conditions look very similar to our lossless join property. However

there are key differences here: 1) in the MSC model, the conditions are sufficient

and necessary conditions, while in conversation based model, lossless join is a

sufficient condition only, and, 2) it is undecidable to decide the two conditions

for MSC graph, because the requirement of well-formed and completeness due to

the queue factor. Alur et al. introduces a third condition called boundedness con-

dition, which ensures that during the composition of peers the queue length will

not exceed a certain preset bound (on the size of the MSC graph). This condition

can be very restrictive, for example, Fig. 2.9(c) does not satisfy the boundedness

condition because its queue length can be an arbitrary number. Note that the

realizability conditions in our conversation model does not require queue length

bounded. In addition each of the realizability conditions in conversation model

can be checked independently, and the decision procedure is decidable.

In the following, we present another example to illustrate the difference of the

realizability conditions between the two models. Fig. 3.7(a) is an equivalent MSC

graph of the conversation protocol in Fig. 2.5. Fig. 3.7(b) is an MSC implied by
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the MSC graph.
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Figure 3.7. The Equivalent MSC graph for Fig. 2.5

Consider how Fig. 3.7(a) and Fig. 2.5 violate the realizability conditions in

the two models. Fig. 3.7(a) violates the condition (1) for weakly realizability,

because the implied MSC is included in its join closure. However, the conversation

protocol at Fig. 2.5 does not violate the lossless join condition, rather it violates

the autonomy condition. It is not hard to see that the “lossless join” condition

in the two models are essentially different.
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Chapter 4

Symbolic Realizability and

Synchronizability Analyses

In Chapter 3 we studied the problem of realizability, i.e., given a conversation

protocol, can a web service composition be synthesized to generate behaviors

as specified by the protocol. Several sufficient realizability conditions are pro-

posed to ensure realizability. However, the framework presented in Chapter 2

and Chapter 3 is still a step away from practical web service applications, since

message contents and data semantics are ignored. It is interesting to ask: can the

realizability analysis in Chapter 3 work when data semantics is associated with

a conversation protocol? Specifically, given a GA conversation protocol which

is specified by a Guarded Automaton (GA), where each transition in the GA is

equipped with a guard to manipulate data. Let its skeleton be the FSA generated

by removing all data and guards from the GA. One natural question is: if the

skeleton is realizable, does it imply that the GA conversation protocol is realiz-

able? This chapter, based on our preliminary results in [42], answers the above
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questions. In addition, we extend the work in Chapter 3 to achieve more accurate

analysis by considering data semantics. To overcome the state-space explosion

caused by the data semantics, we propose a symbolic analysis technique for each

realizability condition. In addition, we show that the analysis of the autonomous

condition can be achieved using an iterative refinement approach.

This chapter is organized as follows. We first refine the formal specification

framework proposed in Chapter 2, to bring in message contents. Then we in-

troduce a light-weight skeleton analysis for GA conversation protocols. Next we

present the error-trace guided refined analysis for the autonomous condition, as

well as the symbolic analyses for the other two realizability conditions. Finally,

we briefly summarize the symbolic synchronizability analysis, and conclude the

chapter.

4.1 The Guarded Automata Model

This section extends the automata-theoretic model defined in Chapter 2. As

we mentioned earlier, the composition of web services can be specified using ei-

ther a bottom-up or a top-down approach. In this chapter, both specification

approaches are based on the use of Guarded Automata (GA), which allow mes-

sage classes to have contents and use guards to manipulate data semantics. We

begin this section with an extension of the standard composition schema, then

we present the technical details of GA conversation protocols and GA web service

compositions.
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4.1.1 GA Composition Schema

In a composition schema for the new Guarded Automata model, each message

is allowed to have contents. Note that in this chapter the organization of message

contents is always “flattened”; a version of the GA model with more complex type

support such as XML Schema [82] is presented in Chapter 6. Formally, a GA

composition schema is defined as below.

Definition 4.1 A GA composition schema is a tuple (P,M,Σ) where (P,M) is a

standard composition schema, where each message class c ∈M has a finite set of

attributes which has a static data type (such as integer, boolean, enumerated and

character). Let attr(c) and dom(c) denote the set of attributes and the domain

for each message class c ∈M , the message alphabet Σ is defined as follows:

Σ =
⋃

c∈M

{c} × dom(c),

where each message m ∈ Σ is an instance of a message class in M . Similarly, for

each pi ∈ P , its input message alphabet Σin
i =

⋃

c∈M in
i

{c} × dom(c), its output

message alphabet Σout
i =

⋃

c∈Mout
i

{c} × dom(c), and let Σi = Σin
i ∪ Σout

i .

We use type(m) to represent the projection of a message m toM and con(m)

to represent the the projection of message m to dom(type(m)). Given a word

w ∈ Σ, let w = w0w1 . . . wk where wj is the j’th message in w, the projection of w

on message classes, written as πtype(w), is type(w0)◦type(w1)◦· · ·◦type(wk)

where “◦” is the concatenation operator.

Example 4.1 The diagram on the left side of Fig. 4.1 defines a GA composition

schema for a simplified version of Example 2.1. There are three peers, Store, Bank
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Figure 4.1. A Simplified Warehouse Example

and Warehouse. Message classes, such as Order, Bill, and Payment, are transmitted

among these three peers. In the rest of this chapter, we assume that message

classes Bill, Payment and Receipt have two integer attributes id and amount, and

the rest of message classes in Fig. 4.1 has one attribute id only. As a message is

an instance of a message class, it is written in the form of “class(contents)”. For

example, B(100, 2000) stands for a Bill whose id is 100 and amount is 2000. Here

Bill is represented using its capitalized first letter B.

4.1.2 GA Conversation Protocol

We now formally define a GA conversation protocol which is specified using

a Guarded Automaton.

Definition 4.2 A GA conversation protocol is a tuple 〈(P,M,Σ),A〉, where

(P,M,Σ) is a GA composition schema, and A is a Guarded Automaton (GA).

A is represented using a tuple (M,Σ, T, s, F, δ) where M and Σ are the set of
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message classes and messages respectively, T is a finite set of states, s ∈ T is the

initial state, F ⊆ T is a set of final states, and δ is the transition relation. Each

transition τ ∈ ∆ is in the form of τ = (s, (c, g), t), where s, t ∈ T are the source

and the destination states of τ , c ∈ M is a message class and g is the guard of

the transition.

Fig. 4.1 presents an example GA conversation protocol where the diagram

on the right side is its GA specification. A GA differs from a conventional FSA

in its transition guards. During a run of a GA, a transition is taken only if the

guard evaluates to true1. For example, the guard of the transition to send Order

is: Order.id′ = Order.id + 1, which intends to increment the value of attribute id

by 1 whenever a new Order message is sent. Here the primed form of an attribute

stands for the “next value” of that attribute, and the non-primed form refers to

the “current value”. With both primed and non-primed forms of attributes, we

can express the semantics of “assignment”.

Formally each guard g is a predicate of the following form:

g(attr(c′),attr(M in
i ∪Mout

i ))

where attr(c′) are the primed attributes of the message that is being sent, and

attr(M in
i ∪Mout

i ) are the attributes of the latest instances of the message classes

that are received or sent by peer pi, where pi is the sender of message class c (if

for a message class there is no instance received or sent yet, then attribute values

for that message class are undefined).

1Note that each guard is written as a constraint, which is a frequently used form to describe
transition systems in symbolic model checkers (e.g., SMV [18] and Action Language Verifier
[17])
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Example 4.2 The GA conversation protocol in Fig. 4.1 describes the desired

message exchange sequence of the simplified warehouse example: an order is

placed by Store to Warehouse, and then Warehouse sends a Bill to the Bank. The

Bank either responds with a Payment or rejects with a Fail message. Finally Ware-

house issues a Receipt or a Cancel message. The guards determine the contents of

the messages. For example, the id and amount of each Payment must match those

of the latest Bill message.

Next we formally define the language accepted by a GA. For each message

class c, we define d̂om(c) = dom(c)∪{⊥} where ⊥ represents undefined attribute

values. A configuration of a GA A(M,Σ, T, s, F,∆) is a tuple (t, ~m) where t ∈ T

and the message vector ~m ∈ d̂om(c1) × · · · × d̂om(ck), k = |M |, keeps track of

the latest instance of each message class. For a vector ~m and message class c, let

~m[c] denote its projection to d̂om(c). A configuration (t1, ~m1) is said to derive

configuration (t2, ~m2) via a message m ∈ Σ, written as: (t1, ~m1)
m→ (t2, ~m2) if

there is a transition (t1, (c, g), t2) ∈ ∆ such that

• attributes of m and ~m1 satisfy the guard g, i.e., g(attr(m),attr( ~m1)) is

true, and

• ~m2[type(m)] = m, and ~m1 and ~m2 have same instances for all the message

classes, i.e., for each c ∈M such that c 6= type(m), ~m1[c] = ~m2[c].

Let A = (M,Σ, T, s, F,∆) be a GA and w = w1w2, . . . , wn be a finite word

over Σ, a run of A for w is a finite sequence of configurations γ0, γ1, . . . , γn such

that 1) γ0 = (s, (⊥, . . . ,⊥)) where s is the initial state of A, and 2) for each

0 ≤ i < |w|, γi

wi+1→ γi+1. A word w is accepted by A if there exists a complete

run for w s.t. the state of A at the last configuration is a final state. For example,
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it is not hard to infer that one possible word accepted by the GA in Fig. 4.1 is:

O(0),B(0, 100),P(0, 100),R(0, 100),O(1),B(1, 200),F(1),C(1)

Given a GA conversation protocol P = 〈(P,M,Σ),A〉, its language L(P) =

L(A). Note that L(P) is a language over alphabet Σ (instead of M).

Based on the definition of guards, a GA conversation protocol is only able to

remember the attributes of the last sent message for each message class. We do

not think this is an important restriction based on the web services we studied.

Note that, more information about the sent and received messages can be stored

in the states of the conversation protocol. Another approach would be to extend

the guard definition so that the guards can refer to the last ` instances of each

message class where ` is a fixed integer value. Such an extension would not effect

the results we will discuss in the following sections.

4.1.3 GA Web Service Composition

Bottom-up specified GA web service compositions also build upon Guarded

Automata, however, the GA used to describe each peer is a bit different than the

one used to describe a conversation protocol. The formal definition is given as

below.

Definition 4.3 A GA web service composition is denoted using a tuple S =

〈(P,M,Σ),A1, . . . ,An〉, where (P,M,Σ) is the GA composition schema, n = |P |,

and for each i ∈ [1..n]: Ai is the peer implementation for pi ∈ P . Each Ai is a

tuple (Mi,Σi, ti, si, Fi, δi) where Mi, Σi, ti, si, Fi, and δi are the set of message

classes, set of messages, set of states, initial state, final states, and transition
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relation, respectively. A transition τ ∈ δi can be one of the following three types:

a send transition (t, (!α, g1), t
′), a receive transition (t, (?β, g2), t

′), and an ε-

transition (t, (ε, g3), t
′), where t, t′ ∈ Ti, α ∈ Mout

i , β ∈M in
i , and g1, g2, and g3 are

predicates in the forms of g(attr(M in
i ∪Mout

i )), g(attr(α′),attr(M in
i ∪Mout

i )),

and g(attr(β ′),attr(M in
i ∪Mout

i )), respectively.

As usual, send and receive transitions are denoted using “!” and “?”. In an

ε-transition, the guard determines if the transition can take place, based on the

contents of the latest message for each message class related to that peer. For a

receive transition (t, (?β, g), t′), its guard determines whether the transition can

take place based on the contents of the latest messages (i.e., the attr(M in
i ∪Mout

i )

in the formula of g) as well as the message at the queue head (i.e., the attr(β ′)).

Notice that, even if the message at the queue is of class β, it is possible that

the peer gets stuck because the contents of the queue head might not satisfy the

predicate g. For a send transition (t, (!α, g), t′), the guard g determines not only

the transition condition but also the contents of the message being sent (i.e., the

attr(α′)).

Fig. 4.2 shows an example GA composition which realizes the GA conversation

protocol in Fig. 4.1. Note that in the figure, a transition without guard actually

has a guard “true”.

Next we present the formal definition of a run and a conversation of a GA

composition. Given a GA composition S = 〈(P,M,Σ),A1, . . . ,An〉, where n =

|P | and k = |M |, a global configuration of S is a (2n+ 3)-tuple of the form

(Q1, t1, ..., Qn, tn, w, ~s,~c)
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Figure 4.2. A Realization of Fig. 4.1

where for each j ∈ [1..n], Qj ∈ (Σin
j )∗ is the queue content of peer pj, tj is the

state of pj, w ∈ Σ∗ is the global watcher which records the sequence of messages

that have been transmitted, and message vectors ~s,~c ∈ d̂om(c1)× · · ·× d̂om(ck)

record the latest sent and consumed instances (resp.) for each message class.

For two configurations γ = (Q1, t1, ..., Qn, tn, w, ~s,~c), and γ′ = (Q′
1, t

′
1, ..., Q

′
n,

t′n, w
′, ~s′, ~c′), we say that γ derives γ ′, written as γ → γ′, if one of the following

holds:

• (Peer pj executes an ε-move) there exists j ∈ [1..n] such that

– (tj , (ε, g), t′j) ∈ δj , and the predicate g evaluates to true on the input mes-

sages (of pj) in ~c, and the output messages (of pj) in ~s, and

– Q′
j = Qj,

– for each k 6= j, Q′
k = Qk and t′k = tk, and

– w′ = w, ~s′ = ~s and ~c′ = ~c.

• (Peer pj consumes an input) there exist j ∈ [1..n] and a ∈ Σin
j such that
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– (tj , (?type(a), g), t′j) ∈ δj , and the predicate g evaluates to true on the

contents of the input message a (which is at the input queue head), the

input messages (of pj) in ~c, and the output messages (of pj) in ~s, and

– Qj = aQ′
j ,

– for each k 6= j, Q′
k = Qk and t′k = tk, and

– w′ = w, ~s′ = ~s. ~c′[type(a)] = a and ~c′ agrees with ~c on all other message

classes.

• (Peer pj sends an output to peer pk) there exist j, k ∈ [1..n], a message b ∈

Σout
j ∩ Σin

k , and predicate g such that

– (tj , (!type(b), g), t′j) ∈ δj , and the predicate g evaluates to true on message

b, the input messages (of pj) in ~c, and the output messages (of pj) in ~s, and

– Q′
k = Qkb, and

– Q′
l = Ql for each l 6= k, and t′l = tl for each l 6= j, and

– w′ = wb, and ~c′=~c, and ~s′[type(b)] = b, and ~s′ agrees with ~s on all other

message classes.

Based on the above definition of derivation, we can define the concept of

conversations. Given a global configuration γ = (Q1, t1, ..., Qn, tn, w
′, ~s,~c), we

denote the value of the global watcher w′ in γ as gw(γ) = w′. A word w is a

conversation of S if there exists a run γ0, γ1, γ2, . . . , γj of S such that

1. γ0 = (ε, s1, ..., ε, sn, ε, [⊥, ...,⊥], [⊥, ...,⊥]) is the initial configuration, where si is

the initial state of pi for each i ∈ [1..n], and

2. for each 0 ≤ i < j, ci → ci+1, and
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3. γj = (ε, f1, ..., ε, fn, w, [...], [...]) is a final configuration where fi is a final state of

pi for each i ∈ [1..n], queue of each peer is empty, and gw(γj) = w.

Let C(S) denote the set of conversations of a GA composition S. We say S

realizes a GA conversation protocol P if C(S) = L(P).

4.2 Cartesian Product and Projection

This section discusses the operations (namely “projection” and “Cartesian

product”) that convert between GA conversation protocols and GA web service

compositions. Different than the standard FSA model, the projection of GA con-

versation protocols is much harder and trickier. This leads to the extra difficulty

in the symbolic realizability analysis for GA conversation protocols discussed later

in this chapter.

4.2.1 Cartesian Product

The algorithm of constructing Cartesian product for Guarded Automata is

extended from the algorithm for standard FSA, by considering the handling of

guards. Let S = (〈(P,M, σ),A1, . . . ,An〉 be a GA web service composition, and

for each i ∈ [1..n], Ai is represented using tuple (Mi,Σi, Ti, si, Fi, δi). The Carte-

sian product of all peers in S is a Guarded Automaton A′ = (M,Σ, T ′, s′, F ′, δ′),

where each state t′ ∈ T ′ is associated with a tuple (t1, . . . , tn) and for each

i ∈ [1..n] ti is a state of peer Ai. The initial state s′ of A′ corresponds to the

tuple (s1, . . . , sn), and a final state in F ′ corresponds to a tuple (f1, . . . , fn) where

for each i ∈ [1..n], fi is a final state of Ai. Let ρ map each state t′ ∈ T ′ to the
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corresponding tuple, and let ρ(t′)[i] denote the i’th element of ρ(t′). For any two

states t and t′ in T ′, a transition (t, (m, g′), t′) is included in δ′i if there exists two

transitions (ti, (!m, gi), t
′
i) ∈ δi and (tj, (?m, gj), t

′
j) ∈ δj such that

1. (two peers take transitions simultaneously) ρ(t)[i] = ti, and ρ(t′)[i] =

t′i, and ρ(t)[j] = tj, and ρ(t′)[j] = t′j, and for each k 6= i ∧ k 6= j, ρ(t′)[k] =

ρ(t)[k], and

2. (matching of guards) g′ = gi ∧ gj, and g′ is satisfiable.

Clearly, by the above definition, the construction of a Cartesian product for

GA can start from the initial state of the product (which corresponds to the

tuple of initial states of all peers), then iteratively include new transitions and

states. Obviously, the construction can always terminate because the number of

transitions and states of all peers is finite. However, note that, different than the

Cartesian product construction for FSA, the algorithm here requires the ability

to decide the satisfiability of symbolic constraints.

4.2.2 Projection

We now develop algorithms to project a GA conversation protocol to peer

prototypes. We first show that, a GA protocol with infinite domains may not

always have an “exact” projection. Although for finite domains, an “exact”

projection is always possible, the cost of the exact projection is high. We then

introduce several “coarse” projections which can save projection cost.

Definition 4.4 A GA conversation protocol P = 〈(P,M,Σ),A〉 is called a Infi-

nite domain (I-)GA conversation protocol if Σ is an infinite set; otherwise P is
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Figure 4.3. The I-GA Conversation Protocol for Example 4.3

an Finite domain (F-)GA conversation protocol. Similarly, a GA composition is

either an F-GA composition or an I-GA composition.

Exact Projection of GA Conversation Protocols

In the following, we show an I-GA conversation may not have an exact pro-

jection.

Example 4.3 Fig. 4.3 presents an I-GA conversation protocol (let it be P) which

involves three peers A, B, C. Message class a3 contains a single infinite-domain

integer attribute v, and all other message classes do not have message contents.

Clearly, only those transitions on a3 have meaningful guards, other transitions

have guards “true”. The message exchange, as described by P, proceeds as

follows. In the initial stage, peer A sends an a3, to initialize its attribute v (used

as a counter) to the value 0. Then A informs peer C (with a0) to start the sending

of c1. For each c1, peer A increments the counter of a3 by 1. After message c2 is

received, peer A starts to send back a sequence of a1 to B (concluded with a2).

Because of the counter attribute in a3, the number of a1 is exactly the same as

c1. Hence, for each conversation w ∈ L(P), its projection to message alphabet,
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i.e., πtype(w), must be of the following form:

a3a0(c1a3)
nc2(a1a3)

na2a4,

where n ≥ 0. Therefore, the projection of L(P) to peer C, i.e., πC(L(P)) is the

set {a0c1
nc2a1

na2 | n ≥ 0}, which is a context free language. Notice that, since

all messages (sent or received) by peer C does not have message contents, thus

any GA on the alphabet of C is essentially a standard FSA, and it is not able to

accept πC(L(P)).

The following proposition summarizes the discussion in Example 4.3.

Proposition 4.4 There exists an I-GA conversation protocol P on some com-

position schema (P,M,Σ) such that there exists 1 ≤ i ≤ |P | such that for each

Ai on the (message class and message) alphabet (Mi,Σi): L(Ai) 6= πi(L(P)).

We show that for an F-GA conversation protocol P, we can always construct

a corresponding projected composition SPROJ
P where each peer implementation

of SPROJ
P is an “exact” projection of P. The projection depends on the following

two lemmas (Lemma 4.5, and Lemma 4.6).

Lemma 4.5 For each F-GA A = (M,Σ, T, s, F, δ), there is a standard FSA A′

on Σ such that L(A′) = L(A).

Proof: We can construct A′ = (Σ, T ′, s′, F ′, δ′) as follows. Let C be the set of all

configurations of A. Because Σ is finite, C must be a finite set. We construct the

state set T ′ such that |T ′| = |C|, and let the one to one and onto mapping ρ maps

a configuration c ∈ C to a state t′ in T . For configuration c0 = (s, [⊥, . . . ,⊥]), we
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make ρ(c0) the initial state of A′, and for each configuration ci = (f, [..]) where f

is a final state of A, we make ρ(ci) a final state of A′. For each derivation c
m→ c′

of A, we include a transition (ρ(c), m, ρ(c′)) in δ′. Obviously, A′ bisimulates every

run on the configurations of A, and L(A′) = L(A).

Lemma 4.6 Given a message class alphabet M and the corresponding message

alphabet Σ, for each FSA A on Σ, there is an F-GA A′ such that L(A′) = L(A).

Proof: Let A = (Σ, T, s, F, δ), we can define A′ = (M,Σ, T ′, s′, F ′, δ′) as follows:

T ′ = T , s′ = s, F ′ = F , |δ| = |δ′|, and for each transition (t,m, t′) ∈ δ there

exists a corresponding (t, (type(m), g), t′) ∈ δ′ such that g is the predicate which

assigns the value of m to the the message being sent in the transition.

Lemma 4.5 and Lemma 4.6 immediately implies the following theorem.

Theorem 4.7 For each F-GA conversation protocol P, there exists a F-GA

web service composition S = 〈(P,M,Σ),A1, . . . ,An〉 where for each i ∈ [1..n]:

L(Ai) = πi(L(P)).

Proof: Let P = 〈(P,M,Σ),A〉 where n = |P |. Since Σ is finite, construct

the corresponding FSA A′ for A such that L(A′) = L(A), according to Lemma

4.5. Then project A′ to each peer prototype, and let them be A′
1, . . . , A′

n,

respectively. Convert each A′
i into an F-GA Ai by Lemma 4.6, and we get the

F-GA web service composition 〈(P,M,Σ),A1, . . . ,An〉.

Definition 4.5 Given an F-GA conversation protocol P, let S = 〈(P,M,Σ),

A1, . . . ,An〉 be the corresponding GA composition given in the proof of Theorem

4.7. S is called the (exact) projected composition of P, written as SPROJ
P .
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Procedure ProjectGA(〈(P, M, Σ),A〉, i): GA

Begin

Let A′ = (M, Σ, T, s0, F, δ) be a copy of A.

Substitute each (q1, (a, g1), q2) where a 6∈ Mi with (q1, (ε, g′1), q2).

Substitute each (q1, (a, g2), q2) where a ∈ M in
i with (q1, (?a, g′2), q2).

Substitute each (q1, (a, g3), q2) where a ∈ Mout
i with (q1, (!a, g′3), q2).

// The generation of g′
1, g′2 and g′3 uses either Coarse Processing 1 or Coarse Processing 2.

// Coarse Processing 1:

// g′1 = g′2 =“true”, and g′3 = g3.

// Coarse Processing 2:

// g′1, g′2, g′3 are the predicates generated from g1, g2, g3 (resp.),

// by eliminating non-related message attributes via existential quantification.

// Obviously, g′3 = g3.

return A′. End

Figure 4.4. Coarse Projection of a GA Conversation Protocol

Coarse Projection

The construction of SPROJ
P (as shown in Theorem 4.7) is very costly – it

requires essentially a reachability analysis of the state space of the F-GA con-

versation protocol. In Fig. 4.4, we present a light-weight however not “exact”

projection algorithm, which works for both F-GA and I-GA conversation proto-

cols.

The coarse projection algorithm in Fig. 4.4 simply replace each non-related

transition with ε-transitions, and add “!” and “?” for send and receive transitions

respectively. There are two different levels of “coarse processing” that can be

used in the algorithm. In Coarse Processing 1, the guards of ε-transitions

and receive transitions are essentially dropped (by setting them to “true”), and

the guards of send transitions remain the same. In Coarse Processing 2, we
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use existential quantification to eliminate non-related message attributes from

the formula of the guard, and this produces a “more accurate” projection than

Coarse Processing 1.

Example 4.8 Given a GA conversation protocol on three peers p1, p2 and p3.

Let τ = (t, (m1, g), t
′) be a transition in the protocol, where m1 ∈ Mout

3 ∩M in
1 ,

m2 6∈ M1, and

g ≡ m1.id +m2.id < 3 ∧ m2.id > 0.

We suppose m1.id and m2.id are both of integer type. During the projection to

peer p1, if τ is being processed using Coarse Processing 1, the corresponding

transition would be (t, (?m1, true), t
′); if Coarse Processing 2 is used, the

corresponding transition would be (t, (?m1, g
′), t′) where g′ ≡ ∃m2.id g, and after

simplification, g′ ≡ m1.id < 2.

Definition 4.6 Let P = 〈(P,M,Σ),A〉 be a GA conversation protocol. Its

coarse-1 projected GA composition (written as SPROJ,C1
P ), is a tuple 〈(P,M,Σ),

A1, . . . ,An〉 where n = |P |, and for each i ∈ [1..n]: Ai is the result of applying

ProjectGA(A, i) using Coarse Processing 1. Similarly, the coarse-2 projected GA

composition of P, written as SPROJ,C2
P , is the result of applying ProjectGA using

Coarse Processing 2.

Lemma 4.9 Given a GA conversation protocol P = 〈(P,M,Σ),A〉, and its pro-

jections SPROJ,C1
P and SPROJ,C2

P . For each 1 ≤ i ≤ |P |, let Ai and A′
i be the

peer implementation of pi in SPROJ,C1
P and SPROJ,C2

P (resp.), the following is true:

πi(L(P)) ⊆ L(A′
i) ⊆ L(Ai).
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1. Procedure ElimGA (A): GA

2. Begin

3. Let A′ = (M, Σ, T, s, F, δ) be a copy of A.

4. For each t ∈ T Do

5. include each t′ that is reachable from t via ε-paths into ε-closure(t).

6. End For

7. // let Υ(t, t′) be the set of non-redundant ε-paths from t to t′.

8. // each transition in δ appears at most once in a non-redundant path.

9. // let cond(`) be the conjunction of all guards along a non-redundant path `.

10. For each transition (t, (m, g), t′) ∈ δ do

11. include into δ a transition (t, (m, g′), t′′) for each t′′ in ε-closure(t′),

12. where g′ = g ∧ g′′ and g′′ =
∨

`∈Υ(t′,t′′) cond(`).

13. End For

14. eliminate all ε-transitions from δ.

15. return A′.

16. End

Figure 4.5. ε-transitions Elimination for Guarded Automata

Proof: For each transition (t, (m, g), t′), let g1 and g2 be the corresponding

guards generated by Coarse Processing 1 and Coarse Processing 2. Obviously,

g ⇒ g2 ⇒ g1, where “ ⇒ ” is the boolean operator “imply”. This fact

immediately leads to the lemma.

4.2.3 Determinization of Guarded Automata

We now introduce a “determinization” algorithm for Guarded Automata,

which is useful in the decision procedures for realizability conditions. The “de-

terminization”, as usual, consists of two steps: (1) eliminate ε-transitions from

a Guarded Automaton, and (2) determinize the resulting GA of step (1). The
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1. Procedure DeterminizeGA(A): GA

2. Begin

3. Let A′ = (M, Σ, T, s, F, δ) be a copy of ElimGA(A).

4. Mark all states in T as “unprocessed”.

5. For each “unprocessed” state t ∈ T Do

6. For each message class m ∈ M Do

7. Let {τ1 , . . . , τk} include each transition τi = (t, (m, gi), t′i) which starts from t and sends m.

8. mark each τi as “toRemove”

9. For each c = `1 ∧ · · · ∧ `k where `i is gi or ḡi Do

10. If c is satisfiable Then

11. Let s′ be a new state name, include s′ in T .

12. include (t, (m, c), s′) in δ.

13. For each j ∈ [1..k] s.t. gj (instead of ḡj) appears in c Do

14. For each transition τ ′ = (t′j , (m′, g′), t′′j ) from t′j do

15. include (s′, (m′, g′), t′′j ) in δ

16. mark τ ′ as “toRemove”. mark t′j as “toRemove”.

17. End Do

18. End Do

19. End If

20. End Do

21. End Do

22. remove all states and transitions that are marked as “toRemove”.

23. End Do

24. return A′.

End

Figure 4.6. Determinization of Guarded Automata

ε-transition elimination algorithm is presented in Fig. 4.5, which is an extension

of the ε-transition elimination for standard FSA.

One interesting part of the algorithm in Fig. 4.5 is the collection and handling

of guards (lines 10 to 13). Note that the transition (t, (m, g ′), t′′) in line 11

is a replacement for a set of paths, where each path is a concatenation of the

transition (t, (m, g), t′) and an ε-path from t′ to t′′. It is not hard to see that
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the guard g′ should be the conjunction of g and g′′ where g′′ is the disjunction

of the conjunctions of guards along each ε-path from t′ to t′′. Note that for each

ε-transition, its guard is only a “transition condition” which does not affect the

message instance vector in a GA configuration. Hence it suffices to consider those

non-redundant paths, and obviously the number of non-redundant paths is finite.

Thus the algorithm in Fig. 4.5 can always terminate.

Fig. 4.6 presents the determinization algorithm for a Guarded Automaton.

Note that the idea of the algorithm is rather different than the determinization

algorithm for a standard FSA. The key idea of the algorithm is the part (lines

9 to 20), where for each state and each message class, we collect all transitions

for that message class, enumerate every combination of guards, and generate a

new transition for that combination. For example, suppose at some state t, two

transitions are collected for message class m, let their guards be g1 and g2 respec-

tively. Four new transitions will be generated for g1∧g2, g1∧ḡ2, ḡ1∧g2, and ḡ1∧ḡ2

(resp.), and the two original transitions are removed from the transition relation.

It is not hard to see that for each word w ∈ L(A′), where A′ is the resulting GA,

there exists one and only one run for w, due to the enumeration of the combi-

nations of guards. Since the procedure of enumerating guards and reassembling

states does not introduce or remove any pair of configurations (c,c′) s.t. c → c′,

each A is equivalent to its determinization A′ (after applying DeterminizeGA), i.e.,

L(A) = L(A′).
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4.3 Revisit Realizability

This section pays a short revisit to the realizability conditions for F-GA con-

versation protocols, and presents some preliminary results on F-GA conversation

protocols.

Definition 4.7 A GA conversation protocol P satisfies the lossless join condition

if L(P) = joinc(L(P)).

Definition 4.8 Let P = 〈(P,M,Σ),A〉 be a GA conversation protocol, and n =

|P |. P is said to be synchronous compatible if for each word w ∈ Σ∗ and each

message α ∈ Σout
a ∩ Σout

b for a, b ∈ [1..n], the following holds:

(∀i ∈ [1..n], πi(w) ∈ πi(L
∗
�(A))) ∧ πa(wα) ∈ πa(L

∗
�(A))

⇒ πb(wα) ∈ πb(L
∗
�(A)).

Definition 4.9 A GA conversation protocol P = 〈(P,M,Σ),A〉 is autonomous

if for each peer prototype pi ∈ P and for each finite prefix w ∈ L∗
�(A), pi at πi(w)

is exactly one of the following: output-ready, input-ready, or terminate-ready.

We now concentrate on the realizability analysis for GA conversation protocols

with finite domains.

Lemma 4.10 Deciding if an F-GA conversation protocol P satisfies the lossless

join, synchronous compatible and autonomous conditions is EXPTIME on the

size of the equivalent FSA conversation protocol of P.

Proof: Convert P to the equivalent FSA conversation protocol P ′ according

to Lemma 4.5. Obviously, P is lossless join, if and only if P ′ is lossless join,
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and similar observations apply to other two conditions. The decision of these

realizability conditions on P ′ takes EXPTIME on its size.

Theorem 4.11 An F-GA conversation protocol P is realizable (by SPROJ
P ) if the

lossless join, synchronous compatible and autonomous conditions are satisfied.

Proof: Convert P to the equivalent FSA conversation protocol P ′ according to

Lemma 4.5. Obviously, when the three realizability conditions are satisfied, P ′ is

realized by its projected composition, which can be converted to SPROJ
P .

Unfortunately, we currently do not have similar results for I-GA conversa-

tion protocols. We suspect that even if an I-GA conversation protocol satisfies

these three realizability conditions (where the decision problem for these three

conditions may not even be decidable), there may not exist a finite control state

system which realizes the protocol.

4.4 Skeleton Analysis

This section investigates the feasibility of deciding if a GA conversation pro-

tocol is realizable by checking its abstract control flows (called skeleton), without

considering its data semantics. Note that the skeleton analysis works for both

F-GA and I-GA conversation protocols.

Definition 4.10 Given a GA A = (M,Σ, T, s, F, δ), its skeleton, denoted as

skeleton(A), is a standard FSA (M,T, s, F, δ′) where δ′ is obtained from δ by

replacing each transition (s, (c, g), t) with (s, c, t).
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Figure 4.7. The GA Conversation Protocol for Example 4.12

Note that L(skeleton(A)) ⊆M ∗, while L(A) is a subset of Σ∗. For a GA con-

versation protocol P = 〈(P,M,Σ),A〉, we can always construct an FSA conver-

sation protocol 〈(P,M), skeleton(A)〉. We call this protocol the skeleton protocol

of P.

4.4.1 Theoretical Observations

Now, one natural conjecture is: if the skeleton protocol of a GA conversation

protocol is realizable, does this imply that the GA protocol is realizable? In Fig.

4.7 we give a counter example.

Example 4.12 The GA conversation protocol shown in Fig. 4.7 has four peers

A,B,C,D. There are two message classes in the system: α from A to B and

β from C to D. Both message classes have an attribute a. The protocol speci-

fies two possible conversations α(1)β(1), and β(2)α(2). Obviously, the skeleton

protocol, which specifies the desired conversation set {αβ, βα}, is realizable be-

cause it satisfies all the three realizability conditions. However, the GA protocol

itself is not realizable, because any implementation that generates the specified

conversations will also generate the conversation β(1)α(1) as well.
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Figure 4.8. The GA Conversation Protocols for Examples 4.13 and 4.14

Example 4.13 Fig. 4.7 is an example where the skeleton is lossless join, however

the GA conversation protocol is not. Fig. 4.8(a) is an example where the protocol

is lossless join, while its skeleton is not. There are four peers A,B,C,D in Fig.

4.8(a), and all message classes contain a single attribute a. In the beginning,

peer D informs peer A and B about which path to take by the value of attribute

a (1 for left branch or 2 for right branch). Then A and B knows who is going to

send the last message (α or β), so there is no ambiguity. It can be verified that

the protocol is lossless join. However the skeleton of Fig. 4.8(a) is obviously not

lossless join, because ηγα is included in its join closure.

Example 4.14 If we make the message β in Fig. 4.7 from peer C to A, the

modified Fig. 4.7 is an example which is not synchronous compatible, yet its

skeleton is synchronous compatible. Fig. 4.8(b) is another example, where the GA

conversation protocol is actually synchronous compatible however its skeleton is

not, because after the partial conversation λα, peer B is ready to send γ however

peer C is not receptive to it.

The following propositions summarizes Examples 4.12, 4.13, and 4.14.
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Proposition 4.15 A GA conversation protocol may be realizable while its skele-

ton protocol is not realizable.

Proposition 4.16 A GA conversation protocol may not be realizable when its

skeleton protocol satisfies the lossless join, synchronous compatible, and au-

tonomous conditions.

Proposition 4.17 A GA conversation protocol may not be realizable while its

skeleton protocol is realizable.

Proposition 4.18 A GA conversation protocol may be lossless join while its

skeleton protocol is not lossless join.

Proposition 4.19 A GA conversation protocol may not be lossless join while

its skeleton protocol is lossless join.

Proposition 4.20 A GA conversation protocol may be synchronous compatible

while its skeleton protocol is not synchronous compatible.

Proposition 4.21 A GA conversation protocol may not be synchronous com-

patible join while its skeleton protocol is synchronous compatible.

The above propositions suggest that we cannot tell if a GA conversation

protocol is realizable or not, based on the result of its skeleton protocol. Similar

observations apply to the lossless join and synchronous compatible conditions;

however, as we will show later, the autonomy of a GA conversation protocol can

be implied by the autonomy of its skeleton protocol.
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4.4.2 Skeleton Analysis

We now introduce a fourth realizability condition to restrict a GA conversation

protocol so that it can be realized by SPROJ
P , SPROJ,C1

P , and SPROJ,C2
P .

Definition 4.11 Let P = 〈(P,M,Σ),A〉 be a GA conversation protocol where

A = (M,Σ, T, s, F, δ). P is said to satisfy the deterministic guards condition

if for each pair of transitions (t1, (m1, g1), t1)
′ and (t2, (m2, g2), t

′
2), g1 must be

equivalent to g2, when the following conditions hold:

1. m1 = m2, and

2. Let pi be the sender of m1. There exists two words w ∈ L(A∗) and w′ ∈

L(A∗) where a partial run of w reaches t1, and a partial run of w′ reaches

t2, and πi(πtype(w)) = πi(πtype(w′)).

Intuitively, the deterministic guards condition requires that for each peer, ac-

cording to the GA conversation protocol, when it is about to send out a message,

the guard that is used to compute the contents of the message is uniquely decided

by the sequence of message classes (note: not messages) exchanged by the peer

in the past.

The decision procedure for the deterministic guards condition proceeds as

follows: given a GA conversation protocol P, obtain its coarse-1 projected com-

position SPROJ,C1
P . Let SPROJ,C1

P = 〈(P,M,Σ),A1, . . . ,An〉. For each i ∈ [1..n],

regard Ai as a standard FSA, and get its equivalent deterministic FSA (let it

be A′
i). Now each state t in A′

i corresponds to a set of states in Ai, and let it

be represented by T (t). We examine each state t in A′
i, for each message class
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c ∈M , we collect the guards of the transitions that start from a state in T (t) and

send message class c. We require that all guards collected for a state/message

class pair (t,c) should be equivalent.

Example 4.22 The GA conversation protocol in Fig. 4.7 violates the deter-

ministic guards condition, because (intuitively) peer A has two different guards

when sending out α at the initial stage. Formally, to show that the deterministic

guards condition is violated, we can find two transitions (t1, (α, [a
′ = 1]), t2) and

(t3, (α, [a
′ = 2]), t4)), and two words w = ε and w′ = β(2). Because a run of

w reaches t1, a run of w′ reaches t3, and πAπtype(w) = πAπtype(w′) = ε, by

Definition 4.11, the guards of the two transitions should be equivalent. However,

they are not equivalent, and this leads to the violation of the deterministic guards

condition.

Theorem 4.23 A GA conversation protocol P is realized by SPROJ,C1
P , SPROJ,C2

P ,

and SPROJ
P if it satisfies the deterministic guards condition, and its skeleton proto-

col satisfies the lossless join, synchronous compatible and autonomous conditions.

Proof: Let SD,PROJ,C1
P be the web service composition generated from SPROJ,C1

P by

determinizing each peer and collecting guards as in the check of the deterministic

guards condition. We show that L(P) = C(SD,PROJ,C1
P ). Other conclusions such as

L(P) = C(SPROJ,C2
P ) and L(P) = C(SPROJ

P ) can be directly inferred from Lemma

4.9 and the L(P) = C(SD,PROJ,C1
P ) we are about to prove.

First, we argue that if the skeleton protocol satisfies the synchronous com-

patible and autonomous conditions, then during any (complete or partial) run

of SD,PROJ,C1
P , each message is consumed “eagerly”, i.e., when the input queue
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is not empty, a peer never sends out a message or terminates. This argument

can be proved by contradiction. Suppose there is a partial run against this ar-

gument, we can find a corresponding partial run of the skeleton composition of

SD,PROJ,C1
P (which consists of the skeletons of each peer of SD,PROJ,C1

P ) where a

message class is not consumed eagerly. Now since the skeleton composition sat-

isfy the synchronous compatible and autonomous conditions, and each skeleton

peer is a DFSA, by Theorem 3.13, each message class is consumed eagerly, which

leads to the contradiction. Therefore our argument should be true.

Now it suffices to show that C(SD,PROJ,C1
P ) ⊆ L(P), as L(P) ⊆ C(SD,PROJ,C1

P )

is obvious. Let P = 〈(P,M,Σ),A〉 and let SD,PROJ,C1
P = 〈(P,M,Σ),A1, . . . ,An〉.

Given a word w ∈ C(SD,PROJ,C1
P ), and γ be the corresponding run, we can always

construct a run γ′ of A to recognize w. Since πi(w) is accepted by each peer

Ai, πi(πtype(w)) is accepted by skeleton(Ai). Because skeleton(A) is lossless

join, it follows that πtype(w) is accepted by skeleton(A), and let T : τ1τ2 . . . τ|w|

be the path of skeleton(A) traversed to accept πtype(w). Since each transition

in skeleton(A) is the result of dropping the guard of a corresponding transition,

we can have a corresponding path T ′ in A. Now we can construct the run

γ′ = c0c1 . . . c|w|, along the path T ′. Obviously c0 = (s, [⊥⊥...⊥]). For each

1 ≤ i ≤ |w|, ci = (t, ~m) where t is the i’th state along the path T ′, and let

c′i = (Q1, t1, . . . , Qn, tn, ~s,~c) be the configuration in γ right before the send of

message wi. The contents of ~m is taken from configuration c′i such that ~m = ~s.

Note that, when wi is sent, its sender compute the contents of wi based on the

information of ~s, because all input messages have been consumed (due to the the

eager message consumption property we have proved). The above ensures that

the simulation of γ can always proceed correctly until the word is accepted.
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Figure 4.9. Alternating Bit Protocol

Based on Theorem 4.23, we have a light-weight realizability analysis for GA

conversation protocols. We check the first three realizability conditions on the

skeleton of a conversation protocol (i.e, without considering the guards), and then

examine the fourth realizability condition by syntactically check the guards (but

actually without analyzing their data semantics).

4.5 Symbolic Analysis

Skeleton analysis may not be very precise. Fig. 4.9(a) is a realizable alternat-

ing bit protocol, where its skeleton analysis fails. The GA conversation protocol

shown in Fig. 4.9(a) consists of two peers A and B. Message class α is an re-

quest, and message class β is an acknowledgment. Both message classes contain

an “id” attribute. Message class γ is the end-conversation notification. The pro-

tocol states that the id attribute of requests from A alternates between 0 and 1,

and every acknowledgment β must match the id.
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Let Aa,Ab,Ac be the three conversation protocols shown in Fig. 4.9. It is

not hard to see that, the projection of skeleton(Aa) to peer A does not satisfy

the autonomy condition, because at state 3, there are both input and output

transitions. However, Aa is actually autonomous. If we explore each configuration

of Aa, we get Ab, the “equivalent” conversation protocol of Aa. The pair of values

associated with each state in Ab stands for the id attribute of α and β. It is

obvious that Ab satisfies the autonomy condition, and hence Aa should satisfy

autonomy as well. In fact to prove that Aa is autonomous we do not even have

to explore each of its configurations like Ab. As we will show later, it suffices to

show Ac is autonomous. Finally notice that L(Aa) = L(Ab) = L(Ac).

4.5.1 Iterative Refined Analysis of Autonomy

The examples in Fig. 4.9 motivates a refined analysis for the autonomous

condition: given a conversation protocol A, we can first check its skeleton. If the

skeleton analysis fails, we can refine the protocol (e.g. refine Aa and get Ac), and

apply the skeleton analysis on the refined protocol. We can repeat this procedure

until we reach the most refined protocol which actually plots the transition graph

of the configurations of the original protocol (such as Ab to Aa). In the following,

we first present the theoretical background of the iterative refined analysis.

Theoretical Background

Our refined analysis of autonomy is based on the notion of simulation, which

is defined as below. A transition system is a tuple (M,T, s,∆) where M is the set

of labels, T is the set of states, s the initial state, and ∆ the transition relation.
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Generally a transition system can be regarded as an FSA (or an infinite state sys-

tem) without final states. On the other hand, a standard FSA (M,T, s, F,∆) can

be regarded as a transition system of (M,T, s,∆); and a GA (M,Σ, T, s, F,∆)

can be regarded as a transition system of the form (Σ, T ′, s′,∆′) where T ′ con-

tains all configurations of the GA, and ∆′ defines the derivation relation between

configurations.

Definition 4.12 A transition system A′ = (M ′, T ′, s′,∆′) is said to simulate

another A = (M,T, s,∆), written as A � A′, if there exists a mapping ρ : T → T ′

and % : M → M ′ such that for each (s,m, t) in ∆ there is a (ρ(s), %(m), ρ(t))

in ∆′. Two transition systems A and A′ are said to be equivalent, written as

A ' A′, if A � A′ and A′ � A.

Example 4.24 For the three conversation protocols Aa,Ab,Ac in Fig. 4.9, the

following is true:

skeleton(Ab) � skeleton(Ac) � skeleton(Aa)

For example, in the simulation relation skeleton(Ac) � skeleton(Aa), ρ maps

states 1, 2, 3, 4, 5 in skeleton(Ac) to states 1, 2, 3, 3, 4 of skeleton(Aa) respectively,

and % is the identity function which maps each message class to itself. For another

example, Aa � skeleton(Aa), and Aa ' Ab ' Ac.

Intuitively when A � A′, each word accepted by A has a corresponding word

accepted by A′, and A′ can contain “more” words than A. It is not hard to infer

the following lemma.

Lemma 4.25 For any GA A, A � skeleton(A).
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Proof: We can construct the mappings from A to its skeleton. Since a configu-

ration of A is of the form (t, ~m) where t records the local state and ~m is a vector

of message instances for each message class. For each configuration c = (t, ~m),

ρ(c) = t, and for each message m, %(m) = type(m) .

Lemma 4.26 For each GA A = (M,Σ, T, s, F,∆) on a finite alphabet Σ, there

is a standard FSA on alphabet Σ such that A ' A′.

Proof: This lemma directly follows Lemma 4.5, and A′ is the equivalent FSA,

as defined in Lemma 4.5.

Theorem 4.27 If A � A′ and A′ is autonomous, then A is autonomous.

Proof: We prove by contradiction. Assume that A′ is autonomous but A is not

autonomous, hence we can always a word w ∈ L(A∗) which leads to the violation

of autonomy (e.g. there exist input message class α and output message class β

such that wα ∈ L(A∗) and wβ ∈ L(A∗)). Now ρ(w) is a word which leads to the

violation of autonomy in A′.

Lemma 4.25 and Theorem 4.27 immediately leads to the following.

Corollary 4.28 A GA is autonomous if its skeleton is autonomous.

The Iterative Analysis Algorithm

Based on Corollary 4.28 we have an error-trace guided symbolic analysis al-

gorithm (procedure AnalyzeAutonomy in Fig. 4.10).
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Procedure AnalyzeAutonomy(A): List

Begin

A′ = DeterminizeGA(A)

While true do

If skeleton of A′ is autonomous Then return null

Find a pair (s, (m1, g1), t1), (s, (m2 , g2), t2) violating the autonomy

(A′,trace) = Refine(A′ , (s, (m1 , g1), t1), (s, (m2, g2), t2))

If trace 6= null Then return trace

End While

End

Figure 4.10. Iterative Analysis

If the input GA is autonomous, AnalyzeAutonomy returns null; otherwise it

returns the error trace which is a list of configurations. AnalyzeAutonomy starts

from the input GA, and refines incrementally. During each cycle, procedure

AnalyzeAutonomy analyzes the skeleton of the current GA A′. If the skeleton

is autonomous, by Corollary 4.28, AnalyzeAutonomy simply returns and reports

that the input GA is autonomous; otherwise, AnalyzeAutonomy identifies a pair

of input/output transitions which start from the same state and lead to the

violation the autonomy. For example, when analysis is applied to the skeleton

of Fig. 4.9(a), the two transitions starting at state 3 will be identified. Then

procedure Refine is invoked to refine the current GA. This refinement process

continues until the input GA is proved to be autonomous or an concrete error

trace is found.
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Procedure Refine(A, (s, (m1, g1), t1), (s, (m2, g2), t2)) : (GA, List)

Begin

If (Pre(g1) ∧ Pre(g2)) is satisfiable then

Path = FindPath(A, s,Pre(g1) ∧ Pre(g2))

If Path 6= null then return (null,Path)

End If

Let A′ = (M ′, T ′, s′0, F ′, ∆′) be a copy of A

T ′ = T ′ − {s} + {s1, s2}, F ′ = F ′ − {s} + {s1, s2} if s ∈ F ′

Substitute each (t, (mj , gj), s) in ∆′ with

(t, (mj , gj), s1) and (t, (mj , gj), s2)

Substitute each (s, (mj , gj), t) in ∆′ s.t. mj 6= m1 and mj 6= m2 with

(s1, (mj , gj), t) and (s2, (mj , gj), t)

Substitute (s, (m1, g1), t1) in ∆′ with (s1, (m1, g1), t1)

Substitute (s, (m2, g2), t2) in ∆′ with (s2, (m2, g2), t2)

Remove all unreachable transitions

return (A′,null)

End

Figure 4.11. Refinement of Guarded Automata

Refine a Guarded Automaton

We present the algorithm to refine a Guarded Automaton in Fig. 4.11. The

input of Refine are two transitions (with guards g1 and g2 respectively) which

leads to the violation of autonomy on the skeleton. Refine will try to refine the

current GA by splitting the source state of these two transitions. If refinement

succeeds, the refined GA is returned; otherwise, a concrete error trace is returned

to show that the input GA is not autonomous.

The first step of Refine is to compute the conjunction of the precondition of

the two guards, i.e., Pre(g1) ∧ Pre(g2). If the conjunction is satisfiable, it means

that there is a possibility that at some configuration both transitions are enabled.
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Then we call procedure FindPath to find a concrete error trace, which will be

explained later. In the case where the conjunction is not satisfiable, we can

proceed to the refinement task. We split the source state of the two transitions

into two states, and modify the transitions accordingly. Finally we eliminate

transitions that cannot be reached during any execution of the GA.

Example 4.29 When procedure Refine is applied to Fig. 4.9(a), and the two

transitions starting at state 3, it first compute the conjunction of two precondi-

tions: α.id 6= β.id ∧ α.id = β.id. Obviously the conjunction is not satisfiable.

Then state 3 is split into two states, (state 3 and 4 in Fig. 4.9(c)), and transitions

are modified accordingly. Finally, unreachable transitions (dotted arrows in Fig.

4.9(c)) are removed, and we get the GA in Fig. 4.9(c).

The precondition operator Pre is a standard operator in symbolic model check-

ing, in which, all primed variables are eliminated using existential quantifier elim-

ination. For example given a constraint g as “a = 1 ∧ b′ = 1”, its precondition is

Pre(g) = ∃a′∃b′(a = 1 ∧ b′ = 1), which is equivalent to “a = 1”.

Generate a Concrete Error Trace

We present the algorithm to locate a concrete error trace in Fig. 4.12. Pro-

cedure FindPath has three inputs: a GA A, a state s in A, and a symbolic

constraint g. FindPath will locate an error trace (a list of configurations) which

starts from the initial state of A, and finally reaches s in a configuration satisfying

constraint g.
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Procedure FindPath(A, s, g): List

Begin

Let A = (M,T, s0, F,∆)

Let T be
⋃

(si,(mj ,gk),s`)∈∆ gk ∧ state = si ∧ state′ = s`

Stack path = new Stack()

Let g be re-assigned as g ∧ state = s

g′ = false

stack.push(g)

While g 6= g′ and g ∧ state = s0 is not satisfiable do

g′ = g

g = (∃M′ (gM/M′ ∧ T )) ∨ g′

path.push(g)

End While

If g ∧ state = s0 is not satisfiable Then

return null

Else

path = reverse order of path

List ret = new List()

cvalue = a concrete value of path[1]

For i =1 to |path| do

ret.append(cvalue)

cvalue = a concrete value in (∃M cvalue ∧ T )M′/M

End For

return ret

End If

End

Figure 4.12. Generation of Concrete Error Trace

The algorithm of FindPath is a variation of the standard symbolic backward

reachability analysis in model checking techniques. The procedure starts with

the construction of a symbolic transition system T , based on the control flow as

well as data semantics of A. Then given the initial constraint g, the main loop

computes the constraint which generates g via transition system T . The loop

terminates when it reaches the initial configuration, or it reaches a fixed point.
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Example 4.30 If we redefine the guard g2 as α.id = β.id⇒ β.id′ = α.id. When

procedure Refine is called on Fig. 4.9(a), the conjunction of preconditions of g1

and g2, i.e., α.id = β.id, is satisfiable. Hence procedure FindPath is called with

input Fig. 4.9(a), state 3, and constraint α.id = β.id ∧ state = s3. The while

loop of FindPath eventually includes in variable path the following constraints:

1. α.id = β.id ∧ state = s3.

2. α.id = 1 ∧ state = s2.

3. state = s1.

Then the order of path is reversed, and a concrete value constraint cvalue is ran-

domly generated which satisfies constraint state = s1 and each message attribute

has an exact value in cvalue, for example, let cvalue be α.id = 1∧β.id = 0, then

the list ret will record the following constraints:

1. α.id = 1 ∧ β.id = 0 ∧ state = s1.

2. α.id = 1 ∧ β.id = 0 ∧ state = s2.

3. α.id = 1 ∧ β.id = 1 ∧ state = s3.

Obviously the sequence of constraints in ret captures an error trace leading to

the state 3 which violates the autonomy condition.

Complexity of the algorithms in Fig. 4.10, Fig. 4.11, and Fig. 4.12 depends on

the data domains associated with the input GA. When the message alphabet of

a guarded conversation protocol is finite, algorithms in Fig. 4.11 are guaranteed

to terminate. For infinite domains, a constant loop limit can be used to termi-

nate Procedure FindPath by force, which will result in a conservative analysis

algorithm.
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4.5.2 Symbolic Analysis of Synchronous Compatibility

One natural question is: do we have similar iterative analysis algorithms

for the lossless join and synchronous compatibility conditions? The answer is

negative, because of Propositions 4.19, 4.18, 4.20, and 4.21. However, we do have

“conservative” symbolic analyses for these two conditions. In the following, we

first discuss the symbolic analysis for synchronous compatibility.

Recall the algorithm to check synchronous compatibility of an FSA conver-

sation protocol. We project the protocol to each peer and determinize them

(including ε-transition elimination), and then construct the Cartesian product

from these deterministic projections. Then we check whether each state in the

product is an illegal state (where some peer is not receptive to a message that

another peer is ready to send). Note that determinization is a necessary step,

otherwise the algorithm will not work.

The analysis of synchronous compatibility for a GA conversation protocol fol-

lows exactly the same procedure. But note that, we have to discuss two different

cases on GA conversation protocols with finite or infinite domains. Given an

F-GA conversation protocol P, we can always construct its exact equivalent FSA

conversation protocol (let it be P ′), and use the synchronous compatibility anal-

ysis for standard FSA protocols to analyze P ′. However, for I-GA conversation

protocols we might not be able to do so, because there may not exist projections

for I-GA conversation protocols. In the following, we introduce a “conservative”

symbolic analysis for the synchronous compatible condition.

Given an I-GA (or F-GA) conversation protocol P, we can project it to each

peer using coarse projection (either Coarse Processing 1 or Coarse Processing
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2 in Fig. 4.4). Then we determinize each peer in SPROJ,C1
P (or SPROJ,C2

P ) using

the DeterminizeGA in Fig. 4.6. We construct the GA Cartesian product of those

determinized GA using the algorithm presented in Section 4.2.1. If no illegal state

is found, the I-GA conversation protocol P is synchronous compatible; however,

this method is conservative, i.e., if an illegal state is found, P might still be

synchronous compatible, because a coarse projection accepts a superset of the

language accepted by the exact projection.

4.5.3 Symbolic Analysis of Lossless Join

Similar to the analysis of synchronous compatibility, for an F-GA conversa-

tion protocol, we can always construct its equivalent FSA conversation protocol

and apply the lossless join check for FSA conversation protocols. Now we dis-

cuss a conservative and symbolic analysis for I-GA as well as F-GA conversation

protocols.

Recall that each GA A can be regarded as a transition system, and can

be represented symbolically. Let T (A) denote the symbolic transition system

derived from A. From the initial configuration of A, we can compute all the

reachable configurations of T (A), and let set of reachable configurations be SA.

Given A1 and A2, the following statement is true:

(SA1 ∧ T (A1) ⇒ SA2 ∧ T (A2)) ⇒ (L(A1) ⊆ L(A2)) (4.1)

Intuitively, Equation 4.1 means that if A2 as a transition system is a superset

of A1, i.e., for any reachable configuration, there are more enabled transitions in

T (A2) than T (A1), then L(A2) should be a superset of L(A1).
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Equation 4.1 naturally implies the symbolic analysis algorithm. Given a GA

conversation protocol P (with finite or infinite domains), let its GA specification

be A. We can project A using coarse projection. Then construct the Cartesian

product of SPROJ,C1
P (or SPROJ,C2

P ), and let it be A′. Then we construct T (A),

T (A′), and compute SA and SA′

. Finally if SA′ ∧ T (A′)) ⇒ (SA ∧ T (A), we

can conclude that P is lossless join.

The above symbolic analysis algorithm is decidable when domain is finite.

When P has infinite domain, we can simply use the approximate closure of SA

and SA′

, and it is still a conservative algorithm.

4.5.4 Hybrid Analyses

Up to now, we have introduced a range of techniques to analyze each of the

realizability conditions. The most light-weight analysis is the skeleton analysis.

However, this approach may not be very precise. One possibility is to use symbolic

analyses to improve skeleton analysis. Given a GA-conversation protocol P,

we can first check the autonomous condition using the iterative refined analysis

algorithm. If P is proved to be autonomous, we can apply the skeleton analysis on

the refined protocol obtained in the iterative analysis. When the skeleton analysis

succeeds, P is guaranteed to be realized by SPROJ,C1
P , SPROJ,C2

P , and SPROJ
P .

4.6 Synchronizability Analysis

The synchronizability analysis for GA web service compositions derives from

the realizability analysis for GA conversation protocols. However, interestingly,
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the results obtained here are better than those for conversation protocols. For

example, skeleton analysis for bottom-up specified GA web service compositions

does not require additional conditions (in contrast to the deterministic guards

condition required in realizability analysis). For another example, the sym-

bolic analysis for the three realizability conditions only gives the information

on “whether the GA conversation protocol is realizable or not”, it does not pro-

vide a synthesis solution (and for I-GA conversation protocols there may not

even exist exact projections). In the bottom-up framework, we do not have an

additional synthesis step – once the GA web service composition is proved to be

synchronizable, we can directly do the LTL verification using the synchronous

semantics (e.g. set the channel size to 0 in SPIN [41, 43]). In the following, we

briefly redefine the synchronizability conditions, and present the technical details.

Definition 4.13 Let S = 〈(P,M,Σ),A1, . . . ,An〉 be a GA web service composi-

tion. S is said to be synchronizable if it produces the same set of conversations

under both the asynchronous and the synchronous communication semantics, i.e.,

C(S) = join(L(A1), ..., L(An)).

The following definitions of synchronizability conditions are taken from Chap-

ter 3 and modified accordingly for the GA framework.

1) Synchronous compatible condition: A GA web service composition

〈(P,M,Σ),A1, . . . ,An〉 is synchronous compatible if for each i ∈ [1..n], each

word w ∈ Σ∗, and each message α ∈ Σout
a ∩ Σin

b :

(∀i ∈ [1..n] πi(w) ∈ L(A∗
i )) ∧ πa(wα) ∈ L(A∗

a) ⇒ πb(wα) ∈ L(A∗
b),

where A∗
i is the prefix automaton of Ai.
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2) Autonomous condition: Let P = 〈(P,M,Σ),A1, . . . ,An〉 be a GA compo-

sition. P is autonomous if for each peer Ai, and for each word w ∈ Σ∗
i , exactly

one of the following three statements holds: (a) w is accepted by Ai. (b) there

exists β ∈ Σin
i s.t. wβ ∈ L(A∗

i ). (c) there exists α ∈ Σout
i s.t. wβ ∈ L(A∗

i ).

A GA web service composition is synchronizable if the above two conditions

are satisfied, as formalized in the following theorem. Note that, compared with

Theorem 4.11, Theorem 4.31 works for both finite and infinite domains.

Theorem 4.31 A GA web service composition is synchronizable if it satisfies

the autonomous and synchronous compatible conditions.

Proof: The proof (by contradiction) follows exactly the same argument as that

of Theorem 3.12. Note that even if the message alphabet Σ is infinite, it does

not affect the correctness of the argument.

Next we discuss the skeleton analysis for GA web service compositions. Given

a GA web service composition S = 〈(P,M,Σ),A1, . . . ,An〉, its skeleton compo-

sition, written as skeleton(S) is an FSA composition 〈(P,M),A′
1, . . . ,A′

n〉 where

for each i ∈ [1..n], A′
i is generated by dropping guards from Ai.

Theorem 4.32 A GA web service composition is synchronizable if its skeleton

satisfies the autonomous condition and synchronous compatible conditions2.

Proof: The theorem is proved using contradiction, following exactly the same

argument as the proof (paragraph 2) of Theorem 4.23. Basically we can show that

if there is a message not consumed eagerly, we can always find a corresponding

bad run in the skeleton(S).

2Note that, the synchronizability of the skeleton composition, however, does not imply the
synchronizability of the GA composition.
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Symbolic analysis of each of the synchronizability conditions can follow the

algorithms given in Section 4.5. Different than the symbolic analysis for realizabil-

ity conditions (which does not have the synthesis algorithm for I-GA conversation

protocols), once the synchronizability conditions are proved, we can construct the

Cartesian product of all peers (using the algorithm in Section 4.2.1), and verify

LTL properties on the Cartesian product.
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Chapter 5

Expressive Power of Guarded

Automata Composition

This chapter studies a variation of the Guarded Automata model proposed in

Chapter 4. In the new GA model, each Guarded Automaton is allowed to have

a finite set of local variables, and for simplicity, each message class is abstract.

From the perspective of optimization, one natural question is: given a GA web

service composition where each peer is implemented using n variables, can the

composition be optimized using n− 1 variables? We provide some initial results

that are obtained in [44]. We show that whether a GA composition can be

optimized is decided by the arithmetic constraints used in transition guards, and

it is affected by the composition schema of the GA composition. We begin this

chapter by setting the context for the presentation of technical results. Then the

following two sections discuss the influence of arithmetic system and composition

schema on the expressive power hierarchy of GA web service compositions.
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5.1 Guarded Automata with Local Variables

We consider a variation of the GA composition called V-GA composition,

where “V” stands for the “local variables”. Formally, a V-GA composition is

defined as follows.

Definition 5.1 A V-GA web service composition is a tuple 〈(P,M),A1, ...,An〉,

where (P,M) is a standard composition schema, and for each i ∈ [1..n], Ai is

a Guarded Automaton with Local Variables (called “V-GA”). Each Ai can be

represented by a tuple (Mi, Ti, si, Fi, ~Vi, δi) where Mi, Ti, si, Fi, ~Vi, and δi are

the set of message classes, set of states, initial state, set of final states, set of

local variables, and transition relation respectively. A transition in δi is one of

the three types: (t, (!m, g), t′), (t, (?m, g), t′), (t, (ε, g), t′) where t, t′ ∈ T , m ∈M ,

and g is a predicate in the form of

g(~V ′, ~V ),

where ~V ′ and ~V are the “next value” and “current value” of the local variables

respectively.

Note that in Definition 5.1, message classes are abstract. This chapter, in

particular, study the following two types of local variables:

1. Counter variables: an assignment for a counter can only increment or decre-

ment the value by 1; an atomic formula can test if a variable has the value

0.

2. Integer variables: an assignment can assign to an integer variable an arith-

metic expression with +,−,×, ÷,√ ; an atomic formula can compare two
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arithmetic expressions using ≤,=. (Note that x÷y = k such that x = yk+r

for some 0 ≤ r < |y| and
√
x is defined if x ≥ 0 and = k where k is the

largest integer such that k2 ≤ x.)

We use V-GAC

i (and V-GAZ

i ) to denote the family of V-GA with at most i

local counter (integer) variables. Each automaton in V-GAC

i (V-GAZ

i ) is called a

counter (integer) V-GA. Given a V-GA composition S = 〈(P,M),A1, . . . ,An〉,

we say S ∈ V-GAC

i (S ∈ V-GAZ

i ) if for each i ∈ [1..n], Ai ∈ V-GAC

i (resp.

Ai ∈ V-GAZ

i ). For each i ∈ N and each composition schema S we denote by

CC

i (S) (or CZ

i (S)) the family of conversation sets {C(S) | S ∈ V-GAC

i (resp. S ∈

V-GAZ

i ) is a V-GA composition over composition schema S}.

We can have a less restricted form of V-GAC called augmented counter V-

GA. An augmented counter V-GA is identical to a counter V-GA except that

assignments in a transition can increment or decrement a counter variable by c

for some constant c ∈ Z and atomic formulas can test if a counter equals some

constant c′. An augmented V-GA may use a finite number of constants (different

constants for different assignments). The following lemma shows the equivalence

between the two versions of counter V-GA.

Lemma 5.1 Each augmented V-GA with i counters is equivalent to a V-GA

with i counters.

Proof: Let A be an augmented V-GA with i counters. We can effectively convert

A to a V-GA A′ using the following idea. For simplicity, we assume the counter

values are positive (negative values can be remembered by finite states) and the

increments and decrements are positive. Let c be the largest constant used in A.
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For each counter vi in A, A′ has a corresponding counter v′i to record the value

of vi modulo c, and A′ encodes the remainder of dividing vi by c into its states.

Clearly, for each transition in A which increments (decrements) the value of vi

by a certain constant c0, we have a corresponding transition in A′ to increment

(decrement) the value of v′i by at most 1, and move to a corresponding state

which encodes the corresponding remainder.

Augmented V-GA can be further relaxed into an equivalent V-GA automaton

model with bounded ε-transitions, as shown in the following lemma.

Lemma 5.2 Let A be a V-GA with i counters and ε-moves. Then the language

recognized by A with at most d consecutive ε-moves can be recognized by some

A′ in V-GAC

i .

Proof: The basic idea of constructing A′ from A is as follows. We examine the

transitions of A, and for every possible sequence X of transitions of at most d

ε-moves, we can determine (actually pre-calculate by hand) the “net effect” of X

on each counter and the terminal state. Note that the effect on each counter can

be at most an increment of d or decrement of d. Hence, the sequence X can be

replaced by one step (which gets rid of the ε-moves), and we get an augmented

V-GA A′′. By Lemma 5.1, A′′ can be converted to an equivalent A′ in V-GAC

i .

5.2 Variable Based Hierarchies

This section focuses on the hierarchies of CC

i (S) and CZ

i (S). We consider integer

and counter cases separately. For the integer case, we show that CZ

i (S) collapses

at the level 1. For the counter case, using a result of Greibach [48], we show that
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CC

i (S) is strict for schema S that contain one peer sending two message classes

to another peer.

5.2.1 Hierarchy of CZ

i

With pairing functions, a Guarded Automaton with one integer variable can

simulate any Guarded Automaton with an arbitrary number of integer variables.

Lemma 5.3 For each i ∈ N, every A in V-GAZ

i is equivalent to some A′ in

V-GAZ

1, i.e., L(A) = L(A′).

Proof: Let A = (M,T, s, F, ~V ,∆) in V-GAZ

i and ~V = {v1, ..., vk}. We construct

A′ = (M,T, s, F, {v},∆′) which simulates A on every move. Consider the follow-

ing pairing function f(x, y) defined in [58], where f is a polynomial and x, y can

be recovered by expressions using +,−,×,÷,√ .

f(x, y) = ((x+1)÷2+y)2 +x, fx(z) = z− (
√
z)2, fy(z) =

√
z− (fx(z)+1)÷2

By consecutive applications of the above pairing functions, we can easily encode

v1, . . . , vk into v, and each vi (i ∈ [1..k]) can be decoded from v. Then, the guards

in each transition of A′ can be constructed accordingly.

Theorem 5.4 For each nontrivial schema S with a peer prototype having at

least two output message classes, CZ

0(S) $ CZ

1(S) = ∪i≥0CZ

i (S).

Proof: The collapse part of the proof follows from Lemma 5.3. The inequality

follows from the fact that each V-GA in V-GAZ

0 generates a regular language.

For S, let pi be the peer which has at least two output message classes, and let
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them be m1 and m2 respectively. Consider the family of languages on alphabet

{m1, m2}, its intersection with CZ

0(S) contains regular languages only, because pi

has no counter. However, its intersection with CZ

1(S) contains a conversation set

{m1
nm2

n | n ≥ 0}, which can be easily generated by counting the number of m1

and m2 in pi, and making all other peers to receive passively.

Remark: It appears that
√

is needed for the encoding to work. It is unclear if

for restricted versions, the hierarchy collapses. One case is to allow expressions

to be built from +,−,×, and ÷ only. Another case is to further restrict to

+,− (Presburger arithmetic). While these problems remain open, it is easy to

construct, for each V-GA in V-GAC

i , an equivalent V-GA in V-GAZ

1 that uses

only +,−, multiplication and division by constants for its variables.

5.2.2 Hierarchy of CC

i

We now turn to counter V-GA in the remainder of the section. We consider

a special family of composition schema where a single peer is the sender of all

messages, and other peers receive passively. We show that, for such composition

schema, the hierarchy of CC

i is strict.

Languages generated/accepted by counter V-GA are closely related to lan-

guages accepted by counter machines in real time. Fischer, Meyer, and Rosen-

berg [34] studied real-time deterministic counter machines and showed that there

is a strict hierarchy based on the number of counters. In particular, the lan-

guages used to separate each level use a two-symbol alphabet. This result on

deterministic counter machines does not carry over to the nondeterministic case

for counter V-GA. However, a result by Greibach [48] can be used to establish
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the non-collapsing result (Theorem 5.7).

Let Σ = {a, b, c}. Consider the following languages from [48]:

L2`+1 = {wcwR | w ∈ {a, b}∗} ∩ (a+b+)`a+c {a, b}∗, and

L2`+2 = {wcwR | w ∈ {a, b}∗} ∩ (a+b+)`+1c {a, b}∗.

In the rest of the chapter, we call this language family the Greibach language

family, and each language in this family is denoted as Li where i ≥ 0.

Lemma 5.5 [48] Li = L(A) for some A ∈ V-GAC

i , but for every A′ ∈ V-GAC

i−1,

Li 6= L(A′).

Note that the Greibach language family uses an alphabet of size 3. We can

further improve the result to an alphabet of size 2 by modifying the languages Li

in the following manner: Let L′
2`+1 be L2`+1 with c replaced by bb, and L′

2`+2 be

L2`+2 with c replaced by aa. The resulting languages L′
i are over alphabet {a, b}.

Next we prove that the hierarchy of CC

i is strict, based on the language family

L′
i (which is over an alphabet of size 2).

Lemma 5.6 Lj = L(A) for some A ∈ V-GAC

i iff L′
j = L(A′) for some A′ ∈

V-GAC

i .

Proof: We first argue that given some A′ ∈ V-GAC

i such that L(A′) = L′
j, we

can construct an augmented V-GA A′′ with i counters such that L(A′′) = Lj.

The inverse direction is proved similarly.

Consider the case when j is even. The idea is for A′′ to simulate the compu-

tation of A′ faithfully while also keeping track of the number of (a+b+) segments

that have been generated (by encoding states). When j/2 segments have been
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generated, A′′ generates c and simulates the updating of the counters (by A′

on aa) in one step. Thus, A′′ may have to increment/decrement some counters

by 2 and test some counters also against 1 or −1 (depending on whether the

corresponding transition in A′ is to increment or decrement the counters). By

Lemma 5.1, we can convert A′′ to a standard counter V-GA. Therefore there is

an A ∈ V-GAC

i such that L(A) = Lj.

Theorem 5.7 If S is a schema containing a peer sending two message classes to

another peer, then for each i ∈ N, CC

i (S) $ CC

i+1(S).

Proof: Let p1 and p2 be the two peers in S where p1 sends messages a and b

to p2. We now prove that L′
2i+1 belongs to CC

i+1. We let p1 have i + 1 counters

to remember the lengths of (i + 1) a-strings, and let p2 to have i counters to

remember the lengths of b strings. Clearly, the implementation of these two

peers can guarantee that the conversation set of their composition is L′
2i+1.

We now show that L′
2i+1 6∈ CC

i (S). Suppose there is a counter V-GA compo-

sition S ′ ∈ V-GAC

i such that C(S ′) = L′
2i+1. Then in S ′, p1, p2 have a total of at

most 2i counters. Since p1 only sends and p2 only receives, their Cartesian prod-

uct (let it be A′) can recognize their conversation set (i.e., S ′ is synchronizable).

Obviously, A′ has at most 2i counters, and L(A′) = L′
2i+1. This is a contradiction

to Lemmas 5.5 and 5.6.

5.2.3 Closure Properties of CC

i

We now investigate the closure properties of CC

i (S). Interestingly, the closure

properties provide another perspective to understand Theorem 5.7. We say that
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A homomorphism h from Σ → Σ′∗ is nonerasing if h(a) 6= ε for all in Σ.

Theorem 5.8 The language class L(V-GAC

i ) is closed under nonerasing homo-

morphism and inverse nonerasing homomorphism.

Proof: Given a V-GA A with i counters that generates L, an a nonerasing ho-

momorphism h, we construct a V-GA A′ with i counters and ε-moves generating

h(L) as follows.

Let Σ = {a1, ..., an} be the alphabet of L. A′ nondeterministically generates a

string of the form w = h(ai1)h(ai2)...h(aim), and for each h(aik) where 1 ≤ k ≤ m,

the sequence of moves of A′ simulate one move of A for aik . A′ enters an accepting

state after generating w iff A enters an accepting state after generating ai1....aim .

For inverse homomorphism, suppose A is a V-GA with i counters generating

a language L′ ⊆ Σ′+, and h is a nonerasing homomorphism from Σ → Σ′+.

From A, we construct A′ with i counters and ε-moves as follows. A′ will

generate a string of the form x = ai1 ...aim by first generating ai1 (the symbol ai1

is chosen nondeterministically) after which, it goes through internal transitions

for |h(a1)| − 1 ε-moves (without generating a symbol) simulating the actions of

A on the string segment h(ai1). A′ follows the same procedure for each of the

other symbols ai2 , ..., aim it generates. By this way, A′ accepts each word w ∈ Σ

where h(w) ∈ L′, i.e., L(A′) =
⋃

h(L)=L′ L. Clearly A′ has bounded delay, which

can then be converted to a machine in V-GAC

i .

Definition 5.2 Let h be a nonerasing homomorphism Σ → Σ′+. h is a code if

h(a) 6= h(b) for every pair a 6= b in Σ, and each word x ∈ {h(a) | a ∈ Σ}+ has a

unique factorization in terms of the h(a)’s.
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Example 5.9 Let Σ = {a1, ..., an} be an alphabet, where n ≥ 2. Consider the

mapping h : Σ → {0, 1}+ defined by h(ai) = 10i1 for i ∈ [1..n]. It is easy to see

that h is a code. Similarly, let h′(ai) be the binary representation of integer i

possibly with leading 0’s to make all of length log2 n. Then h′ is a code.

Corollary 5.10 Let h be a code from Σ → Σ′+. Then L ⊆ Σ+ can be generated

by a V-GA with i counters if and only if h(L) can be generated by a V-GA with

i counters.

Proof: Since h is a code. It is not hard to see that, for any language L ⊆ Σ∗,

L =
⋃

h(L′)=h(L) L
′. Then the corollary directly follows Theorem 5.8.

Corollary 5.10 directly leads to Corollary 5.11 and Corollary 5.12. Note that,

Corollary 5.12 is actually the Theorem 5.7, and its proof (based on Theorem 5.8,

Corollary 5.10, and Corollary 5.11) provides a general perspective of understand-

ing the use of a smaller alphabet (than the Greibach language family) to prove

the result in Theorem 5.7.

Corollary 5.11 Let h be a code from Σ → {0, 1}+. Then L ⊆ Σ+ can be

generated by a V-GA with i counters but not by a V-GA with (i− 1) counters if

and only if h(L) ⊆ {0, 1}+ can be generated by a V-GA with i counters but not

by a V-GA with (i− 1) counters.

Corollary 5.12 If S is a schema containing a peer sending two message classes

to another peer, then for each i ∈ N, CC

i (S) $ CC

i+1(S).
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5.3 Peer-Wise Regular Conversations

Theorem 5.7 establishes a non-collapsing hierarchy for schema that contains

one peer sending two messages to another. This result relies too much on the

behavior of a single peer being too complex. This is in some sense not satisfying

since the focus of web service composition is to examine the interactions between

component services. For this purpose, we only restrict to conversation sets whose

projection to the output alphabet of each peer is a regular language.

We present two fundamental results in this section. (1) If we only consider

conversations sets that are regular languages, the CC

i (S) hierarchy collapses to

CC

0(S) for all schema S. Such regular conversation sets are interesting since model

checking techniques are immediately available to verify properties of compositions

[40, 43]. (2) We then consider conversation sets that are context-free. We show

that the technique for proving the non-collapse result in Theorem 5.7 can be

used to establish an infinite CC

i (S) hierarchy for schema that contains a “path”

of length 2 with at least two message classes on each single directional channel of

that path. The separation is tight for the case when the path forms a loop and

not tight in general.

Definition 5.3 Let S be a schema. A language L over the message alphabet of

S is peer-wise regular if πMout
i

(L) is regular for each peer pi in S.

For each schema S, let pr-CC

i (S) be the set of languages in CC

i (S) that are

peer-wise regular. The question is whether pr-CC

i (S) forms an infinite hierarchy.

We start with the following example.
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b

(?a, true, c2++) (!b, c2≠0, c2--)

Peer B

(ε, true, c1++)

(?b, true, c1++) (!a, c1≠0, c1--)

Peer A

a

Peer A

!a
?b

Peer B

?a
!b

ba

Figure 5.1. A V-GAC

1 Composition and Its Simplified Version

Example 5.13 A composition involving two peers is shown in Fig. 5.1 (the left

side), where each peer has one counter to control the number of message a and

b resp. For convenience, we use an ε-move for peer A. It is not hard to see that

the language “accepted” (i.e., ignore the actions of send and receive but keep the

message class) by peer A is the set {(a|b)∗ | in each prefix |a| ≤ |b|+1}, and peer

B “accepts” the language {(a|b)∗ | in each prefix |b| ≤ |a|}. The conversation

set generated by the two peers is however a regular set (ab)∗. In this case, both

peers can be simplified to eliminate the counter. At the right side of Fig. 5.1 the

simplified version of the two peers is given. It can be verified that they generate

the same conversation set as the original peers.

5.3.1 Regular Conversation Set Case

An interesting question arising from Example 5.13 is whether in a given V-GA

composition, peers can be simplified with fewer counters. We now consider this

problem in the case when the conversation set is known to be regular.

Theorem 5.14 Given any schema S and V-GA composition S over S, if C(S)

is regular, there exists a counter-free V-GA composition S ′ ∈ V-GAC

0 over S such
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that C(S) = C(S ′).

Proof: The theorem directly follows from Theorem 3.9. Since C(S) is realizable,

it is realized by its projected composition, which is counter-free.

5.3.2 Context-free Conversation Set Case

We now consider the case where the conversation sets are context-free. We

show that in general, it is not possible to reduce the number of counters to some

fixed constant.

We start with two special schema. The first schema S3p consists of three

peers: p1, p2, and p3 where p1 sends messages a, b to p2, p2 sends c, d to p3, and p3

only receives messages. The second schema S2p has two peers p1 and p2, sending

messages to each other. In S2p, M
out
1 = M in

2 = {a, b}, and M out
2 = M in

1 = {c, d}.

The following can be shown for these two schema.

Lemma 5.15 For the schema S3p (S2p) and each i > 0, there exists a context-

free language L over {a, b, c, d} such that the following hold:

1. π{a,b}(L) and π{c,d}(L) are regular,

2. L = C(S) for some I ∈ V-GAC

3k+1 of S3p (resp. V-GAC

k+1 of S2p), and

3. L 6= C(S) for each S ∈ V-GAC

k(S) of S3p (resp. V-GAC

k of S2p).

Proof: We first prove the S3p case. Consider language

L = {ai1bai2b···ai3k+1b ci3k+1d···ci2dci1d | ∀` ∈ [1..(3k+1)], i` ∈ N, i` > 0}.

The language L is modified from the example used in the proof of Theorem 5.7.

Note that item (1) is obvious. L requires that peer p2 remembers the length
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of every a∗ sequence (separated by message b) sent by p1, and sends to p3 with

similar sequences of c∗. Item (2) can be easily shown. By a reasoning similar to

that in [48], L cannot be accepted in real-time by a counter machine with ≤ 3k

counters.

We now prove by contradiction that L cannot be generated by peers with k

variables, i.e., item (3). Assume that there is a k-counter implementation A1, A2

and A3 for peer p1,p2 and p3 resp. It is not hard to see that during the interaction

A2 cannot send out messages until all a and b messages have been sent from A1;

otherwise they can generate a conversation which is not contained in L because

c appears in the (a+b+)3k+1 part. This implies that the input queue of A1 (A2)

is empty whenever A1 (A2) sends out messages. Based on the results of [16],

the Cartesian product of A1, A2 and A3, which is now a Guarded Automaton

with 3k variables, accepts in real time the conversation set generated by the

asynchronous composition of the three peers, i.e., L. This contradicts with the

fact that L cannot be accepted by any counter machine with 3k or less variables

in real time, and hence concludes the proof.

For schema S2p, let

L = {ai1bj1 ···aik+1bjk+1 cjk+1dik+1 ···cj1di1 | ∀` ∈ [1..k+1], i` > 0, j` > 0}

and let the implementation of p1 and p2 each remember half of the necessary

counters, then by a similar argument as the proof of Theorem 5.7, we can show

a strict hierarchy of CC

k $ CC

k+1.

Lemma 5.15 immediately leads to the following.

Theorem 5.16 For each schema S containing a path of length 2 in which the

number of message classes is at least 2 for each single directional peer to peer
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channel, the pr-CC

i (S) hierarchy does not collapse for context-free conversation

sets. In particular, if S contains S2p (modulo isomorphism), the hierarchy is strict

at each level.

This chapter presents an initial study on comparing behavior models. Our

preliminary results imply that (1) if the global behaviors of a web service com-

position are regular, there is no need to have local variables in the published

behavior specification, but (2) if the global behaviors are context free, there is a

strict hierarchy based on the number of variables used when encoding of the vari-

ables are not allowed. Results such as these are clearly important in formulating

behavior models especially for the web service standards. Our study leads to a

number of interesting questions. For examples, can the gap in Theorem 5.16 be

narrowed? In general, how to characterize the effect of queue? In addition, there

are also a number of associated complexity problems.
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Chapter 6

Modeling of XML Data

Manipulation

It is generally agreed that messages exchanged among web based systems

should be in the XML [26] format. For example, almost all web service standards

(e.g. WSDL [80], BPEL4WS [12], WSCI [79], OWL-S [24]) are built on XML and

related standards including XML Schema [82] and XPath [81]. The rich tree-

structured data representation of XML and powerful XPath expressions, however,

impede direct application of model checking techniques to the verification of Web

based systems. Earlier efforts to verify web services (e.g. [36, 65, 55]) basically

focus on only the control flows by abstracting away the XML data semantics

during analysis.

To model the XML data manipulation semantics of web services, this chapter,

based on [40] and [41], extends the Guarded Automata model introduced in

Chapter 4 in the following two ways: (1) the contents of a message class can be
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organized using a complex type declared using XML Schema, and (2) a Guarded

Automaton can have a finite set of local XML variables when it is used to specify

a peer. This extended GA model, called the XML-GA model, is very expressive

and allows transformation from most popular web service specification standards.

It is the core part of the Web Service Analysis Tool (WSAT). In WSAT, input

web services will be translated into XML-GA before any analysis or verification

can be applied.

The chapter is organized as follows. We will first discuss the formal modeling

of XML, bounded XML Schema, and a fragment of XPath query language. Then

we propose the XML-GA model, give the syntax of XML-GA input of WSAT,

and present a sample XML-GA conversation protocol. Finally, to illustrate the

expressiveness of the model, we introduce the translation algorithm from static

BPEL4WS web services to XML-GA.

6.1 Modeling of XML Related Standards

This section introduces the formal model for XML, MSL (an theoretical model

of XML Schema), and a fragment of XPath.

6.1.1 XML

Similar to HTML, all XML documents are structured using tags, which are

written as <tag> followed by </tag>. However, tags in XML describe the content

of the data rather than the appearance. Fig. 6.1(a) shows an XML document

containing the data for a Register message sent from an investor to register for
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<Register>

<investorID>

VIP01

</investorID>

<requestList>

<stockID>

0001

</stockID>

<stockID>

0002

</stockID>

</requestList>

<payment>

<accountNum>

0425

</accountNum>

</payment>

</Register>

investorID

Register

VIP01

requestList

0001 0002

payment

accountNum

0425

stockID stockID

(a) (b)

l = { Register, investorID, VIP01, requestList, stockID, 0001,

stockID, 0002, payment, accountNum, 0425 }
n = 11

1 2 3 4 5 6 7 8 9 10 11
p 0 1 2 1 4 5 4 7 1 9 10
r 11 3 3 8 6 6 8 8 11 11 11

(c)

Figure 6.1. An XML document (a), the corresponding tree (b), and its formal

representation (c)
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a stock analysis service. It consists of a string containing the identification of the

investor, a list of stock identifiers that the investor is interested in, and a record

of payment information.

XML documents can be modeled as trees where each internal node corre-

sponds to a tag and leaf nodes correspond to basic type values. The document

in Fig. 6.1(a) corresponds to the tree in Fig. 6.1(b). We now present a formal

representation for XML documents. Since a tag attribute can be regarded as

a leaf child node of the corresponding tag node, we omit tag attributes in the

model. This simplification does not weaken the expressive power.

Definition 6.1 An XML document is a quadruple X = (l, n, p, r) where

1. l is a list of labels where each label can either be an internal node tag, or

a leaf node value with a basic type (such as boolean, integer or string). We

denote i′th node of l with l[i] (indices start from 1).

2. n is the size of l.

3. parent function p : [1, n] → [0, n−1] is a function such that

(a) p(1) = 0, and

(b) for each 1 < i ≤ n, 1 ≤ p(i) < i

We define p∗ as the transitive and reflexive closure of p.

4. range function r : [1, n] → [1, n] is a function where

(a) r(i) ≥ i for each i ∈ [1, n], and

(b) for each i ≤ j ≤ r(i), i ∈ p∗(j), and for each j 6∈ [i, r(i)], i 6∈ p∗(j).
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Given a node at index i, p(i) points to its parent node. Since root has no

parent, we define p(1) = 0. Given node i, r(i) denotes the maximum index of the

nodes in the subtree of node i. Note that constraints on p and r guarantee that

l is the pre-order traversal of the document tree of X .

Example 6.1 Fig. 6.1(c) is the quadruple representation of the XML document

in Fig. 6.1(a). Obviously the list l is the pre-order traversal of the tree in Fig.

6.1(b), and parent function p and range function r describe the tree structure.

For example, the subtree starting from node requestList spans over five nodes,

and hence the range function r(4) = 8.

Definition 6.1 can be extended to describe a tree sequence, when restriction

“1 ≤ p(i)” in 3(b) is modified to “0 ≤ p(i)”. In a tree sequence, we call each

node whose parent node is 0 a root node. Next, we introduce a split operator

which splits a tree sequence into two tree sequences, and an extract operator

which extracts the contents (a tree sequence) from a single XML tree.

Definition 6.2 Given an XML tree sequence X = (l, n, p, r), a split at integer s

can be applied to X if node s is a root node and s 6= 1. The results are two tree

sequences X1 = (l1, n1, p1, r1) and X2 = (l2, n2, p2, r2) where

1. l1 = l[1, s−1] and l2 = l[s, n].

2. n1 = s−1, and n2 = n−s+1.

3. p1 coincides with p on domain [1, s−1], and for each i ∈ [1, n−s+1]:

p2(i) =











p(i+s−1)−s+1 if p(i+s−1)6=0

0 if p(i+s−1)=0
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4. r1 coincides with r on domain [1, s−1], and r2(i) = r(i+s−1)−s+1 for all i

in [1, n−s+1].

Given an XML tree sequence which has at least m root nodes, for any k ≤ m

we can split the tree sequence into k sequences, by consecutively applying the

split operator k − 1 times to the second part of the result of the previous split.

We call this operation a k-split.

Definition 6.3 Given a single XML tree X = (l, n, p, r), the extract operator

generates a tree sequence extract(X ) = (l′, n′, p′, r′) where l′ = l[2, n], n′ = n−1,

and for each i ∈ [1, n′] : r′(i) = r(i+1)−1 and p′(i) = p(i+1)−1.

Example 6.2 If we apply the exact operator to the XML tree in part (c) of Fig.

6.1, we get the XML tree sequence X ′ = (l′, n′, p′, r′) where

l′ = { investorID, VIP01, requestList, stockID,

0001, stockID, 0002, payment, accountNum, 0425 }

n′ = 10

1 2 3 4 5 6 7 8 9 10
p′ 0 1 0 3 4 3 6 0 8 9
r′ 2 2 7 5 5 7 7 10 10 10

Note that, the tree sequence X ′ can be split at 3 and 8, and there exists a

3-split for X ′.

6.1.2 XML Schema and MSL

XML provides a standard way to exchange data over the Internet. However,

the parties that exchange XML documents still have to agree on the type of the
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data, i.e., what are the tags that will appear in the document, in what order, etc.

XML Schema [82] is a language for defining XML data types. Model Schema

Language (MSL) [14] is a compact formal model that captures most features of

XML Schema. We use a slightly simplified version of MSL with type expressions

defined as follows:

g → b | t[g0] | g1{m,n} | g1, . . . ,gk | g1| . . . |gk

Here g, g0, g1, . . . , gk represent MSL types, b is a basic data type such as string,

integer or boolean, t is a tag, and m and n are two positive integers where m ≤ n.

Intuitively, the semantics of the above MSL type syntax rules can be summarized

as follows: t[g0] denotes a type with a root node labeled with t and children

with types that match the sequence of MSL types represented by g0; g1{m,n}

denotes a sequence of size at least m and at most n where each member is of

type g1; g1, . . . ,gk denotes an ordered sequence where the first member is of type

g1, the second member is of type g2, and so on; and, g1| . . . |gk denotes a choice

among types g1 to gk. To simplify our presentation, we will assume that the types

g1, . . . , gk are derived by the rules “g → b” or “g → t[g0]”.

Similar to XML, we can define a “parent function” for MSL types. Given

two MSL types g and gi, p(gi) = g if there exists a g′ such that either of the

following two conditions are satisfied: 1) g → t[g′] ∧ g′ → g1, . . . ,gi, . . . ,gk, or

2) g → t[g′] ∧ g′ → g1| . . . |gi| . . . |gk. We associate an attribute called “tag”

with each MSL type g. If g is derived from syntax g → t[g0], g.tag = t; otherwise

tag is set null.

Formally, an XML document tree sequence X = (l, n, p, r) is an instance of

an MSL type g if one of the following holds:
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1. when g → b: n = 1 and l[1] is a leaf node value and its type is b.

2. when g → t[g0]: X is a single XML document tree where l[1] = t and

extract(X ) is an instance of g0.

3. when g → g1{m,n}: there exists a k-split on X for some integer m ≤ k ≤ n

such that the resulting tree sequences X1, . . . , Xk are all instances of g1.

4. when g → g1, . . . ,gk: there exists a k-split of X , such that the resulting

tree sequences X1, . . . ,Xk are instances of g1, . . . , gk respectively.

5. when g → g1| . . . |gk: X is an instance of gi for some integer i ∈ [1, k].

Example 6.3 It is easy to verify that the XML document Register presented

in Fig. 6.1 is an instance of the following MSL type.

Register[

investorID[string],

requestList[ stockID[int]{1,3} ],

payment[ creditCard[int] | accountNum[int] ]

]

6.1.3 XPath

In order to write specifications or programs that manipulate XML documents

we need an expression language to access values and nodes in XML documents.

We use a subset of XPath [81] to navigate through XML trees and return the

answer nodes. The fragment of XPath we use consists of the following operators:
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the child axis (/), the descendant axis (//), self-reference (.), parent-reference

(..), basic type test (b()), node name test (t), wildcard (*), and predicates [].

An XPath expression is defined with the following grammar

exp → p | exp op exp

p → r | /r | //r

r → s | r/s | r//s

s → . | .. | n?([exp])∗ | position() | last()

n → b() | t | ∗

where n? denotes n or empty string and ([exp])∗ denotes zero or more repetition

of [exp].

In the above syntax rules, exp denotes an XPath arithmetic expression which

is constructed by combining XPath location paths (represented by p) with arith-

metic operators (represented by op). There are two types of location paths:

relative location paths and absolute location paths. An absolute location path

starts with / or //. A relative location path (represented by r) consists of a list of

steps (represented by s) which are connected with / or //. The steps in a relative

location path are evaluated from left to right. A step can be a self-reference (.),

a parent-reference (..), or a more complex form which consists of a node test (n)

and a sequence of predicates of the form [exp]. A node test n has three possible

forms: type test (b()), name test (t), and wildcard match (∗). Finally, a step can

be a function call such as position() or last() with the following restriction:

Function calls can only appear as the last step of a location path.
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Formally, an XPath expression accepts inputs of the form (c, d) where context

c is a sequence of node indices in some XML document X , and d is either a single

node in X or a set of values with the same basic type. The sequence of node

indices in the input context must be in ascending order with no repetition. The

output of an XPath expression is a sequence of nodes in the same XML document

used in the input, or a set of values. For X (l, n, p, r), let N be the domain of all

node indices in X (i.e., [1, n]), and DOM be the domain of all leaf node values.

Then the semantics of an XPath expression exp (as well as a step, a node test,

and a location path) can be defined as a function:

exp : 2N × (N ∪ 2DOM) → 2N ∪ 2DOM .

Before we formally define the semantics of XPath expressions, we will give some

example expressions and the results of evaluating them below. To distinguish

node indices from other values we write node indices in bold characters.

Example 6.4 Given input ({1}, 1), where 1 is the root node of the XML docu-

ment presented in Fig. 6.1, and the following XPath expressions

1. investorID

2. //stockID[position() = 2]/int()

3. //stockID/int() = 0002

The results are {2}, {0002}, and {false, true} respectively.

We will now present the formal semantics of XPath expressions bottom-up.

We will present the semantics of a node test first, and then a step, and then a

location path, and finally an XPath expression.
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Given a node test n and input (c, d) where d is a node of XML document

X (l, n, p, r), the results of n(c, d) is defined as follows:

1. when n→ b(): n(c, d) = {d′ | p(d′) = d ∧ l[d′] is of type b}.

2. when n→ t: n(c, d) = {d′ | p(d′) = d ∧ l[d′] = t}.

3. when n→ *: n(c, d) = {d′ | p(d′) = d}

Basically, rule 1 and 2 select the children nodes of the input node d by their types

and tags (resp.), and rule 3 simply returns all the children nodes. Finally, when

input d is a set of values, then n(c, d) returns the empty set ∅.

The definition of a step s is similar. Given a step s and input (c, d), when d

is a set of values, s returns ∅. When d is a node of X , s(c, d) is defined as below:

1. when s→ . : s(c, d) = {d}.

2. when s→ .. : s(c, d) = {p(d)}.

3. when s→ [exp]:

s(c, d) =























{d} true ∈ exp(c, d) and exp is a boolean expression

{d} exp(c, d) 6= φ and exp is a locationpath

∅ otherwise.

4. when s→ n [exp1] . . . [expk]: s(c, d) = p′(c, d) where

p′ = n / [exp1] / [exp2] / . . . / [expk]

5. when s→ last(): s(c, d) = {|c|}

6. when s→ position(): s(c, d) = {position of d in c}
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In rules 1 and 2, the handling of self reference and parent reference is straight-

forward. For the third rule, the step either returns the singleton set {d} or an

empty set, depending on the evaluation of the predicate. Note that when a

location path is used as a predicate, it evaluates to true if it returns a non

empty set of nodes. Finally the evaluation of a step which consists of node

test plus a series of predicates is reduced to that of an equivalent location path.

For example, the step stockID[position()=2] is equivalent to a location path

stockID/[position()=2]. Given input (c, d), function call last() simply re-

turns the singleton set which contains the size of context c; position() returns

the position of d in c where position is counted starting from 1.

Given a relative path r → r1/s, and an input (c, d),

r(c, d) = ∪d′∈r1(c,d) s(r1(c, d), d
′). (6.1)

According to the above formula the steps of a relative location path are executed

one by one from left to right. Note that the context of each step is the result of

the previous step. For the case where r → r1//s, we replace r1(c, d) in Equation

6.1 with the following set {n | p∗(n) = n′ for some n′ ∈ r1(c, d)}. For example,

given the XML document in Fig. 6.1 and the input ({4}, 4), the first step and the

descendants operator of the location path stockID//[position()==3] produces

the new context {4, 5, 6, 7, 8}, and the second predicate step generates the result

{0001}.

An absolute location path is defined based on a relative location path. For

an absolute location path p→ /r, and input (c, d), p(c, d) = r({1}, 1) where 1 is

the root. When p→ //r, p(c, d) = p′({1}, 1) where p′ = .//r.

Finally the semantics of an XPath arithmetic expression exp→ exp1 op exp2
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is defined as follows:

exp(c, d) = {v|v = v1 op v2 ∧ v1 ∈ exp1(c, d) ∧ v2 ∈ exp2(c, d)}.

Basically, it computes the results of all possible combinations from the value sets

of the two operands exp1 and exp2. Note that, when used as a condition, a

boolean XPath expression evaluates to true if its result set contains at least one

true value1.

6.2 The XML-GA Model

We now extend the GA model to incorporate XML data manipulation se-

mantics. In an XML-Guarded Automaton (XML-GA), each message class has its

type declared using MSL. In addition, an XML-GA that is used as a peer imple-

mentation can have local XML variables. Formally, the XML-GA framework is

given in the following three definitions.

Definition 6.4 An XML-GA composition schema is a tuple (P,M,Σ) where P

is a finite set of peers, M is a finite set of message classes, and Σ is a (finite or

infinite) set of messages. Each message class c ∈M has an MSL type, and each

message m ∈ Σ is an instance of some message class in M . Let dom(c) denote

the domain of message class c, the message alphabet Σ is defined as:

Σ =
⋃

c∈M

{c} × dom(c).

Definition 6.5 An XML-GA conversation protocol is a tuple 〈(P,M,Σ),A〉,

where (P,M,Σ) is an XML-GA composition schema, and A = (M,Σ, T, s, F, δ)

1XPath 2.0 (working draft) has a more delicate handling for this scenario. There are two
sets of arithmetic/comparison operators: one to support the XPath 1.0 semantics (presented in
this paper); the other will raise a type error when any operand contains more than one value.
It is not hard to support the second semantics with our approach.
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is an XML-GA, where M , Σ, T , s, F , δ are the set of message classes, set of

messages, set of states, initial state, set of final states, and transition relation

respectively. Each transition τ ∈ δ is in the form of τ = (s, (c, g), t), where

s, t ∈ T are the source and the destination states of τ , c ∈ M is a message class

and g is the guard of the transition.

Definition 6.6 An XML-GA web service composition is a tuple S = 〈(P,M,Σ),

A1, . . . ,An〉, where (P,M,Σ) is an XML-GA composition schema, n = |P |, and

for each i ∈ [1..n]: Ai is a tuple (Mi,Σi, ti, si, Fi, ~V , δi) where Mi, Σi, ti, si,

Fi, and δi are the set of message classes, set of messages, set of states, initial

state, final states, and transition relation, respectively, and ~V is a set of XML

local variables. Each XML local variable has an MSL type. A transition τ ∈ δi

can be one of the following three types: a send transition (t, (!α, g), t′), a receive

transition (t, (?β, g), t′), and an ε-transition (t, (ε, g), t′).

Notice that the XML-GA used in Definition 6.5 does not have local variables,

because it is pointless to have local variables at the global level, considering that

a conversation protocol will be used to synthesize peer implementations. Guards

here are expressed in a different way than Chapter 4 – there is no primed form

of message attributes, and each guard is built upon XPath expressions. In the

XML-GA model, each guard g consists of two parts: a transition condition and

an assignment, i.e, g can be written as g ≡ g1 ⇒ g2. Let pi be the sender

of the message that is being sent by the transition which g belongs to. g1 is a

boolean XPath expression on the message classes (as well as local variables if the

XML-GA is used a peer) related to pi. g2 is an assignment of the form p:=exp

where p is an XPath location path (applied on a local variable or an output
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message of pi), and exp is an XPath location path or an XPath expression. Such

representation of guards in the XML-GA model is consistent with the syntax of

XPath standards, and it caters to the WSAT input format, which is introduced

as below.

6.2.1 Syntax of WSAT Input

In Fig. 6.2, we present the abstract syntax of the WSAT input language for

XML-GA conversation protocols. The syntax rules for XML-GA compositions

are similar.

Spec → { Schema , Protocol }

Schema → Schema{ PeerList{ StringList },TypeList{ MslExpList },

MessageList{ MessageList }}

MessageList → Message | Message , MessageList

Message → name { source -> destination : type }

Protocol → Protocol{ States{ StringList },InitalState{ StringList },

FinalStates{ StringList },TransitionRelation{ TransitionList }}

TransitionList → Transition | Transition , TransitionList

Transition → name { source -> destination : message , Guard }

Guard → Guard{ XPathExp => Update }

Update → name { AssignList }

AssignList → Assign | Assign , AssignList

Assign → XPathExp := XPathExp

Figure 6.2. Syntax of XML-GA Conversation Protocols

Clearly, a conversation protocol specification of WSAT consists of a compo-
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register  
ack, cancel

accept,    
reject, bill

request,   
terminate

report

Investor 
(Inv)

Research Dept.
(RD)

Stock Broker
(SB)

1

23

4

6

5

7 8

10

9

12 11

register

reject

terminate

accept

request

report ack

request

report

ackcancel

bill cancel

bi
ll

terminate

Figure 6.3. Stock Analysis Service

sition schema that specifies the peers and the message classes exchanged among

peers, and the protocol (XML-GA) which specifies the desired message exchange

sequences. In Fig. 6.2, The nonterminals name, source, destination, type, and

message all denote strings. The nonterminal StringList denotes a list of strings

separated by commas, and the nonterminal MslExpList denotes a list of MSL ex-

pressions separated by commas. The nonterminal XPathExp denotes an XPath

expression. In a valid specification, source and destination should be state names,

type should be name of an MSL type and message should be a message name all

defined in the specification. A better explanation of the syntax rules in Fig. 6.2

is the Stock Analysis Service example that is presented in the following.

6.2.2 Stock Analysis Service – A Case Study

We now present an XML-GA conversation protocol: Stock Analysis Service

(SAS). Fig. 6.3 presents its overall structure and control flow, and Fig. 6.4 is a

fragment of its formal specification. As shown in Fig. 6.3, SAS involves three

peers: Investor (Inv), Stock Broker Firm (SB), and Research Department (RD).

Inv initiates the stock analysis service by sending a register message to SB.
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Conversation {

Schema{

PeerList{Inv,SB,RD},

TypeList{

Register[

investorID[xsd:string],

requestList[

stockID[xsd:int]{1,3}

],

payment [

accountNum[xsd:int] |

creditCard[xsd:int]

],

},

...

MessageList{

register{Inv -> SB: Register},

reject{SB -> Inv: Reject},

...

}

},

Protocol{

States{s1,s2,...,s12},

InitialState {s1},

FinalStates{s4},

TransitionRelation{

...

t8{s8 -> s9 : request,

Guard{

$request//stockID/int() !=

$register//stockID [position() = last()]/int() =>

$request[

//investorID := $register//investorID,

//stockID :=

$register // stockID

[ position() = $register // stockID

[int()=$request//stockID/int()]/position()+1

]

}

},

t14{ s8 -> s12 : bill,

Guard{

$request//stockID =

$register//stockID [position() = last()] =>

$bill[

//orderID:= $register//orderID

]

}

},

...

}

}

}

Figure 6.4. A Fragment of SAS Specification
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SB may accept or reject the registration. If the registration is accepted, SB

sends an analysis request to RD. RD sends the results of the analysis directly

to Inv as a report. After receiving a report, Inv can either send an ack to SB

or cancel the service. Then, SB either sends the bill for the services to Inv,

or continues the service with another analysis request. In Fig. 6.4 we present

a partial specification of the SAS protocol. The specification of SAS consists of

two parts: a schema and an XML-GA protocol. The schema specifies the set

of peers, a list of MSL types, and a list of peer to peer message classes which

are built upon the MSL types. The XML-GA specification consists of states,

and transitions. We present two key transitions from the protocol: t8 and t14.

A transition is equipped with a guard which determines the transition condition

and the assignment of the message being sent. For example, transition t8 sends a

message of type request. Its transition condition is the following boolean XPath

expression:

$request//stockID/int() !=

$register//stockID [position() = last()]/int()

The rest of t8 assigns values to the investorID and the stockID fields of the

request message being sent. According to the semantics of XML-GA, except the

request message which appears at the left side of assignment operator “:=”, the

appearance of all other message classes refers to the latest copy of that message

class. Hence the transition condition of t8 means “if the stockID of the latest

request message is not the last stockID of register message”. Its assignment

tries to send the stockID which is subsequent (in the register message) to the

stockID appeared in the latest request message. Similarly the guard of transi-

tion t14 specifies that if the latest request message contains the last stockID in

the register message, then a bill message is sent to conclude the interaction.

Generally, t8 and t14 intends to send stockID’s in register one by one.

164



6.3 From BPEL4WS to XML-GA

One natural concern about the XML-GA model would be how powerful the

XML-GA model is to capture real-world web services. In the following, we give a

translation algorithm, which, given a set of BPEL4WS process specifications and

the related WSDL port declarations, constructs a corresponding XML-GA com-

position. Translation algorithm from other web service specification languages,

e.g. WSCI [79], OWS-S [24], can be developed in a similar way.

The construction of the XML-GA composition schema (P,M,Σ) is straight-

forward. P is constructed by taking BPEL4WS process names from BPEL speci-

fications, M are extracted from WSDL files, and we do not have to enumerate Σ.

Specifically, to construct M , for each input/output/fault parameter of an opera-

tion in each port and each service link of each BPEL4WS process, a message class

is declared. For example if a BPEL4WS process loanProcess has an operation

approve declared in a port aprvPT, and its input parameter is of WSDL message

format creditInfo, a message class loanProcess aprvPT approve In will be

declared in the composition schema, and creditInfo is used as its domain type.

When the name of an operation is unique among ports, our tool will omit the

port name in the generated message name for simplicity (e.g. the approve Out

in Fig. 6.5). In BPEL, the type of the contents of a message can be defined using

WSDL constructs, SOAP definition or XML Schema, we translate all possible

formats to MSL [14].

Next we discuss the translation of BPEL4WS control flow and data manipu-

lation. In Fig. 6.5 we present the XML-GA translation for some typical language

constructs in BPEL4WS language.
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BPEL Sample Code Translation

assign

<assign ...>

<copy>

<from="yes"/>

<to var="aprvInfo"

part="accept"/>

</copy>

</assign>

[ aprvInfo / accept := ‘yes’ ]

receive

<receive ...

operation="approve"

variable="request"

/>
? ? approve_In

[request := approve_In]

invoke

<scope>

<invoke ...

operation="approve"

invar="request"

outvar="aprvInfo />

<catch ...

faultname="loanfault"

< ... handler1 ... />

</catch>

</scope>

handler1

!! approve_In

?? approve_Out

? ? loanfault

loanfault

εεεεεεεε

[approve_In := request]

[aprvInfo :=

approve_Out]

sequence

<sequence ... >

< ... act1 ... >

< ... act2 ... >

</sequence> act1 act2εεεεεεεε

fault1 fault2

flow

<flow ...>

< ... act1 ...>

<source

linkname="link1"

condition="cond1"/>

</act1>

< ... act2 ...>

<target

linkname="link1/>

</act2>

</flow>

product act2

[b_link1]act1

[b_link1 :=
cond1 ]

Figure 6.5. From BPEL4WS to XML-GA
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As shown in Fig. 6.5, each BPEL4WS language construct is translated into an

XML-GA with one single initial state and one single final state. For example, the

assign statement is translated to a one-transition automaton where the XPath

expression guard of the transition expresses the assignment. Note that BPEL4WS

has several different approaches for navigating messages (e.g. the keyword part

used in the example or using XPath expressions). We translate all of them to

equivalent XPath expressions, and these XPath expressions are then embedded

into the guards of the generated transitions. The receive statement is translated

into a two-transition automaton, where the first transition receives the message

and the second transition assigns the input variable. Similarly, the main body

of the invoke statement is translated to an automaton where the first transition

sends the input message for the operation that is being invoked, and the following

two transitions receive the response and assign the output variable (assuming

there are no exceptions). Note that, exceptions might arise during invoke, and

we have to generate additional transitions to handle them. For each fault there

is a transition which leads to an “exception exit”, where the information about

the fault is associated with the exception exit. When a fault handler is wrapped

around an invoke statement, our translator connects the fault handler with the

corresponding exception exit.

BPEL4WS control flow constructs such as sequence, switch, and while are

used to compose atomic constructs we discussed above. In Fig. 6.5 we display

the translation for sequence. We connect the final state and initial state with

local transitions, and unmark the final state of all activities except the last one.

The information about exception exits are recollected and properly maintained.

Other control flow constructs can be handled similarly by embedding the control
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flow to the transitions of the XML-GA. Finally, for flow construct (which is

the concurrent composition of its branches), we simply construct the Cartesian

product of all its branches. There might be control dependency links among the

activities in different flow branches. We map each link into a boolean variable,

and their semantics are reflected in the guards of the transitions appended to

each activity.

Translation of the control flow of BPEL4WS to finite state machines or petri-

nets has been discussed in [36, 65]. The difference in our work is that we handle

XML based data manipulation using XML-GA with guards expressed as XPath

expressions. This enables us to verify properties about XML data manipulation.

Such analysis cannot be done using approaches presented in [36, 65], since they

abstract away the data content.
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Chapter 7

Handle XML Data in Verification

The use of XML as the de facto data exchange standard has allowed inte-

gration of heterogeneous web based software systems regardless of implementa-

tion platforms and programming languages. On the other hand, the rich tree-

structured data representation, and the expressive XML query languages (such

as XPath) make formal specification and verification of software systems that

manipulate XML data a challenge. This chapter presents our initial efforts [41]

in formal specification and verification of software systems with XPath based

manipulation of (bounded) XML data. The techniques presented in this chapter

constitute the basis of our Web Service Analysis Tool (WSAT) [43, 78] which can

verify Linear Temporal Logic (LTL) properties of conversation protocols [39] and

interacting BPEL4WS [12] web services [40]. Clearly, these techniques can also

be used for verification of other types of software systems that exchange XML

data.

We use SPIN [50] as a back-end model checker in verification of XML data ma-
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nipulation operations. We developed algorithms for translating XML data types

and XPath expressions to Promela, the input language of SPIN. Our handling of

XML data manipulation consists of two parts: (1) a mapping from XML Schema

to the type system of Promela, and (2) a translation algorithm which generates

Promela code for an XPath expression. The type mapping is straightforward;

however, the translation of XPath expressions is not trivial. We implemented the

translation algorithms presented in this chapter as a part of WSAT.

Our use of SPIN as the back-end model checker is based on the following

considerations: (1) Promela supports arrays which is very useful in translating

XML Schema data types. (2) The communication channels in Promela enables

us to model the asynchronous communication among web services [40]. However,

SPIN is an explicit-state model checker, and may not scale to large data domains

due to state-space explosion. In the future we plan to investigate the use of

symbolic model checking techniques in verification of XML data manipulation.

In [65], verification and composition of web services are investigated using a

Petri Net model. In [36], web service compositions are specified using message

sequence charts, modeled using finite state machines and analyzed using the

LTSA model checker. These earlier efforts on verification of Web based software

systems mostly concentrate on analysis of the control flows. Our techniques

for handling XML data, however, enable verification of properties relating to

data manipulation. This enables us to analyze Web based software systems at a

greater level of detail without ad-hoc data abstractions. The idea of employing

back-end model checkers for verification of an expressive language is used in other

verification tools such as Bandera [19].
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JWIG project extends the Java language with high-level features for web ser-

vice programming such as dynamic construction of XML documents [21]. To

ensure that the generated XML document is consistent with the message format

(declared using DSD [62], a type system similar to XML Schema), JWIG pro-

vides static analysis for a set of pre-defined properties. The verification problem

considered in this chapter (and in WSAT) is rather different: we consider the re-

lationships (expressed in temporal logic) between multiple XML messages during

the execution of a web service. Also, we focus on XPath expressions which are

not part of JWIG.

The techniques presented in this chapter apply to bounded XML data only,

where the number of children of an XML node is always bounded. Unbounded

XML Schema types, and various fragments of XPath can be captured using un-

ranked tree automata [59, 66]. While the unranked tree automata model over-

comes the problem of boundedness, the data semantics of leaf value nodes are

lost in the modeling. For example, the fragment of XPath studied in [59] does not

allow arithmetic constraints in qualifiers, and it only reasons about the structure

of an XML document.

This chapter is organized as follows. We first introduce the mapping from

MSL (a theoretical model for XML Schema) to Promela, and then the translation

algorithm from XPath to Promela is presented. Next we discuss how to translate

an XML-GA to a Promela process. Then we give a case study and show how

our techniques help to discover subtle errors in web service designs. Finally we

briefly present WSAT to conclude the chapter.
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typedef t1_investorID{
mtype stringvalue;

}

typedef t2_stockID{
int intvalue;

}
typedef t3_requestList{
t2_stockID stockID [3];
int stockID_occ;

}
typedef t4_accountNum{
int intvalue;

}

typedef t5_creditCard{
int intvalue;
}
mtype {m_accountNum, m_creditCard}
typedef t6_payment{
t4_accountNum accountNum;
t5_creditCard creditCard;
mtype choice;
}
typedef Register{
t1_investorID investorID;
t3_requestList requestList;
t6_payment payment;
}

Figure 7.1. Promela translation of Example 6.3

7.1 From MSL to Promela

In this section we focus on mapping types in MSL to Promela. We present

an example translation in Fig. 7.1, and the translation algorithm is given in Fig.

7.2.

Fig. 7.1 is the Promela translation of the MSL type given in Example 6.3.

Clearly each MSL basic type has a straightforward mapping to Promela. For ex-

ample, int and boolean are mapped to Promela type int and bool respectively.

MSL type string is mapped to mtype (enumerated type) in Promela, e.g., the

leaf node value of investorID. In the XPath translation, which will be explained

later, all string constants will be collected, declared, and used as symbolic con-

stants of mtype. We assume strings are used solely as constants, and we do not

expect any operators to change values of these mtype variables.

Translation of complex MSL types is more complicated. Generally, each

MSL complex type is translated into a corresponding typedef (record) type

in Promela. For example, the Register type in Example 6.3 is mapped into
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// ret[1]: type declaration for g, including intermediate types.

// ret[2]: attribute definition for the input g if g is intermediate.

function tr(g: MSL): String[2]

begin

String ret1, ret2;

switch case

g → b :

ret1 = null;

ret2 = b + “ ” + b + “value”;

g → t[g0] :

if (g is an intermediate type) then

type = generate a unique name;

ret1 = tr(g0)[1] + “typedef ” + type + “{” + tr(g0)[2] + “}”;

ret2 = type + “ ” + t;

else

ret1 = tr(g0)[1] + “typedef ” + t + “{” + tr(g0)[2] + “}”;

ret2 = null;

end if

g → g1{m, n} :

ret1 = tr(g1)[1];

ret2 = tr(g1)[2] + “[”+n+“]” + “int ” + g1.tag +“ occ”

g → g1, g2, . . . , gk :

ret1 = tr(g1)[1] + tr(g2)[1] + . . . + tr(gk)[1];

ret2 = tr(g1)[2] + tr(g2)[2] + . . . + tr(gk)[2];

g → g1|g2| . . . |gk :

ret1 = tr(g1)[1] + tr(g2)[1] + . . . + tr(gk)[1] +

“mtype {”+ “m ”+g1.tag + . . . + “m ”+gk.tag + “}”;

ret2 = tr(g1)[2] + tr(g2)[2] + . . . + tr(gk)[2] + “mtype choice”;

end switch

return (ret1, ret2)

end

Figure 7.2. Translation from MSL to Promela

Promela declaration typedef Register, and the intermediate type requestList

inside Register is translated into typedef t3 requestList. Prefixes such as
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t3 are added to prevent name collisions for intermediate types. Since each inter-

mediate MSL type is a child of its parent type, in the Promela type declaration

for its parent type, it has a corresponding attribute definition. For example, the

statement “t3 requestList requestList” defines the attribute requestList in

typedef Register. When an intermediate MSL type has multiple occurrences,

e.g., the stockID element, it is defined as an array with its max occurrence as

the array size. In addition, an additional variable (e.g. stockID occ) is defined

in its parent type to record its actual occurrence. For the MSL types constructed

using the choice operator |, a variable choice is used to record the actual type

chosen in an XML instance of the MSL type (e.g., the choice attribute declared

in t6 payment).

In Fig. 7.2 we present a procedure tr, which takes an MSL type declaration g

as its input, and generates two strings as its output. The first string, i.e., ret[1],

contains the type declaration for g (as well as all the necessary type declarations

for its intermediate types). The second output is the attribute definition for

g, if g is an intermediate type. For example, when the procedure is called for

intermediate type requestList, ret[1] contains the declaration of t2 stockID

and t3 requestList, and ret[2] contains “t3 requestList requestList;”.

(We do not show the generation of separator “;” in Fig. 7.2, however, it can be

handled easily). As shown in Fig. 7.2, the function body of tr processes the

input MSL type declaration recursively according to the syntax rules. Note that,

it properly handles the issues such as array declaration for types with multiple

occurrences and complex types constructed using choice operator.
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7.2 From XPath to Promela

In this section we present the translation algorithm from XPath to Promela.

We start with a brief discussion of the use of XPath expressions in XML manip-

ulating software, then we study a motivating example, and finally we present the

translation algorithm.

Consider the use of XPath in languages with XML data manipulation such

as BPEL4WS and WSCI. There are basically two types of usage: 1) boolean

XPath expressions are used in branch or loop conditions, and 2) location paths

and arithmetic expressions are used on the left and right hand sides of assignment

statements, respectively. We handle these two cases separately since the seman-

tics of XPath expressions can depend on the context they are used. For example,

when a location path is used as a boolean condition its meaning is different than

the case where it is used on the left hand side of an assignment. Since the im-

plementation of these two cases are similar, in the remainder of this section, we

concentrate only on the translation of boolean XPath expressions.

7.2.1 A Motivating Example

Consider the following XPath boolean expression where the XML variable

register is of MSL type Register as defined in Example 6.3, and the MSL type

of variable request consists of a single child stockID (in XPath the prefix $ is

used to denote variable names):

$request//stockID/int() =

$register//stockID[int()>5][position()=last()]/int() (7.1)
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1 /* result of the XPath expression */
2 bool bResult = false;
3 /* results of the predicates 1, 2, and 1 resp. */
4 bool bRes1, bRes2, bRes3;
5 /* index, position(), last(), index, position() */
6 int i1, i2, i3, i4, i5;
7
8 i2=1;
9 /* pre-calculate the value of last(), store in i3 */
10 i4=0; i5=1; i3=0;
11 do
12 :: i4 < v_register.requestList.stockID_occ
13 ->
14 /* compute first predicate */
15 bRes3 = false;
16 if
17 :: v_register.requestList.stockID[i4].intvalue>5
18 -> bRes3 = true
19 :: else -> skip
20 fi;
21 if
22 :: bRes3 -> i5++; i3++;
23 :: else -> skip
24 fi;
25 i4++;
26
27 :: else -> break;
28 od;
29 /* translation of the whole expression */
30 i1=0;
31 do
32 :: i1 < v_register.requestList.stockID_occ
33 ->
34 /* first predicate */
35 bRes1 = false;
36 if
37 :: v_register.requestList.stockID[i1].intvalue>5
38 -> bRes1 = true
39 :: else -> skip
40 fi;
41 if
42 :: bRes1 ->
43 /* second predicate */
44 bRes2 = false;
45 if
46 :: (i2 == i3) -> bRes2 = true;
47 :: else -> skip
48 fi;
49 if
50 :: bRes2 ->
51 /* translation of expression */
52 if
53 :: (v_request.stockID.intvalue ==
54 v_register.requestList.stockID[i1].intvalue)
55 -> bResult = true;
56 :: else -> skip
57 fi
58 :: else -> skip
59 fi;
60 /* update position() */
61 i2++;
62 :: else -> skip
63 fi;
64 i1++;
65 :: else -> break;
66 od;

Figure 7.3. Promela Translation of Equation 7.1
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An XPath expression following a variable name is evaluated on the value of

the variable (which is an XML document) starting with the context ({1}, 1),

where 1 is the root node of the corresponding XML document. The XPath

expression in Equation 7.1 queries whether in the XML document register the

last stockID which has a value greater than 5 is equal to the stockID of request.

Its corresponding Promela translation is shown in Fig. 7.3.

Note that we have four boolean variables and five integer variables in the

Promela translation. Boolean variable bResult is used to record the evaluation

result of the whole XPath expression, bRes1 and bRes2 are used for evaluation

of the two predicates on the right hand side of the expression, and bRes3 is used

during the evaluation of the last() function. Integer variables i1 and i4 are

used as array indices in different parts of the Promela code, i3 records the value

of function call last(), and i2 and i5 are used for position() function.

It is not hard to see that we can compute the value of last() prior to the

evaluation of the whole XPath expression, and we record its value in i3. The

main body of the calculation is a loop searching for the proper value of array

index i4 which satisfies the first predicate (value of stockID greater than 5).

The main body to compute the whole boolean XPath expression is similar.

There is a loop searching for the proper value of array index i1, and the code

handling two predicates are nested. Note that position variable i2 and array

index i1 are properly updated. According to the semantics of boolean expressions

in the XPath standard, bResult is set to true once we find a value of i1 satisfying

the boolean expression.

Finally, note that there are more efficient Promela translations than the one
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presented in Fig. 7.3. For example, integer variable i4 (for array index) can

be reused to replace i1. In our implementation, we have a variable assignment

optimizer to achieve this objective. However, we omit the details of its imple-

mentation here to simplify the presentation.

7.2.2 Supporting Data Structures

We can make the following observations based on the motivating example

shown in Fig. 7.3: (1) Every XPath language construct (expression, path, step)

corresponds to a Promela code segment. For example, the boolean XPath ex-

pression shown in Equation 7.1 corresponds to the whole Promela code in Fig.

7.3, its right hand side corresponds to the whole code with lines 51 to 57 left

blank, and the left hand side corresponds to an “empty” statement since no code

is generated for it. (2) In particular, loops are generated for those steps which

generate XML data that corresponds to an MSL type with multiple occurrences

(i.e., types declared as g{m,n}). For example, the step stockID in the right

hand side corresponds to the loop from line 30 to line 66. (3) The generated code

segments are embedded into each other. For example the segment (lines 34 to 63)

that corresponds to “[int()>5]” is embedded in the code for step stockID; while

it embeds the code for predicate “[position()=last()]” (lines 43 to 59). (4)

The generated code can be regarded as an nested-loop which simulates the search

procedures for each location path, and the evaluation of the boolean expression

is placed in the body of the inner-most loop.

Our translation algorithm needs a mechanism to represent the structure of

the input XML document and an approach to conveniently capture the Promela
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Figure 7.4. The Type-Tree for Variable register

code segments that are generated and embedded into each other. Hence, we

introduce two data structures which will be used in the translation algorithm: a

type tree structure which represents the MSL types and a statement macro which

represents (partially) generated Promela code segments. We also define several

functions that manipulate these data structures.

Type Tree. We use the type trees to statically represent the input and output

of an XPath location path (or a step). Given an XML variable and its MSL

type, it is straightforward to derive the corresponding type tree. For example,

Fig. 7.4 is the corresponding type tree for XML variable register in Equation

7.1, with the MSL type given in Example 6.3. Note that each node in the type

tree corresponds to a subexpression of the MSL type expression given in Example

6.3, where the root node corresponds to the whole type expression. Hence, each

node also corresponds to an MSL type.

In a type tree, each node is labeled with an MSL type (for the root node, it

is also labeled with the XML variable name). Note that if the associated MSL

type has multiple occurrence, the node is equipped with an additional index. For

example, index i1 is associated with node 5 in Fig. 7.4. Recall that an MSL type
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with multiple occurrence is translated into an array in Promela. This index is

used to access the elements of that array. For each node in a type tree, by tracing

back to the root of the tree, we can get its qualified name, i.e., the expression

in the Promela translation which accesses the data with the type represented by

that node. For example, v register.requestList.stockID[i1].intvalue is

the qualified name of node 6, where the prefix v is automatically added by the

system to avoid name collision, and the intvalue is the name of the attribute

with the basic type int.

We now define a number of functions on type trees. Given a type tree t, and

an XPath step s, function MarkChild(t,s) proceeds as follows: (1) unmark all

marked nodes in t, and (2) for each node that is unmarked in step 1, mark its

children which are the results of executing step s, and (3) return the modified

t. For example, let tr be the type tree in Fig. 7.4 where node 1 is the only

marked node (marked with “*”), let s be the step “requestList”. The result

of MarkChild(tr,s) is the same type tree where node 4 is the only marked node.

Other functions such as MarkParent(t), MarkAll(t), MarkRoot(t) work in a sim-

ilar way. For example, nodes 6,9, and 11 are the marked nodes after executing

MarkChild(MarkAll(tr), “int()”).

Statement Macro. In our translation algorithm, each XPath construct corre-

sponds to a Promela code segment. A code segment can be regarded as a list of

statement macros which are sequentially concatenated using “;”. A statement

macro (or simply macro) captures a block of Promela code for a certain func-

tionality, and each macro has at most one BLANK space where another Promela

code segment can be embedded. There are five types of macros we are using in
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our translation algorithm which are summarized below. A macro can have in-

put parameters, and in the corresponding Promela code, the appearance of these

parameters will be replaced by the actual input value when the macro is used.

Fig. 7.5 presents a set of macros organized as a tree. There are two types of

Statement Macro Promela Code

IF(v)

if

:: v -> BLANK

:: else -> skip

fi

FOR(v ,l ,h)

v = l - 1

do

:: v < h -> BLANK

v ++

:: else -> break

od

EMPTY BLANK

INC(v) v ++

INIT(v ,a) v = a

edges from a child to its parent: the embedment edge which is shown as a solid

arrow and the sequential composition edge which is shown as a dotted arrow. We

call such a tree a macro tree. In fact, any Promela code generated for an XPath

expression construct can be captured using one or a set of macro trees. Given

a macro tree, it is straightforward to generate the corresponding Promela code.

For example, the macro tree in Fig. 7.5 corresponds to the code segment from

line 30 to line 66 (with line 51 to line 57 as BLANK ) in Fig. 7.3.

We associate two attributes with each macro: an input type node, and an

output type node from a type tree. For each macro, the input node characterizes

the starting node where the macro starts searching, and the output node is the

starting point of its embedment. For example in Fig. 7.5, macro FOR(i1,1,3) is

the corresponding code for the step “//stockID” in the location path at the top

of the figure. Its input type node is the type node 1 in Fig. 7.4, which corresponds

to the type of the XML variable register. Its output node (also the input node

181



FOR 
(i1,1,3)

EMPTY

IF    
(cond)

INIT 
(bRes1,0)

IF    
(bRes1)

IF         
(i2==i3)

IF    
(bRes2) EMPTY

INIT 
(bRes2,0)

INIT 
(bRes2,0)

INIT 
(bRes1,1)

$register // stockID / [int()>5] / [position() = = last()]/ int()

cond ≡≡≡≡ v_register.requestlist.stockID[i1] > 5
Sequence

Insert

1 5

5 5

5 5 5 5
5 6

Figure 7.5. The Macro Tree for Fig. 7.3

for its embedment) is the type node 5 (with MSL type stockID), which is the

result of evaluating the step on the input type node. In our translation, except

for concatenating code for two expressions, the input node of embedded code

should match the output node of the BLANK where it is inserted.

We also associate a hashtable with each macro, which records the mapping

from XPath location paths to qualified names. For example, the hashtable of the

last EMPTY macro in Fig. 7.5 will map the location path shown in Fig. 7.5 (i.e.,

right hand side of Equation 7.1) to qualified name of node 6, i.e., the expression

“v register.stockID[i1].intvalue”.

We have three different functions to embed macros into each another:

MatchInsert(c1,c2), InsertAll(c1,c2), and InsertAndReplace(c1,c2). All these func-

tions return one macro tree that is the result of embedding c2 into the BLANK s

of c1. In our translation, c1 is always guaranteed to be a single macro tree, while

c2 can be a set of macro trees. The MatchInsert function requires that the in-

serted macro tree must match the output node of its host; while InsertAll and

InsertAndReplace do not require matching. When inserting c2 into the BLANK s
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of c1 InsertAndReplace replaces the location paths in c2 with qualified names

based on the hashtable of the host.

Function GenCode(n) generates a macro tree given a type node n. GenCode

relies on a global registry R which registers index variables that are processed

before. The function traces back from the current type node to the root type node.

Whenever an unprocessed index is encountered, a FOR macro is generated for

that index, and the index is registered in R. When a new FOR macro is generated,

the old FOR macro generated before is embedded in the new macro to form a

nested loop. For example, if index i1 has not been processed, GenCode(n6)

generates a FOR(i1,1,3), given n6 is the node 6 in Fig. 7.4.

7.2.3 Syntax Directed Translation Algorithm

Now we discuss the syntax directed translation algorithm which is presented

in Fig. 7.6. Each non-terminal (e.g. exp, p, s) has one inherited-attribute: inTree,

and two synthesized-attributes: outTree and code. Attributes inTree and outTree

are both type trees, and they are used to capture the input and output of XPath

language constructs, respectively. Attribute code is a set of macro trees, which

records the generated Promela code that corresponds to the non-terminal. Non-

terminal exp has an additional attribute var , which is the boolean variable that

records the evaluation results for the exp. The var attribute is not null if and

only if exp is not an intermediate expression (e.g. exp is used as a branch con-

dition in host language or it is a predicate in another XPath location path).

For example, when generating the Promela code (Fig. 7.3) for Equation 7.1,

the attribute var for the boolean expressions in predicates “[int()>5]” and

“[position()=last()]” are bRes1 and bRes2 respectively.
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(1) exp → exp1 op exp2:
exp1.inTree = exp.inTree

exp2.inTree = exp.inTree

If exp is intermediate Then
exp.code = InsertAll(exp1.code ,exp2.code)

else
exp.code =

InsertAndReplace(
InsertAll(exp1.code , exp2.code),IF(exp)

)
where the BLANK of IF(exp)
is filled with “exp.var = true”

End If

(2) exp → op exp1:
exp1.inTree = exp.inTree

exp.code = exp1.code

(3) exp → const :
exp.code = EMPTY

(4) exp → p :
p.inTree = exp.inTree

exp.code = p.code

(5) p → $v p1:
p1.inTree = generate a type tree for $v

p.outTree = p1.outTree

p.code = p1.code

(6) p → / p1 | // p1:
If p → /p1 Then

p1.inTree = MarkRoot(p.inTree)
Else

p1.inTree = MarkAll(p.inTree)
End If
p.code = p1.code
p.outTree = p1.outTree

(7) p → p1 / s | p1 // s:
p1.inTree = p.inTree

If p → p1/s Then
s.inTree = MarkRoot(p1.outTree)

Else
s.inTree = MarkAll(p1.outTree)

End If
p.code = MatchInsert(p1 .code ,s.code)
p.outTree = s.outTree

(8) s → . :
s.outTree = s.inTree

s.code = EMPTY

(9) s → .. :
s.outTree = MarkParent(s.inTree)
s.code = EMPTY

(10) s → b() | t | ∗ :
s.outTree = MarkChild(s.inTree,s)
s.code = {c1, . . . , ck} where ci is GenCode(di)

for each type node di in s.outTree

(11) s → [exp] :
exp.var = a unique variable name
s.outTree = s.inTree

s.code = exp.code “;” IF(exp.var)

Figure 7.6. Translation from XPath to Promela
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Handling of Expressions. Rules 1, 2, 3, and 4 handle the translation of XPath

(boolean or arithmetic) expressions. In rule 1 both subexpressions inherit the

inTree from exp. For example, when evaluating Equation 7.1 the inTree to inherit

is null. For another example, when processing the expression “int() > 5”, the

inTree to inherit is a version of the type tree shown in Fig. 7.4 where the node

5 is the only marked node. We will discuss where instances of type trees are

generated later in the handling of XPath location paths.

The code of exp is synthesized from the code of the two subexpressions. The

basic idea is to embed the code generated by exp2 into the code of exp1, regardless

of the matching of input/output type node (by the use of InsertAll instead of

MatchInsert). If exp is not intermediate (e.g. it is used as a boolean branching

condition), we need additional processing (calling InsertAndReplace) to insert

another IF macro into the synthesized code. The IF macro assigns true to

attribute var if the exp evaluates to true. Hence the generated code evaluates

the boolean expression and stores the result in var . For example, as we mentioned

earlier, the code for the right hand side of Equation 7.1 is the whole code in Fig.

7.3 except lines 51 to 57 are BLANK , and the code for the left hand side is

an EMPTY macro. When we synthesize the code for Equation 7.1 from these

two subexpressions, an IF macro (which assigns the var , i.e., the bResult) is

embedded in that BLANK (lines 51 to 57) by the call to InsertAndReplace.

Note that the location paths of Equation 7.1 are replaced by qualified names.

The rest of the expression related syntax rules, i.e., rules 2, 3, and 4, work in a

similar way: they pass down information inTree to subexpressions, and synthesize

code and outTree from subexpressions. Finally, note that outTree is not used in
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the syntax rules for expressions.

Handling of Location Paths. Rules 5, 6, and 7 handle the translation of an

XPath location paths. In rule 5, where a location path is associated with an XML

variable, a corresponding type tree is generated and passed to the steps of the

path. For example, to handle the right hand side of Equation 7.1, the type tree

in Fig. 7.4 is generated. Note that even for the same XML variable, when a new

type tree instance is generated, the index attributes should have unique names.

For example, when pre-calculating the value of last() (line 11 to 28), another

type tree is generated for XML variable register, and the index of node 5 is i4

(instead of the i1 in Fig. 7.4).

Rule 6 handles the absolute location paths, where the inherited attribute

inTree is handled differently for XPath operator “/” and “//” respectively. Rule

7 processes a path, step by step and from left to right, as it passes the outTree

of the partial path p1 to the step s on the right. Note that when synthesizing

code, we need to match the type node when embedding macros, so MatchInsert

is called.

Handling of Steps. Rules 8, 9, 10, 11 handle steps. The semantics of rules

8 and 9 is clear. Rule 11 calls MarkChild function to symbolically execute the

step s on the inTree. For each type node di in the outTree, function GenCode is

called to generate a macro tree for di. Finally, rule 11 handles the case when the

step is a predicate, for example, the boolean expression “int() > 5” (let us call

it e2) in Equation 7.1. Its synthesized code consists of two parts: an evaluation

code for the expression (lines 35 to 40 for the evaluation of e2), and an IF macro

(lines 41 to 63) which allows insertion of code for later steps (lines 44 to 61).
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7.2.4 Handling of Function Calls

The handling of position() and last() calls is a little bit more complicated,

though the idea is similar: substitute the appearance of a function call with an

integer variable, and properly update its value so that when the function is called

the integer variable contains the right value.

Each position() (or last()) call has an owner which is an non-intermediate

boolean XPath expression where the call appears. For an owner exp, we need

another attribute called prefix which contains Promela macros (just like the code

attribute). The code in prefix will be placed ahead of the code contained in code

to form the complete code for the owner.

When a position() call is encountered, we acquire a unique integer variable

for that call (let it be v). Then we append the macro INIT(v,1) in the prefix

attribute of owner and insert the INC(v) in the BLANK of the macros generated

by the immediate previous step. For example, to handle the position() of

Equation 7.1, the integer variable i2 is acquired, and its initialization statement

is at line 8, and its update statement is at line 61 (which is inside the BLANK

of the code that corresponds to the previous step “[int()>5]”).

The handling of last() is even more complicated: it works in three modes:

normal mode, copy mode, and processed mode. The normal mode is for the first

time the last() call is encountered; in the copy mode the last() is encountered

for a second time when the pre-calculation code is being generated; the processed

mode is the case where the value for the last() call has been pre-calculated and

this value should not be changed any more. Consider the last() call in Equation

7.1 as an example. In the normal mode, we acquire an integer variable for the

187



last() call (i.e., i3), and call the handling of its owner (i.e., Equation 7.1) to

pre-calculate the value of last() (hence line 9 to line 28 will be generated).

Now when the second translation of Equation 7.1 reaches the last() call, it is

in the copy mode. The initialization and update statements are generated for

the pre-calculation code (i.e., line 10 and line 22). When we return from the

pre-calculation, the processing of the last() enters the processed mode, and i3

is not allowed to be changed. The appearance of last() in the second predicate

is replaced by i3.

Example 7.1 The translation of Equation 7.1 is split into two recursive trans-

lation tasks on its left and right hand paths. It is not hard to see that the left

hand side generates an EMPTY macro. Now we concentrate on the right hand

side, which is converted to the following form:

$register//stockID/[int()>5]/[position()=last()]/int()

The translation algorithm will start from $register and then processes steps

from left to right. First a type tree for register (as shown in Fig. 7.4) is

generated. Then function MarkAll is called, and the resulting tree is passed as

the outTree to step stockID. In the outTree of step stockID, node 5 will be the

only marked node. Then function GenCode is called for node 5, which generates

a FOR macro that corresponds to lines 31 to 65 in Fig. 7.3 (with lines 34 to 63

as BLANK ). The handling of the next step [int()>5] is similar, where an IF

macro is generated and embedded into the FOR macro generated before. For

the third step [position()=last()], integer variables i2 and i3 are acquired

for the function two calls respectively. The initialization and update statements

for position() are generated (line 8 and line 61). However since it is in the

normal mode for last(), we do not generate any code for last(). Instead,
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the translation of Equation 7.1 is called again for the pre-calculation of last(),

and lines 9 to 28 are generated. After the return from the second translation

call on Equation 7.1, the first translation call advances to the last step int which

generates an EMPTY macro whose hashtable contains the information that maps

the right hand side location path to the corresponding qualified name. Finally,

when synthesizing the code attribute for Equation 7.1, an IF macro (lines 51

to 57) is inserted and the two location paths in Equation 7.1 are replaced with

qualified names.

7.3 From XML-GA to Promela

Each XML-GA web service composition can be translated into a Promela

specification which consists of a set of concurrent processes, one for each XML-

GA. Each Promela process is associated with an asynchronous communication

channel storing its input messages.

Fig. 7.7 presents the Promela translation for a “LoanProcessing” example

in the BPEL4WS standard specification [12]. As explained in Chapter 5, each

BPEL4WS web service is translated into an XML-GA, and each XML-GA is

translated into a Promela process (i.e., the proctype) in Fig. 7.7. Since there are

four peers (a loan approval service, a customer, a back-end approver, and a risk

assessor) in the LoanProcessing example, in Fig. 7.7 there are correspondingly

four process types loanaprv, customer, approver and assessor. The default

main process in Promela is called init. The init process in Fig. 7.7 initial-

izes all global variables (initialization can be non-deterministic) and spawns four

processes, creating one process instance for each process type.
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/* type declaration */
typedef creditInfo{
mtype name; ...
}
...
/* message declaration */
creditInfo aprv_In_s, aprv_In_r, stub_aprv_In;
...
/* enumerate type of msgs and states of peers*/
mtype = {m_aprv_In, ....

m_loanaprv_s1, ... }
mtype msg;
...
/* channels */
chan ch_loanaprv = [8] of {mtype, creditInfo, appeal};
chan ch_customer= [8] of {mtype, aprvInfo};
...
proctype loanaprv(){
mtype state;
/* definition of local variables */
creditInfo request; ...
/* definition of auxiliary variables used

to evaluate XPath expressions */
bool bVar_0, ...

do::
/* evaluation of transition conditions */
... bCond1 = true; ...

/* nondeterministically select transitions to fire */
if
/* transition t1: s1 -> s2, ?aprv_In */
::state == m_loanaprv_s1 && bCond1 &&
ch_loanaprv ? [m_aprv_In] ->
atomic{
ch_loanaprv ?

m_aprv_In, aprv_In_r, stub_appeal;
state = m_loanaprv_s2 ;
}

/* transition t2: s2 -> s3, !aprv_Out,
[cond2 => aprv_Out//accept = ’yes’ ] */

::state == m_loanaprv_s2 && bCond2 ->
atomic{
aprv_Out_s.accept = m_yes;
ch_customer ! m_aprv_Out, aprv_Out_s;
state = m_loanaprv_s3;
msg = m_aprv_Out

}
...
/* may jump out if it is a final state */
:: state == m_final -> break;
fi;

od;
}
proctype customer(){ ... }
proctype assessor(){ ... }
proctype approver(){ ... }
init{
/* initialization */
...
atomic{
run loanaprv(); run customer(); ...

}
}

Figure 7.7. An Example Promela Translation
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The first part of the Promela code consists of type declarations and global

variable definitions. Each MSL type declaration used in conversation schema

is mapped into a record type (typedef) in Promela. Each message class in a

conversation schema has three corresponding global variables declared: one for

recording its last sent instance (e.g. aprv In s for message type aprv In), one

for recording its last received instance(e.g. aprv In r), and one “stub” variable

used in channel operations (e.g. stub aprv In). For each message class, we

also declare a corresponding enumerated constant, e.g., m aprv In for aprv In.

The set of all these enumerated constants constitutes the domain of enumerated

variable msg, which is used to store the type of the latest transmitted message.

A channel variable is declared for each peer to simulate its input queue. For

example channel ch loanaprv is the queue of peer loanaprv and its length is

8. The contents of a channel includes all input message classes of that peer.

In this example, peer loanaprv has two input message classes: aprv In and

appeal. Note that in each send/receive operation of a channel, we actually send

one message only, and other elements have to be filled with stub messages. The

first mtype element in a channel content indicates the message class that is being

transmitted.

Inside each proctype the local variables are declared first, followed by the

auxiliary variables used for the evaluation of XPath expressions. An enumerated

(mtype) variable state is used to record the current state of the automaton. The

main body of the process is a single loop. In each iteration of the loop, first

enabling condition of each transition guard is evaluated and the result is stored

in the corresponding boolean variable for that condition. For example, the cond1

in Fig. 7.7 records the evaluation results for the enabling condition of transition
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t1.

In Promela, if statements can have multiple branches with a test condition

for each branch, similar to a switch statement. One of the branches of the if

statement with a test condition that evaluates to true is nondeterministically

chosen and executed. In the Promela translation for an XML-GA, each transi-

tion of the automaton is translated into a branch of the if statement inside the

main do loop body. The test condition for each branch checks whether the cur-

rent state is the source state of the corresponding transition, and whether the

enabling condition of the corresponding transition evaluates to true. For receive-

transitions, we check if the head of the channel contains the right message class

by testing the first element of the channel content. (Note that Promela state-

ment channel ? messages has side effects and cannot be used as a boolean

condition, hence we have to use channel ? [...] statement, which checks the

receive executability only but does not execute the receive operation.) If the head

of the channel matches the message class of the receive operation, we consume the

message, do the assignment, and update the local variable state. The handling

of send-transitions is similar, and the only difference is that we need to update

global variable msg while sending the message. Finally, if the state is a final state,

a nondeterministic choice can be made to jump out of the loop and terminate.

Remark: When an XML-GA is used as a conversation protocol, the translation

proceeds in a similar way. However, we do not have to associate channels with

the corresponding Promela process, because the conversation protocol involves

one automaton only. In addition, there is no local variables in an XML-GA

conversation protocol.
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7.4 Applications

In this section we discuss the applications of our techniques to the verification

of web services. We present a case study, where our techniques help to identify a

very delicate design error of XPath expressions in a conversation protocol.
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Figure 7.8. Stock Analysis Service

We pay a revisit to the SAS example discussed in Section 6.2.2. Its composi-

tion schema and control flows are replotted in Fig. 7.8. Two transitions: t8 and

t14 are presented in Fig. 7.9.

t8{s8 -> s9 : request,

Guard{

$request//stockID/int() !=

$register//stockID [position() = last()]/int() =>

$request[

//investorID := $register//investorID,

//stockID :=

$register // stockID

[ position() = $register // stockID

[int()=$request//stockID/int()]/position()+1

]

}

},

t14{ s8 -> s12 : bill,

Guard{

$request//stockID =

$register//stockID [position() = last()] =>

$bill[

//orderID:= $register//orderID

]

}

}

Figure 7.9. Transitions t8 and t14

193



Recall that the transition condition of t8 means “if the stockID of the latest

request message is not the last stockID of register message”. Its assignment

tries to send the stockID which is subsequent (in the register message) to the

stockID appeared in the latest request message. Similarly the guard of transi-

tion t14 specifies that if the latest request message contains the last stockID

in the register message, then a bill message is sent to conclude the interac-

tion. Generally, the logic of t8 and t14 intends to send out the list of stockID

in the initial register message one by one. Given the logic of the transitions

t8 and t14, it is natural to propose the following LTL property for the Promela

translation of the SAS protocol:

G (

(

index < v register.requestList.stockID occ &&

v register.requestList.stockID[index].intvalue == value

&& msg == m register

)

⇒

(

F(msg == m reject) ||

F(msg == m cancel) ||

F(request.stockID.intvalue == value)

)

)

In the above LTL property, temporal operator G means “globally”, temporal

operator F means “eventually” and index and value are two predefined constants.

The variables starting with v are the qualified names referring to XML data. The

variable msg is a variable in the Promela translation for XML-GA, which records

the current message being sent. For example, when transition t8 is executed,
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msg will be assigned the value m request.

The LTL property states that: if the register message contains a stockID

(at position index, with value value), then eventually there should be a request

containing that stockID, if nothing wrong happens (i.e., the register is not

rejected, and the Inv does not cancel the service).

Interestingly, SPIN soon identifies that the SAS specification does not satisfy

the proposed LTL property. SPIN gives an error-trace where the register mes-

sage has three stockIDs with values 0, 1, 0 respectively. The error-trace shows

that when the first request for stockID 0 is sent, transition t8 is disabled be-

cause the stockID of the latest request is the last stockID in the register

message; instead, the transition t14 is triggered to send out the bill message

to conclude the interaction. The verification identifies the error in the design of

XPath transition guards which rely on the presumption that “there should be no

redundant stockIDs in the register message”, however this is not enforced by

the specification.

As SPIN is an explicit model checker, the verification, unfortunately does

not scale very well. When integer domain is set to [0,1], the verification time

is 3 seconds and memory consumption is around 50MB. When the domain is

increased to [0,3], the memory consumption grows to over 600MB. However, our

experience shows that SPIN is still useful in identifying errors in protocols by

restricting the data domains.
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7.5 WSAT

In Fig. 7.10, we present the general architecture of WSAT. The front-end of

WSAT accepts industry web service standards such as WSDL and BPEL, the

core-engine of WSAT is based on the intermediate representation GA, and the

back-end employs model checker SPIN as the back-end model checker. At the

front-end, translation algorithm is developed from BPEL4WS to XML-GA, and

support for other languages can be added without changing the analysis and

the verification modules of the tool. At the core-engine part, synchronizability

and realizability analyses are developed to rule-out the undecidability caused by

asynchronous communication. At the back-end, translation algorithms are devel-

oped from XML-GA to Promela, the input language of SPIN. LTL verification

can be performed using the synchronous communication semantics instead of

asynchronous communication semantics.

In addition to the SAS example, we applied WSAT to a range of examples, in-

cluding six conversation protocols converted from the IBM Conversation Support

Project [51], five BPEL4WS services from BPEL4WS standard and Collaxa.com,

and the SAS from [41]. Synchronizability and realizability analysis are applied

to each example, and except two conversation protocols, all examples pass these

checks. This implies that the sufficient conditions in our synchronizability and re-
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alizability analysis are not restrictive and they are able to capture most practical

applications. For each example, we generated the corresponding Promela speci-

fication using WSAT, and we checked LTL properties of the form “G(p → Fq)”

using SPIN. Our experience with these examples suggests that while exhaus-

tive search of the state space may be very costly for verifying correct properties,

SPIN’s performance at discovering false LTL properties is satisfactory.

197



Chapter 8

Conclusions

This dissertation studies the formal modeling of interacting web services, and

develops a range of analyses and verification approaches which help designers to

ensure the implementation of web services will meet preset mission-critical service

properties.

We start from a simple automata-theoretic model, where each individual web

service is modeled as a finite state automaton, and global behaviors of a web

service composition are characterized by the set of conversations (i.e., sequence

of send-events of messages). We have many interesting theoretical observations

on this simple model, including the context-sensitive conversation set generated

by an arbitrary FSA web service composition, the undecidability of LTL model

checking, and the closure properties of conversation sets. In contrast to the con-

ventional bottom-up specification approach, we propose the notion of a conversa-

tion protocol to specify desired set of message exchange sequences. A conversation

protocol, as a weaker specification approach1, has certain benefits in the analysis

1A conversation protocol is “weaker” because each realizable conversation protocol has a
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of web services. The simple automata-theoretic model has many variations and

extensions (including the Büchi, F-GA, I-GA, V-GA, and XML-GA web service

compositions), which either address different features or model web services at a

different detail level.

To avoid the undecidability that is caused by the asynchronous communica-

tion, we develop two analyses (on FSA and Büchi models) for the bottom-up

and top-down specification approaches, respectively. We show that when a set

of sufficient synchronizability conditions are satisfied, a web service composition

is synchronizable, i.e., it generates the same set of conversations under both

the synchronous and the usual asynchronous communication semantics. LTL

model checking can be conducted for such web service compositions using the

synchronous communication semantics. Top-down conversation protocols can be

analyzed in a similar way. A conversation protocol is realizable if there exists a

web service composition which generates the same set of conversations as specified

by the protocol. We propose several sufficient realizability conditions to restrict

control flows of a conversation protocol so that realizability can be guaranteed.

During the development of realizability analysis for conversation protocols, we

have several interesting observations. For example, a conversation protocol is

realizable if and only if it is realized by its projections to each peer. Realizability

analysis on the FSA framework achieves better results than the Büchi framework

– with two additional non-restrictive conditions we can guarantee freedom of un-

specified message reception and freedom of deadlock in the FSA framework. The

difference between the two models results from the inequivalence of nondetermin-

corresponding web service composition which realizes it; however, a web service composition
does not always have a corresponding conversation protocol (using a finite state automaton)
which specifies its conversation set.
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istic and deterministic Büchi automata.

The synchronizability and realizability analyses have been extended to the

Guarded Automata model where data semantics of web services are considered.

We have developed a range of analysis techniques: a light-weight skeleton analy-

sis which applies to the abstract control flows only, symbolic analyses for lossless

join and synchronous compatibility, and iterative refined analysis for autonomy.

Interestingly, in the Guarded Automata model, the bottom-up specification ap-

proach beats the top-down conversation protocol approach, for its much simpler

symbolic and skeleton synchronizability analysis.

To specify real-world web service applications, and to support industry web

service specification standards such as BPEL4WS and WSDL, a variation of the

Guarded Automaton model, called XML-GA model, is developed to bring in

XML data and XPath based data manipulation semantics. Formal models are

established for XML related standards such as XML, (bounded) XML Schema,

and a fragment of XPath query language. The XML-GA model is very expressive

and allows transformation from most static web services that are specified using

industry standards such as BPEL4WS.

In the Web Service Analysis Tool (WSAT), SPIN is employed as the back-

end model checker. Translation algorithms are developed to translate from XML

Schema to the type system of Promela, the input language of SPIN. Based on

the type mapping, translation algorithms from XPath to Promela, and XML-

GA to Promela are developed as well. A composition of interacting BPEL4WS

web services can be translated into the XML-GA model, and then to a Promela

specification, where LTL model checking is conducted. The ability to model and

200



verify XML data in WSAT allows to examine the correctness of web services at

a great detail level, which helps to identify delicate bugs in a web service design.

8.1 Future Directions

Many interesting and immediate extensions of the Web Service Analysis Tool

need to be explored. For example, we can greatly improve the verification speed

via the implementation of symbolic verification modules into the tool (e.g. the

BDD based symbolic model checking [18], and the Presburger arithmetic based in-

finite state symbolic verification [83, 17]). Many other model checking techniques

such as predicate abstraction [47, 73, 29], counting abstraction [30], partial order

reduction [46], and shape analysis [27] can also be implemented in WSAT.

In the long run, we plan to continue extending our automata-theoretic ap-

proach to the formal specification and verification of web services. In the follow-

ing, we present some of the many possible future directions.

While the automata-theoretic models proposed in this dissertation have nicely

captured the control flows and data semantics of static web services. Dynamic

behaviors, e.g., dynamic instantiation of business processes and dynamic estab-

lishment of communication channels, are not addressed in the current model. We

plan to incorporate these dynamic behaviors in the future. A number of ques-

tions that arise in the new model will be explored. For example, how do we

specify a top-down conversation protocol for a web service composition where

new peers can dynamically join? Will dynamic behaviors affect the realizability

and synchronizability analyses? How do we verify systems with dynamic pro-
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cess instantiations? Based on our previous experience with verifying Workflow

systems [38], symbolic model checking plays a central role in reasoning about

the infinite state space caused by dynamic process instantiations. This approach

departs from the explicit state model checking techniques we currently use, and

require further in-depth research work.

Currently, the XML-GA model in WSAT supports bounded XML data, where

each XML context node can only have a bounded number of children nodes. In the

future, we plan to investigate the use of tree-automata to encode XML documents

with unbounded children nodes. It is interesting to explore how to extend the

current tree-automata approaches [59, 66], to bring in the data semantics for

XML leaf nodes. The automata based representation for arithmetic constraints

[9] is a good starting point.

Since most web services in the real world are supported by back-end relational

databases, one interesting problem is how to model and verify these web services

as relational transducers. To verify such systems may require first order (or higher

order) theorem prover. Although the general problem of deciding first order logic

formula is undecidable, many decidable fragments exist. We are interested in

studying these fragments and developing efficient decision procedures for them.

Fast heuristic and approximation algorithms for the general problem also remain

as one of our future research interests.
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