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Abstract

Interface Grammars for Modular Software Verification

Graham Hughes

Applying model checking techniques directly to programs has shown extensive

promise; however, two related problems hinder applicability of model checking to soft-

ware on a wider scale. First, the state space explosion problem (i.e., an exponential

increase in the search space by increasing number of variables and concurrent compo-

nents) limits the scalability of model checking techniques and second, the environment

generation problem (i.e., finding models for parts of software that are outside the scope

of the model checker) limits the applicability of model checking to the domains where

such environment models are available. I propose a semi-automated approach to attack

the above mentioned problems. Specifically, I propose an interface specification lan-

guage and require the users to write interface specifications for components of a program

that are outside the scope of the current verification effort. My interface specification

language allows a user to write an interface grammar for a component to specify the con-

straints on the ordering of calls made by the program to that component. This approach

enables modeling of nested call structures that cannot be expressed by interfaces based

on finite state machines. I built an interface compiler that takes the interface grammar

for a component as input and generates a stub for that component. The stub generated

vii



from the interface grammar of a component is used to replace that component during

state space exploration, either to assuage the state space explosion, or to provide an

executable environment for the component that is being verified.

Professor T. Bultan

Dissertation Committee Chair
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Chapter 1

Introduction

Applying model checking techniques directly to programs [5, 20, 56] has shown

promise for specific verification tasks, such as checking for concurrency errors [56] or

checking device drivers for interface violations [5]. Indeed, I have demonstrated success

with these techniques in previous work [29]. However, there are two related problems

that hinder applicability of model checking to software in a wider scale: first, the state

space explosion problem (i.e., an exponential increase in the search space by increasing

number of variables and concurrent components) limits the scalability of model checking

techniques and second, the environment generation problem (i.e., finding models for

parts of software that are outside the scope of the model checker) limits the applicability

of model checking to the domains where such environment models are available.

I have focused on model checking Java programs. I have specifically focused on

the Java Path Finder (JPF) [56] model checker, which can model check Java programs

directly. However, performing this task is limited by the two problems cited above. JPF
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Chapter 1. Introduction

cannot handle native calls in Java programs, and it has difficulty model checking large

programs without some form of isolating parts of the program from each other. Hence,

in order to use JPF for verification of Java programs, one has to write extensive and

sometimes intrusive environment models, which is a daunting task.

Inability to handle native code is not only a limitation specific to JPF, but also the

sign of an inherent problem in model checking. In order to search the state space of a

program exhaustively (as most model checkers attempt to do), one needs a representation

of that state space. JPF chooses to model the state space of a Java program by recording

configurations of the Java Virtual Machine (JVM). JPF has its own JVM which keeps

track of different configurations that are visited during the execution of the program that

is being verified. However, execution of native code, by definition, moves the program

execution outside the scope of the JVM and hence cannot be observed by JPF. Even if

one tries to keep track of program execution at a lower level of abstraction, perhaps

by keeping track of the physical memory and processor state, a similar problem will

arise if one tries to analyze a distributed program which involves interactions among

multiple machines or a program that interacts with a database server, etc. Eventually,

this will require keeping track of the state of each and every component that the program

interacts with. This is unlikely to be a scalable approach due to the state space explosion.

Moreover, in many (if not the majority) of cases, the developer who is trying to check
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Chapter 1. Introduction

the correctness of a program may not have access to the code of all the components that

the program interacts with.

I propose a semi-automated approach to attack the above mentioned problems.

Specifically, I propose an interface specification language and require the users to write

interface specifications for components of a program that are outside the scope of the

current verification effort. My interface specification language allows a user to write an

interface grammar for a component to specify the constraints on the ordering of calls

made by the program to that component. This approach enables modeling of nested

call structures that cannot be expressed by interfaces based on finite state machines.

Moreover, in order to provide a flexible approach that can handle complex interface

constraints, my interface specification language allows the users to escape to Java

and write semantic predicates or actions in Java or in the Java Modeling Language

(JML), specifying the behavior of the component (similar to the approach used by parser

generators such as Yacc [36]). I believe that my approach provides a balance between two

extreme alternatives, i.e., writing stubs completely manually or automatically extracting

simple abstract models such as finite state machines.

In addition to specifying this language, I present a compiler that translates interface

grammars to the Java programming language. Further, I extend the compiler to allow

expressing portions of the interface grammar using JML expressions, and apply this tool

to the task of verifying two large systems.

3



Chapter 1. Introduction

In chapter 2 on the following page, I present my analysis of a large software sys-

tem using manual environment generation, to motivate the development of interface

grammars. In chapter 3 on page 25, I present a high level overview of my approach. In

chapter 4 on page 29, I define interface grammars. In chapter 5 on page 48, I describe

the semantics of interface grammars. In chapter 6 on page 79, I describe technical details

required to translate the algorithms from the previous section into the Java language. In

chapter 7 on page 87, I describe an extension to interface grammars to make specifying

bidirectional interface grammars possible. In chapter 8 on page 126, I present a case

study applying interface grammars to the task of verifying clients using the Enterprise

Java Beans specification. In chapter 9 on page 141, I present another case study applying

interface grammars to the task of verifying clients and servers implementing a web

service. Finally, in chapter 10 on page 169 I present related work and in chapter 11 on

page 175 I present directions for future research in interface grammars.
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Chapter 2

Model Checking with Manual
Environment Generation

First, I will discuss why one might desire to apply model checking techniques to

programs. When model checking was first developed they were applied to extracted

models and protocols, not real code. Applying model checking techniques to real code

is nontrivial.

As it happens, analyzing concurrent programs is very useful, due to the difficulty

of repeatably exhibiting most sorts of concurrent errors. The most common technique

for detecting errors in large commercial systems is testing, of course; however, creating

good test cases can be very difficult independent of any concurrency concerns, and

testing for concurrency errors can be extremely frustrating. I present here a case study

in which a specialized model checker was used to discover concurrency errors in a large

preexisting code base. Although this depicts a largely manual effort, I also discuss ways

to reduce the labor required. I discuss the general problem of applying a model checker
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Chapter 2. Model Checking with Manual Environment Generation

to a code base in Section 2.1, the code base I examined in Section 2.2, the results I

achieved by applying model checking to that code base in Section 2.3, and reflections

upon the methodology I used in Section 2.5.

Model checking large programs is uncommon but not entirely unheard of. Yang,

Twohey et al. [66], applied the CMC model checker [41] to the Linux kernel, specifically

on three filesystems, and found numerous errors in the filesystems that could potentially

cause data corruption or loss. Ball, Majumdar et al. [4], presented a method for perform-

ing predicate abstraction on C programs as a part of the SLAM toolkit, with the intent

of model checking the resulting Boolean programs; they mention using this technique

on NT device drivers, among other programs. The Java PathFinder team was asked to

find an error in NASA’s Remote Agent system; they describe their success in finding the

deadlock that nearly crippled the mission 60,000 miles into space in [25, 55].

2.1 Model Checking Programs

As a technique, applying model checking to programs warrants explanation. Model

checking was originally applied to hardware verification, and then to small, self con-

tained, deliberately simplified models of a program or protocol’s behavior. Here, every

feasible state would be examined—either exhaustively or with the aid of mathematical

formalisms that permit examining multiple states at once—and various properties about

6



Chapter 2. Model Checking with Manual Environment Generation

the model’s behavior could be verified. It has recently become feasible to run model

checkers directly on the program itself, rather than some extracted artifact; checkers

like Verisoft [21], CMC [41], and Java PathFinder [54] are examples of model checkers

designed to run on code. In this work, I used Java PathFinder, which I abbreviate as JPF.

In model checking programs, our goal is a systematic exploration of every feasible

execution path from an initial state. This of course includes exploring all the branches

in the program, but also exploring every possible interleaving of the program’s threads.

This latter property means that if a program is run properly, if a deadlock, data race, or

other concurrent error can ever occur it should be found.

There are two major problems in applying this technique. The chief problem is

referred to as the state explosion problem; there can be an exponentially large number of

execution paths, presuming there is even a finite number at all. Numerous techniques

such as program slicing, partial order reduction, partial evaluation, and others—which

are discussed in [55]—can mitigate this penalty. However the underlying problem is

fundamental, and the most successful technique for dealing with it is still limiting the

scope of the analysis.

The other major problem is the environment generation problem. That is to say,

model checking as a technique can only be applied to closed systems, whereas most

programs require input from the user and the like. The system must be closed, but it

must be closed in a way that does not exclude important behavior, it must be closed in a

7



Chapter 2. Model Checking with Manual Environment Generation

way that is simple enough so that state explosion does not occur, and frequently parts of

the codebase being examined must be replaced by simpler versions.

As such, environment generation is really two problems. First, expensive, irrelevant

or difficult to analyze portions of the system must be replaced by equivalent but simpler

versions. Second, the entry points to the system must be invoked so that all interesting

execution paths are covered. This second half is conceptually very close to generation

of test cases.

An example of a difficult to analyze portion of the system might be code that uses

JDBC, a Java interface to relational databases. The actual database cannot be analyzed

unless it, too, is written in Java. Even if it were, analyzing the database would introduce

a vast number of largely superfluous states, exacerbating the state explosion problem.

Instead, by replacing JDBC with a lightweight layer that simulates a database, one can

successfully analyze the system. This database simulation is deliberately low fidelity

and only does what is absolutely necessary for the code to work. This technique is

similar in practice to Mock Objects [30], and the goal is similar.

2.1.1 Comparison with Other Styles of Analysis

Before I go into the details of the model checker I used, it is worth noting how model

checking relates to more familiar program checking techniques. Accordingly, I briefly

contrast dynamic analyses, static analyses, and model checking.

8



Chapter 2. Model Checking with Manual Environment Generation

Dynamic analysis is at heart a very simple idea. By instrumenting the program

appropriately, one can check important properties while the program is running. This

instrumentation has a number of attractive qualities: knowledge of control flow and

program state is usually precise, paths that the program cannot take will not be examined,

and the results can be very precise. It has one major flaw, which is that only one

execution path has been exercised and so if anomalies occur on other execution paths,

the analysis may not be able to detect the problem.

Static analyses, by contrast, compute properties without running the program. Most

static analyses will examine all possible execution paths. Precise analysis can frequently

be infeasible or even impossible, and so almost all static analyses will produce false

alarms, or fail to warn about some legitimate issues.

Model checking can be viewed as an extension of dynamic analysis where the

execution path issue is resolved by running the analysis through every possible execution

path. Viewed in this manner the source of the state explosion problem is very clear;

as well, the similarity between environment generation and good test suites is made

evident.

2.1.2 Java PathFinder

As alluded previously, Java PathFinder or JPF is a specialized model checker for

performing model checking of programs, specifically Java programs. JPF implements a

9
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Java virtual machine, and as such is capable of checking almost any pure Java program.

A great deal of effort has gone into enhancing JPF’s ability to explore a large number of

Java machine states; for more details see [55].

As a practical tool, JPF can be viewed as a nondeterministic Java virtual machine.

All control nondeterminism must be made explicit, but concurrent nondeterminism is

automatically taken care of. As such, while JPF is not as efficient as dedicated model

checkers like SPIN [26] at the problem of actual model checking, it can be used in a

very natural way to check that properties in concurrent programs are upheld along any

feasible execution path.

JPF handles pure Java code. It cannot model check native methods, although the user

may provide pure Java versions for the simulation; in particular this means programs

that include file input/output or network traffic are problematic. These holes in JPF’s

ability to simulate a program can be patched using simplified versions of the relevant

classes. This replacement can be done without modifying the code under examination,

which is useful.

I found JPF useful because of its ability to run the target software, which is written in

Java. Because I was investigating concurrency errors, its ability to try every serialization

of the concurrent code was very attractive. If one exercises the code correctly, any

deadlocks, races, or other errors that are present—even if they are hard to trigger—

should be noticed.
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Figure 2.1: Codebase Structure

2.2 Codebase Overview

I applied the techniques discussed in Section 2.1 to the development tree of a large

client server codebase. This system possesses a number of different user interfaces

and must communicate with several third party database products. The user interface

can be implemented either as a Java based thick client, Java applets, or as web pages

in a browser. The browser is served by the web tier, which comprises several JSP and

servlet components running in a web server. The main process logic and the analytics

engine reside in a third tier. The fourth tier contains the underlying repositories such as

database, directory, and document management as well as connectivity to other systems

using a variety of mechanisms. This structure is shown graphically in Figure 2.1. The

various modules communicate through Java RMI [59].

The version of the system I examined comprised well over a thousand classes and a

little over 470,000 lines of Java code. Because of its modular design, as well as the fact

11



Chapter 2. Model Checking with Manual Environment Generation

that the interfaces between the modules are well described through the RMI interfaces,

there were very clear divisions within the design. I used these divisions to control how

much of the software I would be forced to examine while model checking.

The system’s use of RMI had an additional effect. The version of RMI that is shipped

with Sun’s Java Development Kit, which is the version which was used by the codebase,

is implicitly concurrent. The default RMI server creates a new thread for every client.

Any software built upon it must be capable of handling that level of concurrency. The

system under examination exploits this concurrency to achieve better stability.

This concurrency created a problem during development; debugging complex con-

currency code is notoriously difficult, and reproducing deadlocks and race conditions

can be very involved. This is true even though in many cases only a handful of threads

are required to provoke the problem.

2.3 Applying Model Checking

The stage is now set for analysis; I have a large concurrent program with some diffi-

cult to resolve concurrency errors, and a tool that should be good at reliably reproducing

these concurrency errors.

When I began my analysis, the development team informed me that there was a

deadlock that cropped up rarely under stress tests, and that they had been unable to
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isolate. Accordingly they were interested if my techniques could prove useful here. I

had neither seen or worked with the system prior to this analysis. The size of the project

was intimidating, and I did not at the time believe I would be able to analyze substantial

portions of the code base due to the state explosion problem.

I believed that the deadlock was probably related to the database interface code.

Because of the structure of the codebase, the database interface ran behind an RMI server,

entirely separate from the main code. These RMI interfaces seemed a logical place to

begin, and we manually wrote the minimal environment required to bring the database

server up and ready to serve requests. This environment was developed through an

iterative process: the database server would be run, it would immediately fail (in our

case, frequently due to some unset global variable), the environment would be modified

accordingly, and then rerun. At the time, I believed that this would be a good way to

explore the system and to find which parts of it I would have to simulate by hand to

avoid state explosion.

It was necessary to replace some Java system classes so that the database server

could be brought up under JPF. These replacements included:

• the system RMI package was replaced with one that would not attempt to connect

to a network;
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• the Date class, which was used by the system’s logging mechanism, was modified

to always give exactly the same time (thus avoiding a proliferation of program

states that were exactly identical save for a timestamp);

• the localization classes were deemed superfluous and stubbed out;

• the JDBC and related database access classes were replaced with a version that

was sufficiently high fidelity so the code would work correctly, but that did not

store any unnecessary data.

I found that this phase required the most time investment, in large part because I was

unfamiliar with the codebase.

2.3.1 Database Concurrency

When the environment generation was complete, I started driving the database server

using its RMI interface. The relevant portion of the nominal protocol is as follows:
Client acquires DbAdapter interface using RMI

loop
Client calls DbAdapter.getConnection() to retrieve a DbConnection
Client uses the database through the DbConnection
Client releases the DbConnection

This protocol is written as a state machine in Figure 2.2.
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get DbAdapter

getConnection ()

Use

release

START

Figure 2.2: RMI protocol in the absence of network disconnects

This protocol, as written, is too simple for real use. Creation of DbConnection

objects is very slow, so the database server tries to keep a pool of allocated but unused

connections around. This pool introduces another problem. If the client does not release

its DbConnection for any reason—client crashes, network errors, a hung client—the

DbConnection object it is using will never be returned to the pool. This will cause a

resource leak.

To combat this, the database server checks each of the current connections during

the getConnection call to determine if the original client is still alive. If the server

decides that an existing client is dead, then it will hand out an already allocated connec-

tion to the new client. The amended protocol that the codebase claims to implement is

diagrammed in Figure 2.3.

If the network connection has actually been broken, this behavior is more or less

correct. However, client death was determined using the client’s idle time. If for

any reason—database row locks, database backup, network latency, heavy load, long

computations on the client—a client takes more than five minutes to process a transation,
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get DbAdapter

getConnection ()

Use

release

START

disconnect disconnect

Client's protocol

START

Server's protocol

get DbAdapter

getConnection ()

release

disconnect

Figure 2.3: RMI protocol supposedly implemented

it runs the risk that its DbConnection will be given to some other client. The protocol

as implemented is described in Figure 2.4.

If a client should time out and then have its connection given away, it is possible

that two clients’ transactions could be interleaved. Futhermore, the JDBC standard does

not mandate that java.sql.Connection objects be thread safe. This can have

disastrous consequences, both for thread safety and for database correctness.

This fault only shows up in the presence of concurrent behavior, and while it can

show up with just two clients, it is very unlikely that a client’s legitimate transactions
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get DbAdapter

getConnection ()

Use

release

START

Client's protocol

START

Server's protocol

get DbAdapter

getConnection ()

release

timeout, disconnect

timeouttimeout
disconnect disconnect

Figure 2.4: RMI protocol actually implemented

will take longer than five minutes except under heavy load. Reliably catching faults like

this using a traditional testing methodology would be difficult.

To detect the problem, I created a stub client that fetched a DbAdapter, called

getConnection, used it, and then released the connection. I instantiated several such

clients to access the server concurrently. Rather than wait five minutes for timeouts to

occur, I replaced the timeout code with a call to JPF’s randomBool function, which

forces JPF to explore the cases when that Boolean value is true as well as when it is

false. Thus, I can cover all cases where any client could be disconnected at any time.
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Finally, I inserted assertions to check whether any two clients could ever get the same

DbConnection. JPF proved that this error was possible in only a few minutes, which

was a surprising result considering the amount of code that was being run. I expected a

state explosion and did not observe it in this case.

To address this issue, I recommended that the database team either use a more certain

method of ascertaining whether a client is dead, or restructure the protocol to avoid this

sort of behavior.

2.3.2 Cache Verification

After analyzing this portion of the code, at the request of the development team

I began analyzing an object cache. This cache was designed to eliminate redundant

database accesses.

This code contained numerous simple concurrency errors and poor design decisions;

a simplistic static checker like FindBugs [27] could have detected most or all of them.

The question of whether any of them could cause data corruption remained open,

however. Accordingly, I ran the system with JPF using several threads working on

different objects. I discovered in the process of running this that all of the threads were

attempting to work on the same database object (object #0, as it happened). Confused, I

spent some time trying to determine how our environment was faulty, in the belief that
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the system could not possibly be misbehaving in this fashion—it had, after all, been

running its test cases and in production for years.

Tracing the error, I found that when the object cache reads a process definition from

the database, the object cache stores the process definition’s unique object identifier in

a local field. When a new process definition is created, the identifier has not yet been

determined. After the process definition is saved to the database, and thus assigned a

unique object identifier, the object cache should update its copy of that object identifier.

Instead, the object cache leaves its copy set to the default value of 0.

This bug was found almost immediately during the stress run, but the tests had

obviously not been written to catch such an error. I would not have found it had we not

discovered several threads which started out with entirely separate process definitions

all ending up with the same one, a violation of the cache contract.

2.4 Results

I provide here timing data based on the previous work; specifically the database

adapter communications error in Section 2.3.1 and the cache coherency analysis in

Section 2.3.2.

19



Chapter 2. Model Checking with Manual Environment Generation

The communications protocol flaw is too deeply embedded to be readily fixed;

accordingly, I cannot provide verification timing. Detection of the error took 108

seconds, with further data provided in Table 2.1 in the E1 column.

With the concurrent cache, I found the error in 56 seconds; regrettably verification

of the fixed but otherwise unmodified cache did not complete in a reasonable amount

of time. Further data for this error detecting run is in Table 2.1 in the E2 column.

Using manual slicing and with the insertion of appropriate synchronization commands

to remove a number of benign races, I verified the cache with two threads in 21 hours.

Using very strict synchronization—that is, where every public method of the cache

locked the cache class object, ensuring that all cache operations were synchronous—I

could verify the cache with two threads in 16 hours. Further details on these are available

in Table 2.1 in the V1 and V2 column, respectively.

The gap between the proof-of-error runs and the verification runs is dramatic, but

inevitable. Only one erroneous run needs to be produced to find a proof of an error, and

the small systems hypothesis in verification is that ‘most’ bugs can be found on ‘most’

execution paths; accordingly as soon as an error is found, the process stops. Verification

by definition must explore the entire state space of the program.
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E1 E2 V1 V2
States visited 4,710 18,997 19,941,239 10,616,063
Maximum stack depth 4,509 718 1,234 1,232
Memory used (in MB) 128.83 22.62 511.16 285.28
Execution time 108.4 s 55.6 s 20h 54m 55s 15h 54m 04s

Table 2.1: Analysis results

2.5 Methodology

As we briefly discussed in Section 2.3, my methodology is as follows:

1. Find an invariant to check.

2. Try to run the program to check it.

3. If a fault occurs because the environment is insufficiently faithful to the original

system, improve the fidelity of the environment and go back to step 2.

4. If the system takes too long to run, find what is taking all the time and replace it

with a stub with more abstract behavior. Go back to step 2.

5. If the invariant is violated, check to make sure that it could occur in the original

system, and if so, report a violation. If not, correct the problem by improving the

fidelity of the system and go back to step 2.

6. If no invariants are violated, check to make sure that your driving system is

adequately faithful. If it is, report success. Otherwise, improve the fidelity of the

system accordingly and go back to step 2.
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This method is not an algorithm in the sense that these steps are not mechanical

processes; the correct thing to do requires experience with model checking and with

the system. Also, whether the method will terminate is questionable. Almost all of the

effort is spent doing environment generation, not checking as such.

Some of the classes that I had to replace with stubs were required either as a logical

consequence of the limitations of JPF—e.g., RMI—or required because of linkage to a

third party product—e.g., JDBC. Any analysis on this code base will almost certainly

have to stub classes in those two categories out, because JPF does not and cannot handle

network code directly in its current form, and because simulating a relational database

will almost certainly take far too long.

It would be very helpful if this entire process could be automated, and indeed the

SLAM efforts mentioned earlier do automate a similar procedure for single threaded C

programs. They use predicate abstraction, which has is fully automatic, but it is not clear

how to extend their technique to multithreaded programs.

A tool to automate this environment generation would be very useful. This is an

active research question, which I discuss in Section 10.2. These techniques are very

interesting but in their current form they would not have been valuable to me because

they explore the program only to a bounded depth in the program’s call tree. Due to the

system’s internal structure, I feel I would need to set the bound depth too high to make

the technique useful.
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A different but no less important question is that of ‘how did I know where to look’

and the related question of ‘what sorts of questions are appropriate for using model

checking’. In my case, I were directed to problems by the development team that

specified in one case a problem they had been having a great deal of trouble finding,

and in the other case a request to verify that a specific module was sound. In both

cases, I extracted a state machine describing the input of the module in question, and

then explored that state machine looking for violations of simple properties; properties

like ‘do any two clients ever share a DbConnection’ and ‘can the cache fall out of

synchronization with the database’.

Because the systems in question used concurrency extensively, either implicitly as

any RMI client does, or explicitly in the case of the cache, testing these properties is

difficult and prone to subtle timing issues. Testing also has trouble answering liveness

properties—properties like “if a client has a DbConnection it will eventually release

it”. Accordingly I believe that an appropriate use of a model checker is the systematic

exploration of the interface to a module while examining important invariants.

2.6 Summary

I demonstrated that significant analyzses can be performed using model checking

on preexisting software, even software that is not designed for model checking. I
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expected to run into the major problem bedeviling analysis of large programs using

model checking—the state explosion problem—and largely did not. Environment

generation, on the other hand, required the vast majority of the effort. Accordingly, I

examined the problem of environment generation further, culminating in my interface

grammar language described next.
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Chapter 3

Modular Verification with Interface
Grammars: An Overview

The previous chapter demonstrates that verification of real world programs is feasible,

but has some unexpected consequences. Verification took less than a day but it took me

over two weeks per major program section to get the system to the point where it could

be verified.

There are two major reasons for this. No model checker can verify programs that

perform network communication, filesystem access, graphical interfaces or generally

interaction with a user—in each of these cases a simpler model of the offending compo-

nent must be written, and the original program must be modified to use this new code.

At the same time, the original program usually does a wide variety of things that are

totally irrelevant to verification; these must be worked around. These two problems can

be grouped together as the “environment generation problem”, and is a subject of active
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Figure 3.1: Broad overview

research. However, previous attempts at environment generation focused on doing the

operation automatically and were too simple to be useful for me.

I have developed an alternate approach to the environment generation problem, and

have used and extended this approach to verify nontrivial systems. Here I present an

overview of how the approach works before delving into the details.

Consider a system composed of two components. A component here is a set of

objects. I consider only single threaded systems. Assume that the interaction between

two components is totally determined by the messages the components send to each

other, as in figure 3.1. We can call this the conversation. Here calling x.foo(a, b, c) when

this is in one component and x is in another component sends the message foo with the

arguments x, a, b, c. I model the return from this method call as a message in the other

direction. If this model captures the way these two components interact, then we can

replace one or the other with a stub that sends and receives the same messages, as in

figure 3.2 on the next page.
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Figure 3.2: Operation of the interface compiler

Figure 3.3: Generating stubs and drivers
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I do not envision this as a fully automatic operation. Fully automatic operation

comes with numerous caveats and scope restrictions that make it difficult to apply to real

programs, which is my focus. But at the same time doing this by hand is no improvement.

I envision something else; someone wanting to perform verification should write an

interface grammar, a concise description of the possible conversations one component

can have with another component. This grammar is written in the manner of a context-

free grammar. My interface compiler will then create a stub that will verify that the

opposite component responds to messages in the way depicted, and participate in that

conversation effectively.

Up to now, this conversation has been entirely symmetric; either component could

be stubbed. For the purpose of discussion, the component that we have instructed

the compiler to stub out is called the client and the other component is the rest of the

program. The generated code is termed the stub, or sometimes the driver if the interface

grammar mostly specifies method calls from the driver to the rest of the program. These

are depicted in figure 3.3 on the preceding page. All these are arbitrary terms to ease

understanding; the formalism, the compiler, and the language itself do not enforce any

of these distinctions.
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Defining Interface Grammars

I propose interface grammars as a language for specification of component interfaces.

The core of an interface grammar is a set of production rules that specifies all acceptable

method call sequences for the given component. Given an interface specification for a

component, our interface compiler generates a stub for that component. This stub is

a table-driven top-down parser [1] that parses the sequence of incoming method calls

(i.e., the method invocations) based on the interface grammar defined by the interface

specification.

For example, consider a component for transaction management with the following

methods: begin, which begins a transaction; commit which commits a transaction;

and rollback which rolls back a transaction. Now consider the following (simplified)

interface grammar:
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Grammar 1. Simple transaction grammar

Start → Inactive

Inactive → begin Active

| ε

Active → commit Inactive

| rollback Inactive

This is a context free grammar with the nonterminal symbols Start, Inactive, and

Active; the start symbol Start; and terminal symbols begin, commit, and rollback.

Note that this grammar specifies a language that consists of sequences of symbols

begin, commit, and rollback. In our framework, this language corresponds to

the set of acceptable incoming call sequences for a component, i.e., the interface of the

component. According to the above interface grammar, the first call to the transaction

component must be a begin call which then should be followed by a commit or a

rollback call.

Given the above grammar we can construct a parser which can serve as a stub for

the transaction component. This stub/parser will simply use each incoming method call

as a lookahead symbol and implement a table driven parsing algorithm. If at some point
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during the program execution the stub/parser cannot continue parsing, then we know

that we have caught an interface violation.

However, the simple interface example I gave above does not require the power of

grammars. The same interface can be specified using finite state machines. Instead,

consider a transaction manager that allows nested transactions (also known as subtrans-

actions). In nested transactions a subtransaction can begin within the scope of another

transaction, hence allowing only a subset of the operations of the parent transaction to be

rolled back in case of an error. The following interface grammar specifies the interface

for the nested transaction manager:

Grammar 2. Nested transaction grammar

Start → Base

Base → begin Base Tail Base

| ε

Tail → commit

| rollback

Note that this interface specification allows nesting of matching begin and commit

or rollback calls and, therefore, cannot be expressed using finite state machines.
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Our interface specification language also supports specifying semantic predicates

and semantic actions that can be used to write complex interface constraints. A semantic

predicate is a piece of code that can influence the parse, whereas a semantic action

is a piece of code that is executed during the parse. Semantic predicates and actions

provide a way to escape out of the interface grammar framework and write Java code that

becomes part of the component stub. The semantic predicates and actions are inserted

to the right hand sides of the production rules, and they are executed at the appropriate

time during the program execution (i.e., when the parser finds them at the top of the

parse stack).

To demonstrate the use of semantic predicates and actions, I add to the nested trans-

action manager the setRollbackOnly method which forces all pending transactions

to finish with rollback instead of commit. The method setRollbackOnly can

only be invoked if there is an active transaction, and after it is invoked, the only way to

finish the pending transactions is to invoke rollback. I will add a r global Boolean

variable to keep track of the rollback-only state, and a l global variable to keep track of

how many pending transactions are active; if l ≡ 0 then r is reset to false. If we denote

the semantic action containing the code x as 〈〈x〉〉 and the semantic predicate evaluating

the code p as JpK, then the amended grammar looks as follows:
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Grammar 3. Nested transaction grammar with semantic elements

Start → 〈〈r ← false; l← 0〉〉 Base

Base → begin 〈〈l← l + 1〉〉 Base Tail

〈〈l← l − 1; if l ≡ 0 then r ← false〉〉 Base

| setRollbackOnly 〈〈r ← true〉〉 Base

| ε

Tail → Jr ≡ falseK commit

| rollback

To summarize, the call sequences specified by grammar 1 on page 29 can also

be specified using a finite state machine. However, the call sequences for recursive

transactions specified by grammar 2 on page 31 and grammar 3 on the previous page

cannot be specified using finite state machines.

4.1 Semantics

The above description of interface grammars is informal; here I present a formal

definition. I define my grammars based on recognizing possible execution traces. I

restrict my focus to method calls between a component and the rest of the program, and
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further on method calls from the program to the component, and the returns of these

calls. I denote the initiation of a method call from a program into the component for the

method a by ?a, and I denote the termination of that method call—that is, the return—by

¿a. For accurate modeling of a component, I must also track the method arguments

and the return values. I assume that methods have one argument and one return value;

multiple arguments are represented as a tuple. I write the initiation of a method call a

with argument x by ?a[x] and the termination of that method call with return value y by

¿a[y]. I frequently write the initiation of a method call that takes no arguments as ?a[] or

?a[⊥], and the termination of a method call that has a void return value as ¿a[] or ¿a[⊥].

These traces serve to formalize interface grammars. To define those grammars, I

use the following notation. My notation is based on that of Nielson, et al. [42]. The

fundamental sets I deal with here are set in boldface. I denote the Kleene closure of a set

S by S∗. The empty sequence is denoted ε. I write the concatenation of two sequences

s0 and s1 by s0‖s1; in an abuse of notation I write the concatenation of a singleton x with

a sequence s by x‖s. Since I never deal with sequences directly containing sequences,

this is unambiguous. I use← for a decomposing assignment: thus after 〈x, y〉 ← 〈1, 2〉

x is set to 1 and y is set to 2. I write the partial function f mapping some of the set X

to the set Y as f : X
p→Y . For a function f : X → Y and a set S ⊆ X , I write the

image of f under S as f [S]. For a function f : X → Y and arbitrary x and y, I write

the function f ′ : X ∪ {x} → Y ∪ {y} where f ′(x) = y and f ′(a) = f(a) otherwise as
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f [x 7→ y]. Similarly f [x 7→ y, a 7→ b] = f [x 7→ y][a 7→ b]. For functions f : X0 → Y0

and g : X1 → Y1, I define the function f � g : X0 ∪X1 → Y0 ∪ Y1 to be the function

∀x ∈ dom(f) : f � g(x) = f(x) and ∀x ∈ dom(g) \ dom(f) : f � g(x) = g(x).

I write the function f : ∅ → ∅ as ∅. I will occasionally, in the cause of increased

readability, use a decomposing conditional, writing if (o = ?x(v)) then s when I really

mean if first(o) = ?x then 〈?x, v〉 ← o; s. I write the anonymous function that computes

an expression e with free variable a as λa.e(a). I write a temporary variable assignment

as letx = y in z; this is equivalent to (λx.z(x))(y), but this way of writing it is less

opaque.

I require several sets to define the semantics of my grammars. Accordingly, I

presume the following ground sets: B = {true, false} is the set of Boolean values;

S ∈ NT is a member of the set of nonterminals; ?a, ¿a, !a, ¡a ∈ Σ are members of the

alphabet of method calls and returns, where ?a denotes a call to a method a, ¿a denotes

the return from a method a, !a denotes an outgoing method call a, and ¡a denotes the

return from an outgoing method call a; � ∈ Σ denotes the end of parsing, that is the

termination of the program; ξ ∈ Loc is a member of the set of locations where I may

store values of variables; x, y ∈ Var are variables; and v ∈ Dom is an unconstrained

domain set that represents the values the variables can take. Using these I now define
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the following sets:

S[x] ∈ NT◦ ≡ NT×Var

ρ ∈ Env ≡ Var
p→Loc

ς ∈ Store ≡ Loc
p→Dom

σ ∈ State ≡ Var
p→Dom

〈〈f〉〉 ∈ Action ≡ State→ State

JpK ∈ Pred ≡ State→ B

∆x ∈ Decl ⊆ Var

s1, s2 . . . ∈ Sym ≡ NT◦ ∪Σ ∪Action ∪Pred ∪Decl ∪ {↑, ↓}

A,B,C ∈ Sym∗

Prod ≡ P(NT◦ × Sym∗)

Here ρ, ς and σ are partial functions; not every location must be assigned a value, nor

must every variable be bound to a location. In practice I will construct elements of State

by composing elements of Env and Store; so σ = ς ◦ ρ. Note that as written these

semantics use dynamic scoping instead of lexical scoping; this is inevitable because at

this low level there is no lexical information to be had, but I discuss the way I layer

lexical scoping on top of it in chapter 6 on page 79. I use ↑ and ↓ to denote opening
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and closing a new scope, respectively. Also note that our nonterminals S[x] here have

arguments, reflecting a need for additional expressiveness when working with data

structures. While this does not increase the power of our grammars—it could be done

entirely through semantic actions—it does make it easier to express certain concepts. I

use in-out parameter semantics for nonterminal arguments; that is, when S[x] is being

processed the corresponding argument y is bound to the value of x, and when processing

of the nonterminal is complete x is bound to the value of y.

Unfortunately the above definition of Σ is not really sufficient; specifically the

traces must record the method arguments and method return values. I define the set

Σ◦ ≡ Σ×Var to be the set of symbols combined with variable names to denote the

arguments or return values as appropriate, and Σ• ≡ Σ×Dom to be the set of symbols

combined with values that represent the record of a trace. To ease the presentation, I

write 〈?a, x〉 ∈ Σ◦ as ?a(x), and 〈?a, d〉 ∈ Σ• as ?a[d]. Similarly I need to define

Sym◦ ≡ NT◦ ∪Σ◦ ∪Action ∪Pred ∪Decl ∪ {↑, ↓}

and Prod◦ ≡ P(NT◦ × Sym∗◦).

From this I can define an interface grammar G as a tuple

G = 〈NT,Σ◦,Q,SA,SP,P, S〉
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with Q ⊆ State being the grammar states, SA ⊆ Action being the semantic actions

used in the grammar, SP ⊆ Pred being the semantic predicates used in the grammar,

P ⊆ Prod◦ being the production rules, and S ∈ NT being the start symbol. I would

like to define a method for derivation for this grammar, so that I can fully describe

whether a sentence is in the language of the grammar. I define single-step derivation (⇒)

and ultimate derivation (⇒∗) as binary relations in figure 4.1 on the next page. These

definitions are nonconstructive; constructive versions follow in chapter 5 on page 48.

The signatures for⇒ and⇒∗ are as follows. On the left side, first a string of trace

symbols Σ∗•. Next, a Env and Store, representing the current environment and store

values. Finally, a string of grammar symbols that are not yet processed Sym∗◦. The

right side is either a string of trace symbols Σ∗•, denoting that the derivation has used

equation (4.1) on the next page and is in a state where the string can be accepted; or

a string like the left side, meaning more work has to be completed before a derivation

can be accepted. During the process of derivation, I must keep track of the environment

and store both for the semantic predicates to function, and I must keep track of them

separately rather than conflating them into a single State to permit lexical scoping of

declarations.
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⇒,⇒∗ ∈
(
Σ∗• × Env × Store× Sym∗◦

)
×
(
Σ∗• ∪

(
Σ∗• × Env × Store× Sym∗◦

))
A {ρ, ς} ⇒ A (4.1)

dom(dom(f)) ⊆ dom(ρ) ς ′ = (ρ−1 ◦ f(ς ◦ ρ))� ς
A {ρ, ς} 〈〈f〉〉B ⇒ A {ρ, ς ′}B

(4.2)

dom(dom(p)) ⊆ dom(ρ) p(ρ ◦ ς) = true
A {ρ, ς} JpKB ⇒ A {ρ, ς}B

(4.3)

ξ /∈ dom(ς)

A {ρ, ς}∆xB ⇒ A {ρ[x 7→ ξ], ς[ξ 7→ ⊥]}B
(4.4)

〈S[x], s1 . . . sn〉 ∈ P ξ /∈ dom(ς)

{ρ[x 7→ ξ], ς[ξ 7→ ς ◦ ρ(y)]} s1 . . . sn ⇒∗ C ′ {ρ′, ς ′}
A {ρ, ς}S[y]B ⇒ AC ′ {ρ, ς[ρ(y) 7→ ς ′ ◦ ρ′(x)]}B

(4.5)

{ρ, ς}B ⇒∗ B′ {ρ′, ς ′}
A {ρ, ς} ↑ B ↓ C ⇒ AB′ {ρ, ς ′}C

(4.6)

ξ1, ξ2 /∈ dom(ς) {ρ[x 7→ ξ1, y 7→ ξ2], ς[ξ1 7→ v, ξ2 7→ ⊥]}B ⇒∗ B′ {ρ′, ς ′}
A {ρ, ς} ?a(x)B ¿a(y)C ⇒ A ?a[v]B′ ¿a[ς ′ ◦ ρ′(y)] {ρ, ς ′}C

(4.7)

ξ /∈ dom(ς) {ρ, ς}B ⇒∗ B′ {ρ′, ς ′}
A {ρ, ς} !a(x)B ¡a(y)C ⇒ A !a[ς ◦ ρ(x)]B′ ¡a[v] {ρ[y 7→ ξ], ς ′[ξ 7→ v]}C

(4.8)

∃u1, . . . un : A {ρ, ς}B C ⇒ u1 ⇒ · · · ⇒ un ⇒ AB′ {ρ′, ς ′}C
A {ρ, ς}B C ⇒∗ AB′ {ρ′, ς ′}C

(4.9)

∃u1, . . . un : A {ρ, ς}B ⇒ u1 ⇒ · · · ⇒ un ⇒ AB′

A {ρ, ς}B ⇒∗ AB′
(4.10)

Figure 4.1: Derivation rules
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Equation (4.1) on the preceding page defines the derivation when the end of a string

has been reached; I drop the scoping information ρ and the store information ς and

accept.

Equation (4.2) on the previous page defines the derivation rule for a semantic ac-

tion 〈〈f〉〉. Since f maps State to State, dom(f) = State = Var → Dom and

dom(dom(f)) is just the variables it uses. Since it is syntactially possible for f to refer

to variables that are not in dom(ρ), that is variables that are not in scope, I disallow

derivation unless all variables f uses are in scope. ς ◦ ρ ∈ State is the current state, and

f(ς ◦ ρ) is the new state. However, I need an updated store, ς ′, rather than a state. I can

reconstruct f ’s changes to the state by applying ρ−1, but this will ignore the part of the

state that f may not have been able to see and so I must adjoin it to the old store with

�. I justify the existence of ρ−1 by noting that over the subset of Var where ρ is totally

defined, it is one-to-one; it is only modified in equation (4.7) on the preceding page and

equation (4.4) on the previous page, and there ξ, ξ1 and ξ2 are constrained to be values

that have never been in ran(ρ).

It is concievable that ς ◦ ρ may not be well defined; that is, ran(ρ) 6⊆ dom(ς). I in

fact guarantee that ς ◦ ρ is well defined by construction; no matter what the derivation,

dom(ς) never shrinks, and each time I add a new element to ran(ρ)—that is, each time I

map a variable to a new location—I map that same location to a value in ς . So ς ◦ ρ is

always well defined.
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Equation (4.3) on page 39 is similar to equation (4.2) on page 39, but as semantic

predicates may not modify the state, it is somewhat simpler. Again dom(dom(p)) is the

variables p uses, which I insist be a subset of the variables in scope. Similarly I insist

that the predicate p be true in the current state.

Equation (4.4) on page 39 deals with variable declarations. I insist that ξ here be a

fresh location, one that has never been assigned to any variable; since every location that

has even been assigned to a variable is in dom(ς) this is easily achieved. I must update

ρ to reflect that x has been bound to the location ξ, and then bind the location ξ to ⊥,

reflecting that it has not yet been assigned a value.

Equation (4.5) on page 39 defines nonterminal substitution; for any production

S[x]→ s1 . . . sn in P, which is equivalently stated 〈S[x], s1 . . . sn〉 ∈ P, I must bind x

to the value of its argument (here computed to be ς ◦ ρ(y)), perform the derviation on

the production, and finally rebind the value of the argument y to be the final value of x,

since I have specified in-out parameter semantics. I use an auxiliary location ξ for this

purpose. The final value of x is computed to be ς ′ ◦ ρ′(x), and I need to set the location

of y (which is just ρ(y)) to that value.

Equation (4.6) on page 39 defines block semantics; for a matched pair of ↑ and ↓, if

we can derive B′ with scope ρ′ and store ς ′ from B with the original scope ρ and store ς ,

then we may continue with the original scope ρ (reflecting block scoping rules) and the

new store ς ′ (reflecting any changes that may have been made to the store in B).
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Equation (4.7) on page 39 defines method call semantics; given a matched pair ?a(x)

(meaning the incoming method call a with argument x) and ¿a(y) (meaning the return

from that method call, returning the value of y), I must first bind ?a’s argument x to the

value seen (here v) and bind the return variable y into a new scope. To do this I need

two new locations ξ1 and ξ2. Now, if B with the original scope augmented with x and

y derives B′ with scope ρ′ and store ς ′, I can derive the original method call, retaining

the old scope but using the new store as in equation (4.6) on page 39 above. But, I must

reconstruct the return value for ¿a; this is simply the value of y in the state following the

derivation of B′, which is ς ′ ◦ ρ′. I record v and ς ′ ◦ ρ′(y) for the trace in the result, using

the shorthand defined above for Σ•. Note that this equation enforces call and return

matching. This is due to a domain requirement—in most programming languages it is

not syntactically possible to make a subroutine call and never return, or to return many

times.

Equation (4.8) on page 39 defines method send semantics; it is similar in many ways

to equation (4.7) on page 39, in that given a matched pair !a(x) (meaning the outgoing

method call a with argument x) and ¡a(y) (meaning the return from that method call,

returning the value of y), we must first compute the value of the argument x (here

ς ◦ ρ(x)), perform whatever subderivations are necessary, and then bind the return value

(here v) to the variable y so that the return value may be visible. This requires an

auxiliary location ξ. I have not here explicitly defined what the target of these method
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calls are; we may understand it to be the argument, or the first element of the argument

tuple. Note that this equation, as with equation (4.7) on page 39, enforces that calls and

returns match.

Finally, equation (4.9) on page 39 and equation (4.10) on page 39 define how to

define multiple step derivation from the above rules. We need two rules to permit

equation (4.1) on page 39 to be used.

Now, given all this I can finally define the language of our grammar; a string A ∈ Σ∗•

is in L(G) if and only if {∅, ∅}S ⇒∗ A. If I want to accommodate global variables, I

can say a string A ∈ Σ∗• is in L(G[ρ, ς]) if and only if {ρ, ς}S ⇒∗ A; here the global

variables would be defined in the ρ and ς accordingly.

4.2 An example

An example is in order. Consider grammar 3 on page 32. I restate it formally here as

the grammar G, where:

G = 〈NT,Σ◦,Q,SA,SP,P, S〉

NT = {Start,Base,Tail}

Σ = {?begin, ?setRollbackOnly, ?commit, ?rollback, ¿begin,

¿setRollbackOnly, ¿commit, ¿rollback}
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Var = {r, l}

Dom = B ∪ Z

SA = {〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉, 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉,

〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉,

〈〈λσ.σ[r 7→ true]〉〉}

SP = {Jλσ.σ(r) ≡ falseK}

P = {〈Start,〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 Base〉,

〈Base,?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin() Base Tail

〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉,

Base〉,

〈Base,?setRollbackOnly() 〈〈λσ.σ[r 7→ true]〉〉

¿setRollbackOnly() Base〉,

〈Base,ε〉,

〈Tail, Jλσ.σ(r) ≡ falseK ?commit() ¿commit()〉,

〈Tail, ?rollback() ¿rollback()〉}

As a notational convenience, when a method has no arguments rather than writing it as

?a(x) and then not using x, I write it as ?a() or ?a[]. Similarly, when a method has a void

return value, I write it as ¿a() or ¿a[]. All the methods in this example take no arguments
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and have void returns. I use the syntax λx.y to denote the anonymous function taking

one argument, x, and performing y.

In constructing this formal grammar, I have distinguished method calls and returns,

which grammar 3 on page 32 conflated. I distinguish returns rather than conflating them

with calls for two reasons: first, because the point at which a method returns has control

flow implications in the system external to our component. Second, because I must track

the return values for each method in the trace, and the only way to do that is to mark

method returns in some fashion.

I assert that the trace

t1 = ?begin[] ¿begin[] ?begin[] ¿begin[]

?commit[] ¿commit[] ?rollback[] ¿rollback[]

is in L(G), or rather is in L(G[ρ0, ς0]) where ρ0 = [r 7→ ξ0, l 7→ ξ1], and ς0 = [ξ0 7→

⊥, ξ1 7→ ⊥] since r and l are both global variables.
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To prove this assertion, I begin a derivation from {ρ0, ς0}S, as follows:

{ρ0, ς0}S

⇒{ρ0, ς0} 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 Base by 4.5

⇒{ρ0, [ξ0 7→ false, ξ1 7→ 0]} Base by 4.2

⇒{ρ0, [ξ0 7→ false, ξ1 7→ 0]} ?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin()

Base Tail 〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉

Base

by 4.5

To proceed, I need to apply equation (4.7) on page 39; to do that I need to perform a

subderivation as follows:

{ρ0[x 7→ ξ2, y 7→ ξ3], [ξ0 7→ false, ξ1 7→ 0, ξ2...3 7→ ⊥]}

〈〈λσ.σ[l 7→ σ(l) + 1]〉〉

⇒ {ρ0[x 7→ ξ2, y 7→ ξ3], [ξ0 7→ false, ξ1 7→ 1, ξ2...3 7→ ⊥]} by 4.2
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Now, I can apply equation (4.7) on page 39:

{ρ0, [ξ0 7→ false, ξ1 7→ 0]} ?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin()

Base Tail 〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉

Base

⇒ ?begin[] ¿begin[] {ρ0, [ξ0 7→ false, ξ1 7→ 1, ξ2...3 7→ ⊥]} Base Tail

〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉 Base

by 4.7

Continuing in this same vein, I eventually derive that

{ρ0, ς0}S ⇒∗ ?begin[] ¿begin[] ?begin[] ¿begin[]

?commit[] ¿commit[] ?rollback[] ¿rollback[]

which is precisely the trace t1. Therefore t1 ∈ L(G[ρ0, ς0]).
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Parsing Interface Grammars

The preceding semantics, while useful, is nonconstructive. I present here an algo-

rithm that is an implementation of those semantics. To do so, I need to note a pair

of issues that must be addressed in any implementation of the semantics, but that the

semantics themselves do not discuss. Specifically:

• The semantics above are defined for a single threaded program; therefore there is

a single thread of control that must be accounted for. Who, then, possesses the

thread of control as execution begins? I call this the control problem.

• Which of the component and the rest of the program initially has the thread of

control. I call this the main problem.

We can consider the control problem as answering the question ‘at any given point

in a trace, where is the thread of control’. This has a straightforward answer: beginning

at ?a and ¡a, the component under analysis has control, and beginning at ¿a and !a the
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rest of the program has control. This has important implications for how these algorithms

must be designed. A bidirectional grammar, which I present later in 7, decomposes into

two unidirectional grammars, with opposite control behaviors.

In order to match a stream of symbols against a grammar, it is natural to use a parser.

I have chosen to use a parsing algorithm based on the LL (1) algorithm [1]. There are

a number of ways to parse an LL (1) grammar, but for the purposes of this discussion

I distinguish two; recursive descent and table driven. Both of these approaches have

similar efficiency, differing only by constant factors. A recursive descent parser is

generally considered easier to read for humans and therefore is preferable for hand

coded parsers (which is not the case for this application). An advantage of using a

recursive descent parser for interface grammars is the fact that the compiler can insert

the semantic predicates and actions directly into the methods of the recursive descent

parser, whereas for a table driven parser, I must find a way to represent semantic actions

or semantic predicates as data. The most important difference for my purposes, however,

is where the tokens come from.

I distinguish two styles of parsing: parser-calls where the parser controls when the

next token is produced, that is, the parser has a way of demanding that its environment

produce a token for it when it chooses; and code-calls where the code invoking the

parser controls when the next token is produced. The control problem requires the

code-calls convention, because the parser will only just regain control when the ?p
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or ¡p symbols have been seen. It is very difficult to write a single threaded recursive

descent parser using the code-calls convention in this environment, because the most

natural implementation of a recursive descent parser stores its internal state on the

same control stack that the user code will be using. I could use threads to resolve this

problem (in effect by creating a new control stack for the parser); however, this would

require synchronization between the user code and the parser threads, and the additional

concurrency could degrade the performance of the model checker I eventually intend to

run this automatically generated code. If I was targetting a language with coroutines [40]

such as Icon [23] or Modula-2 [61], then I could use those; but most languages, and

Java in particular, lack those capabilities. Due to these concerns, these algorithms are

developed from table-driven LL (1) parsers.

The main problem is the question ‘before any symbols have been matched, who has

the thread of control’. If we are asking this about any given trace that has already been

recorded the answer is simple; if the first symbol is !a then the component under analysis

has control, and if the first symbol is ?a then the rest of the program has control. If we

have an empty trace—that is, there was no communication between the component under

analysis and the rest of the program—then we have insufficient data. Similarly if we

want to know which portion has control in the middle of the derivation, we may not have

enough information. It is not sufficient to examine the grammar; the grammar may have

two productions such as P → ?a . . . | !a . . . . This becomes critical when we consider
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the “main” procedure of the composed system. We must have additional information, so

that we can know which element should have control first. In the presented algorithms,

I presume that a global variable control is component if the component has control

initially and program if the rest of the program has control initially. In the latter case,

the MAIN procedure is assumed to be the initial procedure.

5.1 Main algorithms

Armed with the previous resolutions to the control problem and the main problem,

I present my algorithm in two stages. Algorithm 2 on page 55 ignores variables, and

algorithm 4 on page 61 extends that to give a full implementation of the semantics using

the scoping algorithms presented in algorithm 3 on page 58. In both cases, the initial

setup is performed by algorithm 1 on the following page. These algorithms are defined

in the context of a nondeterministic execution model. Specifically choose(s) indicates

a nondeterministic choice of one of the values of s, succeed indicates a successful

execution, and fail indicates a failure of one branch of execution. I note the symbols

matched in equation (4.7) on page 39 and equation (4.8) on page 39 with a call to

the MATCH procedure; this makes flow of control clearer. I also note the invocation

of semantic actions 〈〈f〉〉 and semantic predicates JpK by INVOKE(f) and INVOKE(p)

respectively, to make it more apparent when they are executed.
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Algorithm 1 Initial execution
Globals table : NT×Σ→ P(Prod×Pred)

stack ∈ Sym∗, control ∈ {component,program}
G = 〈NT,Σ◦,Q,SA,SP,P, S〉
binds ∈ (Var→ N)∗

store ∈ N→ Dom
i ∈ N, la ∈ Σ ∪ {⊥}

1: procedure MAIN’
2: binds← ∅‖ε
3: store← ∅
4: i← 0
5: la← ⊥
6: stack← S‖�
7: COMPUTETABLE(G, table)
8: if control = component then
9: AWAIT(�)

10: else
11: MAIN

12: WITNESS(�)

13: succeed

For all these algorithms, I make some simplifying assumptions. As in the semantics

in chapter 4 on page 29, I assume all methods and nonterminals have a single argument

and a single return value; it is straightforward to accommodate more but complicates the

presentation. For the purpose of this presentation, I assume the rest of the program has

been rewritten so that any function call into the component is of the form x← p(y), and

is rewritten as arg← y; WITNESS(?p);x← result. My implementation overrides the p

method in the component, which is semantically the same, does not require modification

of the rest of the program, but complicates the presentation unnecessarily.
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I discuss these parsing algorithms in the order of presentation. First is algorithm 1 on

the preceding page, which provides initial setup. To set the parser up, first we initialize

the scoping information, which is important for the variables in algorithm 4 on page 61.

I discuss the details there when I discuss algorithm 3 on page 58. Next we must initialize

the stack in the usual manner for table driven parsers—that is, the stack is set to be

two elements deep, with the start symbol on top and the end-of-parsing symbol on the

bottom. This is done in line 6.

Next we must set up the parsing table accordingly. This work can of course be

precomputed, and is in my implementation, but for ease of presentation I present it

without said optimization. This is line 7. The details of COMPUTETABLE are presented

as algorithm 7 on page 68.

Now that the parser initialization is complete, we may begin parsing. If the control is

given first to the component (expressed as control = component) then we cannot know

the first symbol of the input; all we know is that when end-of-parsing is seen, we should

stop. Accordingly, we call AWAIT, which waits for a symbol without expressing any

lookahead constraints. This corresponds to line 9. The details of AWAIT are presented

in algorithm 2 on page 55 and algorithm 4 on page 61.

On the other hand, if the control is first given to the program, then we assume an

entry point MAIN. We immediately call that; when it completes there will be no more

terminals at all, and so we call WITNESS, which is like AWAIT but insists that the very
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next symbol parsed be its argument. In this case, WITNESS(�) means “the program

must end now”. This scenario corresponds to lines 11 to 12. The details of WITNESS

are presented in algorithm 2 on the following page and algorithm 4 on page 61.

Finally, we have completed processing. If we have reached line 13, then we have

completed an execution of the entire system without erring, and we may signal success

in our nondeterministic execution model. If some error did occur, execution of that

branch of the nondeterministic model would be terminated. This concludes the initial

execution of the program, but I have left underdefined several important procedures,

which I present below.

Now we may begin to explain how to parse the grammars. We begin by ignoring

any variables, to make the explanation easier to follow, then give the full algorithm. The

resulting simplified algorithm is presented in algorithm 2 on the following page.

First, we define WITNESS. A call to WITNESS(t) means that “I know that the very

next symbol in the token stream is t; parse until you see it”. This differs from AWAIT,

which is “I know that eventually you will see t in the token stream; parse until you see it”

only in that WITNESS sets the lookahead symbol la. If the lookahead symbol is not clear

then either we have witnessed a second call before the first lookahead symbol had been

consumed (which is illegal) or the parser has erred; in either case, we signal an error and

halt processing. Otherwise, the lookahead symbol is set to t and we call AWAIT.
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Algorithm 2 Parsing without variables
Globals la ∈ Σ ∪ {⊥}, table : NT×Σ→ P(Prod×Pred), stack ∈ Sym∗

1: procedure WITNESS(t)
2: if la 6= ⊥ then
3: error
4: la← t
5: AWAIT(t)

6: procedure AWAIT(t)
7: repeat
8: if stack = ε then
9: fail

10: o‖stack← stack
11: if o ∈ Σ ∧ la 6= ⊥ then
12: if o 6= la then
13: fail
14: la← ⊥
15: if o = � then
16: else if o = ?p then
17: MATCH(?p)
18: AWAIT(¿p)
19: else if o = ¿p then
20: MATCH(¿p)
21: else if o = !p then

22: MATCH(!p)
23: p()
24: WITNESS(¡p)
25: else if o = ¡p(v) then
26: MATCH(¡p)
27: else if o = JpK then
28: if ¬INVOKE(p) then
29: fail
30: else if o = 〈〈a〉〉 then
31: INVOKE(a)
32: else if o ∈ NT then
33: if la = ⊥ then
34: possible←⋃

table[{o} ×Σ]
35: else
36: possible← table(〈o, la〉)
37: viable← {P : (P, JpK) ∈

possible ∧ INVOKE(p)}
38: S, s0, . . . , sn ← choose(viable)
39: stack← s0‖ . . . ‖sn‖stack
40: else
41: error
42: until o = t

AWAIT is structured as a repeat-until loop; we will continue parsing until the top

of the stack is equal to t. To do so, we must retrieve the top of the stack. If the stack

is ε, then it is empty while we are expecting additional tokens; this indicates the parse

has somehow gone wrong. Accordingly we abandon this branch of execution. This

corresponds to lines 8 to 9.

If the stack is not equal to ε, then we may pop the top of it; this is line 10. If the old

top of the stack, which we call o now, is a terminal and we have a lookahead symbol,
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then it must be the case that o = la; otherwise, our lookahead symbol would be wrong.

If the lookahead symbol was set and o is a terminal, we should clear it now, as we have

matched the lookahead. This all is lines 11 to 14.

Now we must examine what o is and process it accordingly. It may be �, the end

of input token; in this case we need do nothing special. Either o = t, in which case we

will end the loop, or o 6= t in which case the stack will be empty (as � is placed at the

bottom of the stack in algorithm 1 on page 52 and is never placed on the stack anywhere

else) and it will also fail. This is line 15.

Alternatively, o may be a ? terminal. In this case we match it, match that terminal,

and recursively continue, waiting for its pair ¿p. This is the only place where AWAIT(¿p)

happens. This is lines 16 to 18.

Instead o may be a ¿ terminal; in this case we merely match it and match it, in

lines 19 to 20.

o may be a ! terminal. In this case we match it and match it, then call the method

specified. When the method returns, we know that the very next symbol is ¡p (because

we just saw the return), and so we call WITNESS with it. This is lines 21 to 24.

o may be a ¡ terminal. We do no special handling here, merely match and match it,

in lines 25 to 26.

We have now exhausted the terminals. o may be a semantic predicate, in which case

we should execute it and, if it returns false, signal an error. This takes place in lines 27
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to 29. Alternatively o may be a semantic action, in which case we should just execute it

and move on; this is in lines 30 to 31.

o may be a nonterminal. In this case we must select a production from the parsing

table. If we have a lookahead, we select the possible productions for the state o starting

with the lookahead symbol. If we do not have a lookahead, then we must gather all

possible productions for the state o for any lookahead symbol. This computation happens

between lines 33 and 36. Now that we have the possible productions, we must weed

out any non-viable productions; that is, we must eliminate any productions that are

paired with a predicate that is false. This strictly speaking is an optimization and is

not necessary for correctness, but it frequently trims productions that are guaranteed to

fail, and so I include it. This occurs on line 37. Finally we must choose one production

nondeterministically of all the viable productions, and prepend it to the stack. This

occurs between lines 38 and 39.

Finally if o is of any other type, then something has gone fundamentally wrong with

the parsing and we should halt execution and signal an error.

To discuss the additional complications involved in introducing variables to the

parsing, I need to first present the symbol table I will be using to keep track of them

and their scopes. I do so in algorithm 3 on the following page. I first define a global

variable binds, which is a sequence of mappings from variable names to their location
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Algorithm 3 Scoping
Globals binds ∈ (Var→ N)∗, store ∈ N→ Dom, i ∈ N

1: procedure OPENSCOPE

2: binds← ∅‖binds
3: procedure CLOSESCOPE

4: ignored‖binds← binds

5: procedure BIND(v, x)
6: if binds = ε then
7: error
8: else
9: ρ‖s← binds

10: binds← ρ[v 7→ i]‖s
11: store← store[i 7→ x]
12: i← i+ 1

13: procedure SET(v, x)
14: store← SET’(v, x, binds)
15: function SET’(v, x, s)
16: if s = ε then
17: error
18: else
19: ρ‖s′ ← s
20: if v ∈ dom ρ then
21: return store[ρ(v) 7→ x]
22: else
23: return SET’(v, x, s′)
24: function VALUE(v)
25: return VALUE’(v, binds)

26: function VALUE’(v, s)
27: if s = ε then
28: error
29: else
30: ρ‖s′ ← s
31: if v ∈ dom ρ then
32: return store ◦ ρ(v)
33: else
34: return VALUE’(v, s′)

35: function GETSTATE

36: return GETSTATE’(binds, ε)
37: function GETSTATE’(s, σ)
38: if s = ε then
39: return σ
40: else
41: ρ‖s′ ← s
42: for all v ∈ dom ρ do
43: if v /∈ domσ then
44: σ ← σ[v 7→ (store ◦ ρ)(v)]
45: return GETSTATE’(s′, σ)

46: procedure UPDATESTATE(σ)
47: for all v ∈ domσ do
48: SET(v, σ(v))

indexes; here, I am using the natural numbers for the set Loc. When we introduce

a new scope, as with the OPENSCOPE procedure, we prepend an empty map to the

sequence. Similarly when we discard a scope, as in CLOSESCOPE, we pop the top of

the sequence off and throw it away. Next, I define a map store that corresponds to Store

in the formalism previously. Finally, I define a counter i that I use to ensure that I will
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give unique location indexes. These are all initialized in algorithm 1 on page 52 to their

default values: binds = ∅‖ε is the sequence consisting of a single element, the empty

map; store = ∅ is initialized to the empty map; and i = 0 is the first index element.

BIND is the first interesting procedure. My intention is that BIND associate the

variable v with the value x in the mapping at the top of binds. If binds is empty—perhaps

because no initial scope has been introduced—then that triggers an error; otherwise we

take the top of binds and force it to associate v with x. Note that this, as required by the

semantics, can discard older binds.

SET uses an auxiliary procedure SET’. The goal is that the topmost mapping that

associates v with anything at all should instead associate it with x; accordingly we

recurse over binds. If we reach the end of the mapping sequence, then we could not find

any mapping that associated v with anything at all, and halt execution; this corresponds

to lines 16 to 17. Otherwise we examine the top of the sequence ρ. If ρ maps v to

something, then we change it to map v to x instead and return in line 21. Otherwise we

leave ρ alone and recurse down the sequence in line 23.

We must be able to retrieve the current value of a variable v. This is in VALUE,

which also uses an auxiliary procedure VALUE’ and is structurally very similar to SET.

The goal is that we should retrieve the value of v in the topmost mapping that associates

v with anything at all. As in SET, we recurse over binds. If we reach the end, there is no

value for v at all, and we halt execution; otherwise we examine the topmost mapping ρ.
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If ρ maps v to something, then we return that something; otherwise we recurse down the

sequence.

Finally, we need analogues for the ς ◦ ρ used in equation (4.2) and equation (4.3)

on page 39 and the (ρ−1 ◦ σ) � ς used in equation (4.2). The former constructs a

state mapping from the scope and state mappings, and the latter updates the state

mapping from the changes made in σ. My analogue are GETSTATE and UPDATESTATE

respectively.

GETSTATE calls GETSTATE’ with the null state ε, which recurses down binds. For

each entry ρ in binds, every variable v defined in ρ that is not already in σ is added to

σ with the value store(ρ(v)). The end result is that for every variable v that has been

bound, (GETSTATE)(v) ≡ VALUE(v).

UPDATESTATE is simpler; for every entry in σ, we need to update its location

in binds, which we use SET for. If a value is unchanged, then no harm is done. If

σ contains values that are not bound, then SET will fail with an error. Since σ was

initialized in GETSTATE with all variables that had been bound and not shadowed by an

existing binding, assuming binds has not changed between the call to GETSTATE and

UPDATESTATE it should be impossible for UPDATESTATE to change the scoping. This

upholds the quality that in equation (4.2) on page 39, binds is unchanged while store is

updated.
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Algorithm 4 Full parsing
Globals arg ∈ Dom, result ∈ Dom, la ∈ Σ ∪ {⊥}

table : NT×Σ→ P(Prod×Pred), stack ∈ Sym∗

1: procedure WITNESS(t)
2: if la 6= ⊥ then
3: error
4: la← t
5: AWAIT(t)

6: procedure AWAIT(t)
7: repeat
8: if stack = ε then
9: fail

10: o‖stack← stack
11: if o ∈ Σ ∧ la 6= ⊥ then
12: if o 6= la then
13: fail
14: la← ⊥
15: if o = � then
16: else if o = ?p(v) then
17: OPENSCOPE()
18: MATCH(?p, arg)
19: BIND(v, arg)
20: AWAIT(¿p)
21: CLOSESCOPE()
22: else if o = ¿p(v) then
23: result← VALUE(v)
24: MATCH(¿p, result)
25: else if o = !p(v) then
26: OPENSCOPE

27: r ← p(VALUE(v))
28: MATCH(!p, r)
29: BIND(“$r”, r)
30: WITNESS(¡p)
31: else if o = ¡p(v) then
32: r ← VALUE(“$r”)
33: CLOSESCOPE

34: MATCH(¡p, r)

35: BIND(v, r)
36: else if o = ∆x then
37: BIND(x,⊥)
38: else if o = ↑ then
39: OPENSCOPE

40: else if o = ↓ then
41: CLOSESCOPE

42: else if o = JpK then
43: σ ← GETSTATE

44: if ¬INVOKEPREDICATE(p, σ) then
45: fail
46: else if o = 〈〈a〉〉 then
47: σ ← GETSTATE

48: σ′ ← INVOKE(a, σ)
49: UPDATESTATE(σ′)
50: else if o = S[v] then . where S ∈ NT
51: if la = ⊥ then
52: possible←

⋃
table[{o} ×Σ]

53: else
54: possible← table(〈o, la〉)
55: viable← {P : (P, JpK) ∈ possible

∧ INVOKEPREDICATE(p, σ)}
56: S[x], s0, . . . , sn ← choose(viable)
57: BIND(“$a”,VALUE(v))
58: OPENSCOPE

59: BIND(x,VALUE(“$a”))
60: OPENSCOPE

61: stack← s0‖ . . . ‖sn‖↓‖
〈〈SET(“$a”,VALUE(x))〉〉‖↓‖
〈〈SET(v,VALUE(“$a”))〉〉‖
stack

62: else
63: error
64: until o = t

61



Chapter 5. Parsing Interface Grammars

Finally we may discuss the full parsing algorithm. Much of this is similar to algo-

rithm 2 on page 55, and I discuss only the places where they differ here. First, however,

we must change INVOKE to accommodate the constructions in equation (4.2) on page 39

and equation (4.3) on page 39. From now on, INVOKE(a, σ) invokes the semantic action

a with the state σ returning the new state σ′, and INVOKEPREDICATE(p, σ) invokes the

semantic predicate p with the state σ and returns true or false depending on the value of

the predicate.

The first point of difference is if o is a ? terminal. Here v is p’s argument. v is merely

the name; the actual value is stored in the global variable arg. Accordingly we match

the pair ?p with the observed value, bind v to the observed value, and await its pair ¿p.

The OPENSCOPE and CLOSESCOPE are there to protect the scoping information, as

required by the semantics I specified.

If o is a ¿ terminal, then we must retrieve the value of the variable v. We store this in

the global variable result, and match the pair ¿p with the observed return value.

If o is a ! terminal, then we must again retrieve the value of the variable v. The

presence of the scoping information is less obvious. After calling the function p in

line 27, we have its return value r. We will eventually see a token of the form ¡p(v); in

that case we should call BIND(v, r). But we need to store the return value somewhere

where it will not be accidentally overwritten by a recursive call. We store it in the special

variable name “$r”, and we open a scope first to ensure that we will not accidentally
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crush some previous binding of “$r”. Finally we call WITNESS(¡p) to note the method

return. The scope we opened will be closed in handling the ¡p; we cannot close it here

because otherwise we will destroy the return value.

The other half of this is if o is a ¡ terminal. In this case we retrieve the return value

r from the special variable “$r”, match the pair ¡p, r, close the scope the ! opened and

only then bind the variable v to r. Binding v any earlier would result in its binding being

destroyed by the CLOSESCOPE.

There are some special symbols that come up with scoping that are presented in the

formalism but were irrelevant to algorithm 2 on page 55. These include ∆x, meaning

“bind x to ⊥” used for introducing new variables into a scope, ↑ to open a new scope

and ↓ to close an existing scope. Handling of all these is simple.

Semantic predicates and semantic actions are unchanged here, but the values of the

variables currently in scope need to be retrieved from binds. This is handled using the

GETSTORE and UPDATESTORE methods described previously.

Finally, the case that o is a nonterminal must be handled. This is the same as before,

with the exception that we must have in-out semantics for S’s argument v. To do so, we

must know what name S assigns to its argument, which we get on line 56. We bind the

value of the argument v to a temporary special variable, $a to protect ourselves from

accidental variable collisions. We now open a scope to bind the value of the variable

v (stored as the value of $a) to this variable x. We must open a scope here to avoid
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overwriting a preexisting binding for x. We then open a second scope to ensure that the

execution of s0, . . . , sn will not overwrite the new binding for x. We then prepend the

right hand side of the production to the stack, but we also append a close scope (to close

our innermost open scope), a semantic action to retrieve the current value of x and set

$a to it, a second close scope (to close our outermost open scope), and finally set v to $a,

which is just the value of x at the end of the production.

5.2 Constructing the parse table

These algorithms use an auxiliary data structure table. This data structure is a

modified LL (1) table. To construct this data structure, we use a modified LL (1) parse

table construction. I must modify the standard LL (1) parse table construction algorithm

due to two reasons:

• My language has semantic predicates that can influence the parse, by disallowing

certain productions;

• The parser may or may not be able to determine the lookahead symbol at run time;

• I want to support nondeterministic choice in interface specifications which will be

resolved by the target model checker’s search heuristics at run time.

Accordingly, given a grammar G = 〈NT,Σ◦,Q,SA,SP,P, S〉, I will construct a

parsing table table : NT×Σ→ P(P× SP).
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Some features of this table that are notable: first, in normal LL (1) parsing a

nonterminal—the top of the parse stack—and a terminal—the lookahead symbol—

define at most one legal production. If more than one production is legal, then this

indicates that the grammar in question is not LL (1). I wish to support nondeterministic

choice and semantic predicates; the simplest way to do so is to relax this restriction; that

is, to permit multiple productions to be available for any given nonterminal/terminal

pair.

Second, because I wish to support semantic predicates, it can be the case that a

production is not available at run time due to the semantic predicate being false. I

could support this by simply using the fail construction defined earlier, but this would

necessitate investigating multiple doomed partial parses. As an optimization, whenever

this is sensible my compiler propagates semantic predicates forward so that the parser

can choose to avoid clearly doomed paths. To support this, I pair the production available

with the semantic predicate controlling whether it is viable.

Finally I may not be able to determine the symbol of lookahead. In this case, the

parser takes the nonterminal at the top of the stack and computes the union of any

available production pairing that nonterminal with any terminal.
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Algorithm 5 Computing first sets
1: procedure FIRST(G, out first)
2: 〈NT,Σ◦,Q,SA,SP,P, S〉 ← G
3: first← ∅[ε 7→ {〈JtrueK, ε〉}]
4: for all n ∈ NT do
5: first← first[n 7→ ∅]
6: repeat
7: for all productions P = X → Y1Y2 . . . Yn do
8: if P 6= X → ε then
9: s← first(Y1Y2 . . . Yn)

10: p← JtrueK
11: for all Yi do
12: d← false
13: if Yi ∈ SP then
14: p← p ∧ Yi

15: else if Yi ∈ SA then
16: do nothing
17: else if Yi ∈ Σ◦ then
18: target← first(Yi)
19: if ∃x : 〈x, ε〉 ∈ target then
20: putative← {〈q, t〉 : 〈q, t〉 ∈ target ∧ t 6= ε}
21: if s 6= putative ∧ s 6= target then
22: first← first[Y1Y2 . . . Yn 7→ putative]

23: else
24: if s 6= target then
25: first← first[Y1Y2 . . . Yn 7→ target]
26: d← true
27: else
28: if Yi /∈ s then
29: first← first[Y1Y2 . . . Yn 7→ first(Y1Y2 . . . Yn)∪{〈p, Yi〉}]
30: d← true
31: if ¬d then
32: first← first[Y1Y2 . . . Yn 7→ first(Y1Y2 . . . Yn) ∪ {〈p, ε〉}]
33: for all productions P = X → Y1Y2 . . . Yn do
34: first← first[P 7→ first(P ) ∪ first(Y1Y2 . . . Yn)]

35: until no element in first has changed
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Now that I have motivated the design of this particular parse table, I need two

auxiliary functions first and follow a la Aho et al. [1], which I compute using the

algorithms shown in algorithm 5 on the preceding page and algorithm 6.

Algorithm 6 Computing follow sets
1: procedure FOLLOW(G, first, out follow)
2: 〈NT,Σ◦,Q,SA,SP,P, S〉 ← G
3: follow← ∅[ε 7→ {〈JtrueK,�〉}]
4: for all n ∈ NT do
5: follow← follow[n 7→ ∅]
6: repeat
7: for all productions P = X → Y1Y2 . . . Yn do
8: for i← 1 . . . n do
9: if Yi ∈ NT then

10: if i = n then
11: s← ε
12: f ← {〈JtrueK, ε〉}
13: else
14: s← Yi+1 . . . Yn

15: f ← first(s)
16: if ∃p : 〈p, ε〉 ∈ f then
17: f ← f ∪ follow(X)

18: follow← follow[Yi 7→ follow(Yi) ∪ f ]

19: until no element in follow has changed

Finally, given these algorithms we may compute the parsing table as given in

algorithm 7 on the following page.
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Algorithm 7 Computing table
1: procedure COMPUTETABLE(G, out table)
2: 〈NT,Σ◦,Q,SA,SP,P, S〉 ← G
3: FIRST(G, first)
4: FOLLOW(G, first, follow)
5: table← ∅
6: for all n ∈ NT do
7: for all t ∈ Σ do
8: table← table[〈n, t〉 7→ ∅]
9: for all productions P = X → Y1Y2 . . . Yn do

10: for all 〈p, t〉 ∈ first(X) do
11: if t = ε then
12: for all 〈p′, t′〉 ∈ follow(X) do
13: table← table[〈X, t′〉 7→ table(〈X, t′〉) ∪ {〈P, p ∧ p′〉}]
14: else
15: table← table[〈X, t〉 7→ table(〈X, t〉) ∪ {〈P, p〉}]

Symbols Set

Start {〈JtrueK, ε〉, 〈JtrueK, ?setRollbackOnly〉, 〈JtrueK, ?begin〉}
Base {〈JtrueK, ε〉, 〈JtrueK, ?setRollbackOnly〉, 〈JtrueK, ?begin〉}
Tail {〈Jλσ.σ(r) ≡ falseK, ?commit〉, 〈JtrueK, ?rollback〉}

Table 5.1: Relevant portions of the first set for grammar G

Symbols Set

ε {〈JtrueK,�〉}
Start {〈Jλσ.σ(r) ≡ falseK, ?commit〉, 〈JtrueK, ?rollback〉, 〈JtrueK, ε〉,

〈JtrueK, ?setRollbackOnly〉, 〈JtrueK, ?begin〉}
Base {〈Jλσ.σ(r) ≡ falseK, ?commit〉, 〈JtrueK, ?rollback〉, 〈JtrueK, ε〉,

〈JtrueK, ?setRollbackOnly〉, 〈JtrueK, ?begin〉}
Tail ∅

Table 5.2: Relevant portions of the follow set for grammar G
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5.3 An example

An example is in order at this time. Consider grammar 3 on page 32, the example

from section 4.2 on page 43, slightly modified to avoid using global variables. Here, the

resulting grammar is as follows:

Start→ ∆r ∆l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 Base[r, l]

Base[r, l]→ ?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin() Base[r, l] Tail[r]

〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉

Base[r, l]

| ?setRollbackOnly() 〈〈λσ.σ[r 7→ true]〉〉

¿setRollbackOnly() Base[r, l]

| ε

Tail[r]→ Jλσ.σ(r) ≡ falseK ?commit() ¿commit()

| ?rollback() ¿rollback()

The grammar is encoded into the formalism as follows:

P = {〈Start, ∆r ∆l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 Base[r, l]〉,
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NT Σ Set

Start ?begin {〈JtrueK, Start→∆r, l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉
Base[r, l]〉}

Start ?setRollbackOnly {〈JtrueK, Start→∆r, l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉
Base[r, l]〉}

Start ?commit {〈Jλσ.σ(r) ≡ falseK,
Start→∆r, l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉

Base[r, l]〉}
Start ?rollback {〈JtrueK, Start→∆r, l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉

Base[r, l]〉}
Start � {〈JtrueK, Start→∆r, l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉

Base[r, l]〉}
Base ?begin {〈JtrueK,

Base[r, l]→ ?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉
¿begin() Base[r, l] Tail[r]
〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1]

inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉
Base[r, l]〉}

Base ?setRollbackOnly {〈JtrueK,Base[r, l]→ ?setRollbackOnly()

〈〈λσ.σ[r 7→ true]〉〉
¿setRollbackOnly()

Base[r, l]〉}
Base ?commit {〈Jλσ.σ(r) ≡ falseK,Base[r, l]→ ε〉}
Base ?rollback {〈JtrueK,Base[r, l]→ ε}
Base � {〈JtrueK,Base[r, l]→ ε〉}
Tail ?commit {〈Jλσ.σ(r) ≡ falseK,Tail[r]→ Jλσ.σ(r) ≡ falseK

?commit()
¿commit()〉}

Tail ?rollback {〈JtrueK,Tail[r]→ ?rollback() ¿rollback()〉}
All other NT×Σ combinations map to ∅

Table 5.3: Parse table for grammar G
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〈Base[r, l],?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉 ¿begin() Base[r, l] Tail[r]

〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1] inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉

Base[r, l]〉,

〈Base[r, l],?setRollbackOnly() 〈〈λσ.σ[r 7→ true]〉〉

¿setRollbackOnly() Base[r, l]〉,

〈Base[r, l],ε〉,

〈Tail[r], Jλσ.σ(r) ≡ falseK ?commit() ¿commit()〉,

〈Tail[r], ?rollback() ¿rollback()〉}

For clarity, here, I am not replacing variable names with unique numbers. This

should, of course, be done in actual execution, but pedagogically it is easier to follow if

the variables have names, and in any case it is not that important for this grammar, as

r and l were originally global variables. The first set for that grammar G is presented

in table 5.1 on page 68, and the follow set is presented in table 5.2 on page 68. The

resulting parse table is presented in table 5.3 on the previous page.

If we are to use that parse table to parse a string—say, t1 from section 4.2 again, we

would proceed as follows. First, the input string, again.
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t1 = ?begin[] ¿begin[] ?begin[] ¿begin[]

?commit[] ¿commit[] ?rollback[] ¿rollback[]

We begin in MAIN’, initializing binds, store, i, and stack. This is a component

called by the main program, so control = program and we call MAIN. At some

point, begin is called with no arguments and expecting no results. This is rewritten as

arg → ∅; WITNESS(?begin); ignored → result and so we call WITNESS(?begin). la

has been initialized previously to ⊥, so it is okay to set la = ?begin. stack = Start‖�,

so it is not empty and we pop the first value (in this case, Start) off and assign it to o.

o 6∈ Σ, so we proceed to the main conditional block. We reach the nonterminal case.

Since la 6= ⊥, we may use it to guide the parse. Accordingly,

possible = {〈JtrueK, Start→∆r ∆l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉

Base[r, l]〉}

Since all productions in possible are viable (because the only production present has

JtrueK as its condition),

viable = {Start→∆r ∆l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉

Base[r, l]}
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Since there is only one production in viable, it is chosen. A scope is opened, meaning

binds = ∅‖ε. In this case, Start has no arguments and takes no arguments, so we open a

second scope (now binds = ∅‖∅‖ε) and we set

stack =∆r ∆l 〈〈λσ.σ[r 7→ false, l 7→ 0]〉〉 (5.1)

Base[r, l] ↓ 〈〈SET(“$a”,VALUE(ignored))〉〉 ↓ (5.2)

〈〈SET(ignored,VALUE(“$a”))〉〉 � (5.3)

Since o 6= t (because Start 6= ?begin), we repeat the loop again. stack is still not

empty, so we pop the first value off and assign it to o. In this case, that value is ∆r. This

means we call BIND(r,⊥), meaning binds = {r 7→ ⊥}‖∅‖ε. The next symbol is ∆l, so

we do it again, meaning binds = {r 7→ ⊥, l 7→ ⊥}‖∅‖ε. The next symbol is a semantic

action. We call GETSTATE to initialize σ = {r 7→ ⊥, l 7→ ⊥}. We call INVOKE to

execute the semantic action; this means σ′ = {r 7→ false, l 7→ 0}. Finally we update

binds with UPDATESTATE, meaning binds = {r 7→ false, l 7→ 0}‖∅‖ε.

The next symbol is Base[r, l], which is the first nonterminal we have seen with

arguments. la = ?begin still, so only one viable production exists, namely

Base[r, l]→ ?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉

¿begin() Base[r, l] Tail[r]
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〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1]

inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉

Base[r, l]

Accordingly we open another scope. Since we are coding two arguments as an ordered

pair, r = 〈false, 0〉. After the bind, binds = {r 7→ false, l 7→ 0}‖{r 7→ false, l 7→

0}‖∅‖ε. Finally we open one more scope and set stack to

stack =?begin() 〈〈λσ.σ[l 7→ σ(l) + 1]〉〉

¿begin() Base[r, l] Tail[r]

〈〈λσ.letσ′ = σ[l 7→ σ(l)− 1]

inσ′[r 7→ (σ′(r) ∧ σ′(l) 6≡ 0)]〉〉

↓ 〈〈SET(“$a”, 〈VALUE(r),VALUE(l)〉)〉〉

↓ 〈〈SET(r, first(VALUE(“$a”)));

SET(l, second(VALUE(“$a”)))〉〉

↓ 〈〈SET(“$a”,VALUE(ignored))〉〉

↓ 〈〈SET(ignored,VALUE(“$a”))〉〉 �
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Finally, we now match the ?begin. In so doing, we match and consume our lookahead,

we open another scope, call MATCH(?begin, []), bind the argument (to nothing, since it is

ignored), and recursively call AWAIT(¿receive). This recursive call invokes 〈〈λσ.σ[l 7→

σ(l) + 1]〉〉 before matching ¿begin and matching MATCH(¿receive, []). We then exit the

recursive call, and since o = t now, finally exit from the original WITNESS, returning

control to the main program.

The remainder of the parsing proceeds normally. When the main program finally

ends, we call WITNESS(�), consuming the end-of-input token and completing the parse

successfully.

5.4 Correctness

It is important to guarantee that algorithm 1 on page 52 together with algorithm 4

on page 61 upholds the semantics described in figure 4.1 on page 39. I provide a proof

sketch of this here.

The first task is to verify that the tables in section 5.2 on page 64 are constructed

correctly; that is, if 〈n, t〉 7→ S, it should be the case that any production that can be

taken from the nonterminal n given the lookahead symbol t should be somewhere in

S. My algorithms are straightforward modifications to the normal LL (1) algorithms

to track predicates and to retain any ambiguity. The more interesting question is do
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these algorithms uphold the semantics in figure 4.1 on page 39. I take the equations

in figure 4.1 on page 39 in order, showing that the algorithm presented upholds these

semantics.

Equation (4.1) specifies that if we reach the end of the input stream, we may accept.

If control = component, this corresponds to seeing the � on the end of the stack as set

in line 6 in algorithm 1 on page 52, and matching it using the AWAIT call on line 9 of

that same algorithm. Algorithm 4 on page 61 performs no MATCH calls when matching

�, so our final trace is identical to that of equation (4.1).

Equation (4.2) specifies that if f does not refer to variables that are not in scope, a

is invoked with the current running state and the running store ς is updated with the

changes a makes. This is handled in lines 46 to 49 of algorithm 4 on page 61. We

use the GETSTATE and UPDATESTATE algorithms from algorithm 3 on page 58 here;

GETSTATE retrieves the state, we invoke a with it, and then update the store with the

new state. Assuming GETSTATE and UPDATESTATE are correct, then this section is

also correct.

Equation (4.3) specifies that if the predicate p succeeds when applied to the current

scope, then processing may continue. Since there are no other derivation rules that refer

to predicates, this effectively means that if p fails then processing should stop. This is

handled in lines 42 to 45 in algorithm 4 on page 61. The current state is retrieved with

GETSTATE and then p is invoked with it. If the predicate fails, we halt processing.
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Equation (4.4) handles introducing new variable declarations. This is handled in

lines 36 and 37. I bind the variable x to ⊥. The text of BIND in algorithm 3 on page 58

ensures that a new location not previously used is assigned, so upholding the semantic

requirement that ξ /∈ dom(ς).

Equation (4.5) handles nonterminals. The specific production is chosen between

lines 50 and 56; these remove some possibilities from contention, but those possibilities

could never have been feasible. A new scope is opened on line 58, ensuring that the old

store ρ is just a CLOSESCOPE() away. x is bound to a fresh location in line 59, fulfilling

the requirement that ξ /∈ dom(ς). A further scope is opened, which ensures that ξ can

still be retrieved later. The contents of the nonterminal are pushed to the stack along

with two ↓s that will ensure that the CLOSESCOPES() occur after the nonterminal is

finished executing; additionally v is set to the value of the parameter x after execution,

upholding the requirement that ρ(y) 7→ ς ′ ◦ ρ′(x) in equation (4.5). So this derivation,

too, is handled.

Equation (4.6) handles block scoping; as with the nonterminal described above, we

handle this with OPENSCOPE and CLOSESCOPE. This protects the old ρ without having

any implications for the store.

Equation (4.7) handles ? events. This is handled in a different way in algorithm 4,

although equivalent. Specifically because we cannot know, upon seeing a ?p(v) what

the name of its partner is. Accordingly we match the sequence ?p[arg], bind v to that
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argument, and recursively parse until we see its partner. Once the partner is seen, the

global variable result is bound to the return value and the corresponding sequence

¿p[result] is matched. The scope opening and closing is to protect the old ρ as required

by the semantics.

Equation (4.8) handles ! events. Again, since we cannot know the event’s pair when

we parse it we handle this slightly differently. We open a scope to protect the “$r”

variable, match the observed sequence !p[VALUE(v)], and call the function and then

recursively parse, looking for the matching ¡p. That retrieves the “$r”, closes the scope

that the ! opened, matches the sequence ¡p[r], and then binds v to r.

Equation (4.9) and Equation (4.10) are syntactical requirements for derivation and

have no execution considerations.

Thus, my algorithm upholds the semantics I specified.
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Implementing Interface Grammars in
Java

Chapter 5 on page 48 described several algorithms for parsing interface grammars,

but they do not directly translate to Java. There are four main complications:

• Java is not inherently nondeterministic.

• I must encode semantic actions and semantic predicates as data in a Java program

in such a way that they can be executed as code later.

• Java libraries routinely use exceptions, and so our parser must be robust in the

face of them.

• I want to be able to use interface grammars without invasive changes to existing

Java code.

I deal with each of these in turn.
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6.1 Nondeterminism in Java

Java the language does not contain any immediate support for nondeterminism. I

could possibly accommodate it using threading, but this would necessitate making our

parser thread safe and complicate our eventual goal of model checking the program. I

could accommodate nondeterminism through some sort of code transformation—for

example, in the way Screamer [47] extends Common Lisp to support nondeterminism.

This is not in any way easy to do even for Common Lisp, and would probably necessitate

some sort of transformation of the targeted Java code to Continuation Passing Style [15].

In any case it is hard to see a way to implement nondeterminism directly in Java that

would be noninvasive, an important goal for this research.

Instead, I have chosen to use the nondeterministic framework that must already be

built into the model checker I eventually intend to use. This does not require invasive

code changes and leverages a stable body of code. Almost all Java model checkers

provide some way to interface with the model checker’s nondeterminism; since I used

JPF in this work I describe that model checker’s interface, but my compiler could be

easily ported to any other model checker that provides a similar interface.

For our purposes we need to model three things:

• choose(S) is a function that nondeterministically returns some s ∈ S.

• succeed signals that the current branch of execution has completed successfully.
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• fail signals that the current branch of execution has failed in some fashion, and

that a different branch should be attempted.

To achieve these, I use two functions from JPF’s interface, which is encoded in the

gov.nasa.jpf.jvm.Verify interface. To choose an element from a set S, I call

Verify.random to nondeterministically select an integer from 0 to |S| − 1; I then

retrieve the item s ∈ S indexed by that integer. For fail, I use Verify.ignoreIf.

Unfortunately JPF does not provide a method useful for succeed, or rather it conflates

fail and succeed. As a result, what can happen is that all branches of execution fail

but JPF reports no error, misleading the user. Accordingly for a succeed call we print

“Success” before calling Verify.ignoreIf; if no “Success” appears in the output,

then no branch of execution completed successfully.

6.2 Encoding code as data

The next hurdle I must overcome is the process of encoding Java code as a data

object that can be stored in data structures and the like. In another language I might use

closures or function pointers; in Java I use anonymous inner classes. I use the JGA [24]

library here as a basis for these inner classes, which JGA refers to as “generators”.

Since I will shortly be discussing Java code templates with appropriately substituted

values, I will refer to the substitution of some computed value x within a template as
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$(x) or $x when unambiguous. Sometimes it will be clearer to not use a template, in

which case I use the OUTPUT function.

Now, to encode some Java code, I write simply

new Generator () {
public Object gen () {

$code
}

}

Predicates are encoded in a similar fashion.

However, this introduces a new problem; now, every Java escape is in a lexically

distinct context from every other Java escape. While writing interfaces, it is very useful

to retain some information across Java escapes, and additionally arguments in method

calls can define new variables that the stub must make decisions on. If I was using a

recursive descent parser, I could exploit the Java compiler’s scoping, but I have dismissed

that possibility above; accordingly I must track it myself with my own symbol table.

My symbol table algorithms are encoded in algorithm 3 on page 58, and the algo-

rithms in that chapter already track these variables. What I must do here is show how to

exploit that information to make my generators work properly. If in this symbol table I

used the variable names as keys, I would get dynamic scoping; referring to the variable

e would retrieve the most recently bound e, and not necessarily the e that is lexically

appropriate. I desire lexical scoping. Accordingly, I assign to each variable declaration

in the program a unique number, and use that as a key. This gives me lexical scoping
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provided it is not possible to get what are essentially function pointers to grammar

fragments; in that case I would be faced with the so-called “funarg” problem and would

have to adopt a different approach. I avoid this problem through the simple expedient of

disallowing pointers to grammar fragments.

I must also keep track of the declarations that are visible both before and after every

Java escape. Given this, I can now alter the body of the Java closure code to be as

follows:

for all decl ∈ visibleSymbolsBefore do

OUTPUT(“$(decl.type) $(decl.name)← VALUE($(decl.id))”)

OUTPUT(“$code”)

for all decl ∈ visibleSymbolsAfter do

OUTPUT(“SET($(decl.id), $(decl.name))”)

This takes care of the GETSTATE, INVOKE, UPDATESTATE sequence in lines 46 to 49

of algorithm 4 on page 61. I must also include opening scopes, closing scopes, and

binding in my semantics interface grammar; fortunately I have already done so.

6.3 Handling exceptions

Java code frequently throws exceptions when the code performs an illegal operation.

Throwing exceptions in an uncontrolled manner can cause the parse information to be
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Algorithm 8 Error recovery
Globals stack ∈ Sym∗

procedure TOSSUNTIL(t)
repeat

if stack = ε then
fail

o‖stack← stack
until o = t

destroyed; for example it can cause my grammar parser to not consume the ¿ tokens

properly. In the case of an exception in a semantic action or semantic predicate, this

is an error in the grammar itself and I can specify any operation that is not needlessly

destructive. I have chosen to, upon an error, remove elements from the stack until

the expected matching token is seen, and then rethrow the exception. This is similar

to the error handling a normal LL (1) parser will perform upon illegal input, and is

implemented in algorithm 8.

But not all exceptions are errors: a faithful representation of the interface may require

that exceptions be thrown, and then the grammar implementation must throw them in

a manner consistent with the parsing algorithm. In this case, I store the exception

in a member variable and rethrow it as soon as it is safe, thus preserving the parse

information.

An example is worthwhile. Consider the following pseudo-grammar:
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Grammar 4. Throwing an exception (pseudo-grammar)

Start → ?begin() 〈〈 . . .〉〉 throw new Exception() ¿begin

How should we write a real grammar to encode the throw operation? It is nonsensical

to specify computation between the throw and the ¿. We can encode it as follows:

Grammar 5. Throwing an exception

Start → ?begin() 〈〈 . . .〉〉 〈〈λσ.exception← new Exception()〉〉 ¿begin

When the ¿begin is consumed, we check the contents of exception and throw it if

exception was non null.

6.4 Stubbing methods

The remaining hurdle is that the implementation in chapter 5 on page 48 specifies

that the client code must be changed. This is undesirable as usually the components

we would like to stub out using interface grammars have much more client code than

stub code. Fortunately, this is unnecessary. If our interface grammar implements a

Java interface, then for each method specified by the interface our stub may specify an
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implementation of that method that calls WITNESS() as desired. For each such method,

I output the following implementation:

public $returnType(stub) $name(stub)
($argument(stub)) {

argument = $argument(stub);
result = null; exception = null;
WITNESS(?$name(stub));
try {

WITNESS(¿$name(stub));
} catch (Exception e) {

TOSSUNTIL(¿$name(stub));
exception = e;

}
if (exception != null)

throw exception;
return ($returnType(stub)) result;

}

Again, I assume one argument and one return value. The exception variable here,

and the try/catch block, are for exception handling as discussed in section 6.3 on page 83.

The result value has a similar use: it is assigned to in algorithm 4 on page 61, and

then we simply cast the result to the correct return type (since the Java compiler will

refuse to compile otherwise) and return the value.
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Specification of Semantic Predicates
and Actions Using JML

With the interface grammars as defined previously in chapter 4 on page 29, many

things become convenient to specify, and with the Java escapes in the semantic actions

and semantic predicates everything that the environment does can be specified. But

excessive use of the semantic actions and semantic predicates can defeat the entire goal

of interface grammars, which is to be more flexible and more convenient than writing

raw Java code. I present here a layer on top of the grammars previously presented that

makes the specification of certain bidirectional grammars much easier. To motivate this,

I consider the problem of object generation and matching.

A weakness of the interface specification language defined in some of my previous

work [28] is that it does not provide direct support for describing the data associated

with the method calls and returns of a component, i.e., the arguments and return values

for the component methods. However, the interface specification language presented in
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that work allows specification of semantic predicates and actions. This enables the users

to insert arbitrary Java code to interface specifications. These semantic predicates and

actions can be treated as nonterminals with epsilon-productions and the Java code in

them are executed when the corresponding nonterminal appears at the top of the parser

stack. The user can do object validation and generation using such semantic predicates

and semantic actions. However, this approach is unsatisfactory for the same reason that

hand writing a component stub in Java directly is unsatisfactory; it is frequently brittle

and difficult to understand. Accordingly, I extended my interface grammars to support

generating and validating data, and did so in a way that preserves the advantages of

grammars.

7.1 Shape types

The shape types of Fradet and le Métayer [19] are an attractive formalism based

on graph grammars that can be used to express recursive data structures. I have been

inspired by their formalism, but to accommodate the differences between their goal and

mine, my implementation becomes substantially different. Nonetheless, it is worthwhile

explaining Fradet and le Métayer’s shape types and then explaining how my approach

differs syntactically before explaining my implementation.
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Shape types are an extension to a traditional type system. Their goal is to extend an

underlying type system so that it can specify the shape of a data structure; for example,

a doubly linked list. This extension is done through extending a normal context free

grammar, which we will proceed to explain.

Consider the language of strings (name x y)∗, where name is some string and x

and y are integers. If we regard x and y as vertices, then we can obtain a labeled directed

graph from any such string by regarding the string name x y as defining an edge from

the vertex labeled x to the vertex labeled y, itself labeled name. If we further regard

the vertices in this graph as representing objects and the edges as representing fields, we

can obtain an object graph. Note that this mapping is not one-to-one: if the strings are

reordered the same graph is obtained.

We can represent external pointers into this object graph by adding strings of the

form p x; here, the pointer named p points to the object x.

I now want a grammar that can output these graph encodings. While we can

regard name as a terminal, the vertices are not so simple. We extend the context-free

grammar to permit parameters; so the production N xy → next x y describes the

string next x y, whatever its parameters x and y are. If a variable is referred to in the

right hand side of a production but not listed in the parameters, then it represents a new

object that has not yet been observed. Fradet and le Métayer use next x x to represent

terminal links; we prefer to use next x null for the same purpose.
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Doubly → p x,prev x null, L x

L x → next x y,prev y x, L y

L x | next x null

(a) Shape type

1 2
next

prev

p

3
next

prev
4

next

prev

nextprev

(b) An example of that type

Figure 7.1: The shape type for a doubly linked list, with an example

Shape types provide a powerful formalism for specification of object graphs. In

figure 7.1 I show the shape type for a doubly linked list and an example of that type. In

figure 7.2 on the next page I show the shape type for a binary tree and an example of

that type. It is also possible to specify data structures such as left-child, right-sibling

trees, red-black trees, and skip lists using shape types [19].
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Bintree → p x,B x

B x → left x y, right x z,B y,B z

B x | left x null, right x null

(a) Shape type

1 rightleft

p

2 3

4

rightleftleft

right

right

5 rightleft

left

(b) An example of that type

Figure 7.2: The shape type for a binary tree, with an example

7.2 Object generation with interface grammars

In this section I discuss how I integrated shape types into my interface grammar

specification language. First, I start with a brief discussion on alternative ways of

generating arbitrary object graphs in a running Java program. Next, I give an overview

of my extended interface grammar language and discuss how this extended language
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supports shape types. I conclude this section by presenting an example interface grammar

for a left-child, right-sibling (LCRS) tree cursor.

7.2.1 Creating object graphs

There are three major techniques for object graph creation: with JVM support,

serialization, and method construction. The first technique uses support from the JVM to

create objects arbitrarily and in any form desired. Visser et al. [57] use this technique,

extending the Java PathFinder model checker appropriately. While this is very powerful,

it is necessarily coupled to a specific JVM and can be easy to inadvertently create object

structures that cannot be recreated by a normal Java program. I have rejected this

approach because we do not want to be overly coupled to a specific JVM.

The second technique uses the Java serialization technologies used by Remote

Method Invocation (RMI) [59]. This is almost as powerful as the first technique and has

the advantage of being more portable. Since the serialization format is standardized, it is

relatively easy to create normal serialization streams by fiat. There are two major issues

with this approach. First, it requires that all the objects that one might want to generate

be serializable, which requires changing the source code in many cases. Second, it is

possible for an object to arbitrarily redefine its serialization format or to add arbitrarily

large amounts of extra data to the object stream. This is common in the Java system

libraries. Accordingly I have rejected this approach as well.
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The third approach, and the one I settled upon, is to generate object graphs through

the object’s normal methods. The main advantages this approach has is that it works

with any object, it is as portable as the original program, and it is impossible to get an

object graph that the program could not itself generate. The main disadvantage is that

this is not amenable to fully automated analysis; if the objects are all well behaved and

follow the Java Beans specification it is just possible to automatically generate a tree,

but automatically determining the appropriate degree of sharing in the object graph is

immensely difficult. Since I do semiautomated analysis, I use this technique with the

shape types of the previous section and ask the user to tell the compiler what sort of

shape they desire.

7.2.2 Support for shape types

I can obtain all the power required to embed the shape types of section 7.1 on

page 88 into my interface grammars with one feature: rules have parameters. The

semantics of this situation has already been defined in chapter 4 on page 29, but I

examine the reasoning behind it here. Because I need to be able to pass objects to the

rules as well as retrieve them, I have chosen to use call-by-value-return semantics for

our parameters—rather like the “in out” parameters of the Ada language. Because we
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Shape type

Tree → p x,parent x null, left x null, right x null, T x

T x → child x null
T x → child x y,parent y x, left y null, R 〈y, x〉, T y

R 〈x, p〉 → right x null
R 〈x, p〉 → right x y, left y x,parent y p,R 〈y, p〉, T y

Tree walker

tree[n] → 〈〈if(n==null)n=newNode();〉〉 tree′[n]
tree′[n] → ?moveDown() ¿moveDown()

∆child 〈〈child=n.getFirstChild();〉〉
tree[child] 〈〈n.setFirstChild(child);〉〉
〈〈child.setParent(n);〉〉 maybeUp[child]

| ?moveRight() ¿moveRight()
∆sib 〈〈sib=n.getRightSibling();〉〉
tree[sib] 〈〈n.setRightSibling(sib);〉〉
〈〈sib.setLeftSibling(n);〉〉 maybeLeft[sib]

| ?getTree() ¿getTree(n) tree[n]
| ε

maybeUp[n] → ?moveUp() ¿moveUp()
∆parent 〈〈parent=n.getParent();〉〉
tree[parent]

| ε

maybeLeft[n] → ?moveLeft() ¿moveLeft()
∆sib 〈〈sib=n.getLeftSibling();〉〉
tree[sib]

| ε

Figure 7.3: Tree cursor with data
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have chosen uniform call-by-value-return semantics, only the name of a variable is a

permissible argument. This is seen in equation (4.5) on page 39.

The algorithms require a certain amount of care in these conditions—when we see a

nonterminal on the stack, we must store the parameter in a special location to prevent it

from being overwritten. This is all handled between lines 50 and 61 of algorithm 4 on

page 61.

7.2.3 A tree cursor

As a demonstration of this new ability to encode data more directly using my interface

grammar specification language, I present a tree cursor for a left-child, right-sibling tree.

It contains movement methods moveDown, moveRight, moveUp and moveLeft

and a getTree method, which will return a tree populated as far as the cursor has

explored. The interface grammar is shown in figure 7.3 on the preceding page. We omit

generation of unreached areas and error checking when moving right and up to make the

example clearer—naturally an example suitable for verification would need to include

them. Note that the interface grammar shown in figure 7.3 on the previous page makes

sure that the the tree that is returned by the getTree method is always consistent with

the previous calls to the moveUp, moveDown, moveLeft and moveRight methods

that have been observed.
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Shape type

Doubly → p x,prev x null, L x
L x → next x y,prev y x, L y

L x | next x null

Generation

genDoubly[x] → 〈〈x = new Node ();〉〉 〈〈x.setPrev (null);〉〉 genL[x]
genL[x] → ∆y 〈〈y = new Node ();〉〉 〈〈x.setNext (y);〉〉

〈〈y.setPrev (x);〉〉 genL[y]
| 〈〈x.setNext (null);〉〉

Matching

matchDoubly[x] → ∆ns 〈〈ns = new HashSet ();〉〉
Jx instanceof NodeK J!ns.contains (x)K
〈〈ns.insert (x);〉〉 Jx.getPrev () == nullK
matchL[〈x, ns〉]

matchL[〈x, ns〉] → Jx.getNext () == nullK ε
| Jx.getNext () != nullK ∆y 〈〈y = x.getNext ();〉〉

Jy instanceof NodeK J!ns.contains (y)K
〈〈ns.insert (y);〉〉
Jx.getNext () == yK Jy.getPrev () == xK
matchL[〈y, ns〉]

Figure 7.4: Interface grammars for doubly linked list generation and matching
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Shape type

Bintree → p x,B x

B x → left x y, right x z,B y,B z

B x | left x null, right x null

Generation

genBintree[x] → 〈〈x = new Node ();〉〉 genB[x]
genB[x] → ∆y 〈〈y = new Node ();〉〉 ∆z 〈〈z = new Node ();〉〉

〈〈x.setLeft (y);〉〉 〈〈x.setRight (z);〉〉 genB[y] genB[z]
| 〈〈x.setLeft (null);〉〉 〈〈x.setRight (null);〉〉

Matching

matchBintree[x] → ∆ns 〈〈ns = new HashSet ();〉〉
Jx instanceof NodeK J!ns.contains (x)K
〈〈ns.insert (x);〉〉 Jx.getPrev () == nullK
matchB[〈x, ns〉]

matchB[〈x, ns〉] → Jx.getLeft () == nullK Jx.getRight () == nullK
| Jx.getLeft () != nullK ∆y 〈〈y = x.getLeft ();〉〉

Jy instanceof NodeK J!ns.contains (y)K
〈〈ns.insert (y);〉〉 ∆z 〈〈z = x.getRight ();〉〉
Jz instanceof NodeK J!ns.contains (z)K
〈〈ns.insert (z);〉〉
Jx.getLeft () == yK
Jx.getRight () == zK matchB[〈y, ns〉]
matchB[〈z, ns〉]

Figure 7.5: Interface grammars for binary tree generation and matching
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7.3 Object generation vs. object validation

Using my interface grammar specification language, it is possible to specify both

generation and validation of data structures, and to do so in a manner that is reminiscent

of the shape types of section 7.1 on page 88. Object validation is used to check that the

arguments passed to a component by its clients satisfy the constraints specified by the

component interface. Object generation, on the other hand, is used to create the objects

that are returned by the component methods based on the constraints specified in the

component interface.

Figure 7.4 on page 96 and figure 7.5 on the preceding page shows object generation

and validation for doubly linked list and binary tree examples. The figure contains three

specifications for each of the two examples. At the top of the figure we repeat the shape

type specifications for doubly linked list and binary tree examples from section 7.1 on

page 88 for convenience. The middle of the figure contains the interface grammar rules

for generation of these data structures. Note the close similarity between the shape type

productions and the productions in the interface grammar specification. The bottom of

the figure shows the interface grammar rules for validation of these data structures.

Object generation and validation tasks are broadly symmetric, and their specification

as interface grammar rules reflects this symmetry as seen in figure 7.4 on page 96 and

figure 7.5 on the previous page. While in object generation semantic actions are used to
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set the fields of objects to appropriate values dictated by the shape type specification, in

object validation, these constraints are checked using semantic predicates specified as

guards. Note that the set of nonterminals and productions used for object generation and

validation are the same.

The most significant difference between the object generation and validation tasks

is the treatment of aliasing among different nodes in an object graph. The semantics

of shape type formalism makes some implicit assumptions about aliasing between the

nodes. Intuitively, shape type formalism assumes that there is no aliasing among the

nodes of the object graph unless it is explicitly stated. During object generation it is

easy to maintain this assumption. During generation, every new statement creates a

new object what is not shared with any other object in the system. If the specified data

structure requires aliasing, this can be achieved by passing nodes as arguments as is

done in shape type formalism.

Detecting aliasing among objects is necessary during object validation. Note that,

since shape type formalism assumes that no aliasing should occur unless it is explicitly

specified, during object validation we need to make sure that there is no unspecified

aliasing. Instead of trying to enforce a fixed policy on aliasing, we leave the specification

of the aliasing policy during object validation to the user. The typical way to check

aliasing would be by using a hash-set as demonstrated by the two object validation

examples shown in figure 7.4 on page 96 and figure 7.5 on page 97. Note that, the
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interface grammar rules for object validation propagate the set of nodes that have been

observed and make sure that there is no unspecified aliasing among them.

7.4 Using JML to specify object validation and genera-

tion

The generation and validation sections of figure 7.4 on page 96 and figure 7.5

on page 97 are similar, but this similarity is obscured by the mechanics of validation

and generation. For example, the construct 〈〈x = new Node ();〉〉 corresponds to the

constructs

Jx instanceof NodeK J!ns.contains (x)K 〈〈ns.insert (x);〉〉

in that both constructs ensure that as execution proceeds, x is a fresh Node instance.

Similarly, the correspondence between 〈〈x.setLeft (null);〉〉 and Jx.getLeft () == nullK

should be apparent.

It would be nice to only have to write this once. It may not always be possible, but

it would be useful if in the common case we could only have to write the validation

procedure and infer the generation procedure from that, or vica versa. In fact a great

deal of effort has gone into doing just this; Korat [13] requires a specially formatted
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validation procedure, from which it can infer a generation procedure, and Visser et.

al [58] did similar work using JPF. One disadvantage of this approach is that these

inferences tend to be brittle; Visser et. al mention that an incorrectly written validation

procedure can cause an infinite loop during generation.

I have opted for a different approach. In my approach, the user specifies invariants

of the system in the Java Modeling Language (JML) [12, 32, 34] and the interface

grammar compiler will construct a correct validation procedure and a correct generation

procedure from these invariants. This problem is enormously difficult and undecidable

in its general form. Even the JML specification [35] does not guarantee that all JML

expressions can be translated to Java; section 11.4.24.4 notes that it is possible to write

quantified expressions that are not be translated. Accordingly at present my compiler

can only translate a small portion of the JML specification. This portion is adequate for

the examples presented here, however.

7.4.1 The Java Modeling Language

JML is a specification language for Java programs, using Hoare style preconditions,

postconditions and invariants. It is usually embedded in Java code using annotation

comments. The language supports many different sorts of modeling; for my purposes

here I am principally interested in the expression language.
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This expression language is a superset of the side-effect free portions of the Java

expression syntax. It is extended with various Boolean operators like ==> (denoting

logical implication), existential and universal quantifiers, and a host of extensions

resembling functions (for example \fresh, which returns true if the variables given are

bound to new objects that did not previously exist in the system, or \old, which refers

to the value of an expression in some previous state). The user can even extend JML’s

primitives with user defined functions obeying certain restrictions.

As mentioned above, arbitrary JML expressions can be nontrivial to translate to

Java, and additionally generating an object graph capable of satisfying an arbitrary

expression would almost certainly require a theorem prover. Different JML tools support

different subsets of the language. Accordingly at this time I consider only a minimal

subset capable of expressing the properties I am interested in. If the user requires more

elaborate operations, semantic predicates and actions written in Java remain available. I

present this subset in figure 7.6 on the following page. As a stylistic convention, I use

id to denote a variable name, b to denote a Boolean value, i to denote an integer, s to

denote a string, and Type to denote a type name.
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R → R&&R (7.1)

| R‖R (7.2)

| R ==> R (7.3)

| E == E (7.4)

| E.equals(E) (7.5)

| I[id] (7.6)

| b (7.7)

| id (7.8)

id a Boolean variable

| E.isEmpty() (7.9)

| E.contains(E) (7.10)

| \fresh(E∗) (7.11)

| \old(R) (7.12)

| (\forall Type id;
S[id]; R)

(7.13)

| (\forall int id;
I[id]; R)

(7.14)

E → i (7.15)

| s (7.16)

| b (7.17)

| id (7.18)

| null (7.19)

| E[E] (7.20)

| E.id (7.21)

for a field id

| E.get(E) (7.22)

| E.getField() (7.23)

for a field field

| \old(E) (7.24)

S[id] → E.contains(id) (7.25)

| E.containsKey(id) (7.26)

I[id] → id > i (7.27)

| id >= i (7.28)

| id > E (7.29)

| id >= E (7.30)

| id < i (7.31)

| id <= i (7.32)

| id < E (7.33)

| id <= E (7.34)

| I[id]&&I[id] (7.35)

| I[id]‖I[id] (7.36)

Figure 7.6: The subset of JML I accept
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Table 7.1: Attributes used

Attribute Meaning

R.mg Macroexpansion of a relation for generation
R.mv Macroexpansion of a relation for verification
R.or \old variable substitution within a relation
R.om \old variable-to-expression map within a relation
R.gs Java statements to ensure that the relation R is fulfilled
R.gr a Java expression to verify that the relation R is fulfilled
E.r a Java expression to get E’s value (E as “r-value”)
E.l a function taking one expression and returning a Java state-

ment to set E’s value to that argument (E as “l-value”)
S.i a Java expression required to generate an iterator for all values

matched by S
I.l the lowest possible value for I
I.h the highest possible value for I
I.r a Boolean expression encoding the constraint I

Algorithm 9 JML expression expansion
1: function CONVERT(P = X → Y1Y2 . . . Yn, d)
2: ys′ = [1 ≤ i ≤ n : MACROEXPAND(Yi, d)]
3: ys′′ = [1 ≤ i ≤ n : OLDEXPAND(ys′)]
4: oldmap =

⋃n
i=1 OLDMAP(ys′)

5: oldinit =
www

x∈dom(oldmap)
〈〈“x← ”‖oldmap(x)‖“; ”〉〉

6: return X → oldinit‖
wwwn

i=1
GENERATE(ys′′i , d)

7.4.2 Translating JML expressions to Java

There are three stages of translation for this to be rendered to interface grammars.

The algorithm for translating JML expressions is shown in algorithm 9, using auxiliary

functions defined in figure 7.7 on the following page and figure 7.8 on page 106. These

functions use attribute grammars defined in figure 7.9 on page 107, figure 7.10 on

page 110, figure 7.11 on page 113, figure 7.12 on page 114, figure 7.13 on page 115,

104



Chapter 7. Specification of Semantic Predicates and Actions Using JML

MACROEXPAND(ensureR, normal) = R.mg (7.37)
MACROEXPAND(ensureR, inverse) = R.mv (7.38)
MACROEXPAND(requireR, normal) = R.mv (7.39)
MACROEXPAND(requireR, inverse) = R.mg (7.40)

MACROEXPAND(letR, d) = R.mg (7.41)
MACROEXPAND(assertR, d) = R.mv (7.42)
MACROEXPAND(whenR, d) = R.mv (7.43)

or for any other grammar construct P

MACROEXPAND(P, d) = P (7.44)

OLDEXPAND(ensureR) = R.or (7.45)
OLDEXPAND(requireR) = R.or (7.46)

OLDEXPAND(letR) = R.or (7.47)
OLDEXPAND(assertR) = R.or (7.48)
OLDEXPAND(whenR) = R.or (7.49)

or for any other grammar construct P

OLDEXPAND(P ) = P (7.50)

Figure 7.7: Auxiliary functions for expansion

and figure 7.14 on page 117. I discuss each of these grammars below. These grammars

use attributes defined in table 7.1 on the preceding page.

First, I extend the grammar syntax of section 4.1 on page 33 with five new statements.

The simplest are when and assert; both convert to a predicate halting execution unless

the provided JML predicate is true. Next simplest is let, which guarantees that the

provided JML predicate is true. The final two, ensure and require, are for specifying
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OLDMAP(ensureR) = R.om (7.51)
OLDMAP(requireR) = R.om (7.52)

OLDMAP(letR) = R.om (7.53)
OLDMAP(assertR) = R.om (7.54)
OLDMAP(whenR) = R.om (7.55)

or for any other grammar construct P

OLDMAP(P ) = P (7.56)

GENERATE(ensureR, normal) = 〈〈R.gs〉〉 (7.57)
GENERATE(ensureR, inverse) = JR.grK (7.58)
GENERATE(requireR, normal) = JR.grK (7.59)
GENERATE(requireR, inverse) = 〈〈R.gs〉〉 (7.60)

GENERATE(letR, d) = 〈〈R.gs〉〉 (7.61)
GENERATE(assertR, d) = JR.grK (7.62)
GENERATE(whenR, d) = JR.grK (7.63)

or for any other grammar construct P

GENERATE(P, d) = P (7.64)

Figure 7.8: Auxiliary functions for expansion, part 2

bidirectional grammars. In the so-called “normal” mode of execution, ensure acts

as let and require acts as assert. In the so-called “inverse” mode of execution, the

compiler is asked to express the counterpart to the specified grammar. That is, if the

user writes a grammar for a component in a system, “normal” execution generates a stub

for that component. “Inverse” execution generates a stub for the rest of the system the

component communicates with.
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R→ E0==\new(Type;
E1, . . . , En;R1, . . . , Rm)

R.mg =E0==new Type(E1, . . . , En)
&& \fresh(E0)

(7.65)

R.mv =E0 instanceof Type &&
\fresh(E0) &&R1 && . . . &&Rm

R→ \add(E1, E2) R.mg = E1.add(E2) (7.66)

R.mv =E1.containsAll(\old(new ArrayList(E1)))
&&E1.contains(E2)

R→ \push(E1, E2) R.mg = E1.addLast(E2) (7.67)

R.mv =E1.size() == \old(E1.size()) + 1 &&
\oldcoll(E1, 0, \old(E1.size()), 0)
&&E1.get(E1.size()− 1) == E2

R→ E0 == \pop(E1) R.mg = E0 == E1.removeLast() (7.68)

R.mv =E1.size() == \old(E1.size())− 1 &&
\oldcoll(E1, 0, \old(E1.size())− 1, 0)
&&E0 == \old(E1.get(E1.size()− 1))

Figure 7.9: Macro expansion prior to \old conversion. R.mg represents the correct ex-
pansion if we are in a generation context, whereas R.mv represents the correct expansion
if we are in a verification context.

The function CONVERT translates a grammar using JML expressions into a grammar

using only Java expressions. The first argument is the production to translate, and the

second argument is the direction—that is, “normal” or “inverse”.

The first step of conversion is expanding certain macros. I use these because it is

difficult to concisely express concepts like “this array is unchanged, except that this

object is appended to it” in raw JML. Since I hope to construct from the JML expression
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both validation and generation code, it is important that these be easily recognized. I

define four macros, whose expansion is presented in figure 7.9 on the preceding page.

The first macro, \new, solves a technical problem in translating object creation.

There are four important facts needed to both verify object creation and ensure that it

happens; first, that the object is brand new and has never been seen before. Second, that

the object is of a certain type. Third, the constructor arguments. Fourth, any resulting

assignments to the object properties. The first two are not difficult to establish, but there

is no way to automatically infer the constructor arguments from any object properties,

nor is there any way to automatically infer the object properties from the constructor

arguments. I could follow the JavaBeans specification [49] and use a no-argument

constructor to create the object and then use setter methods; however, this is not useful

when dealing with value objects like strings, which cannot be modified after construction.

Accordingly I use a macro that expresses both the constructor arguments (E1, . . . , En

in equation (7.65) on the previous page) and any corresponding relations upheld by the

constructor (R1, . . . , Rm in equation (7.65)).

The second through fourth macros represent modification of collection objects. It is

relatively easy to express change for mapping; we can just write X.get(Y ) == Z, and

in one direction interpret this literally and in the other direction change it to X.put(Y, Z).

But adding a collection to an array implies that everything that used to exist in the

collection still does, as well as this new object. Similarly, pushing and popping from
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a stack imply that the order of the stack is not changed, merely the size (by one) and

perhaps the last element. These are not trivial to translate, and so I provide macros.

In each case, one direction is much simpler than the other, as I can rely upon the

Java standard library to work properly, while it is inappropriate to assume that code

under examination does the right thing. These expansions make use of a specialized

construction I define below.

The second step in translation is dealing with the \old operator. That command

refers to some previous binding of a variable, frequently used in Design By Contract

(DBC) [39] style pre- and postconditions. For DBC, which is focused on objects and

methods, the idea of where in the execution of the program the \old expression should be

computed is defined to be the start of the annotated method. Since I use grammars, I must

define precisely where this previous binding takes place, and how the \old substitution

takes place.

While I could define a complex system of rules for determining when the contents

of the \old commands are computed, due to the grammar abstraction I have a very

natural position already; the start of the grammar production itself. I could declare that

\old expressions are computed at procedure entry, but it is not always clear what the

enclosing procedure is for any given JML expression, whereas the start of the grammar

production is obvious. Since grammar productions are wholly under the control of the
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E → \old(E1) E.or = E.i (7.69)
E.om = E1.om[E.i 7→ E1]

R→ \old(R1) R.or = R.i (7.70)
R.om = R1.om[R.i 7→ R1]

R→ \oldarr(E1, s1, e1, s2) R.or = “(\forall int ”‖R.j‖“; ”‖R.j
‖“ >= ”‖s1‖“ && ”‖R.j
‖“ < ”‖e1‖“; ”‖E1‖“[”‖
R.j‖“] == ”‖R.i
‖“[”‖R.j‖“− ”‖s1‖“])”

(7.71)

R.om = (R1.om ∪ E1.om)

[R.i 7→“Arrays.copyOfRange(”‖
E1‖“, ”‖s2‖“, ”‖
e1 − s1 + s2‖“)”]

R→ \oldcoll(E1, s1, e1, s2) R.or = “(\forall int ”‖R.j‖“; ”‖R.j
‖“ >= ”‖s1‖“ && ”‖R.j
‖“ < ”‖e1‖“; ”‖E1‖“.get(”‖
R.j‖“) == ”‖R.i‖“.get(”‖
R.j‖“− ”‖s1‖“ + ”‖s2‖“))”

(7.72)

R.om = (R1.om ∪ E1.om)

[R.i 7→“new ArrayList(”‖E1‖“)”]

otherwise for any other rule NT → S with nonterminals NT1, . . . ,NTn

NT → S NT.om =
n⋃

i=1

NT i.om (7.73)

Figure 7.10: Computation of \old expressions. Here NT.i and NT.j are unique identi-
fier names, NT.or is the expression after \old substitution, and NT.om is synthesized
attribute containing a mapping from identifiers to expressions. Because JML prohibits
enclosing quantified variables in \old expressions, we need not specifically handle
\forall expressions.
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user, this should permit controlling where these expressions will be executed, in the

event that this is important. Accordingly, during translation of the \old expressions I

accumulate a mapping of variable names to expressions, and bind those variables to

those names at the start of the production. I omit dealing with types here for simplicity;

since Java is strongly typed, to generate correct Java code in line 5 of algorithm 9 on

page 104 requires being able to determine which type oldmap(x) evaluates to. Doing

this is complex and tedious but well understood, and so I omit it to make the presentation

more comprehensible.

Figure 7.10 on the previous page describes the computation of the \old expres-

sions. It uses an attributed grammar, that rewrites the tree accordingly, and stores the

expressions-to-be-calculated in NT.or as a map. When an expression is replaced with

a variable, a mapping from the variable to the expression is added to NT.or. If there

are no \old-type expressions in a JML expression, we unify the NT.or maps of all

sub-expressions. If variable capture was possible, for example in anonymous functions

or the like, then this technique would not work; in translation the value for the captured

variable would somehow need to be precomputed. This is possible in JML thanks to

quantified variables in \forall expressions and its cousins. I must support \forall; there

is no sensible way to handle arrays, lists and the like without it. Fortunately, the JML

specification itself anticipates this problem and prohibits referring to quantified variables
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within \old expressions. So for the most part, I can simply copy the expression and use

it directly, as in equation (7.69) on page 110 and equation (7.70) on page 110.

I need one more \old-like command, however. Without quantified variables in

\old expressions, it is difficult to establish conditions such as “the contents of this

array have not changed”. If the length of the array is bounded one could enumerate all

possible indexes, but this is tedious and brittle. Accordingly I permit two commands

\oldarr and \oldcoll, which establish that the “old” version of E1 from s1 to e1 and the

“new” version of s2 of the same length contain identical objects. Ideally I would only

have one command, but as Java distinguishes between primitive arrays and collection

classes I must have both. These are translated as in equation (7.71) on page 110 and

equation (7.72). In both cases, R is replaced by a \forall expression that verifies that

each component of the array or collection is unchanged, and R.r is updated with a

binding for R.i that will copy the array structure (a so-called “shallow copy”). R.j is

used as the name for the quantifier variable.

The final step in conversion is, with macros expanded and \old substitution complete,

translating the JML expressions to Java code. This corresponds to line 6 of algorithm 9

on page 104. These translations are presented in figure 7.11 on the following page,

figure 7.12 on page 114, figure 7.13 on page 115 and figure 7.14 on page 117.
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E → i E.r = “i” (7.74)
E → s E.r = “s” (7.75)
E → b E.r = “b” (7.76)
E → id E.r = “id” (7.77)

E.l = λx.E.r‖“ = ”‖x
E → null E.r = “null” (7.78)
E → E1[E2] E.r = E1.r‖“[”‖E2.r‖“]” (7.79)

E.l = λx.E.r‖“ = ”‖x
E → E1.id E.r = E1.r‖“.”‖id (7.80)

E.l = λx.E.r‖“ = ”‖x
E → E1.get(E2) E.r = E1.r‖“.get(”‖E2.r‖“)” (7.81)

E.l = λx.E1.r‖“.put(”‖E2.r‖“, ”‖x‖“)”
E → E1.getField() E.r = E1.r‖“.getField()” (7.82)

E.l = λx.E1.r‖“.setField(”‖x‖“)”

Figure 7.11: Generation rules for JML expressions. Here E.r is the expression required
to get E’s value (E as an “r-value”), and E.l is a function of one argument that sets
E’s value to that argument (E as an “l-value”). When E.l is not specified, E is not an
l-value.

Figure 7.11 describes the translation for expressions. Because expressions can be

used for their value and also as an assignment location, I give the text required to get

the value of the location and a function returning the text required to assign to the

location separately, as E.r and E.l respectively. E.l must be a function of one variable,

because the variable is sometimes a function argument and other times not (contrast

equation (7.77) with equation (7.82)).
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R→ R1 &&R2 R.gs = R1.gs‖R2.gs (7.83)

R.gr = R1.gr‖“&&”‖R2.gr

R→ R1 ‖R2 R.gs = “if(Verify.random(2) == 0){”‖R1.gs‖“}else{”‖R2.gs‖“}”
(7.84)

R.gr = R1.gr‖“||”‖R2.gr

R→ R1 ==> R2 R.gs = “if(”‖R1.gr‖“){”‖R2.gs‖“}” (7.85)

R.gr = “!”‖R1.gr‖“||”‖R2.gr

R→ E1 == E2 R.gs = E1.l(E2.r)‖“;” (7.86)

R.gr = E1.r‖“ == ”‖E2.r

R→ E1.equals(E2) R.gs = E1.l(E2.r)‖“;” (7.87)

R.gr = E1.r‖“.equals(”‖E2.r‖“)”

R→ I[id] R.gs =“Verify.random(”‖I.l‖“, ”‖I.h‖“); ”

‖“Verify.ignoreIf(!”‖I.r‖“); ”

(7.88)

R.gr = I.r

R→ true R.gs = “;” (7.89)

R.gr = “true”

R→ false R.gs = “fail;” (7.90)

R.gr = “false”

R→ id R.gs = “if (!”‖id‖“) fail;” (7.91)

R.gr = id

R→ E.isEmpty() R.gs = E.r‖“.clear(); ” (7.92)

R.gr = E.r‖“.isEmpty()”

Figure 7.12: Generation rules for JML relations, part 1. Here R.gs are the statements
required to ensure R is true and R.gr is the expression stating whether R is upheld.

Figure 7.12 and figure 7.13 on the next page use these rules to translate relations.

In some cases I need an expression that yields true or false depending on whether the

relation succeeds or fails now, and in other cases I need a series of statements that ensures

that if execution continues, the relation is true. These two requirements are separated
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R→ E1.contains(E2) R.gs = E1.r‖“.add(”‖E2.r‖“); ” (7.93)

R.gr = E1.r‖“.contains(”‖E2.r‖“)”

R→ \fresh(E1, . . . , En) R.gs =
wwn

i=1
“if(seenObjects.contains(”‖
Ei.r‖“))fail;”‖
“seenObjects.add(”‖Ei.r‖“); ”

(7.94)

R.gr = “true”‖
wwn

i=1
“&&”‖Ei.r‖“! = null &&”‖
“!seenObjects.contains”‖
“(”‖Ei.r‖“)”

R→ (\forall Type id; S[id]; R1) R.gs = “for(”‖Type‖“ ”‖id‖“ : ”‖S.i‖“)”‖
“{”‖R1.gs‖“}”

(7.95)

R.gr = “!Filter.filter(”‖S.i‖“,new UnaryFunctor(){
public Object fn(”‖Type‖“ ”‖id‖“){

return”‖R1.gr‖“; }).empty()”

R→ (\forall int id; I[id]; R1) R.gs = “for(”‖“int”‖id‖“ = ”‖I.l‖“; ”‖
id‖“ <= ”‖I.h‖“; ”‖id‖“++)”‖

“{if(!”‖I.r‖“) continue; ”‖R1.gs‖“}”

(7.96)

R.gr = “!Filter.filter(arrayFrom(”‖I.l‖“, ”‖I.h‖“),
new UnaryFunctor(){

public Object fn(”‖Integer‖“ ”‖id‖“){
return”‖I.r‖“ && ”‖R1.gr‖“; }).empty()”

Figure 7.13: Generation rules for JML relations, part 2. Here R.gs are the statements
required to ensure R is true and R.gr is the expression stating whether R is upheld.

into R.gr and R.gs respectively. An example of the need for this is in equation (7.85),

where in the definition of R.gs R2 is made to be true if R1 holds—to do this, I must

have an expression for R1, not a series of statements.

Some translations warrant specific note. Equation (7.87) on the preceding page calls

the function E1.l with the r-value of E2 to obtain the Java expression required to set E1
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to E2. Equation (7.88) on page 114 creates an integer upholding an expression using the

model checker’s random number generation function. For efficiency’s sake, rather than

generate one of every possible integer that could be represented by a variable, I establish

upper and lower bounds (here I.h and I.l respectively) and generate an integer between

those. This may not be sufficient; for example, we may be presented with finding an x

that satisfies x > 5 ∧ x > 0 ∧ x < 10. The lower bound here for x is clearly 1, but no

value for x that is less than 6 will satisfy the expression. Thus, we ignore any values that

do not satisfy the relation.

Equation (7.92) on page 114 ensures that the expression will be empty. Not all

collections permit the clear method to be called, and there is no good way to determine

whether any given collection is read-only. In the event that it is not, an exception will be

thrown, so the error will be detected.

Equation (7.94) on the previous page uses an auxiliary global set seenObjects that

stores all objects that have been “seen” and adds any that are “seen”. This is not totally

satisfactory as long existing objects that are never noticed by the grammar parser will be

classified as fresh, but absent more intrusive measures or a theorem prover this is the

best possible. It is sufficient to detect cycles in data structures.

Equation (7.95) on the preceding page and equation (7.96) translate quantification

expressions over sets and integer ranges, respectfully. S[id] and I[id] restrict the types of
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S[id]→ E.contains(id) S.i = E.r (7.97)

S[id]→ E.containsKey(id) S.i = E.r‖“.keySet()” (7.98)

I[id]→ id > i I.l = i+ 1 I.h = > (7.99)

I.r = id‖“ > i”

I[id]→ id >= i I.l = i I.h = > (7.100)

I.r = id‖“ >= i”

I[id]→ id > E I.l = ⊥+ 1 I.h = > (7.101)

I.r = id‖“ > ”‖E.r
I[id]→ id >= E I.l = ⊥ I.h = > (7.102)

I.r = id‖“ >= ”‖E.r
I[id]→ id < i I.l = ⊥ I.h = i− 1 (7.103)

I.r = id‖“ < i”

I[id]→ id <= i I.l = ⊥ I.h = i (7.104)

I.r = id‖“ <= i”

I[id]→ id < E I.l = ⊥ I.h = >− 1 (7.105)

I.r = id‖“ < ”‖E.r
I[id]→ id <= E I.l = ⊥ I.h = > (7.106)

I.r = id‖“ <= ”‖E.r
I[id]→ I1[id]&&I2[id] I.l = max(I1.l, I2.l) (7.107)

I.h = min(I1.h, I2.h)
I.r = I1.r‖“&&”‖I2.r

I[id]→ I1[id]‖I2[id] I.l = max(I1.l, I2.l) (7.108)

I.h = min(I1.h, I2.h)
I.r = I1.r‖“||”‖I2.r

Figure 7.14: Generation rules for JML expressions. Here S.i is the expression required
to generate an iterator for all values matched by S, I.l is the lowest possible value for id,
I.h is the highest possible value for id, and I.r is a Boolean expression encoding the
constraint.

the expressions id is quantified over to, in one case, be easily translatable set expressions,

and in the other case be easily translatable integer expressions. The JML specification
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itself notes that not all tools will be able to handle arbitrary expressions here, so these

limitations are fairly typical. Both expressions translate straightforwardly to loops for

generation. Unfortunately, Java is not powerful enough to permit translating quantified

expressions to Java expressions directly unless I make use of anonymous inner classes

and auxiliary functions. Accordingly R.r uses two libraries from the JGA [24] library

to perform this operation. Filter.filter(S, f) returns a collection containing only the

elements s ∈ S where f(s) holds. UnaryFunctor is the superclass for the anonymous

inner classes required to make closures possible; it is related to the Generator discussed

in section 6.2 on page 81. arrayFrom(l, h) is a custom library that creates an iterator

that steps through every integer i where l ≤ i < h. We could generate a temporary array

for this, but this could require a very large array and generating the integers on-the-fly is

more efficient.

Finally, figure 7.14 on the preceding page defines translation rules for these quan-

tification expressions. For sets, I currently permit only quantification over a set, and

quantification over the domain of a map. For integers, I permit a variety of relational

expressions. Defining these is tedious but not difficult. In the case that id is compared

with an arbitrary expression, I cannot, of course, know the bounds of that expres-

sion absent a theorem prover. I do not attempt it, setting the low and high values to

be the extreme values for the type (in the case of integers, Integer.MIN VALUE and
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Integer.MAX VALUE respectively). Conjunction of integer expressions maintains these

values.

7.4.3 An example

After all this, an example is in order. I have re-expressed the examples in figure 7.4

on page 96 and in figure 7.5 on page 97 using this new framework. The resulting

grammars can generate both the matching and generation code originally written while

being approximately as simple as the generation and much simpler than the matching.

These re-expressed examples are presented in figure 7.15 on the next page along with

the corresponding shape types.

7.5 Verification Using JML

Correct clients Incorrect clients
deparent voider reparent increaser

Time Memory Time Memory Time Memory Time Memory Accounts Entries
(m:s) (MB) (m:s) (MB) (m:s) (MB) (m:s) (MB)

0:11 26 0:17 27 0:10 27 0:14 27 1 2
0:14 26 0:23 37 0:16 36 0:13 27 1 4
0:21 34 0:38 39 0:20 36 0:14 27 1 6
0:49 36 2:55 41 0:17 36 0;14 27 1 8
3:38 36 15:37 50 0:18 36 0:14 27 1 10

Table 7.2: Run time and memory usage vs. number of entries
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Doubly linked list

Shape type

Doubly → p x,prev x null, L x
L x → next x y,prev y x, L y

L x | next x null

Grammar

Doubly[x] → ensurex == \new(Node) &&x.getPrev() == null; L[x]
L[x] → ∆y ensure y == \new(Node) &&x.getNext() == y

&& y.getPrev() == x; L[y]
| ensurex.getNext() == null;

Binary tree

Shape type

Bintree → p x,B x

B x → left x y, right x z,B y,B z

B x | left x null, right x null

Grammar

Bintree[x] → ensurex == \new(Node); B[x]
B[x] → ∆y, z ensure y == \new(Node) && z == \new(Node)

&&x.getLeft() == y&&x.getRight() == z;

B[y] B[z]
| ensurex.getLeft() == null &&x.getRight() == null;

Figure 7.15: JML expressions of earlier examples.
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Correct clients Incorrect clients
deparent voider reparent increaser

Time Memory Time Memory Time Memory Time Memory Accounts Entries
(m:s) (MB) (m:s) (MB) (m:s) (MB) (m:s) (MB)

0:14 26 0:23 37 0:16 36 0:13 27 1 4
1:09 35 2:35 41 0:56 38 0:13 27 2 4

19:09 37 34:18 43 14:03 39 0:19 27 3 4

Table 7.3: Run time and memory usage vs. number of accounts

Account amount
Entry*1 Transaction2..* 1

∑(entries.amount) = 0

Figure 7.16: UML diagram of the Account pattern

As a demonstration of this work, I have written several small clients for an Enterprise

Java Beans [50] (EJB) persistence layer. Other work on EJB layers is discussed in

chapter 8 on page 126, including a description of the EJB framework itself. Here I use it

as a convenient interface for handling some types of queries and performing relational

integrity checks upon the resulting database.

I chose to base my clients around the Account pattern from Fowler [18]. Strictly

speaking this is a pattern for an object schema; accordingly I have implemented it for

these tests with the SQL mapping in the EJB framework. The Account pattern is useful

for me here because it represents structured data and also has a hierarchical element.

A brief description of the Account pattern and how I interpreted it is in order. A

UML diagram illustrating all this can be seen in figure 7.16. An account contains entries
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and can be a parent to other accounts; the account instances make up a forest. An

entry is associated with exactly one account and exactly one monetary transaction, and

has a field representing an amount of money. A monetary transaction is associated

with at least two entries, and the sum of all entries in every monetary transaction must

be zero at the end of a database transaction—this is often stated as “money is neither

created nor destroyed”. Since unfortunately the term ‘transaction’ here refers to two

distinct concepts both of which are important to us, I must be explicit: in the absence

qualification, ‘transaction’ always refers to a monetary transaction.

This structure possesses a number of natural invariants. I have already mentioned

the key transaction invariant. Accounts and their children must possess the tree property;

that is no account can ever has two parents. The sum of all entries in all accounts in

the system should also be zero; if it is not, I may have forgotten to store an account, an

entry, or a transaction. Because I permit more than only two entries per transaction, my

transactions are called multi-legged; it is usually considered undesirable or an outright

error for one transaction to have more than one “leg” in any one account.

All these data invariants are in addition to the order in which the methods should be

called. No query parameters should be adjusted following execution of the query. The

queries themselves ought to be executed during a database transaction in order to obtain a

consistent view of the database between each query. The getResultList or getSingleResult
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methods should be the last operation performed on the query object—these methods

request either all results from a single database query or only one result.

I used my interface grammar compiler to create a stub for the EJB Persistence API

that encodes all these invariants. Because the database can change in unpredictable and

arbitrary ways between database transactions, my stub entirely regenerates the database

every time a transaction is begun. If a transaction is rolled back, it could well be in

an incomplete state and so applying database invariants is folly; yet if a transaction is

committed it must be verified.

My stub contains two tunable parameters, corresponding to an upper bound on the

number of accounts in the system and an upper bound on the number of entries in the

system. The number of transactions in the system is always nondeterministically chosen

to be between 1 and b| entries | /2c, inclusive.

To exercise this stub, I wrote four EJB Persistence API clients, and ran the clients

with varying parameters in the Java PathFinder model checker. Two stubs are correct in

their use of the database and I expect that JPF will report this. Two are incorrect; one

triggers a fault almost immediately, and the other is only invalid some of the time. My

clients are as follows:

1. deparent takes an account and removes it from its parent. Changing the parent of

an account can cause cycles if done naı̈vely, but removing the parent is always

safe. I expect that as the number of accounts and entries increases verifying this
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operation will take an exponentially increasing amount of time to complete, as

normal for model checking.

2. voider selects a transaction and ‘voids’ it, by creating a new transaction negating

the original transaction. This introduces new objects into the system, and so one

would expect it to be slower than deparent. Since most of the work involves

creating duplicate entry transactions, I would expect it to be more affected by

increases in entries than by increases in accounts.

3. reparent takes two entries in the system and trades their transactions. If the entries

encode the same monetary value this can be safe, but in the general case this

operation will break the transaction invariant. An additional complication is that if

there are less than four entries in the system, reparent cannot fail; there is only one

transaction available. It is hard to say a priori how much time reparent will take to

fail; the model checker’s scheduler will determine this. However the proportion of

the state space where reparent is valid to the size of the total state space decreases

precipitously as the number of entries in the system increases. Accordingly I

expect that it the running time will eventually come to some equilibrium if I

increase the number of entries, but will consume an exponentially increasing

amount of time if I hold the number of entries constant and increase the number

of accounts.
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4. increaser increases the monetary value of entries in the system. This will always

trip the transaction invariant, with even two entries in the system, and so I expect

it will take approximately the same amount of time to complete regardless of the

size of the state space.

My results are presented in table 7.2 on page 119 and table 7.3 on page 121. My

clients behave largely according to the expectations given above. deparent and voider’s

run times increase with large jumps as the number of entries rises from 6 to 8 and from 8

to 10. Similarly their run times increase violently as the number of entries rise. voider is

slower than deparent, although both are so sensitive to the number of accounts that I was

unable to examine whether the exponential function for voider is exponentially higher

for entries than it is for accounts. reparent’s run time does stabilize as entries increase,

but for small numbers of entries and for varying numbers of accounts it does display an

exponential increase in run time. And finally increaser is insensitive to either parameter;

the jump from 13 seconds with 4 entries and 2 accounts to 19 seconds with 4 entries and

3 accounts is probably experimental error, as the amount of memory consumed did not

increase.
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Chapter 8

Applying Interface Grammars to EJB
Clients

I have applied my technique and tool to the task of verifying clients of the Enterprise

Java Beans 3.0 Persistence API.

8.1 Enterprise Java Beans 3.0 Persistence API

Enterprise Java Beans 3.0, or EJB 3.0, is the third major revision of the Enterprise

Java Beans specification. The full specification is concerned with large scale software

architecture with a web focus; I am interested here in the Java Persistence API, an

affiliated but distinct API for object-relational mapping. That is, the Java Persistence API

is a standardized interface to a framework for mapping a Java object graph to and from a

relational database. The Persistence API in EJB 3.0 has been inspired by a number of

third party object-relational mapping tools, including Hibernate and JDO, and in turn
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the new specification has been implemented independent of the EJB 3.0 framework;

examples of this include Hibernate again and Glassfish.

The entry point to this API is the EntityManager interface, an instance of which

is obtained from a EntityManagerFactory. The core of the interface is simple

enough, with methods like persist, remove, find and contains. Each EntityManager

has an associated transaction object, and a common idiom includes code like em.

getTransaction().begin();.

Objects in the Persistence API have a four phase life-cycle:

• unmanaged, or transient objects are not stored in the database—for example,

newly created objects;

• persistent objects are stored in the database;

• detached objects are persistent objects that have become separated from their

EntityManager—this becomes useful in certain situations concerning long lived

client objects where a long term database transaction is undesirable;

• removed objects are scheduled to be removed from the database.

The mapping from an object to a relational table is supported by Java annotations

on the classes, fields and methods of data objects. For example, all classes intended

to participate in the Persistence API must have the Entity annotation on the class,

marking it as an entity bean. The primary key can be marked with Id and can be
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attached to methods or fields, and as well methods can be marked to be executed before

or after database events like insertion or updates.

The Persistence API also contains a query language similar to SQL. I do not consider

a simulation of the query language in this paper, largely because simulating it properly

would require a full string parser for the SQL-like syntax. As well, my interface specifi-

cation does not model concurrent update operations or the XML extension defined by the

Persistence API.

8.2 Persistence API clients

The normal life cycle of a Persistence API client is to retrieve the global Entity-

ManagerFactory, use it to obtain a thread-local EntityManager, begin a trans-

action, modify the database, and then commit or rollback the transaction. Misbehaving

clients, or even properly behaving clients in some circumstances can trigger exceptions

during this process. Some of these exceptions are pedestrian—for example, calling

flush outside of a transactional context—but others are more alarming.

As an example of the latter, the getReference method returns a proxy for a

database object. This proxy can serve as a stand in for the real object in many cases, and

is used when making a separate database query to retrieve the object is undesirable—for

example, chasing links in a tree. An eager loading implementation might end up loading
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component transaction implements EntityTransaction:
〈〈entity managerm; 〉〉

start → inactive;

inactive → ?begin(); !begin(m); ¡begin(); ¿begin(); active;

| ?isActive(); ¿isActive(〈〈false〉〉);
| ?getRollbackOnly(); ¿getRollbackOnly(〈〈false〉〉);
| ε

active → ?commit(); !commit(m); ¡commit(); ¿commit(); inactive;

| ?commit(); !rollback(m); ¡rollback();

〈〈throw new RollbackException〉〉; ¿commit(); inactive;

| ?setRollbackOnly(); ¿setRollbackOnly(); rollback only;

| ?isActive(); ¿isActive(〈〈true〉〉); active;

| ?getRollbackOnly(); ¿getRollbackOnly(〈〈false〉〉); active;

| ?rollback(); !rollback(m); ¡rollback(); ¿rollback(); inactive;

rollback only → ?setRollbackOnly(); ¿setRollbackOnly(); rollback only;

| ?isActive(); ¿isActive(〈〈true〉〉); rollback only;

| ?getRollbackOnly(); ¿getRollbackOnly(〈〈true〉〉); rollback only;

| ?rollback(); !rollback(m); ¡rollback(); ¿rollback(); inactive;

Figure 8.1: A portion of the EJB interface grammar that specifies the nonrecursive
transactional interface constraints.

the entire tree into memory one node at a time by requesting parents and children, when

only one node is needed.

The part that makes this alarming is that the presence of the referenced object is not

checked at method call time; instead, it is checked the first time data from the putative
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component recursive transaction implements EntityTransaction:
〈〈entity managerm; int l; bool r; 〉〉

start → base;

base → ?begin(); 〈〈l← l + 1〉〉; !begin(m); ¡begin(); ¿begin();

base; tail; base;

| ?setRollbackOnly(); 〈〈r ← true〉〉;
¿setRollbackOnly(); base;

| ?isActive(); ¿isActive(〈〈l > 0〉〉); base;

| ?getRollbackOnly(); ¿getRollbackOnly(〈〈r〉〉); base;

|

tail → J¬rK; ?commit(); !commit(m); ¡commit();
〈〈l← l − 1; r ← r ∧ ¬(l ≡ 0)〉〉; ¿commit();

| J¬rK; ?commit(); !rollback(m); ¡rollback();

〈〈l← l − 1; r ← r ∧ ¬(l ≡ 0)〉〉;
〈〈throw new RollbackException〉〉; ¿commit();

| ?setRollbackOnly(); 〈〈r ← true〉〉;
¿setRollbackOnly(); tail;

| ?isActive(); ¿isActive(〈〈true〉〉); tail;
| ?getRollbackOnly(); ¿getRollbackOnly(〈〈r〉〉); tail;
| ?rollback(); !rollback(m); ¡rollback();

〈〈l← l − 1; r ← r ∧ ¬(l ≡ 0)〉〉; ¿rollback();

Figure 8.2: A portion of the EJB interface grammar that specifies the recursive transac-
tional interface constraints.

object is referenced. This could be in an entirely different piece of code, a piece of code

unrelated to the database.

Another example of a properly behaving client nonetheless triggering an exception is

in committing a successful transaction; because the Persistence API supports optimistic
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locking it is possible that a commit can be aborted because the database row correspond-

ing to the object in question has changed since it was first read, with no possibility of

safe detection by the user code.

These consequences, and the difficulty of verifying properties of a program that

depends intimately on an enormous third party database for its operation, motivate some

sort of modular analysis that captures all these strange error conditions but yet is not too

heavyweight to be used; thus I applied my interface grammar tools to the Persistence

API. I can also use my framework to analyze extensions to the API; one such extension

might be recursive transactions, which are not supported in EJB 3.0 but are very common

in the databases themselves.

To verify clients, I have written interface grammars for each relevant interface:

EntityManagerFactory, EntityManager and EntityTransaction. Por-

tions of these grammars are shown in figure 8.1 on page 129 and figure 8.2 on the

previous page. Our grammars in total are some 474 lines long, defining all three fun-

damental classes and their behaviors; by comparison the abstract class in Hibernate

that defines just the EntityManager interface is some 657 lines long, and the total code

required to implement the Persistence API using Hibernate as a backend is some 64,000

lines of Java code.
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Table 8.1: “Correct” execution times
Execution time (in ms)

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 3133 6662 10143 11898 31567 51930 26914 73628 126342
Clear 2115 3959 5876 6424 16688 27276 13338 37395 63491
Pers 2191 4247 6304 6974 18584 29622 15062 41746 70251
Open 1928 3473 4835 5659 14345 22306 12102 32407 52011
Bidir 2420 5288 8829 7504 22810 43396 16536 52894 99923
Merge 2358 4517 6992 7100 19122 32617 14839 43074 75385
CBack 2122 4018 6164 6357 16843 28087 13132 37677 64340
Exc 2100 4213 6399 6341 16903 29138 13144 39010 68074
Get 1944 3817 5962 5364 15242 27762 11053 34712 63903
Nonex 1816 3148 4237 4946 11637 18502 9996 26663 43501
Inher 2556 5374 8931 7867 23297 42481 17296 54548 102449
Trans 2520 6121 11784 7882 27999 58125 17122 64811 138157

8.3 Experiments

I have applied these grammars to several test cases from the Hibernate implementa-

tion. In some sense these are excellent measures of the fidelity of my interface; since

they were written to expose errors in Hibernate they should similarly expose errors in

my simulation of the Persistence API. As well, the test cases include some invalid clients

that trigger exceptions; I can use these to verify clients against the interface, marking

clients with erroneous behavior.
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Table 8.2: “Correct” execution state counts
States visited

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 66 198 338 377 1157 1985 932 2872 4932
Clear 32 96 168 173 545 965 422 1342 2382
Pers 41 123 213 227 707 1235 557 1747 3057
Open 28 78 128 149 437 725 362 1072 1782
Bidir 46 162 318 257 941 1865 632 2332 4632
Merge 36 114 208 197 653 1205 482 1612 2982
CBack 27 81 143 143 455 815 347 1117 2007
Exc 27 90 173 143 509 995 347 1252 2457
Get 15 57 123 71 311 695 167 757 1707
Nonex 12 30 48 53 149 245 122 352 582
Inher 44 168 348 245 977 2045 602 2422 5082
Trans 45 222 523 251 1301 3095 617 3232 7707

Table 8.3: “Incorrect” execution times
Execution time (in ms)

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 1913 1910 1908 1905 1912 1909 1927 1897 1933
Get 1809 1807 1799 1799 1801 1807 1800 1800 1817
Nonex 1785 1785 1772 1778 1779 1776 1774 1774 1791
Trans 2064 2060 2085 2076 2068 2066 2062 2070 2058

Table 8.4: “Incorrect” execution state counts
States visited

One repetition Three repetitions Five repetitions

Test 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj. 1 Obj. 3 Obj. 5 Obj.

Cont 25 25 25 25 25 25 25 25 25
Get 8 8 8 8 8 8 8 8 8
Nonex 10 10 10 10 10 10 10 10 10
Trans 23 23 23 23 23 23 23 23 23
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Figure 8.3: Run time and state count vs. maximum number of repetitions and maximum
number of objects for “correct” execution of Cont
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Figure 8.4: Run time and state count vs. maximum number of repetitions and maximum
number of objects for “correct” execution of CBack
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Figure 8.5: Run time and state count vs. maximum number of repetitions and maximum
number of objects for “correct” execution of Trans
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Figure 8.6: Run time for “incorrect” execution for Cont and Trans

To increase legibility, I give the full test name here once, and refer to an abbreviation

in future. I have analyzed the following test cases:

• EntityManagerTest.testContains (Cont) tests minimal normal functionality, like

persisting an object and retrieving it under its primary key. It also ensures that

trying to check the status of a non-manageable object will fail with an exception.

• EntityManagerTest.testClear (Clear) ensures that objects managed by the Entity-

Manager transition to the detached state after a clear.

• EntityManagerTest.testPersistNoneGenerator (Pers) ensures that a simple object

is equal to itself after it has been persisted and reloaded.

• EntityManagerTest.testIsOpen (Open) verifies that an EntityManager is open

upon creation and stays that way until it is closed.
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• AssociationTest.testBidirOneToOne (Bidir) verifies that persisting one half of a

bidirectional association will persist the other half as well.

• AssociationTest.testMergeAndBidirOneToOne (Merge) verifies that the bidirec-

tional association works even with detached objects.

• CallbacksTest.testCallBackListenersHeirarchy (CBack) verifies that all methods

tagged with @PrePersist are called when the object in question is persisted.

• CallbacksTest.testException (Exc) verifies that methods in other classes that have

a declared @EntityListeners relationship with the persisted object are also called.

The name comes from the method that is to be called, which throws an exception.

• GetReferenceTest.testWrongIdType (Get) verifies that asking for objects using

the wrong primary key type is an illegal operation.

• ExceptionTest.testEntityNotFoundException (Nonex) verifies that nonexistent

objects fetched with getReference should raise exceptions when they are referred

to.

• InheritanceTest.testFind (Inher) verifies that if A is a subclass of B, persisting an

instance of A and asking for all Bs should retrieve the first object.

• FlushAndTransactionTest.testAlwaysTransactionalOperations (Trans) checks that

flushes and locks are only valid from within transactions.
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As befits a good test harness, some of these tests verify that correct use of the API

gives correct results, and the rest verify that incorrect use of the API is flagged as such.

Errors are flagged by throwing an exception. The test case itself captures the exception

and verifies that it is of the correct type.

This has an attractive corollary. While I can verify that my interface represents a

valid implementation of the EJB Persistence API by running all the test cases as written,

I can also use the test cases that incorrectly use the API to simulate an incorrect client. I

do so by modifying the test cases to re-throw any exceptions they catch. In my results

in Tables 8.1 through 8.4, I distinguish these two different modes as “correct” and

“incorrect” executions. Note that, some test cases do not simulate an incorrect client, and

so can only run in the “correct” mode.

All these test cases have been written as unit tests with swift execution in mind.

While useful for test cases, they do not necessarily simulate large clients well. In an

attempt to simulate larger clients, I have parametrized each test case in two dimensions;

the first dimension specifies the maximum number of repetitions of the operation under

test, and the second specifies the maximum number of objects created in the test. Because

most operations only make sense with newly allocated data (for example, persisting a

fresh object), each repetition reallocates up to the maximum number of objects. In this

fashion I measure the overhead introduced as the number of operations goes up, and as

the number of objects in the mix increases.
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These bounds represent constraints on the maximum number of repetitions, not the

number of repetitions itself. That is, when I report the run time for, say, Get running

with 3 objects and 5 repetitions, I am reporting the time required to run that test with

each combination of 1 to 3 objects and 1 to 5 repetitions, for a total of 15 runs.

I ran each of the 11 tests twice (in “correct” and “incorrect” modes, here “error state

FALSE” and “error state TRUE”), and with the maximum number of objects varying

from 1 to 5, and with the maximum number of repetitions varying from 1 to 5; this

represents over 500 runs. This is far more than can be conveniently displayed in a table.

Accordingly, I have excerpted representative results into Tables 8.1 and 8.2, and present

several graphs showing selected results for “correct” execution in Figure 8.3 through

Figure 8.5. I present the number of states JPF has visited as a more representative

measure of memory consumption than the values reported by JPF; standard memory

allocation algorithms request only large blocks of memory from the operating system,

and so these figures are too coarse grained for my purposes. I give timing and state

data for “incorrect” execution in Tables 8.3 and 8.4 and show some graphs displaying

timing results for “incorrect” execution in Figure 8.6; I have omitted the state graphs for

“incorrect” execution because, as shown in Table 8.4, there is no increase in the number

of states processed in order to detect an error in any of those tests.

My expectations for this data was that “correct” execution would show a polynomial

increase in time and memory usage as the number of objects and number of repetitions
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was increased; specifically it would increase by some function of complexity O(n2m2)

where n is the number of objects and m is the number of repetitions. For “incorrect”

execution, since I halt verification the moment an error is detected it is difficult to predict

the run time or memory usage.

The expectation I set for “correct” execution is due to the following reasoning. There

are O(nm) test runs made for any combination of n objects and m repetitions. A test

run with a maximum of 3 objects and a maximum of 5 repetitions performs 1 + 2 + 3

object allocations and performs 1 + 2 + 3 + 4 + 5 operations; in general we will see

∑n
i=1 i object allocations for each operation, and

∑m
i=1 i operations. This means that a

test run for n objects and m repetitions will see O(n(n−1)
2

) = O(n2) object allocations

per operation and similarly O(m(m−1)
2

) = O(m2) operations. If object allocations and

API operations are the dominant contributors to test case run time, as seems plausible,

then I would see the run time follow a doubly quadratic curve O(n2m2). Because JPF

stores visited states indefinitely, I would also expect the memory usage to increase by

this same parameter.

I find that this expectation is upheld in all my tests, save for the “incorrect” execution.

That is, every test using “correct” execution displays a clearly super-linear increase as

each parameter is increased. Because JPF aborts execution as soon as any error is found,

the execution times for “incorrect” execution is uniformly low (below 2 seconds) and
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dominated by noise that I cannot control for; for example variances in start up time, cool

caches or disk access.

My results also demonstrate the efficiency of my approach. For all tests the run time

for repeating the API operation 5 times is less than three times the run time for creating

5 objects, and frequently considerably less. A test repeating an operation 5 times but

creating one object will execute 5 operations but also perform 5 object allocations; a

test repeating an operation once but creating 5 objects will execute one operation and

5 object allocations. The fact that the execution of these two is comparable implies I

have reduced the execution time required to perform API operations to approximately

the same time required for object allocation.
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Client and Server Verification for Web
Services Using Interface Grammars

I also applied my interface grammars to verification of web services clients and

servers; specifically I targeted the Amazon Web Services [3] framework, which is based

on the Web Services Description Language [62], or WSDL. WSDL is a language for

specifying web service interfaces.

A WSDL specification lists the available operations of a service and the types of the

arguments of those operations. Based on the WSDL specification, one can implement a

client that calls the operations of the web service. In this framework, conformance to the

interface specification becomes very important. If either the client or the server deviate

from the interface specification, the client-server interaction will lead to errors. Note

that it may not be easy to test the client and server together since they may not belong to

the same organization.
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Figure 9.1: Basic architecture for web services

Web services interact with each other by exchanging messages encoded using the

eXtensible Markup Language (XML) [64]. XML Schema [65] provides a type system

for XML messages and the Simple Object Access Protocol (SOAP) [48] is a standard

communication protocol for transmitting XML messages. Each web service has to

publish its invocation interface, e.g., network address, ports, operations provided, and

the expected XML message format to invoke the service, using WSDL. In its basic form,

the web service architecture consists of a simple RPC model where a client invokes

operations exported by a service provider using the SOAP protocol as seen in figure 9.1.

The WSDL specification serves as the contract between the client and the server that

defines the valid interactions.

My web service verification framework is shown in figure 9.2 on the next page.

It consists of two tools: a WSDL-to-interface grammar translator and my interface

compiler. As the first step the keywordwsdl to interface grammar translator takes a

WSDL specification as input and converts it to two interface grammars: one representing
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Figure 9.2: My web service verification framework

the behavior of the server and the other one representing the behavior of the client. Then,

I use my interface compiler to generate a server stub and a service driver from these

interface grammars, respectively.

9.1 Amazon Web Service

One challenge in conducting a case study on WSDL is the fact that most large and

mature web service implementations are proprietary and most public WSDL specifica-

tions are for small toy examples such as currency converters, temperature converters,

etc.
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One notable exception to this is the Amazon Web Services (AWS) provided by

Amazon.com. AWS is a large framework including various services such as Amazon

Elastic Compute Cloud (Amazon EC2) for cloud computing, Amazon Flexible Payments

Service (Amazon FPS) for financial transactions, which require payment. The Amazon

Associates Web Service (also known as the Amazon E-Commerce Service or “ECS”), on

the other hand, is a free service that exposes Amazon’s product data with the goal of

driving traffic back to Amazon’s web sites or sales of Amazon products and services. I

chose this service as the target of my web services case study.

The Amazon E-Commerce Service (which I will hence refer to as AWS-ECS) pro-

vides access to Amazon’s product data through a SOAP interface specified with WSDL.

The scope of the full AWS-ECS is enormous since it provides information about the

wide variety of goods Amazon.com sells. The WSDL specification for the AWS-ECS lists

40 operations, almost all of which are differing ways of searching Amazon’s product

database. I focused on what I believed to be the core of the AWS-ECS API, consist-

ing of the ItemSearch, CartCreate, CartAdd,CartModify, CartGet, and

CartClear operations. Notably absent is any manner for automatically purchasing

items in a cart. Amazon prefers that, after the user finds what he/she is looking for,

the AWS-ECS clients direct the user to an Amazon web page for processing purchasing

transactions.

I can informally define the semantics of these operations as follows:

144



Chapter 9. Client and Server Verification for Web Services Using Interface Grammars

• ItemSearch searches Amazon’s database for items matching some set of key-

word parameters. It returns a list of products that match the search criteria.

• CartCreate takes an ASIN—a unique identifier for that item in Amazon’s

database—and a positive integer n and creates a new cart that represents a request

for n copies of that item. All AWS-ECS operations require absolute quantities; that

is, it is impossible to say ‘add one more of this to the cart’; you must first discover

the contents of the cart and then send a message updating them accordingly.

• CartAdd takes a cart, an ASIN and a positive integer n and adds a new row to

the cart requesting n copies of that item. It returns the modified cart and a unique

item identifier for the new row in that cart. It is illegal to add an ASIN to a cart

that already has a row for that ASIN.

• CartModify takes a cart, an item identifier, and a non-negative integer n and

alters the row in the cart signified by the item identifier so that it requests instead

n copies of the item. The row referred to by the item identifier must exist. If

n = 0, then the row is deleted entirely. Even though there can only be one row for

each ASIN, CartModify only takes the item identifier returned by CartAdd or

CartCreate.

• CartGet is a query operations that takes a cart and returns the contents of the

cart.
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• CartClear takes a cart and removes everything from it, emptying it out. This

operation represents one of only two ways to achieve an empty cart; the other is

using CartModify with n = 0.

One piece of my framework is to convert the above constraints about the operations

provided by a web service to an interface grammar that can be used to check the

web service providers (i.e., servers) and their clients in terms of conformance to these

constraints. I am able to generate a portion of these constraints automatically by

my WSDL to interface grammar translator. However, this is not sufficient for all the

constraints.

The above six operations also have several control flow constraints that are not

stated in the WSDL specification of the AWS-ECS. Except for ItemSearch and

CartCreate, every operation requires a cart already exist. CartModify can only

be called after an item identifier has been retrieved from CartCreate or CartAdd.

It is illegal to call CartModify with anything, including previously valid data, after a

CartClear. Worse yet, this control flow is data dependent; one CartModify after

another on the same item identifier can be okay if the first has an n > 0; and they can be

fine if on different item identifiers.

From the point of view of the WSDL specification, none of this is specified. A WSDL

specification only declares that certain operations exist, which take parameters of a

certain type; it says nothing about ordering. If I want to verify that the web service
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operations are called in the right order, it is necessary to provide some sort of auxiliary

specification that identifies these control flow constraints. In my framework, I ask the

user to specify these control flow constraints directly on the interface grammar generated

by our WSDL to interface grammar translator.

Specifically for the AWS-ECS, I have written two grammars, one for clients of the

service and one as a client of the service, in figure 9.3 on page 165 and figure 9.4 on

page 166.

9.2 Translating WSDL to interface grammars

As I mentioned earlier, a WSDL specification is a list of exposed operations along

with the type of the parameters and return values. I have developed a tool to translate

a WSDL specification to an interface grammar specification. To generate an interface

grammar specification from a WSDL specification, we need to know in what order the

operations should occur (i.e., the control flow constraints) and we need to be able to

generate instances of the parameters for the operations and verify the return values.

It is relatively easy to express the control flow constraints directly as a grammar.

However, generating instances of the parameters and verifying the return values is more

difficult and tedious. Since the type information is available in the WSDL specification,

there is no user input necessary for specifying such constraints. In fact I developed a
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translator that automatically generates an interface grammar for such constraints from a

given WSDL specification.

9.2.1 Translation from XML Schema to interface grammars

A WSDL specification encodes all types using XML Schema. To automatically

generate sample XML documents from an XML Schema using grammars, I use the

following translation rules. Since XML Schema itself is very verbose, I use the MSL [11]

formalism of Brown, et al., which encodes all of XML Schema in a more compact form.

At present my translator does not handle all of XML Schema—omitting, for example,

unordered types—merely the portions I found necessary in this work. Accordingly I

define a simplified version of MSL whose type expressions can be defined using the

following grammar:

g → b
∣∣∣ t[g0]

∣∣∣ g1{m,n}
∣∣∣ g1, . . . , gk

∣∣∣ g1| . . . |gk (9.41)

Here g, g0, g1, . . . , gk are all MSL types; b is a basic data type such as Booleans, integers,

or strings; t is a tag; and m and n are natural numbers such that m < n, or alternatively

m may be an arbitrary natural number and n may be∞.

As to interpretation, I regard g → b specifying a basic type; g → t[g0] specifying

the sub-element t of g, whose contents are described by the type expression g0; g →
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g1{m,n} where n 6= ∞ specifying an array of g1s with at least m elements and at

most n elements; g → g1{m,∞} specifying an unbounded array of g1s with at least

m elements; g → g1, . . . , gk specifying sequencing, with each of the gis one after the

other; and g → g1| . . . |gk specifying alternation, where g is one of the gis. I denote the

language of type expressions generated by equation (9.41) on the preceding page to be

XML.

I can generate sample XML documents using these type expressions; but my goal

is to communicate with a SOAP server. I could write my own SOAP client library, but

this is difficult and time consuming. I chose instead to use Apache Axis. Axis is a very

suitable library, but it requires a Java object graph in a very specific form which it will

then serialize to XML. Accordingly I create Java objects from type expressions, and do

so in the same way that Axis maps WSDL to Java objects.

XML Schema and the Java type system are very different and, hence, mapping from

one to the other is not trivial. However, since such a mapping is already provided by

Axis, all I have to do is the follow the same mapping that Axis uses. Axis maps type

expressions as in equation (9.41) on the previous page to Java as follows:

1. g → b is mapped to a Java basic type when possible (for example, with Booleans

or strings). Because XML Schema integers are unbounded and Java integers are

not, I must use a specialized Java object rather than native integers.
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2. g → t[g0] is mapped to a new Java class whose name is the concatenation of the

current name and t; this class contains the data in g0, and will be set to the t field

in the current object.

3. g → g1{0, 1} is mapped to either null or the type mapped by g1.

4. g → g1{m,n} is mapped to a Java array of the type mapped by g1.

5. g → g1, . . . , gk is mapped to a new Java class that contains each of the gis as

fields.

6. g → g1| . . . |gk is mapped to a new Java interface that each of the gis must

implement.

This mapping contains omissions; boolean, string|int for example does not map readily

to any Java object. These mismatches are inevitable consequences of the mismatch

between the XML Schema and Java type systems, and are handled in an ad hoc manner.

Fortunately, WSDL specifications in practice are usually deliberately engineered to avoid

these sorts of corner cases.

The rules for the WSDL to interface grammar translation is shown in figure 9.5

on page 167. The translation is defined by the function p, which uses the auxiliary

functions r (which gives unique names for type expressions suitable for use in grammar

nonterminals) and t (which gives the name of the new Java class created in the Axis

mapping of g → t[g0]). By applying pJgK to an XML Schema type expression I compute
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several grammar rules to create Java object graphs for all possible instances of that type

expression; the start symbol is rJgK.

An explanation of each rule is in order, followed by an example.

Rule 9.42 on page 167 translates Boolean types by simply enumerating both possible

values. Calling rJgK(x) with an uninitialized variable x will set x to either true or false.

Rule 9.43 on page 167 translates natural numbers to a Java instance by starting at

0 and executing an unbounded number of successor operations. This is inefficient; in

practice if the number is bounded I can generate it far more efficiently. This does make

the set of generated object graphs infinite, but if the number itself is not bounded the

type expression itself generates an infinite language. I can accommodate general integers

by performing this operation and then choosing a sign.

Rule 9.44 on page 167 translates strings to Java strings. This again starts with an

empty string and concatenates an unbounded number of characters onto it, to exhaust

the state space. It should be noted that almost no program and certainly no WSDL speci-

fication that says it will accept any string really means that; strings are frequently used

as unspecified enumerations, have unspecified (and possibly un-specifiable) correlations

with other parts of the object graph, have some associated structure they should maintain

(as in search queries), etc. Accordingly, refining the automatically generated grammar

to something more restricted but also more useful starts by changing these rules.
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Rule 9.45 on page 167 translates tags into Java objects. The rule is simple; we

figure out which Java type Axis is using for this position using tJgK, if it is not already

initialized (which can happen if we are applying rule 9.50 on page 167) instantiate it,

recursively process its contents, and then set the contents to the t field on the object we

are currently working on.

Rule 9.48 on page 167 translates optional elements into Java objects by having two

rules, one for null and the other to generate the object.

Rule 9.47 on page 167 translates unbounded arrays into Java objects. I use essentially

the same operation as in rule 9.43 on page 167; start with the base case of an empty

array and concatenate objects onto it until we decide to stop.

Rule 9.48 on page 167 translates bounded arrays into Java objects, by simply gen-

erating n rules, one for each potential object. Although I give this simple rule here for

readability, in our implementation I handle this case more efficiently.

Rule 9.49 on page 167 translates general arrays, that may have a minimum number

of objects greater than 0, to a situation where one of rule 9.47 on page 167 or rule 9.48

on page 167 applies.

Rule 9.50 on page 167 translates sequences into Java objects; we simply apply each

of the sub-rules to the object graph under examination in sequence.
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Rule 9.51 on page 167 translates alternations into Java objects; we pick one of the

sub-rules and apply it. The difficult part of this, making each of g, g1, . . . , gk acceptable

Java objects, is handled for us by Apache Axis.

Finally, an example is in order. Consider the following type (a simplified version of

the ResponseGroupInformation element in the Amazon WSDL specification):

t = name[string]{0, 1}, ops[name[string]{0,∞}] (9.52)

In this, we have in sequence an optional name tag, which contains a string, and a ops

tag which contains an unbounded array of strings. Translating this to a grammar, we

first apply rule 9.50 on page 167. To the first element of the sequence we apply rule 9.46

on page 167, rule 9.45 on page 167 and finally rule 9.44 on page 167, resulting in the

following grammar:

a(x)→ x← “”

a(x)→ y ← c; a(x);x← y‖x for every character c

b(x)→ if x ≡ nullx← newName; a(y);x.name← y

c(x)→ x← null

c(x)→ b(x)
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with start symbol c. For the second element of the sequence we apply rule 9.45 on

page 167, rule 9.47 on page 167, rule 9.45 on page 167 and finally rule 9.44 on page 167

to get:

d(x)→ x← “”

d(x)→ y ← c; d(x);x← y‖x for every character c

e(x)→ if x ≡ nullx← newOpsName; e(y);x.name← y

f(x)→ x← [],

f(x)→ e(y); f(x);x← x‖y

g(x)→ if x ≡ nullx← newOps; f(y);x.ops← y

with start symbol g. Putting the two together with rule 9.50 on page 167 requires only

one additional nonterminal,

h(x)→ c(x)

h(x)→ g(x)

giving us the entire grammar.
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9.3 Client verification

To demonstrate the value of my approach, I performed two distinct classes of

experimentation. The first, the client verification I detail here, involves verification of a

demonstration client for the Amazon E-Commerce Service (AWS-ECS). We generate

a stub for the SOAP communication layer so that we can verify the client without

connecting to the AWS-ECS and without any network communication. The second, the

server verification, involves connecting directly to AWS-ECS itself and checking the

AWS-ECS implementation, which I detail in section 9.4 on page 160.

9.3.1 Amazon Web Service client

The AWS-ECS client used here in my experiments is a demonstration of programming

technique written by Amazon. It is called the AWS Java Sample. This client performs

no validation on its input data whatsoever. It is intended as a programming example

showing how to use the SOAP and REST interfaces, not as something to use. Hence, it

serves as a suitable vehicle for us in demonstrating the bug finding capabilities of our

approach.

The client consists of a Swing GUI that serves as a thinly veiled interface to the

AWS-ECS methods. To verify this client, I wish to use JPF, which cannot handle GUIs;

accordingly I have written by hand a simple driver that explores several areas that I want
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to test. I classify these areas into two major groupings: input errors that the client ought

to be catching but doesn’t, and control flow errors that represent execution sequences

that are locally valid but globally wrong. An example of the former is passing a string

when AWS expects an integer; an example of the latter is trying to modify contents of

the cart after the cart has been cleared. A proper AWS client should catch these errors

and prompt the user to provide appropriate input instead of passing erroneous requests

to AWS. If such input validation is not done at the client side, the user would either see a

cryptic error message sent back from the AWS, or, worse yet, the client may terminate the

session (or even crash) based on the error message sent by AWS. By providing erroneous

user input and control sequences to the client, our goal is to discover input and control

flow validation errors at the client side.

9.3.2 Input errors

To begin, I analyze three input errors that the client, were it doing proper input

validation, would catch. In actual execution, one of these (the typecheck failure) would

be caught by the Axis communication layer, but the other two would be communicated

to AWS, which would refuse to execute them. The data I gathered for these three errors

is summarized in table 9.1 on the next page.
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Type Time (s) Memory (kB)

Typechecking failure 12.5 25,208
Nonsensical data 11.1 25,208
Uncorrelated data 20.8 43,360

Table 9.1: Input validation errors for the Client.

The typechecking failure here exploits a failure of the client to check that the XML

Schema type of some of its inputs is actually valid. This comes up when a user enters a

string, when an integer is expected. This does not get caught by the Java compiler, as

the data in question remains a string until it reaches the serialization layer in the code.

In actual execution this would be caught by Axis.

The nonsensical data failure here attempts to add a nonexistent item to a nonexistent

cart with a bad checksum. Since this is a syntactially valid request, it would make it all

the way to Amazon’s servers before being rejected, whereas my stub catches it much

earlier.

Finally, the uncorrelated data failure here involves two method calls. The method

calls are in the correct sequence and would constitute a valid sequence, except for the

fact that the data associated with the two calls is completely uncorrelated. Specifically,

the test searches for an item and then attempts to add another, nonexistent, item to the

cart. This again would ordinarily make its way all the way to Amazon. Catching this

error requires the data extensions mentioned earlier.
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In table 9.1 on the preceding page I show the results of client verification using

the JPF model checker and the server server stub that is automatically generated by

our interface compiler. Note that executing a verification task like this one without

the automatically generated server stub is almost impossible with the existing model

checking tools like JPF. Without the server stub, the client has to send a SOAP request

to Amazon’s servers, which must execute its implementation of the corresponding

operation and send the result back.

In my framework, the calls to the AWS-ECS are replaced with calls to the server stub.

When the server stub receives an incoming call, it executes the semantic predicates and

actions that correspond to the operation that is called and returns the result.

9.3.3 Control flow errors

The preceding errors are useful, but do not demonstrate the full scope of my approach.

Accordingly, I have coded the client driver to call AWS methods in an undirected fashion.

The driver first initializes the cart, and then proceeds to call available methods in no

particular order. Some call sequences can be perfectly valid executions, but some of

them can represent errors. For example, modifying the contents of the cart after clearing

it is nonsensical. An appropriate AWS client would detect such errors by storing some

state information at the client side and warning the user against such erroneous requests.

158



Chapter 9. Client and Server Verification for Web Services Using Interface Grammars

Type Depth Time (s) Memory (kB) Errors found

To first error 2 31.8 43,360 0
To first error 3 64.2 62,084 1
To first error 4 49.6 73,456 1
To first error 5 57.3 73,456 1
All errors 2 31.8 43,360 0
All errors 3 77.3 62,084 2
All errors 4 266.8 111,816 15
All errors 5 862.6 229,872 68

Table 9.2: Control flow validation errors for the Client.

In my framework, these types of errors are caught during client verification since these

errors trigger semantic predicate violations in the interface grammar.

The data I gathered from these runs is summarized in table 9.2. Some important

details concerning these: I have run each test twice, once until JPF detected the first

erroneous path, and then once more discovering all possible erroneous paths. With a

depth of 2 my driver is incapable of going wrong; accordingly the first error and all

errors data for that depth are the same. At a depth of 3, my analysis takes longer to

detect the error than it does for a depth of 4; this is because the first paths our driver

executed at depth 3 were in fact correct, and some backtracking had to occur before an

error could be detected. By contrast, the timing data for runs detecting all errors follow

the exponential time increase one would expect.
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9.4 Server verification

For server verification, the interface compiler takes the interface specification as

input and automatically generates a driver that sends SOAP requests to the web service.

This driver is essentially a sentence generator for the input interface grammar. This work

was done in collaboration with Muath Alkhalaf; in particular figure 9.6 on page 168 and

figure 9.7 on page 168 were obtained as a part of his MS project.

The basic sentence generator algorithm is the same algorithm used for all interface

grammars, as in algorithm 1 on page 52. Here control = component, because we are

using a strict driver for server verification. This becomes a top-down sentence generation

algorithm that starts with the start symbol and generates a leftmost derivation by applying

a production rule to the non-terminal symbol at the top of the stack until the stack is

empty. Note that this algorithm generates the sentences on-the-fly, i.e., while generating

a sentence the algorithm is also executing the corresponding test case by making calls

to the target web service. The key step here is always in choosing the next production.

Here I discuss only random sentence generation.
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9.4.1 Server verification using random sentence generation

A random sentence generator chooses the next production in the sentence generation

algorithm randomly. In order to assess the effectiveness of this random testing approach,

we measured the following coverage criteria:

• Non-terminal coverage: If we generate sentences randomly, how many sentences

do we need to generate in order to cover all the non-terminals and how long

does that take? Note that, 100% non-terminal coverage is achieved when all the

non-terminals appear in derivation of some sentence that has been generated so

far.

• Production coverage: If we generate sentences randomly, how many sentences do

we need to generate in order to cover all the productions and how long does that

take? Note that, 100% production coverage is achieved when all the productions

are used in some sentence that has been generated so far.

In order to do these measurements we ran ten tests. In each of these tests, we ran the

generator until it generated 100 sentences, and then did the measurements. Finally, we

took the averages of these ten measurements. Figure 9.6 on page 168 and figure 9.7 on

page 168 show the results of our experiments. Not surprisingly, in figure 9.6 on page 168,

we see that the verification time increases linearly with the number of sentences. In
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figure 9.7 on page 168 we see that the full production and nonterminal coverage is

achieved after generating 41 sentences on the average. Generating 41 sentences and

executing the corresponding 41 test sequences takes about 127 seconds. Again, the

generation of the sentences and the execution of the test sequences are done at the same

time. The average number of steps in derivations generated by the random generator

was 17.5, and the average number of SOAP requests that were generated per derivation

was 3.2.

9.4.2 Errors in the Amazon Web Service

During the server verification experiments we discovered two errors. These errors

correspond to mismatches between the interface grammar specification and the AWS-ECS

implementation.

Multiple add error

My initial reading of the AWS-ECS specification led me to believe that it was okay to

send multiple ADD requests for the same ASIN. I believed that this would lead to multiple

lines in the cart with distinct item IDs, but not otherwise cause trouble. Accordingly,

the guards Jasin 6∈ ran(cart)K in production 9.33 on page 166 and production 9.39 on

page 166 were omitted. I learned that this was incorrect when we discovered an assertion
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violation during server verification, and added those guards. This restriction is not

explicitly stated in the AWS-ECS API specification.

Null cart array

The driver checks that the contents of the cart returned by Amazon are precisely

those we expect to see. In the AWS-ECS, the items in a cart are stored in a sequence of

sequences, which is mapped by the Java layer to a field cartItems on the Cart. This

is an instance of the CartItems type, which in its field cartItem contains an array

of CartItem objects. I believed that an empty cart, that is a cart with no items, would

have a non null Cart.cartItems that contains an array of zero length. However in

the AWS-ECS implementation, this is translated as a null Cart.cartItems, so I was

forced to change our semantic predicate accordingly. This is not explicitly stated in the

API documentation either, although it is present in the WSDL specification. Although this

error can in principle occur anywhere, we encountered it specifically in production 9.29

on page 166 (which deletes an item from the cart, possibly resulting in an empty cart)

and production 9.35 on page 166 (which clears the cart).

The experiments I report in the previous section were conducted after we changed

the predicates mentioned above to fix these two errors. We also conducted experiments

in the faulty versions where above errors were present. We ran the random sentence

generator ten times, stopping each time as soon as we discovered the bug, and took the
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averages of both time and number of sentences. For the assertion violation (the multiple

add error) the error was discovered after an average of 3.6 runs and took 2.5 seconds.

For the null cart array error it took on average 5.2 runs and 10.1 seconds to discover the

error.

The errors mentioned above can either be considered an error in the AWS-ECS specifi-

cation or an error in the AWS-ECS implementation. Eventually the goal of both client and

server verification is to catch the semantic mismatches between the client’s and server’s

understanding of the web service interface specification. In my approach this interface

specification is the interface grammar specification. During client verification I look

for mismatches between the interface grammar specification and client implementation

and during server verification I look for mismatches between the interface grammar

specification and the server implementation. As our results demonstrate, this approach

is effective in identifying both types of mismatches.
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start → search(asin); cart(asin) (9.1)

| ε (9.2)

search(asin) → !SEARCH(); ¡SEARCH(asin); search′(asin) (9.3)

search′(asin) → !SEARCH(); ¡SEARCH(asin); search′(asin) (9.4)

| ε (9.5)

cart(asin) → !CREATE(asin); ¡CREATE(cart, item);
permute(cart, item); clear(cart)

(9.6)

| ε (9.7)

permute(cart, item) → !GET(cart); ¡GET(cart); permute(cart, item) (9.8)

| 〈〈CHOOSE n > 0〉〉; !MODIFY(cart, item, n);
¡MODIFY(cart); permute(cart, item)

(9.9)

| !MODIFY(cart, item, 0); ¡MODIFY(cart) (9.10)

| search(asin); permute′(cart, asin);
permute(cart, item)

(9.11)

| ε (9.12)

permute′(cart, asin) → Jasin 6∈ ran(cart)K; !ADD(cart, asin);
¡ADD(cart, item); permute(cart, item)

(9.13)

| ε (9.14)

clear(cart) → !CLEAR(cart); ¡CLEAR(cart); clear(cart) (9.15)

| !GET(cart); ¡GET(cart); clear(cart) (9.16)

| search(asin); clear′(cart, asin) (9.17)

| ε (9.18)

clear′(cart, asin) → Jasin 6∈ ran(cart)K; !ADD(cart, asin);
¡ADD(cart, item); permute(cart, item);
clear(cart)

(9.19)

| ε (9.20)

Figure 9.3: Interface grammar for a AWS-ECS client
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start → search(asin); cart(asin) (9.21)

| ε (9.22)

search(asin) → ?SEARCH(); 〈〈asin← NEWTAG〉〉; ¿SEARCH(asin);
search′(asin)

(9.23)

search′(asin) → ?SEARCH(); 〈〈asin← NEWTAG〉〉; ¿SEARCH(asin);
search′(asin)

(9.24)

| ε (9.25)

cart(asin) → ?CREATE(asin); 〈〈item← NEWTAG〉〉;
〈〈cart← {item 7→ asin}〉〉; ¿CREATE(cart, item);
permute(cart, item); clear(cart)

(9.26)

| ε (9.27)

permute(cart, item) → ?GET(cart); ¿GET(cart); permute(cart, item) (9.28)

| ?MODIFY(cart, item, 0); Jitem ∈ dom(cart)K;
〈〈cart← cart \ {item 7→ >}〉〉; ¿MODIFY(cart)

(9.29)

| ?MODIFY(cart, item, n); Jn > 0 ∧ item ∈ dom(cart)K;
¿MODIFY(cart)

(9.30)

| search(asin); permute′(cart, asin); permute(cart, item) (9.31)

| ε (9.32)

permute′(cart, asin) → ?ADD(cart, asin); Jasin 6∈ ran(cart)K;
〈〈item← NEWTAG〉〉; 〈〈cart← cart ∪ {item 7→ asin}〉〉;
¿ADD(cart, item); permute(cart, item)

(9.33)

| ε (9.34)

clear(cart) → ?CLEAR(cart); 〈〈cart← ∅〉〉; ¿CLEAR(cart); clear(cart) (9.35)

| ?GET(cart); ¿GET(cart); clear(cart) (9.36)

| search(asin); clear′(cart, asin) (9.37)

| ε (9.38)

clear′(cart, asin) → ?ADD(cart, asin); Jasin 6∈ ran(cart)K;
〈〈item← NEWTAG〉〉; 〈〈cart← cart ∪ {item 7→ asin}〉〉;
¿ADD(cart, item); permute(cart, item); clear(cart)

(9.39)

| ε (9.40)

Figure 9.4: Interface grammar for a AWS-ECS server

166



Chapter 9. Client and Server Verification for Web Services Using Interface Grammars

p : XML → Prod

r : XML → NT

t : XML → Type

pJg → booleanK = {rJgK(x)→ x← true, rJgK(x)→ x← false} (9.42)

pJg → naturalK =

{
rJgK(x)→ x← 0,

rJgK(x)→ rJgK(x);x← x+ 1

}
(9.43)

pJg → stringK =


rJgK(x)→x← “”,

rJgK(x)→ y ← c; rJgK(x);x← y‖x
for every character c

 (9.44)

pJg → t[g′]K =

{
rJgK(x)→ if x ≡ nullx← new tJgK;

rJg′K(y);x.t← y

}
∪ pJg′K (9.45)

pJg → g′{0, 1}K =

{
rJgK(x)→ x← null,
rJgK(x)→ rJg′K(x),

}
∪ pJg′K (9.46)

pJg → g′{0,∞}K =

{
rJgK(x)→ x← [],
rJgK(x)→ rJg′K(y); rJgK(x);x← x‖y

}
∪ pJg′K (9.47)

pJg → g′{0, n}K =



rJgK(x)→x← [],
rJgK(x)→ rJg′K(y);x← [y],

. . .

rJgK(x)→ rJg′K(y1); . . . ; rJg′K(yn);
x← [y1, . . . , yn]


∪ pJg′K (9.48)

pJg → g′{m,n}K =

{
rJgK(x)→ rJg′K(y1); . . . ; rJg′K(ym);

rJg′′K(x);x← [y1, . . . , ym]‖x

}
∪ pJg′′K ∪ pJg′K where g′′ → g′{0, n−m}

(9.49)

pJg → g1, . . . , gkK = {rJgK(x)→ rJg1K(x); . . . ; rJgkK(x)} ∪
k⋃

i=1

pJgiK (9.50)

pJg → g1| . . . |gkK =
k⋃

i=1

{rJgK(x)→ rJgiK(x)} ∪ pJgiK (9.51)

Here for a nonterminal g, pJgK is the set of associated grammar rules, rJgK is a unique
name suitable for a grammar nonterminal, and tJgK is the unique Java type for that
position in the XML Schema grammar.

Figure 9.5: MSL to interface grammar translation rules
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Figure 9.6: The amount of time it takes to test Amazon’s AWS-ECS implementation
using the test sequences generated by the random sentence generator

Figure 9.7: Non-terminal and production coverage obtained using the random sentence
generator
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Related Work

My work touches on several related fields; some related work is presented here,

along with the differences between it any my own efforts.

10.1 Grammar-based testing

There has been some prior work relating to grammar based testing, although none of

it attempts to model components of a program with a grammar. Purdom [44] presented a

fast algorithm for generating the minimal set of test cases required to achieve production

coverage of a grammar, targetting parsers specifically. Because my grammars are

interactive, this algorithm cannot be directly applied, but in future work I intend to adapt

it.

Lämmel and Schulte [33] describe several techniques for limiting the combinatorial

explosion of grammar based testing. Their technique uses a grammar to generate test
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cases; my work uses a grammar to act as an interactive component of a system. The idea

of exploring different coverage criteria, and in particular of adapting their combinatorial

coverage technique is appealing but can be difficult due to the interactive nature of my

stubs; one cannot achieve even full production coverage (which they call rule coverage)

if the host program does not cooperate.

Maurer [37, 38] also generates test data with an enhanced context free grammar for

his DGL tool. The same differences as with Lämmel and Schulte’s work apply; my

tool generates interactive stubs, Maurer’s generates test data. Maurer’s tool also permits

variables, which is an interesting precursor to our rule parameters; however he does not

attempt to preserve the lexcial scoping of his variables, as we must with ours.

Offutt, Ammann and Liu [43] describe how mutation testing can be regarded as a

type of grammar based testing, and give several useful coverage algorithms. I do not

consider mutation at this time, and in any case their technique concentrates on test cases

whereas mine is interactive.

Bauer and Finger [7] generate test cases using a regular grammar, which is strictly

less powerful than mine and cannot accomodate recursion. As well, their technique

generates noninteractive test cases.

Duncan and Hutchison [17] use attributed grammars to generate test cases. There are

similarities in their attributed grammars and my interface grammars; for example, we

both permit run-time guards, and in many cases their inherited and synthesized attributes
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can be made equivalent to my rule parameters. However their technique remains focused

on test case generation and mine on interactive stubs.

Sirer and Bershad [46] have developed a grammar based test tool lava, with a focus

on validating their Java Virtual Machine. Their tool has two different roles, one as a

straightforward test case generator and another that makes minute permutations in an

attempt to discern hidden flaws. As befits a test case generator, they include certificates

to solve the oracle problem, which describe the intended result of the test case. The

same interactive-versus-generative considerations above apply, and I can mimic their

certificates using semantic predicates; nonetheless in future work I intend to include

some form of test certificate in my tool.

10.2 Automated environment generation

There has been some work on automated environment generation, in contrast to

my own semiautomated style. In [53], Tkachuk, Dwyer, et al., describe a way to

derive the driving system automatically. In [31], Khurshid, Păsăreanu, et al., describe a

technique for using JPF to generate test cases. In [63], Xie, Marinov, et al., describe a

similar technique using exhaustive runs for the purpose of generating test cases. These

techniques are very interesting but in their current form they would not have been useful

in my case studies because they explore the program only to a bounded depth in the
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program’s call tree. These limitations have led to research in semiautomated environment

generation, which can address some of the limitations of a fully automated approach.

10.3 Interface specification

The use of finite state machines for specification, verification and extraction of

interfaces have been studied extensively [2, 8, 9, 14, 16, 60]. Finite state machines cannot

specify nested-call structures such as the recursive transaction example I have used in

this chapter. The interface grammars I propose in this chapter enables us to specify such

interactions. Moreover, I believe that the semantic predicates and actions that are allowed

in my interface grammars are necessary to model interfaces of complex components.

Another factor that differentiates my work from that of Whaley et al. [60] or Alur et al. [2]

is that I do not extract interfaces; rather, I use interface grammar specifications to check

both interface conformance and also to achieve modular verification.

The Specification Language for Interface Checking (SLIC) is used to specify interface

constraints in the SLAM project [5, 6]. In SLIC, interfaces are specified using state

machines. The transitions of state machines are associated with C statements that can be

used to specify additional constraints on the interface. As with the other state machine

based approaches discussed above, the approach used by SLIC is not appropriate for

specification of nested call sequences.
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In Betin-Can’s work [8–10], finite state interface specifications are used to achieve

modular verification where behavior verification and interface verification are executed

as two separate steps. Interface grammars as proposed here provide a richer language

for specification of interfaces and can be integrated to the modular verification approach

used in that work.

10.4 Environment generation

Environment generation is a critical problem for achieving modularity in software

model checking and has been studied before. Godefroid et al. [22] present techniques

for automatically closing environments of open reactive programs by automatically

creating the most general environment for the program using dataflow analysis. In

contrast, Tkachuk and Dwyer [51] investigate automatically generating environments for

components using side effect and points-to analyses for modular model checking. I use

a semi-automated approach where the user writes an interface grammar and the interface

grammar is automatically compiled to a component stub for modular verification. I

believe that for specification of rich interfaces such as the EJB interface discussed in this

paper it is necessary to get user input in order to restrict the behaviors allowed by the

interface.

173



Chapter 10. Related Work

The Bandera environment generator [52] from Tkachuk et al. also uses a semi-

automated approach in which environment models are automatically synthesized from

environment assumptions. The environment assumptions are given as LTL formulas

or regular expressions specifying ordering of program actions which are unit method

calls or field assignments that can be executed by the environment. My approach

based on interface grammars enables us to specify nested call sequences that cannot be

expressed using formalisms, such as LTL or regular expressions, that can be recognized

by finite state machines. Also rather than focusing on environment generation, I am

focusing on specification of interfaces. Of course, these are closely related concepts

since the interfaces of components that interact with a program forms the environment

of that program. However, I believe that it is more likely for developers to write

interface specifications for different components rather than writing an environment for

a particular program.
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Conclusion and Future Work

I have defined and written tools for a new formalism that makes automated verifi-

cation of large systems easier. Furthermore I have applied this formalism to several

nontrivial examples, including verification of EJB clients and verification of clients

and servers for web services. These investigations have shown that this formalism is

effective and useful. My experiments suggest that using interface grammars does not

introduce significant overhead into the verification process, and it significantly reduces

development time as noted in chapter 8 on page 126. Moreover interface grammars

make a useful intermediate target for additional verification techniques, like verifying

web services. The parser for these interface grammars is sufficiently flexible that it can

be adapted to run in a normal JVM, as shown in 9.4. I feel these results demonstrate that

interface grammars represent a useful formalism for environment generation, my goal in

this work.
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Interface grammars as presented here have some important limitations. The most

significant one is the single-threaded nature of the current semantics. Additionally I

currently only support a small subset of JML. I suggest these areas and some others for

future work. Specifically:

• Concurrency. The current interface grammar system is designed for single-

threaded systems. Several key assumptions would need to be revisited before

support for concurrent components would work. Yet, highly concurrent systems

are the most interesting ones to model check, as they are prone to difficult to find

errors.

• Supporting more of JML. The subset I currently support is enough to prove the

value of the approach and enough to do useful work (as seen in chapter 7 on

page 87) but it would be very useful to support additional JML constructs; for

example, the \fresh predicate or the existential predicates.

• An interface grammar editor. I wrote a simple Emacs mode for my own use, but

an Eclipse plugin would be attractive. Additionally some sort of debugger would

have been invaluable during development; I did not have time to look into this

myself, but it would make an excellent medium-sized project.

• XML document generation. An XML document is usually defined as a recursive

structure; accordingly some grammar-based formalism would seem appropriate.
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Additionally DOM and SAX are well defined, standardized interfaces for reading

these documents, and so would provide a natural cleavage point for applying

interface grammars. Some of this was needed for investigating web services in

chapter 9 on page 141.

• Metric support. We already investigated production coverage of an interface

grammar in section 9.4 on page 160; additional metrics would be interesting to

examine and may require tool support.

• Support for additional model checkers. Bogor [45] would probably warrant this

treatment.

• Composition of interface grammars.

• Investigate moving portions of the interface grammar parser into the model checker.

JPF is extensible, and it may be helpful to move some of the parser code, which

is not specific to any particular grammar and which performs a fair amount of

computation, into the code of the model checker itself.

• Investigation of other large systems.
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