
UNIVERSITY OF CALIFORNIA
Santa Barbara

Analysis and Verification of Web Application
Data Models

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jaideep Nijjar

Committee in Charge:

Professor Tevfik Bultan, Chair

Professor Chandra Krintz

Professor Jianwen Su

March 2014

The Dissertation of
Jaideep Nijjar is approved:

Professor Chandra Krintz

Professor Jianwen Su

Professor Tevfik Bultan, Committee Chairperson

March 2014

Analysis and Verification of Web Application Data Models

Copyright c© 2014

by

Jaideep Nijjar

iii

To my parents,

Gurmit Singh Njjar and Rupinderjit Kaur Nijjar.

iv

Acknowledgements

I would like to thank my family and friends for all their love and support over

the years.

I am grateful for my colleagues, Ivan Bocic and Muath Alkhalaf. I had many

enlightening conversations with Bo, which directly impacted the quality of my

research. Muath, being a senior researcher, felt like a guide and was always

generous with his advice. His perspectives and experiences as a grad student

provided comfort and insight.

I acknowledge the WiCS group (Women in Compute Science) for the kind of

support only fellow women can provide. Thank you for organizing non-school

related events, for the chance to connect and talk outside of the classroom and

research lab, and for the opportunity to give back to the group during my term

as Treasurer.

Thank you to the entire CS department at UCSB. It has been an honor to

be part of such a talented, caring and supportive group of people. The financial,

emotional and academic support provided by this department has been key in my

success as a graduate student.

Deep gratitude to Jianwen Su and Chandra Krintz, members of my Ph.D.

committee. I thank them for all the feedback, criticism, and suggestions they

v

have offered. The quality of the work presented in this dissertation has improved

greatly due to them.

I especially thank my research advisor, Tevfik Bultan. Tevfik Bultan’s dedi-

cation to his students is outstanding. He has a gift in transforming students into

independent researchers and leaders in their field. He does it very gently, hold-

ing your hand as you enter the unfamiliar and tough research world, and lets go

exactly when the time is right, confident in your abilities even when you are not.

I thank him for the positive feedback and the constructive criticism he has

given, and for the time he takes to give detailed corrections and suggestions. I

appreciate him asking his students for their feedback of their own work, progress

and experience. And then for offering the support and flexibility to develop our

own research style, thereby bringing out the best in us.

Tevfik Bultan takes pride in doing excellent work, and inspires his students

to do the same. He is knowledgeable and phenomenal in all aspects of the his

position, which includes teaching, writing papers, presenting, grant-writing and

mentoring. Further, he exhibits admirable work-life balance; he teaches his stu-

dents to be well-rounded by example.

Thank you, professor Tevfik Bultan, for your support, encouragement and

guidance all these years. Considering the number of times I was about to drop

out of the program, this Ph.D. would not have been possible without your honest

vi

and supportive words. It has been an honor working with someone with such

determination, passion, integrity, compassion, knowledge, and patience. Overall,

you have been an incredible source of inspiration. Thank you.

vii

Curriculum Vitæ

Jaideep Nijjar

Education

2013 Master of Science in Computer Science, University of California,

Santa Barbara.

2008 Bachelor of Science in Computer Science, Seattle University.

2008 Bachelor of Science in Mathematics, Seattle University.

Publications

Jaideep Nijjar, Ivan Bocic, and Tevfik Bultan. “Data Model

Property Inference, Verification and Repair for Web Applica-

tions.” Submitted to ACM Transactions on Software Engineer-

ing and Methodology.

Jaideep Nijjar, Ivan Bocic, and Tevfik Bultan. “An Integrated

Data Model Verifier with Property Templates.” In Proceedings of

the FME Workshop on Formal Methods in Software Engineering

(FormaliSE), pages 29-35, 2013.

Jaideep Nijjar and Tevfik Bultan. “Data model Property Infer-

ence and Repair.” In Proceedings of the International Symposium

on Software Testing and Analysis (ISSTA), pages 202-212, 2013.

viii

Jaideep Nijjar and Tevfik Bultan. “Unbounded Data Model Veri-

fication using SMT Solvers.” In Proceedings of the 27th IEEE/ACM

International Conference of Automated Software Engineering (ASE),

pages 210-219, 2012.

Jaideep Nijjar and Tevfik Bultan. “Bounded Verification of Ruby

on Rails Data Models.” In Proceedings of the International Sym-

posium on Software Testing and Analysis (ISSTA), pages 67-77,

2011.

ix

Abstract

Analysis and Verification of Web Application Data Models

Jaideep Nijjar

Nowadays many software applications are deployed over compute clouds using

the three-tier architecture, where the persistent data for the application is stored

in a backend datastore and is accessed and modified by the server-side code based

on the user interactions at the client-side. The data model forms the foundation of

these three tiers, and identifies the set of objects stored by the application and the

relations (associations) among them. In this dissertation, we present automated

techniques for data model specification, verification and repair.

We first present an approach for automated verification of data models that

1) extracts a formal data model from an object-relational mapping, 2) converts

verification queries about the data model to queries about the satisfiability of logic

formulas, and 3) uses an automated decision procedure to check the satisfiability

of the resulting formulas. To improve the ease-of-use for this formal verification

framework, we provide property templates for specifying data model properties,

which are automatically translated to logical formulas before verification.

To further automate the specification and verification process, we present tech-

niques for automatically inferring properties about the data model by analyzing

x

the relations among the object classes, and identifying patterns that correspond to

a subset of our property templates. We then check the inferred properties on the

data model using our automated verification techniques. For the properties that

fail, we present techniques that generate fixes to the data model that establish

the inferred properties.

We implemented these techniques in a tool for analyzing web applications

built using the Ruby on Rails framework and applied it to five open source ap-

plications. Our experimental results demonstrate that our approach is effective

in automatically identifying and fixing errors in data models of real-world web

applications.

xi

Contents

Acknowledgements v

Curriculum Vitæ viii

Abstract x

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 Data Models in Web Applications 14
2.1 Rails Data Models and the Basic Relationships 15
2.2 Extending the Basic Relationships using Options 19
2.3 Data Modeling Constructs in Other Object-Relational Mappings . 24

3 Formalizing Data Models 27
3.1 The Formal Data Model . 28

3.1.1 Relational Constraints . 29
3.1.2 Dependency Constraints 33

3.2 Formalizing Verification Queries 34

4 Bounded Verification 39
4.1 Overview . 39
4.2 Translation to Alloy . 41
4.3 Translating the Dependency Constraints to Alloy 51
4.4 Automated Translator Implementation 60

xii

5 Unbounded Verification 62
5.1 Translation to SMT-LIB . 64
5.2 Data Model Projection . 72

6 Experiments 77
6.1 Overview . 77
6.2 The Applications . 79
6.3 Verification Results . 80
6.4 Performance . 83

7 Automated Property Inference and Repair 90
7.1 Overview . 91
7.2 The Formal Data Model Schema 92
7.3 Property Inference . 96

7.3.1 Delete Propagation . 96
7.3.2 Orphan Prevention . 98
7.3.3 Transitive Relations . 102

7.4 Property Repair . 104
7.4.1 Delete Propagation . 105
7.4.2 Orphan Prevention . 106
7.4.3 Transitive Relations . 108

7.5 Experiments . 109

8 Integrated Data Model Verifier (iDaVer) 120
8.1 Overview . 121
8.2 Property Templates . 122
8.3 iDaVer’s Architecture . 127
8.4 A Case Study . 129

9 Related Work 135
9.1 Modeling and Verification of Web Applications 135
9.2 Data Model Analysis and Verification 140
9.3 Dependency-Based Projection . 145
9.4 Automated Property Inference and Repair 146

10 Conclusion 148

Bibliography 151

xiii

List of Figures

1.1 The Three-Tier Architecture . 4
1.2 The Model-View-Controller Pattern 6
1.3 iDaVer’s Architecture . 8

2.1 A data model example . 16
2.2 ORM Library Syntax Comparison 26

4.1 Summary of our bounded data model verification approach 42

5.1 Summary of our unbounded data model verification approach . . 63

6.1 Verification Time, Alloy vs Z3 . 85
6.2 Formula Size, Alloy . 89
6.3 Formula Size, SMT . 89

7.1 A simplified data model based on a web application called TRACKS
that manages todo lists. 94
7.2 The data model schema extracted from the data model shown in
Figure 7.1. 95
7.3 Graphical representations of the relation types. 95
7.4 A sub-schema and the corresponding acyclic graph constructed
during the Inference Algorithm for Delete Propagation. 97
7.5 The pattern used for recognizing orphan chains. 100
7.6 The pattern used for inferring transitive relations. 101
7.7 Data model analysis toolset. 104
7.8 The data model from Figure 7.1 updated with the suggested repairs
(in bold) generated by our tool. 110

8.1 A data model example . 123

xiv

8.2 The schema extracted from the data model in Figure 8.1. 124
8.3 Data model analysis toolset. 128

xv

List of Tables

4.1 Translation of the Rails declaration associations to Alloy 43

6.1 Sizes of the Applications . 79
6.2 Verification Results . 82
6.3 Z3 Verification Times in seconds 84

7.1 Inference and Verification Results 118
7.2 Inference and Verification Performance 119

xvi

Chapter 1

Introduction

Although the web began as a medium for sharing information stored in static

HTML pages, it has evolved into an ubiquitous medium for interaction and dy-

namism, driven by sophisticated web applications that can provide highly complex

functionality that was once only available in desktop applications. Early on, e-

commerce was the driving force behind the development of complex browser-based

web applications; more recently, social networking has assumed this role. We are

now entering a new phase of the web revolution where web applications are replac-

ing desktop applications. Software-as-a-service supported with cloud computing

platforms has become a realistic and attractive alternative to stand-alone desktop

applications, saving users from the constant hassles of installation, configuration,

software upgrades and security patches. The use of web applications has increased

1

Chapter 1. Introduction

rapidly with the expanding growth of mobile phones, tablets and e-readers. This

is certainly not the last phase of the web revolution. In the near future, web

applications will play a significant role in improving the efficiency of national in-

frastructures in many critical areas such as healthcare [40], national security, and

the power grid [41].

There is a large stumbling block to this ever-increasing reliance on web ap-

plications: web applications are not dependable. For example, they are notori-

ous for security vulnerabilities [79] and are easily confused by unexpected user

requests [42]. Given their increasing importance and ubiquity, the lack of depend-

ability in web applications can no longer be tolerated. There is an urgent need

for developing techniques and tools that can be used to improve the dependabil-

ity of web applications. To be successful, these techniques and tools must take

into account and exploit the unique characteristics of web applications and their

common architectural patterns.

It has become common practice to write web applications using scripting lan-

guages, such as Ruby, because of their quick turnaround times in producing work-

ing applications. However, because of their dynamic nature, it is easy to introduce

hard-to-find bugs in the applications written using these scripting languages. Cur-

rent web software development processes rely on manual testing for eliminating

bugs. Although testing is necessary for improving the dependability of software

2

Chapter 1. Introduction

systems in general, it is not possible to cover the state space of a web application

using testing. Hence, undetected bugs find their way into deployed software sys-

tems resulting in unreliable behavior at best, and critical safety and security flaws

at worst.

This is where static verification comes in. Static verification allows a rigorous

method of analyzing applications systematically and exhaustively. Another bene-

fit of using static verification is that it can be applied during the earlier phases of

software development. Testing is usually the last phase of software development

and must be executed after implementation is complete. However, it is widely

known that the majority of the cost of software development and maintenance

comes from design defects. Thus, the methodology used to identify such defects

should be one that takes place earlier in the software development cycle. Veri-

fication based on static analysis is one such methodology. By catching errors in

the design phase of web application development, it helps decrease the cost of

maintenance, debugging and patching flawed designs.

Most modern software applications are developed using the three-tier archi-

tecture (Figure 1.1) that consists of a client, a server and a backend datastore.

The client-side code is responsible for coordinating the interaction with the user.

The server-side code implements the business logic and determines the control

flow of the application. The backend datastore stores the persistent data for

3

Chapter 1. Introduction

Backend
Database

Browser

Web Server

Figure 1.1: The Three-Tier Architecture

4

Chapter 1. Introduction

the application. The interaction between the server and the backend datastore

is typically managed using an object-relational mapping (ORM) that maps the

object-oriented code at the server side to the relational database at the backend.

The ORM makes use of a data model to accomplish this.

A data model specifies the types of objects (e.g., user, account, etc.) stored

by the application and the relations among the objects (e.g., the relation be-

tween users and accounts). A data model also specifies constraints on the data

model relations (e.g., the relation between two object types must be one-to-one).

The ORM maps this data model to the appropriate representations used by the

server-side code and the backend datastore. Since data models form the foun-

dation of such applications, their correctness is of paramount importance for the

dependability of such applications.

The focus of our work is the verification of data models in web applications.

Web applications have been the most successful type of cloud-based software appli-

cations. There are many frameworks that support their development, but recently

frameworks employing the Model-View-Controller (MVC) pattern [55] have gained

popularity. Ruby on Rails (Rails for short), Zend for PHP, CakePHP, Django for

Python, and Spring for J2EE are all examples of frameworks based on the MVC

pattern. This pattern facilitates the separation of the data model (Model) from

the user interface logic (View) and the control flow logic (Controller). (See Fig-

5

Chapter 1. Introduction

Backend
Database

Browser

Model

View Controller

Web
Server

Figure 1.2: The Model-View-Controller Pattern

ure 1.2.) The modularity and separation of concerns principles imposed by the

MVC pattern makes automated extraction of the data model possible, and pro-

vides opportunities for developing customized verification and analysis techniques.

In this dissertation we present an automated verification approach for data

models. It includes bounded verification of data models using Alloy as well as

unbounded verification using the theory of uninterpreted functions with quan-

6

Chapter 1. Introduction

tification. These two approaches were integrated and implemented as tool for

the Ruby on Rails framework (Figure 1.3). The front-end of our tool, iDaVer,

automatically extracts a formal data model from the ORM specification of the

input Rails application. The user writes properties about the data model that

she expects to hold, and then chooses to perform either bounded or unbounded

verification.

Although the formal data model is extracted automatically, the user still has to

specify the properties she desires to check about the data model. To facilitate this

process, we developed a set of property templates. These templates characterize

the most common properties we observed in our research on data model verifica-

tion [72, 73]. These templates can easily be instantiated for different classes and

relations by the user.

In order to verify properties (specified using property templates) using bounded

verification, the tool first automatically translates the Rails data models to formal

specifications in the Alloy language [54]. Next, we use the bounded verification

techniques implemented in the Alloy Analyzer to check if the specified properties

hold on all instances of the given data model within a given bound. Alloy An-

alyzer converts bounded verification queries to Boolean SAT problems and uses

a SAT-solver to determine the result. The exhaustive exploration either finds a

violation of a given property (which indicates an error in the data model) or it

7

Chapter 1. Introduction

Bounded
Verification

instance
or unsat

formula

formal data model

Alloy
Analyzer

Property
Templates

ORM Source

SMT
Solver

instance
or unsat

or unknown

formula

Unbounded
Verification

Property Failed
+

Counterexample

Property
Verifed

Unknown

Model
Extraction

properties

Figure 1.3: iDaVer’s Architecture

8

Chapter 1. Introduction

terminates without finding a violation (which guarantees that the data model does

not violate the specified properties within the given bound).

If the user would like to perform unbounded verification, iDaVer converts

verification queries to formulas in the theory of uninterpreted functions and then

uses a Satisfiability Modulo Theories (SMT) solver to determine the satisfiability

of the queries. Based on the satisfiability result of the generated SMT formula, our

tool reports whether the property holds on the data model, fails to hold, or that

the SMT solver timed out during verification. Timeouts may occur due to the un-

decidability of the theory of uninterpreted functions with quantification [11]. Our

SMT-based verification approach does not bound the sizes of the object classes or

the relations, so if our verification tool reports that an assertion holds, it is guar-

anteed to hold for any data model instance. In both the bounded and unbounded

approaches, our tool provides a sample data model as a counterexample for failing

assertions.

To evaluate the effectiveness and usability of our approach, we applied it to five

open-source Rails applications and identified a variety of data model errors. Our

results show that our verification techniques are feasible and useful in analyzing

real-world applications. We include a performance comparison of the bounded

and unbounded approaches.

9

Chapter 1. Introduction

Finally, in this dissertation we present novel techniques that automatically in-

fer properties about the data model of web applications built using the three-tier

architecture. The first step in our approach to data model property inference is

extracting a data model schema from the ORM specification of the application.

This data model schema is a directed and annotated graph representing the re-

lations in the data model. We developed heuristics that explore the structure of

this graph and look for a set of patterns. For example, if there are two alternative

paths in the data model graph between two object classes, then in some cases we

can infer that the relation that corresponds to the composition of the relations on

one path should be equal to the relation that corresponds to the composition of

the relations on the other path. As another example, if the deletion of an object

might cause some other objects to become disconnected in the relation graph,

then we might infer that the deletion of those objects should be dependent (i.e.,

the deletion of one object should automatically trigger deletion of the related ob-

jects). When we find matches to these patterns in the data model schema, we

infer the corresponding properties.

Once the automatically inferred properties are generated, a data model ver-

ification technique (such as the ones we developed and introduced earlier) can

be used to determine if the inferred properties are actually enforced by the data

model.

10

Chapter 1. Introduction

Our techniques are applicable to ORMs in general, and we have implemented

the approach for the Ruby on Rails framework. The techniques have been in-

tegrated as a complete toolset for data model analysis, verification and repair.

We used our toolset to analyze five open source Ruby on Rails applications. Our

results indicate that the integrated automated property inference, verification and

repair approach is effective in discovering and eliminating errors in data models

of real-world web applications.

In summary, the novel contributions of this dissertation include:

1. A data model verification technique that automatically translates data model

verification queries to formulas in the Alloy language and uses a boolean SAT

solver to answer them.

2. A data model verification technique that can handle unbounded data models

by automatically translating verification queries to formulas in the theory

of uninterpreted functions and using SMT solvers to answer them.

3. iDaVer, an integrated tool that combines SAT- and SMT-based data model

verification approaches with property templates.

4. Automated techniques for property inference that extract a data model

schema from the ORM, investigate the structure of the generated data model

schema and generate properties that are expected to hold in the data model.

11

Chapter 1. Introduction

5. The integration of automated property inference techniques with automated

verification techniques in order to identify which of the inferred properties

are valid based on the semantics of the data model.

6. Automated repair generation techniques that propose modifications to the

data model so that the modified data model satisfies the properties that fail.

7. Implementation of the proposed approaches for the Ruby on Rails frame-

work.

8. Experimental evaluation of the proposed approaches on five real-world ap-

plications.

The remainder of this dissertation is organized as follows: Chapter 2 describes

data models in web applications, focusing on the Ruby on Rails framework. Chap-

ter 3 gives a formal description of the data model verification problem. Chapter 4

describes our bounded verification approach and how we translate Rails data

models to the Alloy language. Chapter 5 presents our unbounded verification

approach and the translation of data model verification queries to the theory

of uninterpreted functions. Chapter 6 presents our data model verification ex-

periments. Chapter 7 describes our data model property inference algorithms,

our automated repair generation techniques, and related experiments. Chapter 8

presents data model property templates and iDaVer, our tool for integrated data

12

Chapter 1. Introduction

model verification. Related work is discussed in Chapter 9 and we conclude in

Chapter 10.

13

Chapter 2

Data Models in Web Applications

The data model forms the foundation of a web application that uses the three-

tier architecture. Any error in this foundation can have a significant impact

on the entire application. The data model provides an abstraction between the

application code and the backend datastore in a web application. Typically, from

the backend datastore’s point of view the data is stored in a relational database,

whereas from the perspective of the application code the data is represented using

an object-oriented data model. The object-relational mapping (ORM) used by

the three-tier architecture handles the translation between these two views, so

that the application code and the backend datastore can interact with each other

while preserving their own views of the data. In this chapter we describe how

data models are expressed using the Ruby on Rails framework as an example.

14

Chapter 2. Data Models in Web Applications

2.1 Rails Data Models and the Basic Relation-

ships

The ORM used by Ruby on Rails is called Active Records. Active Records

handle all the details of connecting to the underlying database, mapping objects

to tables, and data manipulation. Active Records are also used to manage rela-

tionships between tables.

We will use the running example shown in Figure 2.1 to describe the various

data-modeling features available in Rails. Figure 2.1 displays a simple Active

Records specification for a social networking application where users have profiles

which store their photo and video files. The photos and videos can be tagged by

users, and users can have different roles.

Active Records handle three basic types of relationships:

1. one-to-one: An ObjectA is associated with zero or one ObjectB’s. So, more

accurately, this is a one-to-zero-or-one relationship.

2. one-to-many: An ObjectA is associated with an arbitrary (zero or more)

number of ObjectB’s.

3. many-to-many: An arbitrary (zero or more) number of ObjectA’s are asso-

ciated with an arbitrary (zero or more) number of ObjectB’s.

15

Chapter 2. Data Models in Web Applications

1 class User < ActiveRecord::Base

2 has_and_belongs_to_many :roles

3 has_one :profile, :dependent => :destroy

4 has_many :photos, :through => :profile

5 end

6 class Role < ActiveRecord::Base

7 has_and_belongs_to_many :users

8 end

9 class Profile < ActiveRecord::Base

10 belongs_to :user

11 has_many :photos, :dependent => :destroy

12 has_many :videos, :dependent => :destroy,

13 :conditions => "format=’mp4’"

14 end

15 class Photo < ActiveRecord::Base

16 belongs_to :profile

17 has_many :tags, :as => :taggable

18 end

19 class Video < ActiveRecord::Base

21 belongs_to :profile

22 has_many :tags, :as => :taggable

23 end

24 class Tag < ActiveRecord::Base

25 belongs_to :taggable, :polymorphic => true

26 end

Figure 2.1: A data model example
16

Chapter 2. Data Models in Web Applications

These relationships are expressed by adding a pair of declarations (from the set

of four declarations: has one, has many, belongs to, and has and belongs to many)

in the corresponding Active Record file of the related objects. The pair of declara-

tion required for each relation type is explained below using the running example.

1. one-to-one: To declare a one-to-one relationship between User and Profile

objects, the has one and belongs to declaration pair is used:

class User < ActiveRecord::Base

has one :profile

end

class Profile < ActiveRecord::Base

belongs to :user

end

2. one-to-many: To declare a one-to-many relationship between Profile and

Photo objects, the has many and belongs to declaration pair is used:

class Profile < ActiveRecord::Base

has many :photos

end

class Photo < ActiveRecord::Base

belongs to :profile

end

17

Chapter 2. Data Models in Web Applications

3. many-to-many: To declare a many-to-many relationship between User and

Role objects the has and belongs to many declaration is used in both Active

Record files:

class User < ActiveRecord::Base

has and belongs to many :roles

end

class Role < ActiveRecord::Base

has and belongs to many :users

end

Note that in order to express a relationship that an object has with itself, one

would put both declarations in the same class. Also note that the < operator is

used to express inheritance in Rails. All the objects we have discussed so far inherit

from the ActiveRecord::Base class. This is so that the data objects inherit all

the database-connection functionality that is located in the ActiveRecord::Base

class. Classes can also inherit from user-declared classes.

18

Chapter 2. Data Models in Web Applications

2.2 Extending the Basic Relationships using Op-

tions

Rails provides a set of options that can be used to extend the three basic rela-

tionships we discussed above. We discuss the four options that affect relationships

between data objects, below.

The :through Option The first is the :through option, which can be set on the

has many and has one declarations. One use of the :through option is for setting

up a join table for a many-to-many relation, as opposed to a join model using the

has and belongs to many declaration. Another use of the :through option is when

ObjectA has a one-to-many or one-to-one relation with ObjectB, ObjectC also

has a one-to-many or one-to-one relation with ObjectB, and the Rails program-

mer would like direct access from ObjectA to ObjectC. For instance (see below),

in the running example User has a one-to-one relation with Profile and Profile

has a one-to-many relation with Photo. To get all the photos associated with a

profile that belongs to a user, a programmer would typically have to write code

to get all the Profile object associated with the User object, and then write code

to obtain the set of Photo objects associated with that Profile. Instead, by using

the :through option, the programmer can declare that Users have many Photos

19

Chapter 2. Data Models in Web Applications

:through Profile. This will allow the programmer to directly access the set of

Photos from a User object.

class User < ActiveRecord::Base

has one :profile

has many :photos, :through => :profile

end

class Profile < ActiveRecord::Base

belongs to :user

has many :photos

end

class Photo < ActiveRecord::Base

belongs to :profile

end

The :conditions Option The second option for extending relationships is the

:conditions option, which can be set on all of the four declarations (has one,

has many, belongs to, and has and belongs to many). As an example of its use,

consider the following:

20

Chapter 2. Data Models in Web Applications

class Profile < ActiveRecord::Base

has many :videos, :conditions => ”format=’mp4’”

end

class Video < ActiveRecord::Base

belongs to :profile

end

The :conditions option limits the relationship to those objects that meet a certain

criteria. In this example, Profile objects are only related to a Video object if its

format field is ’mp4’. The condition statement needs to be in the form of the

WHERE clause of a SQL query.

The :polymorphic Option The third option for extending relationships is the

:polymorphic option to the belongs to declaration, which Rails uses to declare

polymorphic associations. This is similar to the idea of interfaces in object-

oriented design, where dissimilar objects have common characteristics that are

embodied in the interface they implement. In the running example this occurs

with Photos and Videos. Although Photos and Videos are not similar enough to

have a sub-class relationship, they both can have Tags. By using the :polymorphic

option in the Tag class we can allow any and all classes that have tags to create an

association with the Tag class. Any classes created in the future can also take part

21

Chapter 2. Data Models in Web Applications

in this relationship, all without having to make any changes to the Tag class. The

models for the Photo, Video and Tag classes, with the polymorphism constructs

highlighted, are given below.

class Tag < ActiveRecord::Base

belongs to :taggable, :polymorphic => true

end

class Photo < ActiveRecord::Base

has many :tags, :as => :taggable

end

class Video < ActiveRecord::Base

has many :tags, :as => :taggable

end

The polymorphic relationship is expressed in Photo and Video using the has many

declaration with the :as option. The :as option can also be specified on a has one

declaration. Next, the Tag class requires a :belongs to declaration with the

:polymorphic option set. This allows a Tag to belong to any taggable classes.

The :dependent Option The final Rails construct we discuss adds some dy-

namism to the data model; it allows modeling of object deletion at the data model

level. The Rails construct for this is the :dependent option, which can be set for

22

Chapter 2. Data Models in Web Applications

all the relation declarations except :has and belongs to many. Normally when an

object is deleted, its related objects are not deleted. However, by setting the

:dependent option to :destroy or :delete (:delete all for the has many declara-

tion), deleting this object will also delete any associated object(s). Although there

are several differences between :destroy and :delete, the one that is important

for our purposes is that :delete will directly delete the associated object(s) from

the database without looking at its dependencies, whereas :destroy first checks

whether the associated objects themselves have relations with the :dependent op-

tion set. For an example of the use of the :dependent option, consider the following

excerpt from data model of the running example:

class User < ActiveRecord::Base

has one :profile, :dependent => :destroy

end

The relation in the User class with Profile has the :dependent option set. This

means that when a User object is deleted, the profile object related to it is also

deleted. Further, since the :dependent option is set to :destroy, any relations

with the :dependent option set in the Profile class will also have their objects

deleted. In the case of the running example, the Profile class has two relations

with the :dependent option set (photos and videos) to which the delete will prop-

agate:

23

Chapter 2. Data Models in Web Applications

class Profile < ActiveRecord::Base

belongs to :user

has many :photos, :dependent => :destroy

has many :videos, :dependent => :destroy

end

2.3 Data Modeling Constructs in Other Object-

Relational Mappings

The constructs presented so far form the essence of Rails data models specified

using Active Record. The basic data modeling constructs are also supported by

other object-relational mappings (ORMs) such as Hibernate and DjangoORM. In

order to demonstrate that the basic types of relations can also be specified in other

ORMs, we provide a simple syntax comparison between these three different ORM

libraries (Active Record, Hibernate, and DjangoORM) in Figure 2.2, where objects

of class Foo are associated with objects of class Bar with different cardinality

constraints [70].

Active Record is the most expressive among these ORM libraries, and allows

declaration of complex relations using the options we discussed above. However,

24

Chapter 2. Data Models in Web Applications

many features of Active Record are available in other ORMs as well. For ex-

ample, Hibernate supports delete propagation in a manner similar to :dependent

=> :destroy option of Active Record. All three ORMs support polymorphism

and multiple inheritance in different ways (polymorphic associations in Rails,

@MappedSuperclass annotations in Hibernate, the parent link option in Djan-

goORM). The :condition option of Active Record is unavailable in Hibernate

or DjangoORM (though easy to implement manually), and DjangoORM does not

have a feature similar to Active Record’s :dependent option. Instead, delete prop-

agation has to be implemented manually.

Using constructs like those discussed in this chapter, a developer can specify

complex relations among objects of an application. Since a typical application

would contain dozens of object classes with many relations among them, it is

possible to have errors and omissions in the data model specification that can

result in unexpected behaviors and bugs. It is our goal in this dissertation is to

present an automated verification tool that can help analyze a data model and

identify errors.

25

Chapter 2. Data Models in Web Applications

Cardinality Active Record Hibernate DjangoORM

One to Zero or

One

class Foo

has_one :bar

end

class Bar

belongs_to :foo

end

public class Foo {

@OneToOne(mapped_by = "bar")

public Bar getBar() { ... }

}

public class Bar {

@OneToOne(nullable = false)

public Foo getFoo() { ... }

}

class Foo(models.Model)

associated Bar can be queried

using the bar() method

class Bar(models.Model)

foo = models.OneToOneField(Foo,

null=true,

primary_key=true)

One to Many

class Foo

has_many :bars

end

class Bar

belongs_to :foo

end

public class Foo {

@ManyToOne(mappedBy = "bar")

public Set<Bar> getBars() { ... }

}

public class Bar {

@ManyToOne

@JoinColumn(name = "foo_id",

nullable = false)

public Foo getFoo() { ... }

}

class Foo(models.Model)

associated Bars can be queried

using the bar_set() method

class Bar(models.Model)

foo = models.ForeignKey(Foo)

Many to Many

class Foo

has_and_belongs_to_many :bars

end

class Bar

has_and_belongs_to_many :foos

end

public class Foo {

@ManyToMany(...)

@JoinTable(...)

public Set<Bar> getBars() { ... }

}

public class Bar {

@ManyToMany(mappedBy = "bars")

public Set<Foo> getFoos() { ... }

}

class Foo(models.Model)

associated Bars can be queried

using the bars() method

class Bar(models.Model)

foo = models.ManyToManyField(Foo)

Figure 2.2: ORM Library Syntax Comparison

26

Chapter 3

Formalizing Data Models

We are now ready to discuss how data model constructs can be formalized as

relational constraints on a formal data model. A formal data model represents the

objects and their relationships in an application. In this chapter we will explain

how data models in web applications can be formalized, using Active Records as

an example. Note that we focus on analyzing a mainly static model. We do not

model operations that update objects and their relationships, except for delete

propagation which is declared in Active Records using the :dependent option.

By focusing on the static data model specified in the Active Record files we can

extract the set of constraints that must hold for any instance of the data model.

In this chapter we present the formal data model and formalize the data model

verification problem.

27

Chapter 3. Formalizing Data Models

3.1 The Formal Data Model

We define a data model as a tuple M = 〈S,C,D〉 where S is the data model

schema, identifying the sets and relations of the data model, C is a set of rela-

tional constraints and D is a set of dependency constraints. The schema S only

identifies the names of the object classes, the names of the relations and the do-

mains and ranges of the relations in the data model. For example, the schema for

the example shown in Figure 2.1 will identify the following set of object classes

{User, Role, Profile, Photo, Video, Tag} and the relations among these object

classes {photo-profile, photo-tag, photo-user, profile-user, profile-video, role-user,

tag-video}, where each relation has an identified domain and range (we named

the relations above so that the prefix identifies the domain and the suffix identifies

the range).

The relational constraints in C express all the constraints on the relations

such as the ones related to cardinality (one-to-one, one-to-many, and many-to-

many), the ones related to transitive relations (:through option) the ones related

to conditional behavior (:conditions option), and the ones related to polymorphic

behavior (:polymorphic option). If a given relation r satisfies a given constraint,

then we would state that r |= C.

28

Chapter 3. Formalizing Data Models

3.1.1 Relational Constraints

The Basic Relationships Recall from Chapter 2 that Rails supports three

basic types of relations among objects: (1) one-to-one, (2) one-to-many, and (3)

many-to-many. We will describe how to formalize these relational constraints

using the running example in Figure 2.1.

The has one and belongs to declarations in lines 3 and 10 in Figure 2.1 define

a one-to-one relation between the User and Profile classes. More accurately, this

is a one-to-zero-or-one relation and it declares that each User object must be asso-

ciated with zero or one Profile object, and each Profile object must be associated

with exactly one User object. In order to formalize this relation as a constraint,

let us use oU and oP to denote the set of objects for the User and Profile classes

and rU−P to denote the relation between User objects and Profile objects. Then

the constraint that corresponds to this relation is formalized as:

(∀p ∈ oP , ∃u ∈ oU , (u, p) ∈ rU−P)

∧ (∀p, p′ ∈ op,∀u ∈ oU , ((u, p) ∈ rU−P ∧ (u, p′) ∈ rU−P)⇒ p = p′)

∧ (∀p ∈ op, ∀u, u′ ∈ oU , ((u, p) ∈ rU−P ∧ (u′, p) ∈ rU−P)⇒ u = u′) (3.1)

29

Chapter 3. Formalizing Data Models

Next, let us consider the one-to-many relation between the Profile and Photo

classes, which is declared in the Rails data model in Figure 2.1 using the has many

and belongs to declarations in lines 11 and 16. Using oP and oPh to denote the set

of objects for the Profile and Photo classes and rP−Ph to denote the profile-photo

relation, the formal data model constraint that corresponds to this declaration is:

(∀ph ∈ oPh, ∃p ∈ oP , (p, ph) ∈ rP−Ph)

∧ (∀p, p′ ∈ oP ,∀ph ∈ oPh, ((p, ph) ∈ rP−Ph ∧ (p′, ph) ∈ rP−Ph)⇒ p = p′) (3.2)

Finally, Rails allows the expression of many-to-many relations, using the

has and belongs to many declaration on both sides of the relation. This is seen in

Figure 2.1 on lines 2 and 7 where this declaration is used to set up a many-to-

many relation between User and Role. For such declarations we do not have to

create any additional constraints since any relation is a many-to-many relation.

Extensions Rails also provides a set of options that can be used to extend the

three basic relations. The first option is the :through option for the has many and

has one declarations. Recall that the :through option enables the declaration of

new relations that are the composition of two other relations. Consider line 4 in

Figure 2.1 which ends with :through => :profile and declares a relation between

30

Chapter 3. Formalizing Data Models

User and Photo objects. When this declaration is combined with the declarations

of the relation between User and Profile objects (lines 3 and 10) and Profile and

Photo objects (lines 11 and 16), it specifies that the relation between the User

and Photo objects (rU−Ph) is the composition of the relations between the User

and Profile objects (rU−P) and the Profile and the Photo objects (rP−Ph). This

can be formalized as:

∀u ∈ oU ,∀ph ∈ oPh, (u, ph) ∈ rU−Ph ⇔

(∃p ∈ oP , (u, p) ∈ rU−P ∧ (p, ph) ∈ rP−Ph) (3.3)

The second option that can be used to extend relations is the :conditions op-

tion, which can be set on all of the four declarations (has one, has many, belongs to,

and has and belongs to many). The :conditions option limits the relation to those

objects that meet a certain criteria. For example, based on the relation declara-

tion in lines 12 and 13 in Figure 2.1, Video objects are only related to a Profile

object if their format field is ’mp4’. The formalization of this constraint defines

a set of objects (oV ′) that is a subset of the Video objects (oV) (corresponding

to Video objects with format field ’mp4’) and restricts the relation between the

Profile and Video objects (rP−V) to that subset. Formally:

31

Chapter 3. Formalizing Data Models

oV ′ ⊆ oV ∧ (∀p ∈ oP , ∀v ∈ oV , (p, v) ∈ rP−V ⇒ v ∈ oV ′) (3.4)

Note that since we do not model data fields (such as the format field of the Video

class), this formalization is necessarily an abstraction.

Rails also supports the declaration of polymorphic associations. In Rails,

polymorphic associations are declared by setting the :polymorphic option on the

belongs to declaration and the :as option on the has one or has many declarations.

We see the use of the :polymorphic option in Figure 2.1 between Tags, Photos and

Videos (lines 17, 22, 25). Recall that Photos and Videos do not have a sub-class

relationship but they both can have Tags. The use of the :polymorphic option in

the Tag class creates a relationship which allows any class to act as a Taggable

object and relate to the Tag class via this relation. This is formalized by defin-

ing a set of objects for the superset (Taggable) and then expressing inheritance

using subset constraints. For the example above, we define a new set of objects

called Taggable (oT) and declare that Video objects (oV) and Photo objects (oPh)

are mutually exclusive subsets of the Taggable objects, as shown below. Then a

relation can be formally specified between Tag and Taggable objects using ideas

discussed earlier.

32

Chapter 3. Formalizing Data Models

oV ⊆ oT ∧ oPh ⊆ oT ∧ oV ∩ oPh = ∅ (3.5)

3.1.2 Dependency Constraints

The dependency constraints in D are concerned with how a data model in-

stance changes with respect to object deletion. Hence, these constraints express

conditions on two consecutive instances of a relation such that deletion of an ob-

ject from one of them leads to the other instance by deletion of possibly more

objects. So in order to determine if a dependency constraint holds, we need two

instances of the same relation, say r and r′, where one denotes the instance before

the deletion, and one denotes the instance after the deletion, respectively. Then, if

the pair of relations (r, r′) satisfy the dependency constraint, we write (r, r′) |= D.

The final Rails construct we formalize, the :dependent option, creates con-

straints of this form. In Figure 2.1 we see that the User class has the :dependent

option set for the relation with the Profile class (line 3). Thus, when a User object

is deleted, the Profile object that is associated with that User will also be deleted.

Further, since the :dependent option is set to :destroy, any relations of the Pro-

file class with the :dependent option set will cause those associated objects to be

deleted as well.

33

Chapter 3. Formalizing Data Models

Formal modeling of the dependency constraints requires us to model the delete

operation. Consider the relation between the User and Profile objects. In order

to model the delete operation we have to specify the set of User objects, the set of

Profile objects and the relation between the User and Profile objects both before

and after the delete operation (oU , o′U , oP , o′P , rU−P , and r′U−P , respectively).

Then we need to specify that when a User object is deleted, the Profile objects

related to that User are also deleted. Formally:

o′P ⊆ oP ∧ o′U ⊆ oU ∧ r′U−P ⊆ rU−P

∧ (∃u ∈ oU , u 6∈ o′U ∧ (∀u′ ∈ oU , u
′ 6= u⇒ u′ ∈ o′U)

∧ (∀p ∈ oP , (u, p) ∈ rU−P ⇒ p 6∈ o′P)

∧ (∀p ∈ oP , (u, p) 6∈ rU−P ⇒ p ∈ o′P)

∧ (∀u′ ∈ oU ,∀p ∈ oP , ((u
′, p) ∈ rU−P ∧ (u, p) 6∈ rU−P)⇒ (u′, p) ∈ r′U−P)) (3.6)

3.2 Formalizing Verification Queries

In order to formalize verification queries, we first define data model instances

and what it means for a data model instance to satisfy a given set of data model

constraints.

34

Chapter 3. Formalizing Data Models

A data model instance is a tuple I = 〈O,R〉 where O = {o1, o2, . . . onO
} is a

set of object classes and R = {r1, r2, . . . rnR
} is a set of object relations. For each

ri ∈ R there exists oj, ok ∈ O such that ri ⊆ oj × ok.

Given a data model instance I = 〈O,R〉, we write R |= C to denote that

the relations in R satisfy the constraints in C. Similarly, given two instances

I = 〈O,R〉 and I ′ = 〈O′, R′〉 we write (R,R′) |= D to denote that the relations in

R and R′ satisfy the constraints in D.

A data model instance I = 〈O,R〉 is an instance of the data model M =

〈S,C,D〉, denoted by I |= M , if and only if 1) the sets in O and the relations in

R follow the schema S, and 2) R |= C.

Given a pair of data model instances I = 〈O,R〉 and I ′ = 〈O′, R′〉, (I, I ′) is a

behavior of the data model M = 〈S,C,D〉, denoted by (I, I ′) |= M if and only if

1) O and R and O′ and R′ follow the schema S, 2) R |= C and R′ |= C, and 3)

(R,R′) |= D.

Data Model Properties Given a data model M = 〈S,C,D〉, we will define

four types of properties:

1. State assertions, denoted by AS, are properties that we expect to hold for

each instance of the data model;

35

Chapter 3. Formalizing Data Models

2. Behavior assertions, denoted by AB, are properties that we expect to hold

for each pair of instances that form a behavior of the data model;

3. State predicates, denoted by PS, are properties we expect to hold in some

instance of the data model; and, finally,

4. Behavior predicates, denoted by PB, are properties we expect to hold in

some pair of instances that form a behavior of the data model.

We will denote that a data model satisfies an assertion or a predicate as M |= A

or M |= P , respectively. Then, we have the following formal definitions for these

four types of properties:

M |= AS ⇔ ∀I = 〈O,R〉, I |= M ⇒ R |= AS

M |= AB ⇔ ∀(I = 〈O,R〉, I ′ = 〈O′, R′〉), (I, I ′) |= M ⇒ (R,R′) |= AB

M |= PS ⇔ ∃I = 〈O,R〉, I |= M ∧R |= PS

M |= PB ⇔ ∃(I = 〈O,R〉, I ′ = 〈O′, R′〉), (I, I ′) |= M ∧ (R,R′) |= PB

We say that a data model M satisfies a state assertion AS, denoted by M |= AS

if and only if, for all I = 〈O,R〉 where I is an instance of M , R |= AS.

We say that a data model M satisfies a state predicate PS if and only if, there

exists an I = 〈O,R〉 such that I is an instance of M and R |= PS.

36

Chapter 3. Formalizing Data Models

We say that a data model M satisfies a behavior assertion AB if and only if,

for all I = 〈O,R〉, I ′ = 〈O′, R′〉 where (I, I ′) is a behavior of M , (R,R′) |= AB.

We say that a data model M satisfies a behavior predicate PB if and only if,

there exists I = 〈O,R〉 and I ′ = 〈O′, R′〉 such that (I, I ′) is a behavior of M and

(R,R′) |= PB.

With these definitions we can now define the data model verification problem

which is, given one of the above four types of properties, determine if the data

model satisfies the property.

As an example of what properties look like, let us say we want to express the

following property about the data model in Figure 2.1: Is it possible to have a

user with no roles? Formally expressed,

∃u ∈ oU ,∀l ∈ oL, (u, l) 6∈ rU−L (3.7)

where oU denotes the set of User objects, oL denotes the set of Role objects, and

rU−L denotes the set of related User and Role objects. This property is a state

predicate, PS1. To check whether the data model, M1, satisfies this property, we

check M1 |= PS1 according to the definition above.

Our approach to data model verification asks the user to specify such properties

that she expects will hold on the data model of her web application. Given a list

37

Chapter 3. Formalizing Data Models

of such properties, our tool automatically verifies whether these properties hold or

not. In the next chapter, we discuss how we perform verification using a bounded

approach.

38

Chapter 4

Bounded Verification

In this chapter we describe our bounded verification approach to automatic

data model verification [72].

4.1 Overview

Given the data model verification problem (see Chapter 3), we can solve it

using bounded verification, where we check the property for instances within a

certain bound. The main idea is to bound the set of data model instances to a

finite set, say Ik where I = 〈O,R〉 ∈ Ik if and only if for all o ∈ O |o| ≤ k. Then,

given a state assertion AS (for example), we can check the following condition:

∃I = 〈O,R〉, I ∈ Ik ∧ I |= M ∧R 6|= AS

39

Chapter 4. Bounded Verification

Note that if this condition holds then we can conclude that the assertion AS fails

for the data model M , i.e., M 6|= AS. However, if the above condition does not

hold, then we only now that the assertion AS holds for the data model instances

in Ik.

Similarly, given a predicate PS, and a bounded set of instances Ik, we can

check the condition:

∃I = 〈O,R〉, I ∈ Ik ∧ I |= M ∧R |= PS

If this condition holds we can conclude M |= PS. If the above condition fails

on the other hand, we can only conclude that the predicate PS does not hold for

the data model instances in Ik. Bounded verification of behavior assertions and

behavior predicates can also be done similarly on bounded data model instances.

An enumerative (i.e., explicit state) search technique is not likely to be effi-

cient for bounded verification since even for a bounded domain the set of data

model instances can be exponential in the number of sets in the data model.

One bounded verification approach that has been quite successful is SAT-based

bounded verification. The main idea is to translate the verification query to a

Boolean SAT instance and then use a SAT solver to search the state space.

Alloy Analyzer [54] is a SAT-based bounded verification tool for analyzing

object-oriented data models. The Alloy language allows the specification of ob-

jects and relations and it allows specification of constraints on relations using first

40

Chapter 4. Bounded Verification

order logic. Alloy Analyzer supports bounded verification of assertions and sim-

ulation of predicates which correspond to the assertion and predicate checks we

described in the previous chapter.

In order to perform bounded verification of Rails data models, we implemented

an automatic translator that translates Active Record specifications to Alloy speci-

fications. After this automated translation, we use the Alloy Analyzer for bounded

verification of data model properties. Our approach is summarized in Figure 4.1.

4.2 Translation to Alloy

In this section we describe how we translate Active Record specifications into

the Alloy language. The first step of the Active Record to Alloy translation is

to map each Active Record class to a sig in Alloy, which simply defines a set of

objects in the Alloy language.

The Three Basic Relationships When expressing a binary relationship in

Alloy, one can give it a multiplicity of one, lone, some, or set which correspond

to one, zero or one, one or more, and zero or more, respectively. Thus we obtain

the mapping of the Rails relationships to Alloy shown in Table 4.1.

Since each relationship declaration in Alloy defines a separate relation, one also

has to add a fact block that connects each pair of declarations, constraining them

41

Chapter 4. Bounded Verification

Data Model
Properties

Active
Records

Alloy
Specification

Verified

Counter-
example

Data Model
Instance

Translator
Alloy

Analyzer
Model

Extraction

Formal Data
Model

Figure 4.1: Summary of our bounded data model verification approach

42

Chapter 4. Bounded Verification

Rails Declaration Alloy Translation

class ObjectA sig ObjectA {

has one :objectB objectB: lone ObjectB

end }

class ObjectA sig ObjectA {

has many :objectBs objectBs: set ObjectB

end }

class ObjectA sig ObjectA {

belongs to :objectB objectB: one ObjectB

end }

class ObjectA sig ObjectA {

has and belongs to many :objectBs objectBs: set ObjectB

end }

Table 4.1: Translation of the Rails declaration associations to Alloy

43

Chapter 4. Bounded Verification

to be inverse relations. For example, the fact block for a one-to-many relationship

would look as follows:

fact { ObjectA <: objectBs = ∼(ObjectB <: objectA) }

where <: is the domain restriction operation such that s <: r contains the tuples

in relation r that start with an element in s, and the operator ∼ is the relational

inverse operation where ∼r is the inverse of the relation r.

The :through Option To translate the :through option, we follow the mapping

in Table 4.1. However, instead of a separate global fact block, we add a local fact

block immediately following the signature of the object containing the :through

declaration. A global fact is not needed for the :through relation because all the

fields referred to in the fact refer to the those inside that single signature. So, for

the following Rails models:

44

Chapter 4. Bounded Verification

class User < ActiveRecord::Base

has one :profile

has many :photos, :through => :profile

end

class Profile < ActiveRecord::Base

has many :photos

end

class Photo < ActiveRecord::Base

belongs to :profile

end

the Alloy translation looks as follows:

sig User {

profile: lone Profile,

photos: set Photo

} { photos = profile.photos }

sig Profile {

user: one User,

photos: set Photo

}

45

Chapter 4. Bounded Verification

sig Photo {

profile: one Profile

}

fact {

User <: profile = ∼(Profile <: user)

Profile <: photos = ∼(Photo <: profile)

}

The :conditions Option The :conditions option means that objects from

one class only associate with a subset of objects from another class rather than

with the entire set. Thus, to translate the :conditions option we create a subset

of objects in Alloy which the object with the condition statement can map to.

Therefore if we had the following Rails data model:

class Profile < ActiveRecord::Base

has many :videos, :conditions => ”format=’mp4’”

end

class Video < ActiveRecord::Base

belongs to :profile

end

46

Chapter 4. Bounded Verification

we translate it to Alloy by abstracting the set of addresses for which the condition

format=’mp4’ holds, to the set Mp4 Videos, as follows:

sig Profile { videos: lone Mp4 Video }

sig Video { profile: one Profile

sig Mp4 Video in Video { }

fact {

Profile <: videos = ∼(Mp4 Video <: profile)

}

The in keyword in Alloy creates a subset; it is used above to create the

Mp4 Video signature. Since we are not modeling the data fields of the Rails classes,

we create this arbitrary subset of Video without specifying exactly which elements

of Video belong in the subset (i.e. the ones which have ’mp4’ as the format). The

videos field in Profile can now map to just this subset of Video. The global fact

block establishes this mapping by confirming the videos and profile fields of the

two signatures refer to the same set of objects.

The :polymorphic Option In polymorphic relations, there is a base class that

can be related to one of many target classes. Moreover, this relationship is ex-

pressed via a single field in the base class. So, to translate the polymorphic

relation, we need to enclose the target classes inside a single supertype which the

47

Chapter 4. Bounded Verification

relation in the base class can refer to. However the translation for polymorphic

relations is not straightforward since a target class can have polymorphic rela-

tions with multiple classes. Modeling these kinds of scenarios requires multiple

inheritance.

To understand how to simulate multiple inheritance in Alloy, let us assume that

the class Photo needs to inherit from both Taggable and Addressable. In order

to simulate multiple inheritance, all Active Record classes are made a subset of

some other superclass, say ActiveRecord. We will use the extends keyword in

Alloy to ensure the subsets are disjoint. Then statements are added to the global

fact block which will say Photo is a subset of both Taggable and Addressable;

but this time we will use the in keyword to declare the subset, which will allow

overlapping (as opposed to the extends keyword, which forces the subsets to be

disjoint).

Let us take a look at a concrete instance from the running example in Fig-

ure 2.1. Below are a set of Rails models with a polymorphic association. Tag has

a taggable association that both Photo and Video refer to:

48

Chapter 4. Bounded Verification

class Tag < ActiveRecord::Base

belongs to :taggable, :polymorphic => true

end

class Photo < ActiveRecord::Base

has many :tags, :as => :taggable

end

class Video < ActiveRecord::Base

has many :tags, :as => :taggable

end

The first step in translating these models is to create a common base class that

all classes extend. This common base class will allow the multiple inheritance to

be simulated. The natural choice is to call it ActiveRecord, so we will add the

following Alloy signature to all Alloy specifications:

abstract sig ActiveRecord { }

The abstract keyword tells Alloy that this signature has no elements except those

belonging to its extensions. All signatures will either inherit from this class or the

parent class if one is specified in the corresponding Rails model.

49

Chapter 4. Bounded Verification

The next step is to create a supertype for the target classes to be enclosed in.

The supertype will be called Taggable and it will contain the has many relation,

translated as described earlier:

sig Taggable in ActiveRecord {

tag: set Tag

}

Next, the relationship between Taggable and the target classes (Photo and

Video) will be established via facts. Specifically, we will state that the target

classes are subsets of Taggable, using the in keyword.

Further, Alloy does not allow subsets to be abstract if the superset is abstract,

like we have made ActiveRecord. Thus we will also have to specify as facts that

there are no elements in Addressable except those belonging to the target classes.

Finally, since our design requires all signatures to extend ActiveRecord, we also

have to add facts to state that Taggable is disjoint from all other non-target

classes in ActiveRecord. The final Alloy translation is given below.

abstract sig ActiveRecord {}

sig Taggable in ActiveRecord {

tag: set Tag

}

50

Chapter 4. Bounded Verification

sig Tag extends ActiveRecord {

taggable: one Taggable

}

sig Photo extends ActiveRecord {}

sig Video extends ActiveRecord {}

fact {

Photo in Taggable

Video in Taggable

all x: Taggable | x in Photo or x in Video

no Tag & Taggable

}

4.3 Translating the Dependency Constraints to

Alloy

In this section, we translate the :dependent option, which specifies what be-

havior to take on deletion of an object with regards to its associated objects. To

incorporate this dynamism, the model must allow analysis of how sets of objects

51

Chapter 4. Bounded Verification

and their relations change from one state to the next. Thus we need a slightly

different translation algorithm from the one we have been presenting so far.

In order to handle the :dependent option, we will be creating invokable con-

straints, or predicates in Alloy, which will model the deletion of an object. We

will also need Alloy signatures to represent the state of a data model instance, i.e.

the set of all objects and their relations. In particular, we will have a PreState

signature to represent the state of objects before the deletion operation, and a

PostState signature to represent the state after the deletion. We can then use

these signatures to check whether some invariant holds after an object is deleted.

Basic Translation We will use snippets of the running example to explain each

piece of this new translation algorithm. Let us begin with the following portion

of the Rails data model from the running example:

class Profile < ActiveRecord::Base

belongs to :user

end

class User < ActiveRecord::Base

has one :profile

end

52

Chapter 4. Bounded Verification

As before, the Alloy specification for this model will contain a signature for each

class. It will also contain a PreState and a PostState signature, as just discussed.

Since the PreState and PostState signatures represent the whole data model

instance, they will need references to all object types and relations. Thus we

obtain the following Alloy specification:

sig Profile {}

sig User {}

one sig PreState {

profiles: lone Profile,

users: set User,

relation: Profile lone -> one User

}

one sig PostState {

profiles’: set Profile,

users’: set User,

relation’: Profile set -> set User

}

The PreState sig contains fields profiles and users to hold objects of each

type in the system. Next, it contains a field relation to hold the related Profile

and User objects. The product operator, ->, produces a mapping between Profiles

53

Chapter 4. Bounded Verification

and Users. The multiplicity keyword lone tells Alloy that relation maps each

User object to zero or one Profile object, and the keyword one tells Alloy that

every Profile object is mapped to exactly one User object. Note that in the trans-

lation of relations, the multiplicity keywords are the same as the ones used in the

earlier translation summarized in Table 4.1 (e.g. belongs to :user produces one

User and has one :profiles produces Profile lone). Also note the one preceding

sig PreState. This tells Alloy that there will be exactly one instance of PreState

in any data model instance.

The definition of PostState is exactly the same. The only difference is that its

relations always map a set of objects to another set of objects. The reason to not

specify the relation cardinalities here as well is because when the cardinality is

one, it forces the mapping to be total. However once an object has been deleted,

we need to remove it from the relation, causing the need for a partial mapping

in the PostState. Since the relations in PostState will be defined in the delete

predicates using the PreState relations, the cardinalities among the remaining

(live) objects will be preserved.

Let us now turn to the definition of the delete predicates. As an example, let

us generate the predicate that deletes a Profile object. To start, we define the

deleteProfile predicate to accept a PreState object, a PostState object and a

54

Chapter 4. Bounded Verification

Profile object as parameters. The body of the predicate begins by stating that

s, the PreState object, contains all existing objects:

pred deleteProfile [s: PreState, s’: PostState, x: Profile] {

all x0: Profile | x0 in s.profiles

all x1: User | x1 in s.users

Finally, we describe the data model instance after the deletion:

s’.profiles’ = s.profiles - x

s’.users’ = s.users

s’.relation’ = s.relation - (x <: s.relation)

}

Here we have deleted x, a Profile object, by removing it from the set of

Profile objects in PostState. We have also updated the relation by setting the

PostState relation to be the PreState relation minus all the tuples whose domain

is x (using the scoping operator <: described earlier). This removes all of x’s

relations from relation’.

It is important to note here that the relation is only updated if it is a :belongs to

or :has and belongs to many relationship in the Rails model. (So in the delete

predicate for User which contains the has one declaration, relation would remain

55

Chapter 4. Bounded Verification

unchanged: s’.relation’ = s.relation.) This is due to the way the relation-

ships are implemented in Rails. In the database, the foreign key is stored with

the object that has the :belongs to relationship (for the one-to-one and one-to-

many relations) or in a join table for the :has and belongs to many relationships.

Thus, an object’s has one and has many relations are not affected when an object

is deleted. Note that deleting an object on the has one or has many side may cause

a dangling reference if the :dependent option is not set; our model can be used to

check for such cases (see examples in our experiments chapter, Chapter 6).

The :through Option Next, let’s analyze the following partial Rails model to

understand how to translate the :through option for the dynamic Alloy specifica-

tion.

56

Chapter 4. Bounded Verification

class User < ActiveRecord::Base

has one :profile, :dependent => :destroy

has many :photos, :through => :profile

end

class Profile < ActiveRecord::Base

belongs to :user

has many :photos

end

class Photo < ActiveRecord::Base

belongs to :profile

end

The basic setup for the Alloy specification is the same: a signature for each class,

a PreState and PostState signature, each with a field for every set of objects and

relations between them.

sig User {}

sig Profile {}

sig Photo {}

one sig PreState {

users: set Users,

57

Chapter 4. Bounded Verification

profiles: set Profile,

photos: set Photo,

relation1: User one -> lone Profile,

relation2: Profile one -> set Photo,

thru relation = relation1.relation2

}

one sig PostState {

users’: set Users,

profiles’: set Profile,

photos’: set Photo,

relation1’: User set -> set Profile,

relation2’: Profile set -> set Photo,

thru relation’ = relation1’.relation2’

}

The new idea is the translation of the relation with the :through option set,

i.e. the one between User and Photo. We use the join operator, ., to define

thru relation to be the join of the other two relations. Delete predicates would

also be produces for every object type in the data model, defining each set of

objects and relations after the deletion according to all uses of the :dependent

58

Chapter 4. Bounded Verification

option. If we wanted to define the delete predicate for User in the example above,

it would look as follows:

pred deleteUser [s: PreState, s’: PostState, x: User] {

all x0:User | x0 in s.users

all x1:Profile | x1 in s.profiles

all x2:Photo | x2 in s.photos

s’.users’ = s.users - x

s’.profiles’ = s.profiles - x.(s.relation1)

s’.photos’ = s.photos

s’.relation1’ = s.relation1 - (s.relation1 :> x.(s.relation1))

s’.relation2’ = s.relation2

}

In this example, when a user is deleted, it also deletes the associated Profile

object since the :dependent option is set. Since no relations in the Profile class

have the :dependent option set, the delete is not propagated further. Relations

are only deleted if the object on the :belongs to side of the relation is deleted.

In this case, the Profile class contains a :belongs to relation. Thus the relation

between Profile and User is updated such that the user that was deleted and its

associated profile are removed. The delete predicate above says exactly this. It

starts off by stating all objects in the universe exist in the PreState. The second

59

Chapter 4. Bounded Verification

part defines the set of objects in the PostState: the deleted user, x, is removed

from users’, the profile object associated with that user is also deleted, but the set

of photos stay the same as in the PreState. In the third and final part of the delete

predicate, the relations in the PostState are defined. The relation between User

and Profile, relation1’, is updated to remove the tuple containing the deleted

user, x. The other relation, relation2’, between Profile and Photo remains the

same as it was in the PreState. Note that thru relation’ does not need to be

updated explicitly; it will be updated automatically because it is defined using

relation1’ and relation2’.

The :conditions and :polymorphicOptions The translation of the :conditions

and the :polymorphic options remain the same as described in the previous trans-

lation, except that they contain the PreState and PostState sigs. Further, the

definitions of the delete predicates will take into account usage of the :dependent

option.

4.4 Automated Translator Implementation

We implemented a translator that translates data models in Rails applications

to Alloy. The first step of the translation is parsing the Rails model files (i.e.,

Active Record files). We do this using a parser written in and for Ruby, called

60

Chapter 4. Bounded Verification

ParseTree [80]. ParseTree extracts the parse tree for an entire Ruby class and

returns it as an s-expression [82]. S-expressions are generated for each model

file that contains a class that inherits from ActiveRecord. We then create an s-

expression processor to traverse the generated s-expressions and translate them to

a single Alloy specification file. The translation occurs according to the principles

discussed in this chapter. This automated translator is joined with the Alloy

Analyzer to perform one of the two main functions of our data model verification

tool, namely bounded verification of data models. The other main function is

performing unbounded verification, which we present next.

61

Chapter 5

Unbounded Verification

Another way to solve the data model verification problem is to use unbounded

verification. In particular, we use the formalization presented in Chapter 3 to

convert verification queries about the data model to satisfiability of formulas in

the theory of uninterpreted functions. We then use an SMT solver to answer

the verification queries. This approach [73] is summarized in Figure 5.1. In this

chapter, we describe the translation of Active Records to the theory of uninter-

preted functions using the syntax of SMT-LIB. We also present our data model

projection algorithm which reduces the size of SMT-LIB specifications based on

the property provided.

62

Chapter 5. Unbounded Verification

Data Model
Properties

Active
Records

Projected
SMT-LIB

Specification

Verified

Counter-
example

Data Model
Instance

Projection SMT Solver
Model

Extraction

SMT-LIB
Specification

Unknown Translation

Formal Data
Model

Figure 5.1: Summary of our unbounded data model verification approach

63

Chapter 5. Unbounded Verification

5.1 Translation to SMT-LIB

SMT-LIB [88] is the standard input language for SMT solvers. We have imple-

mented a translator that takes Rails Active Record files as input and generates an

SMT-LIB specification for the data model. The generated SMT-LIB specification

consists of a conjunction of constraints in the theory of uninterpreted functions

with quantification. In this section we describe how the various Active Record

constructs which define the data model can be translated to constraints in the

theory of uninterpreted functions.

SMT-LIB specifications are written as sequences of s-expressions. Uninter-

preted functions are declared using the declare-fun command and types are de-

clared using the declare-sort command. For example, the specification

(declare-sort Video 0)

(declare-fun isMp4Video (Video) Bool)

declares a Video type (that takes 0 parameters) and a boolean function called

isMp4Video that accepts a value of type Video.

SMT-LIB supports the basic boolean operators (not, and, or), equality (=),

implication (=>), and if-then-else (ite). Quantifiers are expressed using the forall

and exists operators. Constraints are specified using the keyword assert.

After this short overview of the SMT-LIB language syntax, we now explain

how we translate the formal model constraints discussed in Chapter 3 to SMT-

64

Chapter 5. Unbounded Verification

LIB. Let us first consider constraint (3.2) from Chapter 3 which characterizes the

semantics of a one-to-many relation declaration. We translate the one-to-many

relation between the Profile and Photo classes to SMT-LIB using an uninterpreted

function as:

(declare-sort Profile 0)

(declare-sort Photo 0)

(declare-fun profile_photo (Photo) Profile)

where a Photo and a Profile object are related if and only if the profile photo

function maps one to the other.

Constraint (3.1) in Chapter 3 represents the semantics of a one-to-one relation

declaration. We translate such a relation to SMT-LIB using an uninterpreted

function like above, but adding an extra constraint restricting the cardinality of

the relation. For example, the one-to-one relation between User and Profile is

translated as:

(declare-sort User 0)

(declare-sort Profile 0)

(declare-fun user_profile (Profile) User)

(assert (forall ((p1 Profile)(p2 Profile))

(=> (not (= p1 p2))

(not (= (user_profile p1) (user_profile p2)))

)))

65

Chapter 5. Unbounded Verification

Note that the above constraint specifies each User is associated with one or no

Profile and each Profile is associated with exactly one User as we expect based on

the semantics of the one-to-one relation declaration.

Since uninterpreted functions map each input value to a single value in the

range, it is not possible to represent a many-to-many relation between two domains

using an uninterpreted function with a single parameter as we did for the one-

to-one and one-to-many relations. Instead, we translate a many-to-many relation

declaration to SMT-LIB by declaring an uninterpreted boolean function with two

arguments that returns true if and only if the two objects passed in as arguments

are related. For instance, a many-to-many relation between the User and Role

classes is translated as:

(declare-sort User 0)

(declare-sort Role 0)

(declare-fun user_role (User Role) Bool)

As discussed in Chapter 3, relations that are the composition of other relations

can be declared in a data model using the :through keyword and constraint (3.3)

provides a formalization of such declarations. For example, assume that Users are

associated with Profiles, Profiles are associated with Photos and the data model

66

Chapter 5. Unbounded Verification

declares a third relation between Users and Photos such that it is the composition

of the other two relations. This is translated to SMT-LIB as1:

(declare-sort Profile 0)

(declare-sort Photo 0)

(declare-sort User 0)

(declare-fun profile_photo (Photo) Profile)

(declare-fun user_profile (Profile) User)

(declare-fun user_photo (Photo) User)

(assert (forall ((u User)(ph Photo))

(iff (= u (user_photo ph)) (exists ((p Profile))

(and (= u (user_profile p)) (= p (profile_photo ph))))

)))

Next, the :conditions option is used to express a relationship between one set

of objects and the subset of another set of objects and is formalized in constraint

(3.4) of Chapter 3. Since there is no support for subtyping or inheritance in

the SMT-LIB language, we model the :conditions option by creating a boolean

function that returns true if and only if the argument object is in the designated

subset. To give a concrete example, say Photos are associated with a Profile only

if the Profile is active. The SMT-LIB translation of such a declaration would be:

1The if and only if operator, iff, is used here for clarity. This can easily be converted into
a double implication to conform to the official SMT-LIB set of operators.

67

Chapter 5. Unbounded Verification

(declare-sort Photo 0)

(declare-sort Profile 0)

(declare-fun isActive (Profile) Bool)

(declare-fun activeprofile_photo (Profile) Photo)

(assert (forall ((p Profile)(ph Photo))

(=> (= ph (activeprofile_photo p)) (isActive p))

))

Here, the isActive function is used to characterize the subset of Profiles that

are active, and the final constraint ensures that the function activeprofile photo

only returns Profiles in the active subset.

Next, Rails Active Records support the specification of polymorphic relations

as formalized in constraint (3.5). In order for one type to be related to multiple

other types, one can create a supertype that the former type can relate to. For

example, if a Tag can be related to both Photos and Video, we can create a

supertype of Photo and Video that Tag can be related to. Let us call this supertype

Taggable and let Photo and Video be subtypes of it. As mentioned earlier, SMT-

LIB does not support subtyping so we use boolean functions to model such a

declaration. We also add a constraint that states the Taggable type is abstract,

i.e. all Taggable objects are either Photos or Videos, and that these subtypes are

mutually exclusive:

68

Chapter 5. Unbounded Verification

(declare-sort Tag 0)

(declare-sort Taggable 0)

(declare-fun isPhoto (Taggable) Bool)

(declare-fun isVideo (Taggable) Bool)

(assert (forall ((t Taggable)) (and

(or (isPhoto t) (isVideo t))

(iff (isPhoto t) (not (isVideo t)))

)))

(declare-fun taggable_tag (Tag) Taggable)

This example shows a simple case of polymorphic relations. In general, a class

may be polymorphically-related to multiple classes. For instance, Multimedia

may have a polymorphic relation with the Video and Audio classes. Combined

with the scenario above, Video will now require two supertypes (say Taggable and

MultimediaItem). In our tool we actually create one ultimate supertype called

PolymorphicClass of which any polymorphically-related types are subtypes (such

as Photo, Video, and Audio) as well as their supertypes (Taggable and Multime-

diaItem). All these subtypes are expressed in SMT-LIB language using boolean

functions. Then an assert is added that constrains which types are subtypes of

which supertypes, that subtypes are mutually exclusive of others in the same su-

pertype, that the supertypes themselves are abstract (meaning all elements belong

69

Chapter 5. Unbounded Verification

to one of its subtypes), and that PolymorphicClass is also abstract. Furthermore,

since subtypes (such as Photo and Video) are not types of their own (i.e. no sort is

declared for them since they are of type PolymorphicClass), any non-polymorphic

relations with these classes require an assert that enforces the range of the func-

tion, similar to what we did for constraint (3.4).

Finally, we discuss delete dependencies that are declared using the :dependent

option and formalized like constraint (3.6) in Chapter 3. This type of constraint

expresses a change from one state of the model (before an object is deleted) to

another (the state of the model after the object deleted, i.e., post-delete state).

We model the post-delete state in SMT-LIB translation using boolean functions

(denoted with the prefix “Post”). There is one such function for every type. This

function returns true if the object exists after the delete operation. For example:

(declare-sort User 0)

(declare-fun Post_User (User) Bool)

There is also one such boolean function for every relation. This function

returns true if and only if the two objects are still related after the deletion occurs.

For instance:

(declare-fun user_profile (Profile) User)

(declare-fun Post_user_profile (Profile User) Bool)

70

Chapter 5. Unbounded Verification

When one wants to perform a verification query about how the deletion of

an object affects other objects and relations, these boolean functions are used

to express the property. For example, to express a property about deleting a

User, our translator generates a constraint that defines the Post object functions

as well as the Post relation functions according to the dependencies expressed in

the data model. The algorithm to generate this takes into account the effect of

dependencies on transitive, conditional and polymorphic relations. Our algorithm

assumes no cyclic delete dependencies. Encoding cyclic dependencies requires

transitive closure, which is not expressible in the theory of uninterpreted functions.

Here is the constraint generated by our translation algorithm for the simple User-

Profile scenario of deleting a User, where x denotes the User being deleted:

(assert (not (forall ((x User)) (=> (and

(forall ((a User)) (ite (= a x)

(not (Post_User a)) (Post_User a)))

(forall ((b Profile)) (ite (= x (user_profile b))

(not (Post_Profile b)) (Post_Profile b)))

(forall ((a Profile) (b User)) (ite

(and (= b (user_profile a)) (Post_Profile a))

(Post_user_profile a b)

(not (Post_user_profile a b))))

71

Chapter 5. Unbounded Verification

) ;Remaining property-specific constraints go here

)))

5.2 Data Model Projection

Our tool checks the correctness of each verification query separately, and this

creates an opportunity for reducing the size of the generated SMT-LIB specifi-

cations. Reducing the size of the generated SMT-LIB specification reduces the

cost of the satisfiability check and hence increases the performance of our tool.

The basic idea is the following: Given a property to verify, we can reduce the size

of the generated SMT-LIB specification by removing the declarations and con-

straints about the parts of the data model that does not depend on the property

that we are planning to verify. We call this technique property-based data model

projection.

We formally define the property-based data model projection as a function,

denoted by Π, that takes a data model and a property as input and returns a

new data model. Hence, given a data model M = 〈S,C,D〉 and a property p,

Π(M, p) = Mp where Mp = 〈S,Cp, Dp〉 is the projected data model such that

Cp ⊆ C and Dp ⊆ D. Note that the projection function removes some of the

relational and dependency constraints from the model, therefore reducing the size

of the projected model. If the property p is a state assertion or a state predicate

72

Chapter 5. Unbounded Verification

(denoted by AS and PS in Chapter 3), then the projection function Π removes

all the dependency constraints (i.e., Dp = ∅) since dependency constraints are

only relevant for behavior assertions and predicates (denoted by AB and PB in

Chapter 3).

A key property of the projection function Π is that it preserves the correctness

of the input property. Formally, M |= p⇔ Π(M, p) |= p, for any property p.

Let us now explain why this property holds. In our verification approach,

all verification queries are translated to satisfiability queries. Hence, the above

property is equivalent to stating that the SMT-LIB specification we generate from

the original model M and the property p is satisfiable if and only if the SMT-LIB

specification we generate from the projected model Π(M, p) and the property p is

satisfiable. Note that, if the SMT-LIB specification we generate from the model

Π(M, p) and the property p is not satisfiable, then the SMT-LIB specification

we generate from the original model M and the property p cannot be satisfiable

since the projection operation Π(M, p) only removes constraints, resulting in a

less constrained SMT-LIB specification. However, our projection algorithm also

guarantees that if the SMT-LIB specification we generate from the model Π(M, p)

and the property p is satisfiable, then the SMT-LIB specification we generate from

the original model M and the property p is also satisfiable. This is true due to two

reasons: 1) The constraints that the projection function deletes from the original

73

Chapter 5. Unbounded Verification

model can never be self-contradictory since they correspond to class and relation

declarations, and it is not possible to declare a self-contradictory data model that

does not allow any instances using the constructs we analyze; 2) The constraints

that the projection function deletes from the original model cannot contradict

with the verified property p since the projection algorithm only deletes a class or

a relation if that class or relation has no influence on the property p.

We implemented this property-based data model projection as part of our

verification tool. The algorithm used is given in Algorithm 1. It requires as input

the Rails data model and the property the user wishes to verify about the data

model. If the property is a behavior predicate or assertion, it also requires the

class name for the object to be deleted. The projected SMT-LIB specification

that is output by the translator contains constraints on only those classes and

relations that are explicitly mentioned in the property and the classes and relations

that are related to them based on transitive relations, dependency constraints or

polymorphic relations.

In this chapter, we discussed our unbounded verification approach and data

model projection algorithm. In the next chapter we describe the experiments

performed using both the unbounded approach presented in this chapter, and the

bounded verification approach presented in the previous chapter.

74

Chapter 5. Unbounded Verification

Algorithm 1 Data Model Projection Algorithm (part 1 of 2)

Input: model: Rails Active Records files; p: property; delclass: the class name for the deleted

object (only needed when p is a behavior assertion or predicate)

Output: Projected SMT-LIB specification

pclasses := list of classes mentioned in p

prelations := list of relations mentioned in p

if p is a behavior assertion or predicate then

Follow dependencies for delclass with respect to the relations given in prelations

Add any dependent classes, and the relations through which they are dependent, to pclasses

and prelations

end if

for all class in pclasses do

Output an uninterpreted function declaration and Post function declaration for class

if there exists a relation in prelations that has a conditional relation with class then

Output a boolean function declaration that models the conditional subset

end if

end for

Output the polymorphic constraints for the polymorphic classes in pclasses

75

Chapter 5. Unbounded Verification

Algorithm 1 Data Model Projection Algorithm (part 2 of 2)

for all relation in prelations do

Output a function declaration, any associated constraints based on the declaration of the

relation, and the Post function declaration for the relation

if relation is a transitive relation that is the composition of multiple relations then

Output function declarations, associated constraints, and Post function declarations

for all relations that are part of the composition

end if

end for

76

Chapter 6

Experiments

In this chapter we discuss the results of our experiments for evaluating the

effectiveness of our SAT-based bounded and SMT-based unbounded data model

verification approaches.

6.1 Overview

We used five open-source Ruby on Rails web applications for evaluating the

effectiveness of our data model verification approach. We wrote ten properties

about each application’s data model that we expected to hold based on the se-

mantics of the application. Then we used our tool to generate an Alloy and a

SMT-LIB specification for each application, for the bounded and unbounded ap-

77

Chapter 6. Experiments

proaches respectively. This specification is conjoined with a property and then

sent to the Alloy Analyzer or the SMT solver for the satisfiability check.

We used Microsoft’s SMT solver, Z3 [100], in our experiments. In addition to

returning unsatisfiable or satisfiable, an SMT solver may also return “unknown” or

it may timeout since the quantified theory of uninterpreted functions is known to

be undecidable [11]. In our experiments the timeout limit was set to five minutes.

Assertions that fail may or may not hold in the application—the verification

results simply indicate that the property was not enforced by the application’s

data model. More accurately, the verification results indicate that the property

was not enforced by the formal data model. It may not be possible to observe

the failure during program execution since the property may actually be enforced

in parts of the application that we do not model (e.g., in the Controller code).

However, we consider a failed property a data model error if the property could

have been enforced statically in the data model but was not. On the other hand,

if a failed property cannot be enforced in the data model using the Ruby on Rails

constructs, then we do not consider it a data model error. Thus for properties

that failed we performed further manual investigation to identify which failing

properties were indeed data model errors.

78

Chapter 6. Experiments

6.2 The Applications

Table 6.1 lists the sizes of the five applications in terms of lines of code, the

number of classes, and the number of data model classes. LovdByLess [63] is

a social networking site with the usual features, such as user profiles with pic-

tures, leaving messages, and becoming friends. Tracks [93] is an application that

lets users create and manage to-do lists, where lists can be organized by context

and project. OpenSourceRails (OSR) [77] is a social project gallery application

that allows users to submit projects, as well as bookmark and rate them. Fat-

FreeCRM [35] is a customer relationship management software that organizes a

business’ customers, campaigns, opportunities, and accounts. Substruct [91] is an

e-commerce application where users can add products to cart and create wishlists.

Table 6.1: Sizes of the Applications

LOC Classes Data Model Classes

LovdByLess 3787 61 13

Tracks 6062 44 13

OSR 4295 41 15

FatFreeCRM 12069 54 20

Substruct 15639 85 17

79

Chapter 6. Experiments

6.3 Verification Results

The properties we checked on these applications are listed in Table 6.2, along

with their type from Section 3.2. (AS for state assertions, AB for behavior asser-

tions, PS for state predicates, and PB for behavior predicates).

The results of the verification are also shown in Table 6.2. X indicates that the

property passed verification and × indicates that the property failed. A total of

sixteen properties we tried to verify failed. We investigated each of these failures

manually to determine if they corresponded to data model errors.

For example, Property L5 from LovdByLess does not hold due to the limited

expressiveness in Rails constructs. There is no construct that allows you to add a

constraint to a relation expressing that an object cannot be related to itself. Thus

the application programmer in LovdByLess had to manually add a validation

function to the model to ensure that a user cannot create a Friend request for

herself. Thus the failure of property L5 does not indicate a data model error.

Another property that failed was property O2. The setup in OpenSourceRails

is that a user can bookmark projects, i.e. a User has many Bookmarks, a Book-

mark belongs to a Project, and a Project has many Bookmarks. The property

O2 states that a User is allowed to Bookmark a Project at most once. However,

the declarations used to set up these relationships allow the same user to create

80

Chapter 6. Experiments

multiple bookmarks with the same Project. Thus the application programmer

had to enforce this property using the user interface and code in the controller.

However, what the programmer desires is a many-to-many relationship between

User and Project, as opposed to two one-to-many relationships. One justification

for their current setup is that they wanted to hold extra information in the Book-

mark class. Investigation into this class shows that this is not the case; hence this

property failure corresponds to a data model error for this application.

A failing property indicates the application’s data model does not satisfy the

property; however, the property may still hold in the overall application because

the property is being enforced outside of the data model, as in property O2.

However, this was not the case for property O6. This property failed because the

declaration in the User model does not have the :dependent option set. Thus a

User’s associated Bookmarks are not deleted, causing the property to fail. Because

the deletion of a user leaves orphaned Bookmarks in the database, property O6

is an example of a data model error that is also an error in the application.

In total we discovered eleven data modeling errors from the sixteen properties

that failed. There were two data model errors in LovdByLess, three each in Tracks

and OSR, one in Substruct and two in FatFreeCRM. The fact that we were able to

discover data model errors in real-world applications is evidence that our approach

can be an effective verification approach in practice.

81

Chapter 6. Experiments

Table 6.2: Verification Results

LovdByLess Properties
AS L1. A Forum Post is always associated with a Topic X
PS L2. A Forum Topic may have no Forum Posts X
AS L3. A Photo is always associated with a user Profile X
AS L4. Profile’s FeedItems = Profile’s Feed’s FeedItems X
AS L5. A User can’t be her own Friend ×
AB L6. Deleting user Profile deletes Photos ×
AB L7. Deleting user Profile doesn’t delete any Friends X
AB L8. Deleting a user Profile leaves no orphan Users ×
AB L9. Deleting a Message doesn’t delete a User X
AB L10. Deleting a Forum Topic leaves no dangling Forum Posts X

Tracks Properties
AS T1. Every Todo has a Context X
PS T2. A Context may have no Todos X
PS T3. Todo can have no associated Project ×
AS T4. Note’s User = Note’s Project’s User ×
AS T5. Every User has a Preference ×
AB T6. Deleting a Project leaves no dangling Notes X
AB T7. Deleting a Preference leaves no orphan Users ×
AB T8. Deleting a User leaves no dangling Contexts X
AB T9. Deleting a User leaves no dangling Projects X
AB T10. Deleting a Context leaves no dangling Todos X

OSR Properties
PS O1. A Project can have multiple Screenshots X
PS O2. A User can Bookmark a Project at most once ×
PS O3. A User can Bookmark her own submitted Project X
AS O4. Project’s Bookmark’s User = Project’s User X
PS O5. A User can put multiple Comments on one Project X
AB O6. Deleting a User deletes her Bookmarks ×
AB O7. Deleting a User deletes her Activities ×
AB O8. Deleting a User doesn’t delete her Comments X
AB O9. Deleting a Project deletes its Ratings ×
AB O10. Deleting a Project Rating doesn’t delete Project X

Substruct Properties
AS S1. Every Cart is associated with a User X
PS S2. An Product can be on multiple Wishlists X
PS S3. A Wishlist can be empty X
AS S4. A Product is on a User’s Wishlist at most once ×
PS S5. A User can have multiple Orders X
AB S6. Deleting a Cart doesn’t delete its Products X
AB S7. Deleting a Product deletes it from all Carts ×
AB S8. Deleting a User deletes her Orders ×
AB S9. Deleting User doesn’t delete Items on her Wishlists X
AB S10. Deleting a Wishlist doesn’t delete its Item X

FatFreeCRM Properties
AS F1. Every Task must have a User X
AS F2. Every Lead belongs to exactly one User X
AS F3. AccountOpportunity’s Opportunity = AccountOpportunity’s Account’s Opportunity X
PS F4. A Contact may have no Tasks X
AS F5. User’s Opportunity = User’s Campaigns’ Opportunity ×
AB F6. Deleting a Lead does not delete Contacts X
AB F7. Deleting Lead does not delete User X
AB F8. Deleting an Account deletes associated Tasks X
AB F9. Deleting a Lead leaves no dangling Contacts ×
AB F10. Deleting an Account does not delete Contacts X

82

Chapter 6. Experiments

6.4 Performance

To further evaluate the effectiveness of our approach, we measured performance

of the verification task. Specifically, we measured the verification time reported

by Z3 and Alloy, as well as the number of variables and clauses produced in the

SMT and Alloy specifications.

Measurements were taken for the specifications generated for each property.

The values were then averaged over the properties for each application. The

results for the verification times for the SMT-LIB specifications using Z3 are given

in Table 6.3. What we immediately noticed is that the verification is extremely

fast; the longest verification time is just 0.025 seconds. One thing to note is that

these values do not include the times for those properties that timed out during

verification. There were four such properties, all for FatFreeCRM. So although

unbounded verification is very quick, the disadvantage is that some properties

may not give an answer to the verification query.

The difficulty the SMT solver is having when it times out is due to the number

of quantifiers in the SMT specification. To minimize this number we ran the

experiments again, this time using the data model projection algorithm discussed

in Section 5.2. With projection we were able to obtain answers to all of the

properties that timed out. Furthermore, the verification time decreased for all

83

Chapter 6. Experiments

properties, as shown in Table 6.3. On average the verification time decreased by

40% after using data model projection.

Table 6.3: Z3 Verification Times in seconds

not projected projected

LovdByLess 0.025 0.015

Tracks 0.023 0.014

OSR 0.016 0.012

Substruct 0.025 0.011

FatFreeCRM 0.022 0.013

To compare effectiveness between bounded and unbounded verification, the

same measurements were taken as with Z3, but for Alloy over an increasing bound

from at most 10 objects for each class to at most 35 objects for each class. These

values were plotted alongside the Z3 verification time for each application. As seen

in Figure 6.1, unbounded verification is much faster than bounded verification,

even for the smallest bound of 10 objects. Bounded verification using Alloy took

up to tens of seconds whereas Z3, took less than a second.

Since Alloy specializes in the verification of object models, it is rather sur-

prising that there is such a drastic difference between the verification times of

84

Chapter 6. Experiments

0

0.5

1

1.5

2

2.5

10 15 20 25 30 35

V

e

r

i

f

i

c

a

t

i

o

n

T

i

m

e

(

s

)

Scope

LovdByLess

Alloy

Z3

Z3+proj

0

2

4

6

8

10 15 20 25 30 35

Substruct

0

0.5

1

1.5

2

2.5

10 15 20 25 30 35

OSR

0

5

10

15

20

25

10 15 20 25 30 35

V

e

r

i

f

i

c

a

t

i

o

n

T

i

m

e

(

s

)

FatFreeCRM

0

2

4

6

8

10 15 20 25 30 35

V

e

r

i

f

i

c

a

t

i

o

n

T

i

m

e

(

s

)

Tracks

Figure 6.1: Verification Time, Alloy vs Z3

85

Chapter 6. Experiments

Z3 and Alloy. There may be several reasons why unbounded verification did so

well. Z3 uses many heuristics to eliminate quantifiers in formulas. It uses an

E-graph to instantiate quantified variables which, in conjunction with code trees,

an inverted path index and eager instantiation, makes it very effective at dealing

with quantifiers [21]. (Note that these heuristics do not affect the soundness of

the verification.) Another reason why Z3 performed better than Alloy may be due

to their implementation languages: Z3 is implemented in C++ whereas Alloy (as

well as the SAT solver it uses, SAT4J) is implemented in Java. Finally, another

likely reason that Z3 is more efficient than Alloy is that SMT solvers operate at

a higher level of abstraction than SAT solvers. Thus SMT solvers can use infor-

mation about the structure and semantics of a formula to make inferences about

satisfiability more accurately as well as more efficiently than a SAT-based ap-

proach which converts the verification to SAT formulas using a Boolean encoding.

In fact, due to the increasing size of the Boolean encoding, bounded verification

suffers from an exponential increase in verification time with increasing bound.

Besides verification time, we also measured the number of clauses and variables

created by Alloy’s SAT translation. These measurements were averaged over the

properties for each application and plotted over increasing scope, as shown in

Figure 6.2.

86

Chapter 6. Experiments

The number of variables and clauses were also averaged over properties for the

SMT-LIB specifications for each application. By number of variables we mean the

number of sorts, functions, and quantified variables in the SMT-LIB specification.

By number of clauses we mean the number of asserts, quantifiers and operations.

Figure 6.3 displays is a plot of the number of clauses and variables in the SMT-LIB

specifications for each application. Both the projected and non-projected versions

of the specifications are shown. We see a tremendous 80% decrease in the number

of variables and clauses after performing the data model projection.

Although the number of variables and clauses in the SMT specification are not

directly comparable to the figures produced by Alloy, we can still observe that the

SMT formula size is much smaller than the one used by the SAT solver. We

also observe that bounded verification has the disadvantage that the size of the

formula used by the SAT solver increases exponentially with respect to bound.

To summarize, our experimental results indicate that unbounded verification

using SMT solvers is more efficient than bounded verification. However, since

the unbounded approach is not guaranteed to terminate because we are generat-

ing SMT-LIB specifications in the undecidable theory of uninterpreted functions

with quantification, we observe that bounded and unbounded verification can be

complementary approaches since bounded verification can be used when the un-

bounded approach fails. Overall, our experiments demonstrate the approaches we

87

Chapter 6. Experiments

presented in the previous two chapters is a feasible and efficient approach to data

model verification.

88

Chapter 6. Experiments

0

500

1000

1500

2000

10 15 20 25 30 35

N

o

.

C

l

a

u

s

e

s

(

t

h

o

u

s

a

n

d

s

)

Scope

e

FatFreeCRM

LovdByLess

Substruct

Tracks

OSR

0

200

400

600

800

10 15 20 25 30 35

N

o

.

V

a

r

i

a

b

l

e

s

(

t

h

o

u

s

a

n

d

s

)

Scope

Figure 6.2: Formula Size, Alloy

0

50

100

150

200

N

o

.

V

a

r

i

a

b

l

e

s

0

100

200

300

400

500

600

N

o

.

C

l

a

u

s

e

s

non-proj

projected

Figure 6.3: Formula Size, SMT

89

Chapter 7

Automated Property Inference

and Repair

In the verification methods presented so far, the user is required to manually

specify the properties she wishes to check about her application’s data model. In

order to further automate the process of verifying data models, we can automate

the process of property-writing. This chapter describes our work on automatically

discovering certain classes of data model properties [74].

90

Chapter 7. Automated Property Inference and Repair

7.1 Overview

In the techniques presented earlier in Chapters 4 and 5, the effectiveness of

finding data model errors is highly dependent on the quality of the properties spec-

ified by the user. Since the manual specification process can be time-consuming,

error-prone and lack thoroughness, errors can be missed during verification. An-

other difficulty of writing properties as that the user may not be familiar with

the modeling language in which the properties need to be written (i.e. Alloy and

SMT-LIB).

To address these obstacles, we propose techniques that automatically infer

properties about the data model of a web application. The techniques infer prop-

erties based on the structure of the data model schema extracted from the object-

relational mapping of an application. The schema can be viewed as a graph

whose nodes are the object classes and whose edges are relations. We developed

heuristics that explore the structure of this graph and look for a set of patterns.

Based on such patterns we infer a set of properties about the data model that

we expect to hold, thus assisting the developer in the specification of data model

properties. Once the automatically inferred properties are generated, a data model

verification technique (such as the ones presented in Chapters 4 and 5) can be used

to determine if the inferred properties are actually enforced by the data model.

91

Chapter 7. Automated Property Inference and Repair

Finally, our approach includes techniques to automatically generate repairs

for the properties that fail. These repairs are suggested modifications to the data

model that establish the inferred properties.

7.2 The Formal Data Model Schema

We begin by formalizing a data model as a tuple M = 〈S, C,D〉 where S is

the data model schema identifying the sets and relations of the data model, C is

a set of relational constraints, and D is a set of dependency constraints.

The schema S = 〈O,R〉 identifies the object classes O and the relations R in

the data model. In the schema, each relation is specified as a tuple containing its

domain class, its name, its type and its range class where R ⊆ O ×N × T ×O,

N is a string denoting the name of the relation, and

T = {zero-one, one, many} × {zero-one, one, many}×

{conditional, not-conditional} × {transitive, not-transitive}×

{polymorphic, not-polymorphic}

is the set of relation types, which are a combination of type qualifiers denoting

the cardinality of the domain and range of the relation, whether the relation is

conditional or not, whether it is transitive or not and whether it is polymorphic or

not. Not all combinations of these attributes are allowed in relation declarations.

92

Chapter 7. Automated Property Inference and Repair

The types of relations must obey the following rules: 1) Only the following com-

binations of cardinalities are possible: many to many, one to many, many to one,

zero-one to one, and one to zero-one. 2) A relation cannot be both polymorphic

and transitive. 3) A many-to-many relation cannot be transitive nor polymorphic.

As an example, take a look at the data model shown in Figure 7.1. This

simplified Active Records specification is based on an open source Ruby on Rails

application called Tracks. This application allows users to create todo lists. Todos

are organized by contexts (such as school, work, home), and todos can be tagged.

A set of preferences is saved for each user.

The schema S = 〈O,R〉 for the example data model will consist of the follow-

ing set of object classes O = {User, Preference, Context, Todo, Tag} and R will

contain five tuples, one for each relation defined in Figure 7.1: User-Preference,

User-Context, User-Todo, Context-Todo, Todo-Tag. For example, the tuple for

the User-Preference relation will be: (User, User-Preference, (one, one-zero, con-

ditional, not-transitive, not-polymorphic), Preference).

In Figure 7.2 we give a graphical representation of the schema extracted from

the data model in Figure 7.1. The rectangular nodes in the graph correspond to

the object classes and the edges represent the relations. The graphical represen-

tation of the edges differ based on the type of the relation that they represent, as

explained in Figure 7.3.

93

Chapter 7. Automated Property Inference and Repair

1 class User < ActiveRecord::Base

2 has_one :preference,

3 :conditions => "is_active=true"

4 has_many :contexts

5 has_many :todos

6 end

7 class Preference < ActiveRecord::Base

8 belongs_to :user

9 end

10 class Context < ActiveRecord::Base

11 belongs_to :user

12 has_many :todos, :dependent => :delete

13 end

14 class Todo < ActiveRecord::Base

15 belongs_to :context

16 belongs_to :user

17 has_and_belongs_to_many :tags

18 end

19 class Tag < ActiveRecord::Base

20 has_and_belongs_to_many :todos

21 end

Figure 7.1: A simplified data model based on a web application called TRACKS

that manages todo lists.

94

Chapter 7. Automated Property Inference and Repair

Tag Todo

Context

User

Preference

Figure 7.2: The data model schema ex-

tracted from the data model shown in

Figure 7.1.

one to many

one to zero-one

many to many

transitive

conditions
conditional

polymorphic

�
�
�

Figure 7.3: Graphical represen-

tations of the relation types.

The relational constraints, C, in a formal data model express the constraints

on relations that are imposed by their declarations. For example, lines 4 and 11 in

Figure 7.1 declare a one to many relation between the User and Context objects.

In order to formalize this cardinality constraint, let us use oU and oC to denote

the set of objects for the User and Context classes and rU−C to denote the relation

between User objects and Context objects. Then the constraint that corresponds

to this relation is formalized as:

(∀c ∈ oC , ∃u ∈ oU , (u, c) ∈ rU−C)

∧ (∀u, u′ ∈ oU ,∀c ∈ oC , ((u, c) ∈ rU−C ∧ (u′, c) ∈ rU−C)⇒ u = u′) (7.1)

95

Chapter 7. Automated Property Inference and Repair

Semantics of all of the data model declaration constructs we discussed above other

than the dependency constraints can be formalized similarly (see Chapter 3).

The dependency constraints are more complex due to the fact that they require

additional modeling of the delete operation.

7.3 Property Inference

Below we present three heuristics for inferring three types of properties using

the data model schema S = 〈O,R〉 defined in the previous section. These are the

types of properties we encountered the most during our manual analysis of data

models in the work described in the previous chapters. The heuristic algorithms

take as input the data model schema S = 〈O,R〉 and output a list of properties.

7.3.1 Delete Propagation

The first type of property we present is delete propagation. Our property

inference algorithm for this type of property identifies when the deletion of an

object should be propagated to objects related to that object. We denote this

property as deletePropagates(r), where r = (o, t, n, o′) ∈ R is a relation in the data

model schema. The property deletePropagates(r) asserts that when an object from

96

Chapter 7. Automated Property Inference and Repair

(a) (b)

Figure 7.4: A sub-schema and the corresponding acyclic graph constructed during

the Inference Algorithm for Delete Propagation.

object class o is deleted then all objects from the object class o′ that are related

to the deleted object via the relation r are also deleted.

The heuristic for this property type first obtains a sub-schema by removing all

relations in R that are transitive or are many to many. This sub-schema is viewed

as a directed graph, where an edge from o to o′ corresponds to a one to many or

one to zero-one relation, r, between classes o and o′. Such a sub-schema is given

in Figure 7.4a. Cycles in this graph are removed by collapsing strongly connected

components to a single node. For the schema in Figure 7.4a, nodes o3 and o4 are

collapsed to a single node called c1 in Figure 7.4b. Next, each node in the schema

is assigned a level that indicates the depth of a node in the graph. The root

nodes(s) are those with no incoming edges and are at level zero. All other nodes

are assigned a level that is one more than the maximum level of their predecessor

97

Chapter 7. Automated Property Inference and Repair

nodes. The levels for the schema in Figure 7.4a are given in Figure 7.4b. As can

be seen, node o1 is assigned level 0 since it has no incoming edges. The remaining

nodes are assigned levels as just described.

The deletePropagates property is inferred if the difference in levels between

the nodes a relation connects is not greater than one. The intuition here is that

if the difference between the levels of the nodes is greater than one, then there

could be other classes between these two classes that are related to both of them

and therefore propagating the delete could lead to inconsistencies between the

relations. The complete algorithm for this heuristic is given in Algorithm 2.

7.3.2 Orphan Prevention

The next heuristic infers properties about preventing orphaned objects. An

orphaned object results after a delete operation if there is an object class related

to a single other object class. An object becomes orphaned when the object it is

related to is deleted but the object itself is not. Orphan chains can also occur,

which begin with an object class that is related to a single object class, and

continue with object classes that are related to exactly two object classes, one of

which is the previous object class in the chain. Consider an object of the final

class of a chain, such as om−1 in Figure 7.5. When the object it is related to (of the

class om) is deleted but the object itself is not (of the class om−1), the entire chain

98

Chapter 7. Automated Property Inference and Repair

Algorithm 2 Inference Algorithm for Delete Propagation
Input: Data model schema, S = 〈O,R〉

Output: List of inferred properties

Let S′ = 〈O,R′〉 be a data model schema where R′ ⊆ R only contains relations that are not transitive and

not many to many.

Let S′′ be the directed acyclic graph obtained from S′ by collapsing each strongly connected component in S′

to a single node.

for all nodes x in S′′ traversed in topological order do

if node x in S′′ has no predecessors then

level(x) = 0

else

Let x1,...,xn be the predecessors of x.

level(x) = max(level(x1), . . . , level(xn)) + 1

end if

end for

For a node c that corresponds to a strongly connected component, assign the level of every class in the strongly

connected component of S′ to be the level of node c in S′′.

for all relations r = (o, t, n, o′) in R′ do

if level(o′)− level(o) = 1 then

Output deletePropagates(r)

end if

end for

99

Chapter 7. Automated Property Inference and Repair

Figure 7.5: The pattern used for recognizing orphan chains.

of objects (of classes om−1, ..., o1) becomes orphaned. We state the property which

asserts that there are no orphans as noOrphans(r), where r = (o, t, n, o′) ∈ R is

a relation. Specifically, this property asserts that deleting an object from object

class o′ does not leave any orphaned objects in class o, or orphan chains that begin

with an object in class o.

The heuristic that infers this property looks for potential orphans or orphan

chains by analyzing the directed graph that corresponds to the sub-schema which

is obtained from the original data model schema by removing all relations in R

that are not one to many or one to zero-one. The orphan prevention property

inference algorithm is shown in Algorithm 3.

100

Chapter 7. Automated Property Inference and Repair

Algorithm 3 Inference Algorithm for Orphan Prevention
Input: Data model schema, S = 〈O,R〉

Output: List of inferred properties

Let S′ = 〈O,R′〉, where R′ ⊆ R contains only the relations that are either one to many or one to zero-one.

for all classes o ∈ O with exactly one relation which is incoming, r1, do

Let o′ be the class o is related to

while o′ has exactly two relations, r1 (outgoing), and another incoming, r2, do

Let o := o′

Let o′ := the class o is related to by r2

Let r1 := r2

end while

Output noOrphans(r1)

end for

Figure 7.6: The pattern used for inferring transitive relations.

101

Chapter 7. Automated Property Inference and Repair

7.3.3 Transitive Relations

The final property inference heuristic is for detecting transitive relations. We

state the transitive property as: transitive(r0, . . . , rm) where m ≥ 2, ri =

(oi, ti, ni, o
′
i) ∈ R and o′i = oi+1 for 0 ≤ i < m, and rm = (o0, tm, nm, om) ∈ R.

This property asserts that the relation rm is the composition of the relations

r0, ..., rm−1.

The heuristic for this property defines a sub-schema by removing all relations

in R that are polymorphic, transitive, conditional or many to many. The algo-

rithm looks for paths of relations of length more than one. If there also exists an

edge connecting the first node in the path to the last node, then the algorithm

infers that this edge should be a transitive relation. The intuition here is that

if there are multiple ways to navigate relations between two classes, the compo-

sition of the relations corresponding to alternative ways of navigation should be

equivalent. The pattern used for this heuristic is shown in Figure 7.6. Given that

the path o0, o1, ..., om is found, and there is also an edge between o0 and om, the

algorithm infers that this edge (o0, om) should be transitive. The only exception

is for paths that are of length exactly two. Then it is possible that the first edge

in the path is the transitive relation so the algorithm outputs both possibilities.

The complete algorithm for this heuristic is shown in Algorithm 4.

102

Chapter 7. Automated Property Inference and Repair

Algorithm 4 Inference Algorithm for Transitive Relations
Input: Data model schema, S = 〈O,R〉

Output: List of inferred properties

Let S′ = 〈O,R′〉, where R′ ⊆ R contains only relations that are either one to many or one to zero-one, and

not polymorphic, transitive nor conditional.

for all nodes o0 ∈ O do

for all pairs (r0, rm) of outgoing edges from o0 to distinct nodes o1, om do

if there exists a path p = (r1, ..., rm−1) in S′ from o1 to om then

if p is of length 2 then

Output transitive(r0, r1, r2) ∨ transitive(r2, r1, r0)

else

Output transitive(r0, ..., rm)

end if

end if

end for

end for

103

Chapter 7. Automated Property Inference and Repair

!"#$%&

'()*+,-".&

!"#$%&'()*$

/*"0$*)1&

2.3$*$.,$&
4$*56,+-".&

7$0+5*&

8$.$*+-".&

+&(,-.$/-0-$,&/*.$

1(&1*(2*%$

'%*($

%1*)34*/$

1(&1*(2*%$

+&(,'.-$ +&(,'.-$

35%0-5)*$

&($'5%-0$
35%0-5)*$

&($'5%-0$

1(&1*(06$

73&.-2&5$

7*(34)-2&5$(*%'.0%$

873&.-259$35%0-5)*%$

+&($+-.%34*/$1(&1*(2*%:$$

%'99*%0*/$

(*1-3($

Figure 7.7: Data model analysis toolset.

7.4 Property Repair

In order to check the properties generated by the property inference algo-

rithms presented in the previous section, we integrate the automated verification

techniques from the work described in the previous chapters into our tool. The

architecture of the resulting tool is shown in Figure 7.7.

104

Chapter 7. Automated Property Inference and Repair

Besides automatically inferring properties using the heuristics described in the

previous section and verifying them for the Ruby on Rails framework, our tool

automatically generates data model repairs for the failed properties. These repairs

show how the Rails data model can be modified so that the failed property will

hold in the repaired model. The repair rules we developed are discussed below.

To clarify the discussion, we will use the Active Records specification in Figure 7.1

to show sample repairs that our tool outputs.

7.4.1 Delete Propagation

First we explain the repair generation for the delete propagation property. If

deletePropagates(r) fails for some relation r = (o, t, n, o′), this means that the

data model is set up such that deleting an object of class o will not cause asso-

ciated objects of o′ to be deleted. In order to enforce this property in the data

model, the :dependent option must be set on the has many or has one declaration

corresponding to relation r in o’s model. For example, when we run the Infer-

ence Algorithm for Delete Propagation (Algorithm 2) on the data model of the

application given in Figure 7.1, the deletePropagates property is generated for the

relation between the User and Context classes. However, this property fails when

we check it using the automated verification techniques discussed in the previous

section. This means that when a user is deleted, the contexts created by the user

105

Chapter 7. Automated Property Inference and Repair

are not deleted. In order to enforce this in the data model, the repair our tool

generates sets the :dependent option on the relation with Context in the User

model, i.e.

has many :contexts, :dependent => :destroy

This will cause the deletion of User objects to be propagated to the associated

Context objects. Note that the :dependent option is set to :destroy and not

:delete since we want the delete to propagate to o′’s associated objects. Otherwise

there may be objects of another class with a dangling reference to the deleted

associated object. In the running example, we observe that setting the :dependent

option to :deletemay result in Todo objects with a dangling reference to a deleted

Context object. In order to prevent this inconsistency, the :dependent option is

set to :destroy so that the Context model can propagate the delete to the desired

relations. Figure 7.8 displays the data model of the todo list application with the

automatically generated repair on line 4.

7.4.2 Orphan Prevention

Next we present the repair for the orphan prevention property. When noOrphans(r)

fails for a relation r = (o, t, n, o′), this mean that the data model is set up such

that deleting an object of class o′ will cause objects in class o to be orphaned, i.e.

106

Chapter 7. Automated Property Inference and Repair

there will be objects of class o that will not be related to any other object. We

can enforce this property in the data model by generating a repair that will delete

the associated objects that would otherwise be orphaned. This is done by setting

the :dependent option on the declaration corresponding to relation r in the model

for o′. For orphan chains this is repeated down the chain, creating repairs for the

declarations that associate a class with the next class in the chain.

For example, when we run the Inference Algorithm for Orphan Prevention

(Algorithm 3) on the data model in Figure 7.1, a noOrphans property is gen-

erated which states that when a User is deleted, no Preference objects should

be orphaned. This property fails when we check it using automated verification,

which means that when a User is deleted who has a Preference, the Preference

object is orphaned. In order to enforce this property in the data model, a repair

is generated that sets the :dependent on the relation with Preference in the User

model, i.e.

has one :preference, :conditions => "is active=true",

:dependent => :destroy

This will cause the deletion of a User object to be propagated to the associated

Preference. There are no more objects in this orphan chain so no further re-

pairs will be generated. This suggested repair, as applied to the data model in

Figure 7.1, is shown in Figure 7.8 on line 3.

107

Chapter 7. Automated Property Inference and Repair

7.4.3 Transitive Relations

Finally, we discuss the repair for failing transitive relations properties. When

transitive(r0, . . . , rm) fails for some set of relations r0, . . . , rm it means that rm

is not the composition of the other m relations, as asserted in the property. To

repair this property in the data model, we set the :through option on the declara-

tion corresponding to the relation rm = (om, tm, nm, o
′
m) in om’s data model. For

instance, running the Inference Algorithm for Transitive Relations (Algorithm 4)

on the example in Figure 7.1 infers the following transitive property: the relation

between User and Todo should be the composition of the relations between User

and Context, and Context and Todo. However, we again find out that this prop-

erty fails using automated verification. In other words, the todos in the contexts

created by a user may not be the same as the todos created by that user. In order

to enforce this transitivity in the data model, a repair is generated which sets the

:through option on the declaration in the User class that associates it with Todo:

has many :todos, :through => :contexts

We also need to remove the belongs to :user declaration in the Todo class since

it becomes unnecessary when using the :through option. After this repair the

relation between User and Todo will be the same as navigating the User-Context

relation and then the Context-Todo relation. The data model for the todo list

108

Chapter 7. Automated Property Inference and Repair

application after being modified by this repair is shown in Figure 7.8 (see lines 5

and 16).

There are two complications in the repair generation of the transitive relation

property. For transitive properties with exactly three parameters, transitive(r0, r1, r2),

it is possible that r0 is the transitive relation instead of r2 so two repairs will be

generated to let the user choose the one that is appropriate for fixing the failing

property.

The other scenario is for transitive properties with more than three parameters.

In Rails, one can only express that a relation is the composition of two others, not

three or more others. Therefore, to repair a property such as transitive(r0, . . . , rm)

with m > 2 and ri = (oi, ti, ni, o
′
i), the repair generator ensures that there are

transitive relations between o0 and oi for 1 < i < m. Otherwise it generates these

transitive relations, and then sets the :through option on rm so that it is the

composition of rm−1 and the (possibly generated) relation between o0 and om−1.

7.5 Experiments

Our techniques are applicable to ORMs in general, and we have implemented

the approach for the Ruby on Rails framework. The property inference techniques

109

Chapter 7. Automated Property Inference and Repair

1 class User < ActiveRecord::Base

2 has_one :preference, :conditions => "is_active=true",

3 :dependent => :destroy

4 has_many :contexts, :dependent => :destroy

5 has_many :todos, :through => :contexts

6 end

7 class Preference < ActiveRecord::Base

8 belongs_to :user

9 end

10 class Context < ActiveRecord::Base

11 belongs_to :user

12 has_many :todos, :dependent => :delete

13 end

14 class Todo < ActiveRecord::Base

15 belongs_to :context

16 # line deleted

17 has_and_belongs_to_many :tags

18 end

19 class Tag < ActiveRecord::Base

20 has_and_belongs_to_many :todos

21 end

Figure 7.8: The data model from Figure 7.1 updated with the suggested repairs

(in bold) generated by our tool.

110

Chapter 7. Automated Property Inference and Repair

were combined with our data model verification tool to provide an end-to-end

automated tool for data model verification.

The techniques have been implemented as a toolset for data model analysis,

verification and repair. The architecture of the toolset is shown in Figure 7.7. The

front end automatically extracts a formal data model from the ORM specification

of the web application. The model extraction, property inference, verification and

repair components are all integrated together and use the results from the prior

stages to generate the results needed for the following stages of the analysis.

We used our toolset to analyze five open source Ruby on Rails applications.

Our tool applies our property inference heuristics to the Active Record files of the

input web application. The properties inferred are sent to the next component

of the tool, which automatically translates the Active Record files to SMT-LIB

and then performs verification using the SMT-solver Z3 [100]. If any properties

time out during verification (with a time out limit of five minutes), bounded

verification is performed instead, using the Alloy Analyzer with a bound of 10,

meaning at most 10 objects of each type are instantiated to check satisfaction of

these properties.

The set of properties reported as failing by the tool are manually checked to

determine which are data model errors as opposed to false positives. Data model

errors are those properties that are not upheld by the data model despite its ability

111

Chapter 7. Automated Property Inference and Repair

to do so. There are two categories of errors: properties that are not upheld in

the application codebase thus causing a bug in the application (an application

error), and those that are not upheld in the data model but are enforced in other

areas of the application (such as in the server-side code). Properties enforced

in other areas of the application are potential bugs since if this code is changed

in the future, it is possible that the property may no longer be upheld by the

application. Of the remaining properties that failed which do not fall under these

two categories, we have properties that failed because of the limitations of Ruby on

Rails constructs, and properties that are false positives, i.e. data model properties

that were incorrectly inferred.

The Applications The five applications used in the experiments are listed in

Table 6.1, along with their sizes in terms of lines of code, number of total classes,

and number of data model classes. Descriptions of the applications are given

below:

• LovdByLess (lovdbyless.com) is a social networking application with the

usual features.

• Tracks (getontracks.org) is an application that helps users manage to-do

lists, which are organized by contexts and projects.

112

Chapter 7. Automated Property Inference and Repair

• OpenSourceRails(OSR) (opensourcerails.com) is a project gallery that al-

lows users to submit, bookmark, and rate projects.

• FatFreeCRM (fatfreecrm.com) is a light-weight customer relations manage-

ment software.

• Substruct (code.google.com/p/substruct) is an e-commerce application.

Inference and Verification Results The results of running our tool on the

five applications are given in Table 7.1. For each application and type of property,

it displays the number of properties that were inferred by the tool, the number

that failed during verification, and the number that timed out during unbounded

verification. A total of 145 properties were inferred, of which 93 failed and 3 timed

out during unbounded verification. The three properties that timed out were

shown to fail using bounded verification, giving a total of 96 failing properties. We

manually investigated each of the failing properties to determine which correspond

to data model errors. These results are also summarized in Table 7.1.

For example, a noOrphans property that was inferred and failed verification

(i.e. fails to hold on the data model) is in the OSR application. In this application,

Projects can be rated by Users and the property that was inferred states that when

a Project is deleted, the associated ProjectRatings should not be orphaned. This

property fails, meaning it is not upheld by the data model. Manual inspection

113

Chapter 7. Automated Property Inference and Repair

shows that it should be. Thus, this property is a data model error. However

this property does not manifest as an error in the overall application since the

user interface does not allow projects to be deleted. Nevertheless this indicates a

potential application error which can be exposed if the application is later changed

to allow project deletion. The repair generated for this error suggests setting the

:dependent option on the declaration in the Project class that relates Projects

to ProjectRatings so that any associated ProjectRatings are deleted along with

a Project instead of being orphaned. This will ensure that the property holds

whether it or not other parts of the application upholds it.

There are also a category of properties that are data model and application

errors. These properties are those that fail to hold not only in the data model

but the entire application as well. For instance, in Tracks a deletePropagates

property was inferred that stated deleting a Context should delete any associated

RecurringTodos. This property is not upheld in the data model. Further, it is not

enforced in the application, so when a context is deleted and then the recurring

todo is edited that was associated with that context, the application crashes when

it cannot find the associated context. This is an example of a data model and

application error.

Properties that fail verification are not necessarily errors. For example, a

transitive property that failed was for LovdByLess, which has forums in which

114

Chapter 7. Automated Property Inference and Repair

users are allowed to create topics and post messages inside the forum topics. The

property inferred states that the relation between User and ForumPost is the

transitive between the relations between User and ForumTopic, and ForumTopic

and ForumPost. Manual analysis shows that this relation should not be transitive

due to the semantics of the application. It is not necessary that users must post to

forum topics that they created, as transitivity requires. Thus, this failing property

is classified as a false positive.

Finally, properties may also fail due to the limited expressiveness in Rails con-

structs. For instance, in FatFreeCRM accounts can be created for each customer,

and multiple contacts can be associated with each account. A deletePropagates

property that was inferred for this application stated that the deletion of an Ac-

count should propagate to the associated Contacts. However, in this application it

is valid for there to be contacts that are not associated with any accounts. Hence

the relationship that was desired here was a zero-one to many, not a one to many.

Therefore this property is a failure due to limitations in Rails’ expressiveness.

As an example of a failure due to a different Rails limitation, there is a

deletePropagates property that failed in Substruct which states that deleting a

Country deletes any associated Addresses. However, the Country table holds a

list of all countries in the world which should never be deleted, nor does the

115

Chapter 7. Automated Property Inference and Repair

user interface allow this. Thus, the inability to declare the Country model as

undeletable causes this property to fail.

Of the 145 properties inferred by our tool for the five web applications we

analyzed, 49 properties (33.8%) hold on the given data model, 63 of them (43.4%)

fail and correspond to data model errors, 9 of them (6.2%) fail due to Rails

limitations, and 24 of them (16.6%) fail and correspond to false positives. The fact

that we are able to identify 63 data model errors in five web applications indicates

that data model errors are prevalent in web applications and web application

developers are not using advanced features of ORMs effectively. In addition to

identifying errors in data models, we are able to show developers how to fix their

data model using automated repair generation.

Performance Our experiments included taking performance measurements as

an additional indicator of the effectiveness of our approach. Specifically, we mea-

sured the time it took for the inference and verification of each property, as well

as the formula size produced by the verification tools. These values were aver-

aged over the properties for each property type per application. The results are

summarized in Table 7.2. For the unbounded tool the formula size measures the

SMT-LIB specification produced for the property. Here, the number of variables

are the number of sorts, functions and quantified variables in the specification,

116

Chapter 7. Automated Property Inference and Repair

and the number of clauses are the number of asserts, quantifiers and operations.

For the bounded tool, the formula size reports the number of clauses and variables

created by Alloy’s SAT translation. The time taken for repair generation is not

reported in Table 7.2 since it is almost zero for all properties.

In summary we see that, for the properties that did not time out during un-

bounded verification, the longest inference time was 0.22 seconds on average, with

the exception of transitive properties for the LovdByLess application which had

an average inference time of 1.5 seconds. The longest verification time was only

0.65 seconds on average. Even for the properties that timed out and bounded veri-

fication was used instead, we see that figures are reasonable with 2.4 seconds being

the longest bounded verification time. What we observe is that inference time is

very fast, as is unbounded verification time. Even in the cases for which bounded

verification was required, the verification time is very reasonable. In summary,

our approach is not only able to find errors effectively, it does so efficiently.

117

Chapter 7. Automated Property Inference and Repair

Table 7.1: Inference and Verification Results

Application Property Num Num Num Num Num Num Num

(Appl) Type Inferred Timeout Failed Data Model Data Failures False

and Appl Model Due to Rails Positives

Errors Errors Limitations

deletePropagates 13 0 10 1 9 0 0

LovdByLess noOrphans 0 0 0 0 0 0 0

transitive 1 0 1 0 0 0 1

deletePropagates 27 0 16 1 3 5 7

Substruct noOrphans 2 0 1 0 1 0 0

transitive 4 0 4 0 1 0 3

deletePropagates 15 0 6 1 1 3 1

Tracks noOrphans 1 0 1 0 0 0 1

transitive 12 0 12 0 7 0 5

deletePropagates 32 1 19 0 18 1 0

FatFreeCRM noOrphans 5 0 0 0 0 0 0

transitive 6 2 6 0 0 0 6

deletePropagates 19 0 12 0 12 0 0

OSR noOrphans 1 0 1 0 1 0 0

transitive 7 0 7 0 7 0 0

deletePropagates 106 1 63 3 43 9 8

Total noOrphans 9 0 3 0 2 0 1

transitive 30 2 30 0 15 0 15

118

Chapter 7. Automated Property Inference and Repair

Table 7.2: Inference and Verification Performance

Application Property Type Inference Verification Formula Formula

Time (s) Time (s) Size (clauses) Size (variables)

Unbounded Bounded Unbd Bnd Unbd Bnd

deletePropagates 0.002 0.057 - 47.0 - 16.8 -

LovdByLess noOrphans 0.012 - - - - - -

transitive 1.512 0.024 - 30.5 - 20.5 -

deletePropagates 0.000 0.138 - 39.0 - 15.1 -

Substruct noOrphans 0.002 0.083 - 31.3 - 13.7 -

transitive 0.215 0.081 - 23.6 - 17.8 -

deletePropagates 0.002 0.031 - 31.9 - 13.3 -

Tracks noOrphans 0.013 0.372 - 28.0 - 12.0 -

transitive 0.098 0.050 - 11.6 - 17.4 -

deletePropagates 0.001 0.033 2.359 84.9 465822 21.8 197307

FatFreeCRM noOrphans 0.026 0.651 - 124.8 - 29.8 -

transitive 0.126 0.053 1.105 99.1 71490 31.9 36658

deletePropagates 0.001 0.060 - 30.3 - 12.6 -

OSR noOrphans 0.011 0.033 - 27.0 - 12.0 -

transitive 0.064 0.061 - 12.7 - 17.1 -

Average 0.139 0.123 1.732 44.4 268656 17.986 116982.5

119

Chapter 8

Integrated Data Model Verifier

(iDaVer)

Chapter 7 presented one way to ease the user’s burden of manually specifying

properties – by inferring properties automatically. However, this approach is

limited by the types of properties that can be automatically inferred generally for

all applications. To address this issue, we created a tool that accepts property

templates which facilitate writing application-specific data model properties.

To verify these properties, our tool iDaVer [71] gives the user the option of

either bounded or unbounded verification (the approaches described in Chapters 4

and 5, respectively). By integrating these two approaches and offering language-

120

Chapter 8. Integrated Data Model Verifier (iDaVer)

neutral templates to specify properties, iDaVer allows the user to easily switch

between the two verification methods, providing a seamless user experience.

This chapter describes property templates and details iDaVer’s architecture.

8.1 Overview

iDaVer targets web applications developed using the Rails framework. The

front-end of our tool automatically extracts a formal data model from the ORM

specification of the input application. Although the formal data model is extracted

automatically, the user still has to specify the properties she desires to check

about the data model. To facilitate this process, we developed a set of property

templates. These templates characterize the most common properties we observed

in our earlier research on data model verification (see Chapter 6). These templates

can easily be instantiated for different classes and relations by the user.

Our tool verifies properties (specified using property templates) on the au-

tomatically extracted formal data model by translating verification queries to

satisfiability queries in a specified theory and then using a backend solver for

that theory. Our tool combines two different variants of this framework: the

SAT-based bounded verification and Satisfiability Modulo Theories (SMT)-based

121

Chapter 8. Integrated Data Model Verifier (iDaVer)

unbounded verification. Our tool integrates these two approaches and provides a

unified framework for the verification of Rails data models.

8.2 Property Templates

Manual specification of formal data model properties can be tedious and error-

prone. Moreover, since our verification tool targets multiple theories for data

model verification, manual specification of properties would require the user to

learn the semantics and syntax of the input languages of both the solvers used

by our tool, understand the specifications generated by our model extractor and

translator, and then write the data model properties in the input language of

the solver the user desires to use for verification. We believe that this would

significantly reduce the usability of our tool. One of our contributions is to present

a set of property templates that make the specification of data model properties

easier. Since our tool integrates data model verification with different solvers in

one framework, it can automatically translate the properties specified using these

templates into the input language of the solver that the user chooses.

We identified seven property templates that characterize the most common

properties we observed in our earlier research on data model verification [72, 73].

122

Chapter 8. Integrated Data Model Verifier (iDaVer)

1 class User < ActiveRecord::Base

2 has_and_belongs_to_many :roles

3 has_one :profile, :dependent => :destroy

4 has_many :photos, :through => :profile

5 end

6 class Role < ActiveRecord::Base

7 has_and_belongs_to_many :users

8 end

9 class Profile < ActiveRecord::Base

10 belongs_to :user

11 has_many :photos, :dependent => :destroy

12 has_many :videos, :dependent => :destroy,

13 :conditions => "format=’mp4’"

14 end

15 class Photo < ActiveRecord::Base

16 belongs_to :profile

17 has_many :tags, :as => :taggable

18 end

19 class Video < ActiveRecord::Base

21 belongs_to :profile

22 has_many :tags, :as => :taggable

23 end

24 class Tag < ActiveRecord::Base

25 belongs_to :taggable, :polymorphic => true

26 end

Figure 8.1: A data model example

123

Chapter 8. Integrated Data Model Verifier (iDaVer)

User

Photo Video

Tag Taggable

Role
format=‘mp4’

Profile

Figure 8.2: The schema extracted from the data model in Figure 8.1.

These templates can easily be instantiated by the user for different classes and

relations by providing the names of the relations as input.

We present the formal definitions of the seven property templates below. As

a running example we use the data model given in Figure 8.1. It is a simplified

data model of a social networking application built on the Rails platform. In this

application, there are users who create profiles. Photos and videos can be tagged

and posted to a user’s profile, and users can be attributed with various roles. A

graphical representation of the schema extracted for this data model is shown in

Figure 8.2.

Of the seven property templates we list below, templates I and IV are state

assertions, templates II and III are state predicates, and templates V, VI, and

VII are behavior assertions. For the following, let M be the data model about

which we are expressing the property. Let I = 〈O,R〉, I ′ = 〈O′, R′〉 be data

124

Chapter 8. Integrated Data Model Verifier (iDaVer)

model instances, rA−B, rB−C , rA−C ∈ R, r′A−B, r
′
B−C ∈ R′ and oA, oB, oC ∈ O,

o′A, o
′
B ∈ O′. Let I |=M and (I, I ′) |=M.

I. alwaysRelated is used to express that objects from one class are always

related to some object of another class. We formally define this template as

alwaysRelated(rA−B) ≡ ∀a ∈ oA,∃b ∈ oB, (a, b) ∈ rA−B

For example we can express the following property on the data model in Fig-

ure 8.1: alwaysRelated(Profile-User). This is saying that a Profile object should

always be associated with a User object.

II. multipleRelated expresses the property that it is possible for the objects of

one class to be related to more than one object of another class. Formally,

multipleRelated(rA−B) ≡ ∃a ∈ oA, b1, b2 ∈ oB, b1 6= b2 ∧ (a, b1) ∈ rA−B ∧ (a, b2) ∈ rA−B

In the running example, we can specify multipleRelated(Photo-Tag) to state that

a Photo may be associated with more than one Tag.

III. someUnrelated is used to express that it is possible for an object of one

class to not be related to any objects of another class. This template is defined

formally as

someUnrelated(rA−B) ≡ ∃a ∈ oA,∀b ∈ oB, (a, b) 6∈ rA−B

For example, the property someUnrelated(User-Photo) means that it is possible

to have a User without any Photos.

125

Chapter 8. Integrated Data Model Verifier (iDaVer)

IV. transitive is the template used to express that one relation is the compo-

sition of two others. Formally,

transitive(rA−B, rB−C , rA−C) ≡

∀a ∈ oA, c ∈ oC , (a, c) ∈ rA−C ⇔ ∃b ∈ oB, (a, b) ∈ rA−B ∧ (b, c) ∈ rB−C

For the running example, the property transitive(User-Profile, Profile-Photo,

User-Photo) states that the relation between User and Photo is the composition

of the relations between User and Profile, and Profile and Photo.

V. noOrphans applies to situations where objects can potentially be orphaned.

This occurs when a class, oB, has only one relation, i.e. it is connected to the

schema graph via exactly one relation, rA−B. In this case, when an element of class

oA is deleted it is possible that its associated elements in oB may be orphaned—left

without any connections to other objects. Formally,

noOrphans(rA−B) ≡ ∀a ∈ oA, b
′ ∈ o′B, a 6∈ o′A ⇒ ∃a′ ∈ o′A, (a

′, b′) ∈ r′A−B

As an example, we may desire to check noOrphans(Video-Tag) to make sure there

are no orphaned Tags once a Video has been deleted.

VI. deletePropagates template is about making sure that when an object of

one class is deleted, related objects in another class are also deleted. This template

is formally defined as:

deletePropagates(rA−B) ≡ ∀a ∈ oA, b ∈ oB, (a 6∈ o′A ∧ (a, b) ∈ rA−B)⇒ b 6∈ o′B

126

Chapter 8. Integrated Data Model Verifier (iDaVer)

For instance, we can say deletePropagates(Profile-Video), meaning that when

a Profile object is deleted then the delete is propagated to all associated Video

objects.

VII. noDeletePropagation is the template used to express that when an object

of one class is deleted, its associated objects from another class are NOT deleted.

Formally,

noDeletePropagation(rA−B) ≡ ∀a ∈ oA, b ∈ oB, (a 6∈ o′A ∧ (a, b) ∈ rA−B)⇒ b ∈ o′B

For example, noDeletePropagation(User-Role) means that when a User is deleted,

the associated Role should not be deleted.

8.3 iDaVer’s Architecture

The architecture of iDaVer (Integrated DAta model VERifier) is shown in

Figure 8.3. iDaVer takes as input a set of model files from a Ruby on Rails 2.0

application and a set of properties in the form of templates. The user can choose

one of two verification options: 1) bounded verification with Alloy Analyzer 4, or

2) unbounded verification with the SMT Solver Z3 4.3.

iDaVer extracts a formal data model (discussed in Chapter 3) from the Rails

data model files, which is then translated into a specification in the language of

the chosen solver. The properties specified (using templates) are also translated

127

Chapter 8. Integrated Data Model Verifier (iDaVer)

Bounded
Verification

instance
or unsat

formula

formal data model

Alloy
Analyzer

Property
Templates

ORM Source

SMT
Solver

instance
or unsat

or unknown

formula

Unbounded
Verification

Property Failed
+

Counterexample

Property
Verifed

Unknown

Model
Extraction

properties

Figure 8.3: Data model analysis toolset.

128

Chapter 8. Integrated Data Model Verifier (iDaVer)

into the modeling language of the chosen solver and appended to the specifica-

tion. Then the specification is fed into the solver, and the output of the solver is

interpreted by iDaVer and shown back to the user. In cases where the output

contains a satisfying or violating instance, iDaVer translates the output of the

solver to an instance of the data model (in terms of sets and relations of the data

model) before presenting it to the user.

8.4 A Case Study

We present a case study on an open source Rails application called Lovd-

ByLess. This is a social networking application with the usual features of users

creating profiles, making friends, and leaving messages for friends. It also includes

a forum where users can post and discuss topics. iDaVer takes as input the path

of the directory containing the Rails data model files, and the name of the file

containing the data model property(ies). The properties are expressed using the

property templates discussed earlier in this chapter. To make the entry of prop-

erties as easy as possible, the templates only require the class names as input and

the relations are inferred by iDaVer.

To start, let us say the user desires to verify the data model of the LovdByLess

application by ensuring the property someUnrelated[ForumTopic, ForumPost] holds,

129

Chapter 8. Integrated Data Model Verifier (iDaVer)

meaning we are checking that it is possible to have topics in a forum that do not

have any posts. The user chooses to perform unbounded verification using the

SMT solver, Z3. Running iDaVer on these inputs gives the following result1:

iDaVer outputs the name of the property being verified, the verification tech-

nique and solver used, the total time spent to obtain the result (including the time

taken to perform the translation into the input language of the solver), the time

spent by the solver to perform the verification, and the size of the formula in terms

of the number of variables and clauses in the specification. The formula size is

solver-dependent: for SMT-LIB, variables are the number of types, functions, and

quantified variables in the specification, and clauses are the number of asserts,

quantifiers and operations; for Alloy this is the number of variables and clauses

generated in the boolean formula generated for the SAT-solver used by Alloy.

1The instances produced by the solvers were simplified to save space.

130

Chapter 8. Integrated Data Model Verifier (iDaVer)

Finally, iDaVer outputs the result of the verification, which in this case is

that the property holds on the data model. Furthermore, iDaVer formulates a

satisfying instance from Z3’s output, and displays it as object sets and related

tuples.

In addition to unbounded verification with Z3, iDaVer can also perform

bounded verification using the Alloy Analyzer. Specifying bounded verification

and using the default bound of twenty (meaning up to twenty objects of each class

will be instantiated to check the property), we input the property

deletePropagates[Profile, Photo] to check that when a Profile object is deleted,

all associated Photo objects will also be deleted. iDaVer gives the following out-

put1:

131

Chapter 8. Integrated Data Model Verifier (iDaVer)

Like Z3, Alloy also produces instances. iDaVer interprets the instances pro-

vided and translates them to a language-neutral and easy-to-understand form con-

sisting of sets of objects and related object pairs. In the above example, iDaVer

informs us that the property failed verification and provides us with a counterex-

ample in the format just described. Since the user expected the property to hold,

the counterexample is useful for understanding the cause of the error.

In this example, investigation into the application code reveals that all data

related to a user, including Photos, should be deleted once a user’s Profile is

deleted. This can be enforced in the data model using the :dependent option in

the Profile class on its relation with Photo, but currently this option is not set.

Running the application demonstrates that this failing property does not manifest

as an application error since the user interface of the application currently does

not allow Profiles to be deleted, only to be deactivated. Thus this failing property

is an example of a data model error (an error in the design of the data model)

that does not show up as an application error because it is enforced in other parts

of the application code.

Even though we performed bounded verification for this property, we were able

to determine that the property failed. However this may not always be the case.

In fact, the main disadvantage of bounded verification is that its results are not

sound for verified assertions and failing predicates. For example, checking that a

132

Chapter 8. Integrated Data Model Verifier (iDaVer)

Photo object is always associated with some Profile object by running iDaVer

with the input alwaysRelated[Photo, Profile] and Alloy Analyzer as the verifier,

gives the following result:

Notice that iDaVer outputs that the property may hold since no counterexample

was found within the bound. In this case unbounded verification gives a stronger

verification result.

However, bounded verification has its own benefits. Recall from the previ-

ous section that unbounded solvers may timeout since satisfiability of formulas in

the theory of uninterpreted functions with quantification is known to be undecid-

able. This is the main benefit of having a tool that integrates both bounded and

unbounded verification: in cases where unbounded solvers are unable to prove

or disprove a property, iDaVer provides the user with the option to perform

bounded verification to obtain an answer for the verification query within a given

bound.

133

Chapter 8. Integrated Data Model Verifier (iDaVer)

Let us look at one final example. To check that deleting a Blog entry does

not cause any Comment objects to have a dangling reference, we check the

noDangling[Blog, Comment] property. Using Z3 to do unbounded verification,

iDaVer returns that this property does not hold on the data model and provides

a counterexample to help the user pinpoint the error. When the user runs the

application and deletes a Blog entry, we see that in the database the associated

Comments are left with a dangling reference to the deleted Blog entry. In the

application, the user’s main page contains a list of recent activity. This includes

when someone has commented on that user’s blog entry. The application sees

there is a comment made for this user, but it cannot find the referenced blog en-

try. The application tries to make up for this error by returning an empty string.

An application error occurs nonetheless since this empty string is displayed on the

screen where text is expected.

Using iDaVer, the user discovers a bug that can now be fixed in the data

model by setting the :dependent option on the relation to Comment in the Blog

class, so that all Comments are deleted when a Blog entry is deleted. This example

demonstrates the importance of verifying data models and using the data modeling

constructs available in Rails to enforce properties of data models. Using other

parts of the application to enforce properties that should and can be upheld by

the data model may lead to errors, such as this one.

134

Chapter 9

Related Work

In this chapter we present related work. We discuss work on web applica-

tion modeling and verification, and work on data model analysis and verification.

We also present works related to the property-based data model projection tech-

nique presented in Chapter 5, and the automated property inference techniques

presented in Chapter 7.

9.1 Modeling and Verification of Web Applica-

tions

Formal modeling and automated verification of web applications has been in-

vestigated before. There has been some work on analyzing navigation behavior

135

Chapter 9. Related Work

in web applications. It focuses on the correct handling of control flow given the

unique characteristics of web applications, such as the use of a browser’s “back”

button combined with the stateless nature of the underlying HTTP protocol [56].

For example, the problem of navigation inconsistencies in web applications has

been studied [62], where it has been shown that multiple browser windows can

lead the user of a popular travel reservation site to purchase the wrong flight.

Prior work on formal modeling of web applications mainly focuses on state

machine based formalisms to capture the navigation behavior. Modeling web ap-

plications as state machines was suggested a decade ago [90] and investigated

further later on [49, 9, 46, 61]. State machine based models have been used to

automatically generate test sequences [99], perform some form of model check-

ing [84, 48] and for runtime enforcement [46]. In contrast to these previous ef-

forts, we are focusing on analysis of the data model rather than the navigational

aspects of web applications. Some language based solutions have been proposed

to alleviate this problem, in which such navigation inconsistencies reduce to type

checking errors [42]. Also, Alloy has been used for discovering bugs in web appli-

cations related to browser and business logic interactions [10]; this is yet another

work verifying the navigational aspects of web applications as opposed to the data

model as in our work.

136

Chapter 9. Related Work

There has been some prior work on formal modeling of web applications us-

ing the Unified Modeling Language (UML) [17] and extending UML to capture

complex web application behavior such as browsing and operations on navigation

states [5]. WebML [13] is a modeling language developed specifically for modeling

web applications. Formal specification of input validation rules for web applica-

tions, where an implementation can be generated from the formal specification has

been investigated [8]. These efforts focus on model-driven development whereas

our approach is a reverse engineering approach that extracts the model of an

already-existing application and analyzes it to find errors.

There has been some work on semi-automatically extracting a UML model

from a web application [92], but its goal is to test for design flaws. In [92], analysis

is performed on the extracted model, although they just focus on analyzing usage

statistics to aid in testing of the web application. There has a been a lot of work

done on automated testing of web applications [29, 37, 3, 4, 15, 83, 89, 59]. The

closest related work in this domain is for generating test cases for databases [37]. In

this work, test cases are automatically synthesized and are composed of a sequence

of HTTP requests that simulate a user session which will obtain a certain database

state. This technique is unimplemented but can be used to discover workflow

attacks, whereas the goal of our approach is to discover data modeling errors. In

137

Chapter 9. Related Work

contrast to all these works, we perform static verification of data models rather

than testing.

The verification of traditional web applications, which do not use object-

relational mappings, has also been investigated in recent years [51, 25, 36, 30,

58, 27, 26, 28]. The techniques presented in [51, 30, 58] are reverse-engineering

approaches like ours. However, they focus on the verification of navigation proper-

ties whereas we check for data modeling errors. The approach in [58] automatically

extracts the page transitions of a Struts/Java Server Pages web application and

translates them into a Promela specification. Then the model checker SPIN [52]

is used for verification. The work described in [30] automatically translates the

UML design of a web application into an SMV model and uses the SMV model

checker [68] to verify navigation properties. In [51] a slightly different approach is

taken by using dynamic analysis to extract the formal model: a finite automata

model is created from a recorded browser session. This model is then verified

using SPIN. All these approaches, like ours, require properties to be manually

written and fed to the model checker to perform verification.

A different approach to the verification of web applications is presented in [25].

It requires manual annotations to the code, but does not require properties to be

written. In this work, annotations in JML [12] are used to specify how components

interact with a shared session data repository. Then static verification is used to

138

Chapter 9. Related Work

ensure each component implementation obeys its contract specification. Besides

performing static verification of a global client-server interaction protocol and a

runtime policy enforcement, their tool guarantees that there will be no broken

data dependencies.1 In contrast, the work in [36] is fully automated, in that

dynamic analysis is used to observe the normal operation of a web application

to infer likely invariants. Then symbolic model checking is performed (using an

extended version of JPF [50]) over symbolic input to identify program paths likely

to violate those invariants. This approach discovers logic vulnerabilities in web

applications.

Finally, there are previous results on unbounded verification of data-driven

web applications based on manually written high level specifications [27, 26, 28].

The work in [26] formally defines a data-driven web application and provides

theoretical results about the decidability of a class of navigation properties. In

[27, 28] these results are implemented in a verification tool for data-driven web

applications which are specified using a high-level language such as WebML.

In our dissertation, by focusing on three-tier style web applications we are

able to exploit the modularity in the three-tier architecture and extract formal

1Broken data dependencies happen when a client request causes a data item to be read from
the server side shared session repository before it has actually been written, or for a shared data
read interaction when the object returned by the read is not of the type expected.

139

Chapter 9. Related Work

data models from existing applications without requiring any manual modeling or

specification.

A very related work is Rubicon [69], a bounded verification approach for Ruby

on Rails web applications. In this work, behavioral bugs are discovered by first

manually converting RSpec [16] tests into the Rubicon specification language, and

then using symbolic execution in conjunction with the Alloy Analyzer to perform

bounded verification. In comparison to our work, Rubicon verifies the Controller

aspect of an application as opposed to the Data Model. Another difference in the

approach is that Rubicon requires the specification of application behavior rather

than properties in order to perform verification, as in our work. We also give the

option of unbounded verification in addition to bounded verification.

9.2 Data Model Analysis and Verification

There has been some prior work on using Alloy for data model analysis. For

example, mapping relational database schemas to Alloy has been studied be-

fore [20]. Also, translating ORA-SS specifications (a data modeling language for

semi-structured data) to Alloy and using Alloy analyzer to find an instance of

the input data model has been investigated [95]. However, unlike our work, the

translation to Alloy is not automated in these earlier efforts.

140

Chapter 9. Related Work

Formal specification of access control policies in conjunction with a data model

using Alloy has also been studied, where an implementation is automatically syn-

thesized from the formal specification [14]. There has also been work done on

automatically translating Alloy specifications to a database schema with integrity

constraints [57]. The integrity constraints are upheld by automatic repair of the

database after each update operation. These efforts follow the model-driven de-

velopment approach whereas our approach is a reverse engineering approach that

extracts the model of an existing application and analyzes it to find errors.

There has been recent work on the specification and analysis of conceptual

data models [87, 67, 47]. These works focus on checking the consistency of models

(i.e. checking that an instance exists which satisfies all constraints in the model),

as well as on efficient generation of satisfiable instances as test data. These efforts

focus on model-driven development and testing whereas our approach is a reverse-

engineering approach for the verification of data models.

There have been efforts in formal specification, verification and analysis of

object-oriented models. For example, the Object Constraint Language (OCL) [76,

96] is a specification language for describing constraints on object-oriented mod-

els. OCL is primarily used for specifying class invariants on fields and associa-

tions, and for specifying pre and post conditions of class methods. Being one of

the components of the UML [76], OCL is a commonly used formal language for

141

Chapter 9. Related Work

object-oriented modeling, especially for expressing precise constraints that can-

not be expressed using UML diagrams. OCL can also be used to specify integrity

constraints of relational databases, as shown in [24]. Research on verification of

OCL specifications have ranged from simulation of object-oriented models [81], to

interactive verification via automated theorem prover support [1].

One attempt to check the correctness of UML/OCL models is the UML-based

Specification Environment (USE) [81, 39]. USE provides an environment where

users can simulate the behavior of UML models and check OCL invariants and

pre and post conditions during simulation. One disadvantage of USE is the lack

of support for automatically guided simulation, and hence one can only cover a

small portion of system behaviors with USE. Another approach for the validation

of UML models constrained by OCL constraints is described in [66, 2, 65]. They

each propose a translation from UML class diagrams to Alloy. This allows one to

use the Alloy Analyzer for simulation as well as bounded model checking. The

techniques presented in [2, 65] is implemented whereas the approach in [66] is not.

The approach in [2] has an extended support of UML features compared to [65].

In contrast, to these types of simulation-based validation, we applied unbounded,

automated verification techniques to guarantee the correctness of data models.

142

Chapter 9. Related Work

Note that, both UML/OCL and Alloy require manual specification of the

object-oriented data models. In this dissertation, we automatically extract formal

data models from existing applications without requiring manual intervention.

Alloy and UML/OCL are two object-oriented modeling languages; there are

there are other modeling languages such as the popular Z [45] and B [60] lan-

guages. Like Alloy and OCL, the predominant data types in Z and B are sets

and relations. However, both Z and B were designed with proving in mind rather

than lightweight analysis like Alloy was. Thus both languages have substantial

support of specialized theorem provers. Furthermore, both support higher-order

structures, whereas Alloy is strictly first-order; thus Alloy is less expressive and

has fewer constructs. B is more like an abstract programming language rather

than a specification language; in fact, a design goal of B was to produce code

from abstract models. This make B less flexible than the other languages. Z,

like Alloy, is essentially a logic with extra constructs added for easy expression

of software abstractions. Both Z and B describe behavior using constraints, as

do Alloy and OCL. In our work, Alloy was chosen due to its simplicity and the

automatic analysis capability provided by the Alloy Analyzer. For the unbounded

analysis portion of our work we chose SMT-LIB so we could perform verification

using SMT solvers and their ability to produce counter-examples.

143

Chapter 9. Related Work

There has been some recent work on unbounded verification of Alloy specifica-

tions using SMT solvers [38], but to the best of our knowledge this approach has

not been implemented yet. Unbounded verification of Alloy specifications may

be more challenging than the data model verification problem that we focus on

in this dissertation since the Alloy language provides powerful constructs such as

transitive closure.

The fact that verification with SMT solvers can be more efficient than SAT-

based bounded verification has been observed in other verification domains [19].

However, the data model verification problem we investigate in this dissertation

is different from the problems studied in these earlier works.

Another category of related work is on the verification of abstract data types [44,

97]. Verification is done using a technique called data type induction. This is anal-

ogous to the way we verified behavior properties in our approach. In data type

induction, induction is performed on the state of the abstract data type resulting

from applying any of the defined operations. In our approach, we applied this

idea to the data model operation we modeled – the delete object operation.

144

Chapter 9. Related Work

9.3 Dependency-Based Projection

In Chapter 5 we presented our property-based data model projection algo-

rithm. There has been earlier work on reducing the cost of automated verifica-

tion. These techniques are based on the concept of program slicing, which was

first introduced by Weiser [98] and extended in various ways, such as [78, 7]. The

intended use of program slicing was to obtain an executable program with less

statements than the original. Slicing is performed based on the slicing criterion–a

set of variables and a program point–and statements are removed if they don’t

have a direct or indirect effect on the values of the criterion. The slicing algorithm

is based on data flow and control flow dependences. Thus these techniques are

based on the ordering of program statements and the semantics of the program-

ming language, whereas our algorithm is based on the semantics of data models.

Further, our goal is different from these works: to reduce the cost of verification

as opposed to aid in debugging.

Reducing the cost of verification in the domain of program slicing is seen

in [6, 18]. [6] presents several techniques for compositional reasoning in model

checking. The most related technique is the cone of influence reduction, which

simplifies program processes based on a set of shared variables in order to preserve

the properties that refer to those variables whilst reducing the size of the system.

145

Chapter 9. Related Work

[18] presents Bandera, a toolset to verify multi-threaded Java programs. It im-

plements a property-based slicing technique that extends the traditional data and

control dependency method to include inter-thread synchronization dependences.

These works present program analysis-based reductions whereas our domain is

data model simplification.

Program slicing techniques have also been applied to declarative models, in-

cluding Alloy specifications [94]. Slicing UML/OCL class diagrams based on the

property to be verified has also been studied [86, 85]. The slicing procedure de-

scribed in [86, 85] not only removes irrelevant information, but also breaks the

original model into submodels to verify them independently. The partitioning cri-

teria includes relationship dependences, which is similar to our approach (although

we do not fragment our model). Compared to these earlier results, our projection

algorithm is a specialized reduction technique for data model verification that

utilizes the data model semantics.

9.4 Automated Property Inference and Repair

Automated discovery of likely program invariants by observing runtime be-

haviors of programs has been studied extensively [32, 33, 34]. There has also

been extensions of this style of analysis to inference of abstract data types [43].

146

Chapter 9. Related Work

Instead of using observations about the runtime behavior of programs, we analyze

the static structure of the data model extracted from the ORM specification to

infer properties. Static verification of inferred properties has been investigated

earlier [75]. Unlike these earlier approaches we are focusing on data model verifi-

cation in web applications.

There has been earlier work on automatically repairing data structure in-

stances [23, 22, 31, 64]. In this dissertation we are not focusing on generating

code for fixing data model properties during runtime. Instead, we generate re-

pairs that modify the data model declarations that fix the data model for all

possible executions. Moreover, we focus on data model verification in web appli-

cations based on ORM specifications which is another distinguishing feature of

our work.

147

Chapter 10

Conclusion

Most modern web applications are built using development frameworks based

on the Model-View Controller (MVC) pattern. The MVC pattern facilitates the

separation of the data model (Model) from the user interface logic (View) and the

control flow (Controller). The data model specifies the types of objects used by

the application and the relations among them. Since the data model forms the

foundation of such applications, its correctness is crucial.

In this dissertation, we presented our work on increasing the dependability of

data models. To this end, we developed two data model verification approaches.

The first is a bounded verification technique. We automatically extract a for-

mal data model from the data model specification and then translate verification

queries about these models into the Alloy language. Finally, a boolean SAT solver

148

Chapter 10. Conclusion

in the form of Alloy Analyzer is used to check the satisfiability of the resulting

formulas.

The second approach is an unbounded verification technique for data models.

We once again exploit the inherent modularity in MVC frameworks to automat-

ically extract a formal data model from the data model specification. Next, ver-

ification queries about these models are automatically translated to satisfiability

queries in the theory of uninterpreted functions. We then use an SMT solver to

check the satisfiability of the resulting formulas.

We integrated these two approaches and implemented them in a tool called

iDaVer, a verifier of data models of web applications written using the Ruby

on Rails framework. Since the verification techniques required the user to manu-

ally write the properties they desire to verify about the data model, iDaVer has

the added feature of property templates. Property templates simplify the task of

property specification and allows iDaVer to be applied directly on application

code, not requiring the user to be familiar with any specialized modeling lan-

guage or formal notation. We applied iDaVer to five open-source applications.

Our results demonstrate that the proposed approaches are feasible, with different

tradeoffs between the bounded and unbounded verification approaches.

Finally, in this dissertation we presented techniques for automatic property

inference and repair for data models. This was done by first extracting the formal

149

Chapter 10. Conclusion

data model schema of a given application. Then the structure of the relations

in the schema are analyzed to infer three types of properties. This automatic

property inference techniques can be combined with data model verification tech-

niques, such as the ones we developed. We implemented such a tool to check if

the inferred properties hold on the data model. For failing properties it generates

repairs that modify the data model in order to establish the failing properties.

Our experimental results demonstrate that the proposed approach is effective in

finding and repairing errors in real-world web applications.

150

Bibliography

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Men-
zel, W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The key tool.
Software and Systems Modeling, 4(1):32–54, 2005.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. Uml2alloy: A challenging
model transformation. In Proc. Model Driven Engineering Languages and
Systems, 10th International Conference, MoDELS 2007, Nashville, USA,
September 30 - October 5, 2007, LNCS 4735, pages 436–450, 2007.

[3] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing web applications
by modeling with fsms. Software and Systems Modeling, 4:326–345, 2005.

[4] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework for
automated testing of javascript web applications. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 571–580,
2011.

[5] L. Baresi, F. Garzotto, and P. Paolini. Extending UML for modeling web
applications. In Proc. 34th Ann. Hawaii Int. Conf. Sys. Sci. (HICSS), 2001.

[6] S. Berezin, S. V. A. Campos, and E. M. Clarke. Compositional reasoning
in model checking. In Proc. COMPOS, pages 81–102, 1997.

[7] J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow analysis
of while-programs. ACM Trans. Program. Lang. Syst., 7(1):37–61, 1985.

[8] M. Book, T. Brückmann, V. Gruhn, and M. Hülder. Specification and
control of interface responses to user input in rich internet applications.
In Proc. 24th Int. Conf. on Automated Software Engineering (ASE), pages
321–331, 2009.

[9] M. Book and V. Gruhn. Modeling web-based dialog flows for automatic
dialog control. In Proc. 19th Int. Conf. Automated Software Engineering
(ASE), pages 100–109, 2004.

151

Bibliography

[10] B. Bordbar and K. Anastasakis. MDA and analysis of web applications. In
Proc. VLDB Workshop on Trends in Enterprise Application Architecture,
pages 44–55, 2005.

[11] R. E. Bryant, S. M. German, and M. N. Velev. Exploiting positive equality
in a logic of equality with uninterpreted functions. In Proc. CAV, pages
470–482, 1999.

[12] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of jml tools and applications. Int.
J. Softw. Tools Technol. Transf., 7(3):212–232, 2005.

[13] S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (WebML):
a modeling language for designing web sites. Computer Networks, 33(1-
6):137–157, 2000.

[14] F. Chang. Generation of Policy-rich Websites from Declarative Models. PhD
thesis, MIT, 2009.

[15] W.-K. Chang, S.-K. Hon, and C.-C. W. Chu. A systematic framework for
evaluating hyperlink validity in web environments. In Proceedings of the
Third International Conference on Quality Software, QSIC ’03, pages 178–
185, 2003.

[16] D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, B. Helmkamp, and
D. North. The RSpec Book. The Pragmatic Bookshelf, Dallas, 2010.

[17] J. Conallen. Modeling web application architectures with UML. Commun.
ACM, 42(10):63–70, 1999.

[18] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Bandera: a source-level
interface for model checking java programs. In Proc. ICSE, pages 439–448,
2000.

[19] L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model
checking for embedded ANSI-C software. In Proc. ASE, pages 137–148,
2009.

[20] A. Cunha and H. Pacheco. Mapping between Alloy specifications and
database implementations. In Proc. 7th Int. Conf. Engineering and For-
mal Methods (SEFM), pages 285–294, 2009.

[21] L. M. de Moura and N. Bjørner. Efficient e-matching for SMT solvers. In
Proc. CADE, pages 183–198, 2007.

152

Bibliography

[22] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. C. Rinard. Inference and enforcement of data structure consistency
specifications. In Proceedings International Symposium on Software Testing
and Analysis (ISSTA), pages 233–244, 2006.

[23] B. Demsky and M. C. Rinard. Data structure repair using goal-directed
reasoning. In Proc. 27th International Conference on Software Engineering
(ICSE), pages 176–185, 2005.

[24] B. Demuth and H. Hußmann. Using uml/ocl constraints for relational
database design. In UML’99: The Unified Modeling Language - Beyond
the Standard, Second International Conference, Fort Collins, CO, USA,
October 28-30, 1999, Proceedings, pages 598–613, 1999.

[25] L. Desmet, P. Verbaeten, W. Joosen, and F. Piessens. Provable protection
against web application vulnerabilities related to session data dependencies.
IEEE Trans. Software Eng., 34(1):50–64, 2008.

[26] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-
driven web applications. J. Comput. Syst. Sci., 73(3):442–474, 2007.

[27] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A system for specification
and verification of interactive, data-driven web applications. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 772–774, 2006.

[28] A. Deutsch and V. Vianu. Wave: Automatic verification of data-driven web
services. IEEE Data Eng. Bull., 31(3):35–39, 2008.

[29] G. Di Lucca, A. Fasolino, F. Faralli, and U. De Carlini. Testing web appli-
cations. In Software Maintenance, 2002. Proceedings. International Confer-
ence on, pages 310 – 319, 2002.

[30] F. M. Donini, M. Mongiello, M. Ruta, and R. Totaro. A model checking-
based method for verifying web application design. Electr. Notes Theor.
Comput. Sci., 151(2):19–32, 2006.

[31] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid. Assertion-based
repair of complex data structures. In Proc. 22nd IEEE/ACM Int. Conf.
Automated Software Engineering (ASE), pages 64–73, 2007.

[32] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In Proc.
1999 Int. Conf. Software Engineering (ICSE), pages 213–224, 1999.

153

Bibliography

[33] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE
Trans. Software Eng., 27(2):99–123, 2001.

[34] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of likely
invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[35] Fat free crm. http://www.fatfreecrm.com/.

[36] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated
detection of logic vulnerabilities in web applications. University of California,
Santa Barbara, 2010.

[37] X. Fu. Relational constraint driven test case synthesis for web applica-
tions. In Proceedings Fourth International Workshop on Testing, Analysis
and Verification of Web Software, EPTCS 35, pages 39–50, 2010.

[38] A. A. E. Ghazi and M. Taghdiri. Relational reasoning via SMT solving. In
Proc. FM, pages 133–148, 2011.

[39] M. Gogolla, J. Bohling, and M. Richters. Validation of uml and ocl models
by automatic snapshot generation. In Proc. UML 2003, LNCS 2863, 2003.

[40] Google Health. http://health.google.com/.

[41] Google Powermeter. http://www.google.org/powermeter/.

[42] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Model-
ing web interactions and errors. In Programming Languages and Systems,
12th European Symposium on Programming, ESOP 2003, LNCS 2618, pages
238–252, 2003.

[43] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic inference
of abstract types. In Proc. International Symposium on Software Testing
and Analysis (ISSTA), pages 255–265, 2006.

[44] J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract data types and
software validation. Commun. ACM, 21(12):1048–1064, 1978.

[45] A. Hall. Using z as a specification calculus for object-oriented systems. In
Proc. VDM ’90, VDM and Z - Formal Methods in Software Development,
Third International Symposium of VDM Europe, Kiel, FRG, April 17-21,
1990, LNCS 428, pages 290–318, 1990.

154

Bibliography

[46] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating navigation
errors in web applications via model checking and runtime enforcement of
navigation state machines. In Proc. 25th Int. Conf. Automated Software
Engineering (ASE), pages 235–244, 2010.

[47] T. Halpin and T. Morgan. Information Modeling and Relational Databases.
Morgan Kaufmann, 2008.

[48] M. Han and C. Hofmeister. Modeling and verification of adaptive navigation
in web applications. In Proceedings of the 6th International Conference on
Web Engineering, ICWE 2006, Palo Alto, California, USA, July 11-14,
2006, pages 329–336, 2006.

[49] M. Han and C. Hofmeister. Relating navigation and request routing mod-
els in web applications. In 10th Int. Conf. on Model Driven Engineering
Languages and Systems (MoDELS), pages 346–359, 2007.

[50] K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer
(STTT), 2:366–381, 2000.

[51] M. Haydar. Formal framework for automated analysis and verification of
web-based applications. In Proc. 19th Int. Conf. Automated Software Engi-
neering (ASE), pages 410–413, 2004.

[52] G. J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23:279–295, 1997.

[53] D. Jackson. A comparison of object modelling notations: Alloy, uml and z.
Technical report, 1999.

[54] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, Cambridge, Massachusetts, 2006.

[55] G. E. Krasner and S. T. Pope. A cookbook for using the model-view con-
troller user interface paradigm in smalltalk-80. Jour. Object-Orient. Pro-
gram., 1(3):26–49, 1988.

[56] S. Krishnamurthi, R. B. Findler, P. Graunke, and M. Felleisen. Modeling
Web Interactions and Errors, pages 255–275. Springer, 2006.

[57] S. Krishnamurthi, K. Fisler, D. J. Dougherty, and D. Yoo. Alchemy: trans-
muting base alloy specifications into implementations. In Proceedings of the

155

Bibliography

16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2008, Atlanta, Georgia, USA, November 9-14, 2008, pages
158–169, 2008.

[58] A. Kubo, H. Washizaki, and Y. Fukazawa. Automatic extraction and ver-
ification of page transitions in aweb application. In Software Engineering
Conference, 2007. APSEC 2007. 14th Asia-Pacific, pages 350 –357, 2007.

[59] D. Kung. An agent-based framework for testing web applications. In Com-
puter Software and Applications Conference, 2004. COMPSAC 2004. Pro-
ceedings of the 28th Annual International, volume 2, pages 174 – 177, 2004.

[60] K. Lano. The B Language and Method: A Guide to Practical Formal De-
velopment. Springer-Verlag New York, Inc., 1st edition, 1996.

[61] K. R. P. H. Leung, L. C. K. Hui, S.-M. Yiu, and R. W. M. Tang. Modeling
web navigation by statechart. In 24th International Computer Software and
Applications Conference (COMPSAC 2000), 25-28 October 2000, Taipei,
Taiwan, pages 41–47, 2000.

[62] D. R. Licata and S. Krishnamurthi. Verifying interactive web programs.
In Proceedings of the 19th IEEE International Conference on Automated
Software Engineering (ASE), pages 164–173, 2004.

[63] Lovdbyless. http://lovdbyless.com/.

[64] M. Z. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid. A case for au-
tomated debugging using data structure repair. In Proc. 24th IEEE/ACM
Int. Conf. Automated Software Engineering (ASE), pages 620–624, 2009.

[65] S. Maoz, J. O. Ringert, and B. Rumpe. Cd2alloy: Class diagrams analysis
using alloy revisited. In Proc. Model Driven Engineering Languages and
Systems, 14th International Conference, MODELS 2011, Wellington, New
Zealand, October 16-21, 2011. LNCS 6981, pages 592–607, 2011.

[66] T. Massoni, R. Gheyi, and P. Borba. A uml class diagram analyzer. In In
3rd International Workshop on Critical Systems Development with UML,
affiliated with 7th UML Conference, pages 143–153, 2004.

[67] M. J. McGill, L. K. Dillon, and R. E. K. Stirewalt. Scalable analysis of
conceptual data models. In Proc. ISSTA, pages 56–66, 2011.

[68] K. L. McMillan. Symbolic model checking: an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University, 1992.

156

Bibliography

[69] J. P. Near and D. Jackson. Rubicon: bounded verification of web applica-
tions. In 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11
- 16, 2012, page 60, 2012.

[70] J. Nijjar, I. Bocic, and T. Bultan. Data model property inference, verifica-
tion and repair for web applications. (submitted).

[71] J. Nijjar, I. Bocic, and T. Bultan. An integrated data model verifier with
property templates. In Proc. FME Workshop on Formal Methods in Soft-
ware Engineering (FormaliSE), pages 29–35, 2013.

[72] J. Nijjar and T. Bultan. Bounded verification of Ruby on Rails data mod-
els. In Proc. International Symposium on Software Testing and Analysis
(ISSTA), pages 67–77, 2011.

[73] J. Nijjar and T. Bultan. Unbounded data model verification using smt
solvers. In Proc. 27th IEEE/ACM Int. Conf. Automated Software Engi-
neering (ASE), pages 210–219, 2012.

[74] J. Nijjar and T. Bultan. Data model property inference and repair. In Proc.
International Symposium on Software Testing and Analysis (ISSTA), pages
202–212, 2013.

[75] J. W. Nimmer and M. D. Ernst. Static verification of dynamically detected
program invariants: Integrating Daikon and ESC/Java. Electr. Notes Theor.
Comput. Sci., 55(2), 2001.

[76] Omg unified modeling language specification, version 1.3.
http://www.omg.org.

[77] Open source rails. http://www.opensourcerails.com/.

[78] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. In Proceedings of the first ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments, SDE 1, pages 177–184, 1984.

[79] OWASP Top Ten Project. Retrieved May 2007, from
http://www.owasp.org/.

[80] Parsetree. http://rubyforge.org/projects/parsetree/.

157

Bibliography

[81] M. Richters and M. Gogolla. Validating uml models and ocl constraints. In
Proc. UML 2000, LNCS 1939, 2000.

[82] R. Rivest. S-expressions. Network Working Group, Internet Draft.

[83] S. Sampath, V. Mihaylov, A. L. Souter, and L. L. Pollock. Scalable approach
to user-session based testing of web applications through concept analysis.
In 19th IEEE International Conference on Automated Software Engineering
(ASE 2004), 20-25 September 2004, Linz, Austria, pages 132–141, 2004.

[84] E. D. Sciascio, F. M. Donini, M. Mongiello, R. Totaro, and D. Castelluccia.
Design verification of web applications using symbolic model checking. In
Proc. 5th Int. Conf. Web Engineering (ICWE), pages 69–74, 2005.

[85] A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon. Verification-driven slicing
of uml/ocl models. In Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering, ASE ’10, pages 185–194, 2010.

[86] A. Shaikh, U. K. Wiil, and N. Memon. Evaluation of tools and slicing
techniques for efficient verification of uml/ocl class diagrams. Adv. Software
Engineering, 2011, 2011.

[87] Y. Smaragdakis, C. Csallner, and R. Subramanian. Scalable satisfiability
checking and test data generation from modeling diagrams. Autom. Softw.
Eng., 16(1):73–99, 2009.

[88] SMT-LIB. http://www.smtlib.org/.

[89] S. Sprenkle, E. Gibson, S. Sampath, and L. L. Pollock. Automated replay
and failure detection for web applications. In 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), November 7-
11, 2005, Long Beach, CA, USA, pages 253–262, 2005.

[90] P. D. Stotts, R. Furuta, and C. R. Cabarrus. Hyperdocuments as automata:
Verification of trace-based browsing properties by model checking. ACM
Trans. Inf. Syst., 16(1):1–30, 1998.

[91] Substruct. http://code.google.com/p/substruct/.

[92] P. Tonella and F. Ricca. Dynamic model extraction and statistical analysis
of web applications. In WSE, pages 43–52, 2002.

[93] Tracks. http://getontracks.org/.

158

Bibliography

[94] E. Uzuncaova and S. Khurshid. Program slicing for declarative models.
ACM SIGSOFT Software Engineering Notes, 31(6):1–2, 2006.

[95] L. Wang, G. Dobbie, J. Sun, and L. Groves. Validating ORA-SS data models
using Alloy. In 17th Australian Software Engineering Conference (ASWEC),
pages 231–242, 2006.

[96] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 1998.

[97] B. Wegbreit and J. M. Spitzen. Proving properties of complex data struc-
tures. J. ACM, 23(2):389–396, 1976.

[98] M. Weiser. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering, San Diego, California, USA, March 9-12,
1981, pages 439–449, 1981.

[99] S. Yuen, K. Kato, D. Kato, , and K. Agusa. Web automata: A behavioral
model of web applications based on the MVC model. Information and Media
Technologies, 1(1):66–79, 2006.

[100] Z3. http://research.microsoft.com/projects/z3/.

159

