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Abstract 

A conversation protocol specifies the desired global behaviors of a web service composition in a 

top-down fashion. Before implementing a conversation protocol, its realizability has to be 

determined, i.e., can a bottom-up web service composition be synthesized so that it generates 

exactly the same set of conversations as specified by the protocol? This chapter presents three 

sufficient conditions to restrict control flows of a conversation protocol for achieving 

realizability. The model is further extended to include data semantics of web services into 

consideration. To overcome the state-space explosion problem, symbolic analysis techniques are 

used for improving the accuracy of analysis. The realizability analysis can effectively reduce the 

complexity of verifying web services with asynchronous communication.  
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Realizability Analysis of Top-down Web Service Composition Specifications 

To construct a mission critical web service composition (also called “composite web 

service”) is a very challenging task, as any design or implementation fault could lead to great 

losses. Recently, automated verification and testing of web services have attracted attention in 

both academia and industry (Bultan, Fu, Hull, & Su, 2003; Foster, Uchitel, Magee, & Kramer, 

2003; Narayanan, & Mcllraith, 2003; Betin-Can, Bultan, & Fu, 2005; Canfora & Di Penta, 

2006). However, before any automatic verification technique can be applied, a formal model has 

to be defined to describe behaviors of web services. This chapter presents a top-down 

specification approach called “conversation protocol” and studies the realizability problem of 

conversation protocols. It is an extension of the work by Fu, Bultan, and Su (2004c, 2005b) and 

covers other results by Fu et al. (2003, 2004a, 2004b, 2004d, 2004e, 2005a) in the area.  

INTRODUCTION 

In general, there are two different ways of specifying a web service composition: (1) The 

bottom-up approach, favored by many industry standards such as WSDL (World Wide Web 

Consortium [W3C], 2001) in which each participant of the composition is specified first and then 

the composed system is studied; and (2) The top-down approach, e.g., Message Sequence Charts 

(ITU-T , 1994), conversation policies (Hanson, Nandi, & Kumaran, 2002), WSCI (W3C, 2002), 

and WSCL (Banerji, Bartolini, Beringer, Chopella, Govindarajan, Karp, et al., 2002) in which 

the set of desired message exchange patterns is specified first and detailed specification of peer 

implementation is left blank.  

In this chapter we concentrate on the top-down specification approach due to its simplicity 

and the potential benefits in verification complexity (Bultan, Fu, Hull, & Su, 2003). One natural 

idea for top-down specification of web services is to use finite state machines (FSA) to represent 
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some aspects of the global composition process. The state machines can involve two parties 

(Hanson, Nandi, & Levine, 2003) or multi-parties (Bultan et al., 2003), and may describe the 

global composition process directly (Hanson, et al., 2003) or may specify its local views 

(Banerji, Bartolini, Beringer, Chopella, Govindarajan, Karp, et al., 2002).  

A top-down conversation protocol has to be realized by a bottom-up web service 

composition. In studying the composition behaviors, asynchrony usually complicates analyses. 

Asynchronous communication is one of the benefits provided by the web service technique. It is 

supported by many industry platforms such as Java Message service (Sun, n.d.)  and Microsoft 

Message Queuing service (Microsoft, n.d.).  In an asynchronous communication environment, 

receiver of a message does not have to synchronize its action with the send action by the sender. 

However, asynchrony may significantly increase the complexity of many verification problems. 

Fu, Bultan, and Su (2003) proved that the general problem of verifying a Linear Temporal Logic 

property on a bottom-up specified web service composition is undecidable, which is essentially 

caused by the undecidable nature of communicating finite state machines (Brand & Zafiropulo, 

1983). 

Asynchronous communication is usually modeled by equipping participating services with 

FIFO queues. For example, Bultan, Fu, Hull, and Su (2003) established a conversation oriented 

framework where each participating web service (called a “peer”) of a composition is 

characterized using a finite state automaton, with the set of input/output message classes as the 

FSA alphabet. To capture asynchronous communication, each peer is equipped with a FIFO 

queue to store incoming messages. The behaviors generated by a composition of peers can be 

characterized using the set of message sequences (conversations) exchanged among peers. Linear 

Temporal Logic (Clarke, Grumberg, & Peled, 2000) can be naturally extended to this 
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conversation based framework. Desired system properties such as “a cancel request always 

results in a confirmation message” can be expressed using Linear Temporal Logic and the web 

service composition can then be verified using automatic verification tools such as the Web 

Service Analysis Tool (Fu, Bultan, & Su, 2004d). 

A conversation protocol is not always realizable, i.e., there exists conversation protocols 

which do not have any peer implementations whose composition generates exactly the same set 

of conversations as specified by the protocol. Hence, before implementing a conversation 

protocol, its realizability has to be studied first. Fu, Bultan, and Su (2003) proposed three 

sufficient conditions that can guarantee the realizability of conversation protocols. Later the 

realizability analysis technique is extended to a model with data semantics (Fu et al, 2004c).  

Related Work 

Realizability of software systems has been investigated for decades in different branches of 

computer science. In the late 1980’s, researchers proposed the realizability problem of open 

systems (Abadi, Lamport, & Wolper, 1989; Pnueli, & Rosner, 1989). It studies whether a peer 

has a strategy to cope with the environment no matter how environment moves. A closer notion 

to the realizability problem studied in this chapter is the concept of “weak/strong realizability” 

on the Message Sequence Chart Graphs (MSCG) model by Alur, McMillan, and  Peled (2000) 

and Alur, Etessami, and Yannakakis (2001). In the MSCG model each peer is also equipped with 

a message buffer to simulate the asynchronous communication environment. The difference is 

that the MSCG model includes both send and receives events, while the conversation model used 

in this chapter studies the send events only. This leads to delicate difference in the analysis 

complexity and the realizability conditions on the two models. A detailed comparison of the two 
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models can be found in Fu, Bultan, and Su’s work in IEEE Transaction on Software Engineering 

(2005b). 

 
 
 

Figure 1. Three non-realizable conversation protocols, adapted from the Büchi autumata 

protocol examples by Fu, Bultan, and Su (2003). 

 

BASIC REALIZABILITY ANALYSIS WITHOUT MESSAGE CONTENTS 

Consider the three conversation protocols presented in Figure 1, and let them be Pa, Pb and 

Pc. Each conversation protocol is expressed using a finite state machine. In a finite state machine, 

the initial state is denoted using an incoming edge without source, and a final state is denoted 

using a double cycle. Each of these three protocols involves four peers A, B, C, and D.  

Conversation protocol Pa is not realizable. It specifies one single conversations αβ, where 

message α is sent from A to B and message β is sent from C to D. Clearly any implementation of 

the four peers which generates a conversation αβ can also generate the conversation βα. 

Similarly Pb is not realizable because there is no way for peer C to learn about the time message 

α is sent. Hence, any peer implementation which generates αγ will also generate γα.  
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Protocol Pc defines a conversation set: {αβ, βαγ}. This protocol is more interesting in the 

sense that peers might have “confusion” when executing the protocol. It is possible that peers A 

and B take the left and the right branches of the protocol (respectively), unaware that the other 

peer is taking a different branch. For example, the following execution sequence can generate a 

conversation not specified by the protocol although each peer is executing the protocol faithfully. 

Peer A first sends a message α, which is then stored in the queue of B; then B sends a message β, 

which is then stored in the queue of A. Peers A and B consume (i.e., receive) the messages in 

their respective queues, and finally B sends the message γ. Hence a conversation αβγ is produced 

by the peer implementations. However, this conversation is not specified by Pc.  

Fu, Bultan, and Su (2003) proposed three realizability conditions for conversation protocols 

(without message contents). When these sufficient conditions are satisfied, a conversation 

protocol is guaranteed to be realizable. In the following we briefly present these conditions. 

(1) Lossless join condition: A conversation protocol is said to be lossless join if its 

conversation set is equal to the join of its projections to all peers. Here, the terms “join” and 

“projection” are borrowed from relational database theory.  

The projection of a conversation to a peer i generates a message sequence by removing all 

the messages that are not related to peer i from the given conversation. For example, consider the 

conversation αβ defined by Pa in Figure 1. Its projection to peer A is α (where message β is 

removed from the conversation because A is neither its sender nor its receiver); similarly, the 

projection of αβ to C is β.  

Given a set of languages (one language for each peer), their join is a set which includes all 

conversations whose projection to each peer is included in the corresponding language for that 

peer. For example, suppose message α is sent from A to B and message β is sent from C to D. 
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The join of four languages {α}, {α}, {β}, {β} (for A, B, C, and D respectively) results in the set 

{αβ, βα}. 

A conversation protocol is said to be a lossless join if its conversation set is the join of its 

projections to all peers. For example, the join of the projections of Pa to all peers is {αβ, βα} 

which is a strict superset of the conversation set specified by Pa. Hence, Pa is not lossless join. 

However, it can be verified that Pb and Pc in Figure 1 satisfy the lossless join condition.  

Lossless join condition is actually a necessary condition of realizability. It is not hard to see 

that it reflects the requirement that a conversation protocol should be complete in the sense that 

the relative order of messages should not be restricted if they do not have causal relationship. 

(2) Synchronous compatibility condition: Intuitively a conversation protocol is 

synchronous compatible if its straightforward implementation (by projecting the protocol to each 

peer) can work without conflicts using synchronous communication semantics. Formally, a 

conversation protocol satisfies the synchronous compatibility condition if it can be implemented 

using synchronous communication semantics without generating a state in which a peer is ready 

to send a message while the corresponding receiver is not ready to receive that message.  

The synchronous compatibility condition is checked as follows: (a) Project the protocol to 

each peer by replacing all the transitions labeled with messages for which that peer is neither the 

sender nor the receiver with ε-transitions (empty moves); (2) Determinize the resulting 

automaton for each peer; (3) Generate a product automaton by combining the determinized 

projections based on the synchronous communication semantics (i.e., each pair of send and 

receive operations are taken simultaneously at the sender and receiver);  (4) Check if there is a 

state in the product automaton where a peer is ready to send a message while the corresponding 

receiver is not ready to receive that message.  
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Consider the conversation protocol Pb in Figure 1. Its projection to peer A returns the same 

FSA. However, its projection to B replaces γ transition with an ε-transition, and its projection to 

C replaces the α transition with an ε-transition. After the determinization, the automaton for peer 

C consists of one initial and one final state, and a single transition labeled γ from the initial state 

to the final state. When we generate the automaton which is the product of the projections, in the 

initial state of the product automaton, peer C is ready to send the message γ but the receiver, i.e., 

A, is not yet ready to receive the message. Hence, Pb in Figure 1 does not satisfy the synchronous 

compatibility condition. It can be verified that Pa and Pc in Figure 1 satisfy the synchronous 

compatibility condition. 

(3) Autonomy condition: A conversation protocol satisfies the autonomy condition if at 

every state each peer is able to do exactly one of the following: to send a message, to receive a 

message, or to terminate.  

Note that a state may have multiple transitions corresponding to different send operations 

for a peer, and this does not violate the autonomy condition. Similarly, a peer can have multiple 

receive transitions from the same state. However, the autonomy condition is violated if there are 

two (or more) transitions originating from a state such that one of them is a send operation and 

another one is a receive operation for the same peer. For example, consider the conversation 

protocol Pc in Figure 1. The two transitions labeled α and β originating from the initial state 

violate the autonomy condition, because at the initial state, peer A can either send or receive. 

However, notice that the conversation protocols Pa and Pb in Figure 1 satisfy the autonomy 

condition.  

We have the following results concerning the three conditions introduced above. 
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Theorem 1. If a conversation protocol (without message contents) satisfies the lossless join 

condition, synchronous compatibility condition, and autonomy condition, it is realized by its 

projections to each peer. 

The key proof idea of Theorem 1 (Fu, Bultan, & Su, 2003) is that when a conversation 

protocol satisfies the realizability conditions, the composition of its projections to peers has a 

property called “eager consumption”, which ensures that during any execution (interleaving) of 

the peers, whenever a peer sends out a message it is not in a final state and its input queue is 

always empty, i.e., each incoming message is consumed “eagerly” before any send action is 

taken by its receiver. When a composition satisfies the “eager consumption” property, for any 

conversation generated by the composition (using the asynchronous communication semantics), 

its projection to a peer is an accepted word by that peer FSA. This naturally leads to the 

conclusion that the conversation set is in the join of the languages accepted by all peers. If the 

conversation protocol is lossless join, the conversation set generated using the asynchronous 

semantics is the same as the one generated using the synchronous communication. Therefore a 

conversation protocol is realizable if the three sufficient conditions are satisfied. 

 

THE GUARDED AUTOMATA MODEL 
 

The abstract model of conversation protocol presented in the previous section is still not 

sufficient for real-world practice, because messages exchanged among web services are simply 

abstract “message classes” without contents. In this section we present a formal model, called the 

“guarded automata” (GA) model, which takes message contents into consideration. We begin 

this section by defining the composition schema (i.e., the structure of a web service 

composition).  Then we present the formal models for both the top-down and bottom-up 

specification approaches, namely, conversation protocols and web service compositions. 
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Figure 2. The composition schema and the conversation protocol for a simplified warehouse 

example.  

 

Composition Schema 
 

A composition schema entails the information about peers, message classes and the 

message domains for each message class. Formally, a composition schema is defined as follows: 

Definition 1 (Composition Schema): A composition schema is a tuple (P, M, Σ) where P 

is the finite set of peers, M is the finite set of message classes, and Σ is the set of messages. Each 

message class c ∈ M has a finite set of attributes and each attribute has a static data type. Each 

message m ∈ Σ is an instance of a message class. Thus the message alphabet Σ can be defined as 

follows:  
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where DOM(c) is the domain of the message class c. Notice that Σ may be a finite or an infinite 

set, which is determined by the domains of the message classes.  

Shown in Figure 2 is a composition schema which consists of three peers, Store, Bank, 

and Warehouse. Instances of message classes such as Order, Bill, and Payment, are 

transmitted among these three peers. Let us assume that each of Bill, Payment, and 

Receipt has two integer attributes id and amount (shortened by “amt”), and all other 

message classes in Figure 2 have a single integer attribute id. A message, i.e., an instance of a 

message class, is written in the following form: “class(contents)”. For example, B(100, 2000) 

stands for a Bill message whose id is 100 and amount is 2000. Here Bill is represented 

using its capitalized first letter B. Note that, the domains of message classes Bill, Payment, 

and Receipt are Z × Z, where Z is the set of integers. 

 
Conversation Protocol 

 
Given a composition schema, the design of a web service composition can be specified 

using a conversation protocol, in a top-down fashion. A conversation protocol is a guarded 

automaton, which specifies the desired global behaviors of the web service composition.  

Definition 2 (Conversation Protocol).  A conversation protocol is a tuple R = ((P, M, 

Σ), A), where (P, M, Σ) is a composition schema, and A is a guarded automaton (GA). The 

guarded automaton A is a tuple (M, Σ, T, s, F, δ) where M and Σ are the set of message classes 

and messages respectively, T is the finite set of states, s ∈ T is the initial state, F ⊆ T is the set of 

final states, and δ is the transition relation. Each transition τ ∈ δ is in the form τ = (s, (c, g), t), 

where s, t ∈ T are the source and the destination states of τ, c ∈ M is a message class and g is the 
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guard of the transition. A guard g is a predicate on the attributes of the message that is being sent 

(which are denoted by the attribute names with apostrophe) and the attributes of the latest 

instances of the message classes (which are denoted by the attribute names without apostrophe) 

that are received or sent by the peer involved. 

During a run of a guarded automaton, a transition is taken only if the guard evaluates to 

true. For example, in Figure 2, the guard of the transition that sends an Order is:  

Order.id′ = Order.id+1. 

The guard expresses that the id attribute of an Order message is incremented by 1 after 

executing the transition. Notice that in the above formula “id′” refers to the value of the next 

Order message being sent, and “id” refers to the value of the id attribute of the latest Order 

message. With the use of primed forms of variables, the symbol “=” in guards stands for the 

“equality” instead of “assignment”. The declarative semantics (instead of procedural semantics) 

used here is more convenient for symbolic analysis. 

 By studying the semantics of transition guards in Figure 2, it is not hard to see that the 

conversation protocol in Figure 2 describes the following desired message exchange sequence of 

the warehouse example: an Order is sent by the Store to the Warehouse, and then the 

Warehouse sends a Bill to the Bank. The Bank either responds with a Payment or rejects 

with a Fail message. Finally the Warehouse issues a Receipt or a Cancel message. The 

guards determine the contents of the messages. For example, the id and the amount of each 

Payment must match those of the latest Bill message.  

The language accepted by a guarded automaton can be naturally defined by extending 

standard finite state automaton semantics. Given a GA A = (M, Σ, T, s, F, δ), a run of A is a path 

which starts from the initial state s and ends at a final state in F. A message sequence w ∈ Σ∗ is 
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accepted by A if there exists a corresponding run. For example, it is not hard to infer that the 

following is a message sequence accepted by the GA in Figure 2:  

O(0), B(0, 100), P(0, 100),R(0, 100),O(1), B(1, 200), F(1),C(1). 

Given a conversation protocol R = ((P, M, Σ), A), its language is defined as L(R) = L(A). 

In another word, the conversation set defined by a conversation protocol is the language accepted 

by its guarded automaton specification. 

 

 
 
 
 
Figure 3. A realization of the conversation protocol in Figure 2. 
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Web Service Composition 
 

Bottom-up web service compositions can be also specified using the GA model. 

However, the GA used to describe a peer is slightly different than the one used to describe a 

conversation protocol. The formal definition is as follows: 

Definition 3 (Web Service Composition). A web service composition is a tuple S = ((P, 

M, Σ), A1, ..., An), where (P, M, Σ) is the composition schema, n = |P|, and for each i ∈ [1..n], Ai 

is the peer implementation for pi ∈ P. Each Ai is a tuple (Mi, Σi, Ti, si, Fi, δi) where Mi, Σi, Ti, si, 

Fi, and δi denote the set of message classes, set of messages, set of states, initial state, final 

states, and transition relation, respectively. A transition τ ∈ δi can be one of the following three 

types: a send transition (t, (!α, g1), t′), a receive transition (t, (?β, g2), t′), and an ε-transition (t, (ε, 

g3), t′), where t, t′ ∈ Ti, α ∈ out

i
M , β ∈ in

i
M , and g1, g2, and g3 are predicates.  

The send and receive transitions are denoted using symbols “!” and “?”, respectively. In 

an ε-transition, the guard determines if the transition can take place based on the contents of the 

latest message for each message class related to that peer. For a receive transition (t, (?β, g2), t′), 

its guard determines whether the transition can take place based on the contents of the latest 

messages as well as the class and the contents of the message at the head of the queue. For a send 

transition (t, (!α, g1), t′), the guard g1 determines not only the transition condition but also the 

contents of the message being sent. For example, Figure 3 shows a web service composition 

which realizes the conversation protocol in Figure 2. Note that, if the guard for a transition is not 

shown, then it means that the guard is “true”. 

The conversations produced by a web service composition can be defined similarly as the 

language accepted by a guarded automaton. However, one important difference is that the effect 

of queues has to be taken into account. To characterize the formal semantics of a conversation, 
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we need to define the notion of global configuration of a web service composition. A global 

configuration is used to capture a “snapshot” of the whole system. A global configuration 

contains the information about the local state and the queue contents of each peer, as well as the 

latest sent and received copies for each message class (so that the guards can be evaluated). The 

initial configuration of a web service composition is obviously the one where each peer is in its 

initial state, each FIFO queue is empty, and the latest copies for each message class are the 

constant “undefined value”. Similarly, a final global configuration is a configuration where each 

peer is in a final state, and each peer queue is empty. Then a run of a web service composition 

can be defined as a sequence of global configurations, which starts from the initial configuration 

and ends with a final configuration. Between each pair of neighboring configurations ci and ci+1 

in a complete run, ci evolves into ci+1 by taking one action by a peer. This action can be a send, 

receive (from queue), or ε-action which corresponds to a transition in that peer GA. Obviously, 

for this action to take place, the associated guard of that transition must be satisfied. A 

conversation is a message sequence, for which there is a corresponding run. 

Now given both the definitions of conversation protocols and web service compositions, 

we can define the notion of realizability that relates them. Let C(S) denote the set of 

conversations of a web service composition S. We say S realizes a conversation protocol R if 

C(S) = L(R). 

 

CONVERSION BETWEEN TOP-DOWN AND BOTTOM-UP SPECIFICATIONS 

 
One interesting question concerning the specification of web service compositions is if it 

is possible to convert a specification from top-down specification to bottom-up, and vice versa. 

This section introduces two operations to achieve this goal, namely “projection” and “product” 
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operations. The projection of a conversation protocol produces a web service composition, and 

the product of a web service composition produces a conversation protocol. However, the 

projection of a conversation protocol is not guaranteed to generate exactly the same set of 

conversations as specified by the protocol. Similarly, the product of a bottom-up web service 

composition is not guaranteed to specify all the possible conversations that can be generated by 

that web service composition. Only when additional conditions (such as the ones presented in the 

skeleton analysis in later sections) are satisfied, can the projection and the product operations be 

used to convert from one specification approach to the other while preserving the semantics (i.e., 

the set of conversations).  

Product 
 

Intuitively, the product operation is to construct the synchronous composition of a set of 

guarded automata. In synchronous composition, each send operation and the corresponding 

receive operation have to be executed simultaneously. Formally, the product operation is defined 

as follows: 

Definition 4 (Product). Let S = ((P, M, Σ), A1, ..., An) be a web service composition, 

where for each i ∈ [1..n], Ai is a tuple (Mi, Σi, Ti, si, Fi, δi). The product of all peers in S is a GA 

A′ = (M, Σ, T′, s′, F′, δ′), where each state t′ ∈ T′ is a tuple (t1, ..., tn), such that for each i ∈ [1..n], 

ti is a state of peer Ai. The initial state s′ of A′ corresponds to the tuple (s1, ..., sn), and a final state 

in F′ corresponds to a tuple (f1,  ..., fn) where for each i ∈ [1..n], fi is a final state of Ai. Let ρ map 

each state t′ ∈ T′ to the corresponding tuple, and further let ρ(t′)[i]denote the i’th element of 

ρ(t′). For each pair of states t and t′ in T′, a transition (t, (m, g′), t′) is included in δ′  if there exists 

two transitions (ti, (!m, gi), t′i) ∈ δi and (tj, (?m, gj), t′j) ∈ δj such that 

1) (sending and receiving peers take the send and receive transitions simultaneously)  
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o ρ(t)[i]= ti ,  and 

o ρ(t′)[i] = t′i, and 

o ρ(t)[j] = tj , and 

o  ρ(t′)[j] = t′j, and  

o for each k ≠ i ∧ k ≠ j, ρ(t′)[k] = ρ(t)[k], and 

    2) (both guards need to hold) Let g′ = gi ∧ gj, then g′ must be satisfiable. 

Clearly, by the above definition, the construction of the product can start from the initial 

state of the product (which corresponds to the tuple of initial states of all peers), then iteratively 

include new transitions and states. From a state in the product, a transition is added to point to 

another destination state, only if there is a pair of peers which execute the corresponding send 

and receive actions from the source state simultaneously. Obviously, the construction can always 

terminate because the number of transitions and states of each peers is finite. However, the 

algorithm requires that none of the peer implementations should have ε-transitions. We will 

present the algorithm to remove ε-transitions later in this section. 

Projection 
 

Projection of a GA conversation protocol is complex and interesting. For example, a GA 

conversation protocol with an infinite message alphabet may not always have an “exact” 

projection. However, if its message alphabet is finite, a GA conversation protocol is always 

guaranteed to have an exact projection. For GA conversation protocols with infinite message 

alphabet, several “coarse” approximation algorithms exist. We start our discussion with the 

following classification of conversation protocols. 

Definition 5 (FC and IC Protocol). A conversation protocol R = ((P, M, Σ), A) is called 

an Infinite Content (IC) conversation protocol if Σ is an infinite set; otherwise R is called a Finite 
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Content (FC) conversation protocol. Similarly, a guarded automaton is either an IC-GA or FC-

GA and a web service composition is either an IC composition or a FC composition. 

 

 
 
Figure 4. The Infinite Content (IC) Conversation Protocol which does not have an accurate 

projection to each peer. 

 

An IC conversation protocol may not have an exact projection, as shown in the following 

example. Figure 4 presents an IC conversation protocol (call it R) which involves three peers 

Front-Desk, processing Center, and Log center. The processing Center processes files from 

Front-Desk in a batch sequential mode. For each incoming file, a backup of the request is 

recorded in the Log center and another backup is also created for the corresponding result. 

The interaction between the three peers works as follows. The processing Center first 

sends a message Prepare and Start to the Front-Desk and Log center respectively to initiate 
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the process. Then the Front-Desk sends a collection of Files one by one to the processing 

Center. For each incoming File, a corresponding Backup copy is sent to Log center. The 

Backup message has a counter named “c” to count the number of messages. When Front-Desk 

has sent out all the cases, it sends out an Input_end message to mark the end of the data input 

process. The processing Center then processes the cases one by one, sends out a corresponding 

Result message to Front-Desk, accompanied with a Backup message for each Result. The 

counter attribute of the Backup message for each Result is decremented by one each time 

until its values reaches zero. Finally, the processing Center sends out the End and Commit 

message to inform both the Front-Desk and Log center to complete the interaction. Here all 

messages do not have contents except the Backup message. If we use the first character to 

represent each message, obviously the conversation set can be represented using the following 

formula: 

PS(FB)nI(RB)nEC 

 
If we project this conversation set to peer Log center, it is not hard to see that the 

projection is the following set { PBnBnC | n ≥ 0}, which is obviously a context free language. 

However, since none of the messages (sent or received) by peer Log center has message 

contents, any GA with the alphabet of Log center is essentially a standard FSA, and it cannot 

accept the projection language, which is not regular. 

On the contrary, for FC conversation protocols, it is always possible to construct a 

corresponding projected composition PROJ

P
S  where each peer implementation of PROJ

P
S  is an 

“exact” projection of P.  Given a conversation protocol R = ((P, M, Σ), A) where n = |P|. Since Σ 

is finite, we can easily construct a standard FSA A′ from A such that L(A′) = L(A), where the 

alphabet of A′ is the message alphabet Σ of A. The construction of A′ is essentially an exploration 
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of all reachable global configurations of A. Note that, since Σ is finite, the number of global 

configurations of A is finite; hence, the size of A′ is finite. Let the projection of A′ to each peer be 

A1, ..., An, respectively. Obviously, each of the standard FSA A1, ..., An can be converted into an 

equivalent GA by associating dummy guards with each transition.                   

 The construction of PROJ

R
S , however, can be very costly—it requires essentially a 

reachability analysis of the state space of the FC conversation protocol. In Figure 5, we present a 

light-weight projection algorithm, which is not “exact”, but works for both FC and IC 

conversation protocols. 

 

 

Figure 5. Algorithm of coarse projection from a Guarded Automaton A to peer i. 

 
 

Given a GA protocol and a peer to project to, the coarse projection algorithm in Figure 5 

simply replaces each transition that is not related to the peer with ε-transitions, and adds “!” and 

“?” for send and receive transitions respectively. The algorithm provides two different levels of 
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“coarse processing”. In Coarse Processing 1, the guards of the ε-transitions and the receive 

transitions are essentially dropped (by setting them to “true”), and the guards of the send 

transitions remain the same. In Coarse Processing 2, existential quantification is used to 

eliminate the unrelated message attributes from the guards. The following example illustrates the 

existential quantification operation. 

Given a GA conversation protocol on three peers p1, p2 and p3. Let τ = (t, (m1, g), t′) be a 

transition in the protocol, where m1 ∈ in

1

out

3
MM ! , m2 ∉ M1, and 

g �  m1.id + m2.id < 3 ∧ m2.id > 0. 

We assume that m1.id and m2.id are both of integer type. During the projection to peer p1, if τ is 

being processed using Coarse Processing 1, the corresponding transition would be (t, (?m1, true), 

t′); if Coarse Processing 2 is used, the corresponding transition would be (t, (?m1, g′), t′) where g′ 

�  ∃ m2.id  g, and after simplification, g′ �   m1.id < 2. 

Given a GA conversation protocol R, the web service composition generated using 

coarse-1 and coarse-2 processing algorithms are denoted as C1PROJ,

R
S and C2PROJ,

R
S , respectively. 

Clearly C1PROJ,

R
S and C2PROJ,

R
S have the following relationship: 

 Given a conversation protocol R = ((P, M, Σ), A), and its projections C1PROJ,

R
S and C2PROJ,

R
S . 

For each 1 ≤ i ≤ |P|, let C1

i
A and C2

i
A be the peer implementation of pi in C1PROJ,

R
S and C2PROJ,

R
S (resp.). 

Then, the following holds: πi(L(R)) ⊆ L( C2

i
A ) ⊆ L( C1

i
A ), i.e., the actual projection language is 

contained by the resulting set produced by the approximation algorithms. 
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Figure 6. Elimination of ε-transitions for Guarded Automata 
 
 

Determinization of Guarded Automata 
 

We now introduce a “determinization” algorithm for guarded automata, which is useful 

in the decision procedures for realizability conditions. The “determinization” process consists of 

two steps: (1) to eliminate the ε-transitions, and (2) to determinize the result from step (1).  

The ε-transition elimination algorithm is presented in Figure 6, which is an extension of 

the ε-transition elimination algorithm for standard FSA. It first collects a set of nodes which are 

reachable via ε-paths for each node. Then for each pair of nodes which are connected by an ε-

path plus one normal transition, the algorithm packs the guards associated with the ε-path to the 

non ε-transition so that the ε-path can be eliminated. This operation is accomplished at line 11 of 

Figure 6. The transition (t, (m, g′), t′′) is a replacement for a set of paths, where each path is a 

concatenation of the transition (t, (m, g), t′) and an ε-path from t′ to t′′. The guard g′ has to be the 

conjunction of g and g′′ where g′′ is the disjunction of the conjunctions of guards along each ε-

path from t′ to t′′. Note that for each ε-transition, its guard is only a “transition condition” which 
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does not affect the message instance vector in a GA configuration, according to the guarded 

automata model. Hence it suffices to consider those non-redundant paths. Since the number of 

non-redundant paths is finite, the algorithm in Figure 6 will always terminate. 

 

 

Figure 7. Determinization of Guarded Automata 

Figure 7 presents the determinization algorithm for a guarded automaton, which is rather 

different than the determinization algorithm for a standard FSA. The key idea is the part between 

lines 9 and 20, where for each state and each message class, we collect all the transitions for that 
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message class, enumerate every combination of guards, and generate a new transition for that 

combination. For example, suppose at some state t, two transitions are collected for message 

class m, and let their guards be g1 and g2 respectively. Three new transitions g1 ∧ g2, g1 ∧ ¬ g2, 

and ¬ g1 ∧ g2 will be generated, and the two original transitions are removed from the transition 

relation. It is not hard to see that for each word w ∈ L(A′), where A′  is the resulting GA, there 

exists one and only one run for w, due to the enumeration of the combinations of guards. Since 

the procedure of enumerating guards and reassembling states does not deviate from the 

semantics of the original guards, for example, 

g1∧g2 ∨ g1∧¬ g2 ∨ ¬g1∧g2 =  g1∨ g2, 

each A is equivalent to its determinization A′ (after applying DeterminizeGA), i.e., L(A) = L(A′). 

 
SKELETON ANALYSIS 

 
One interesting question concerning the GA model is: can the realizability analysis of a 

GA protocol be conducted using the techniques available on the standard FSA model? This 

section answers this question and shows that an abstract analysis method called skeleton 

analysis works for both FC and IC conversation protocols. We start with the definition of a 

skeleton. 

Definition 6 (Skeleton). Given a GA A = (M, Σ, T, s, F, δ), its skeleton, denoted as 

skeleton(A), is a standard FSA (M, T, s, F, δ′) where δ′ is obtained from δ by replacing each 

transition (s, (c, g), t) with (s, c, t). 

Note that L(skeleton(A)) ⊆ M∗, while L(A) is a subset of Σ∗. For a conversation protocol R 

= ((P, M, Σ), A), we can always construct an FSA conversation protocol ((P, M), skeleton(A)). 

We call this protocol the skeleton protocol of P. Now, one natural question is the following: 
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If the skeleton protocol of a conversation protocol is realizable, does this imply 

that the GA protocol is realizable? 

   

 
Figure 8. Two examples which demonstrate the relationship between a conversation protocol 

and its skeleton. (a) is an example where the GA conversation protocol is not realizable but its 

skeleton is. (b) is an example of realizable GA conversation protocol which has a non-realizable 

skeleton. 

 

We can easily find counter examples against the above conjecture. As shown in Figure 

8(a), four peers A, B, C, D are involved in a guarded conversation protocol. Message α is from A 

to B and β is from C to D. Both message classes have an attribute a. The protocol specifies two 

possible conversations α(1)β(1), and β(2)α(2), where the “1” and “2” are values of attribute a in 
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messages. Obviously, the skeleton protocol, which specifies the conversation set {αβ, βα}, is 

realizable because it satisfies all the three realizability conditions. However, the guarded protocol 

itself is not realizable, because any implementation that generates the specified conversations 

will also generate the conversation β(1)α(1). 

Interestingly, there exist examples where the skeleton is not realizable but the guarded 

conversation protocol is. In addition, the lossless join, and synchronous compatibility conditions 

of a guarded conversation protocol are not implied by the corresponding properties satisfied by 

its skeleton, and vice versa.  

For example, the GA protocol in Figure 8(a) is not lossless join, however its skeleton is. 

The guarded protocol in Figure 8(b) is lossless join, however its skeleton is not. As shown in 

Figure 8(b), there are four peers A, B, C, D, and all message classes contain a single attribute a. 

In the beginning, peer D informs peer A and B about which path to take by the value of the 

attribute a (1 for left branch, 2 for right branch). Then A and B know who is going to send the 

last message (α or β), so there is no ambiguity. It can be verified that the protocol is lossless join. 

However the skeleton is obviously not lossless join, because ηγα is included in its join closure. 

The counter examples in Figure 8 seem to suggest pessimistic results -- we cannot tell if a 

conversation protocol is realizable or not based on the properties of its skeleton protocol. 

However, in the following, we will show that with an additional condition, we can use the 

properties of a protocol’s skeleton to reason about its realizability. We now introduce a fourth 

realizability condition to restrict a conversation protocol so that it can be realized 

by PROJ

R
S , C1PROJ,

R
S , and C2PROJ,

R
S when its skeleton satisfies the three realizability conditions 

discussed above. 
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Definition 7 (Deterministic Guard Condition). Let R = ((P, M, Σ), A) be a conversation 

protocol where A = (M, Σ, T, s, F, δ). R is said to satisfy the deterministic guard condition if for 

each pair of transitions (t1, (m1, g1), t1′) and (t2, (m2, g2), t2′), g1 is equivalent to g2 when the 

following conditions hold: 

1) m1 = m2, and 

2) Let pi be the sender of m1. There exists two words w and w′ where a partial run of w 

reaches t1, and a partial run of w′ reaches t2, and πi(πTYPE(w)) = πi(πTYPE(w′)).  

Here the operation πTYPE projects a conversation to a sequence of message classes by replacing 

each message in the conversation with its message class. Intuitively, the deterministic guard 

condition requires that for each peer, according to the conversation protocol, when it is about to 

send out a message, the guard that is used to compute the contents of the message is uniquely 

decided by the sequence of message classes (note, not message contents) exchanged by the peer 

in the past.  

The decision procedure for the deterministic guard condition proceeds as follows: given a 

conversation protocol R, obtain its coarse-1 projection C1PROJ,

R
S , and let C1PROJ,

R
S = ((P, M, Σ), A1, 

..., An). For each i ∈ [1..n], regard Ai as a standard FSA, and get its equivalent deterministic FSA 

(let it be Ai′). Now each state t in Ai′ corresponds to a set of states in Ai, and let it be represented 

by T(t). We examine each state t in Ai′. For each message class c ∈ M, we collect the guards of 

the transitions that start from a state in T(t) and send a message with class c. We require that all 

guards collected for a state/message class pair (t, c) should be equivalent. 

Running the algorithm on Figure 8(a) leads to the result that Figure 8(a) violates the 

deterministic guard condition, because (intuitively) peer A has two different guards when 

sending out α at the initial state. Formally, to show that the deterministic guard condition is 
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violated, we can find two transitions (t1, (α, [a′ = 1]), t2) and (t3, (α, [a′ = 2]), t4), and two words 

w = ε and w′ = β(2) that lead to the states t1 and t3, respectively. Since a run of w reaches t1, a run 

of w′ reaches t3, and πA(πTYPE(w)) = πA(πTYPE(w′)) = ε. By Definition 7, the guards of the two 

transitions should be equivalent. However, they are not equivalent, which violates the 

deterministic guard condition. 

Theorem 2. A conversation protocol R is realized by PROJ

R
S , C1PROJ,

R
S , and C2PROJ,

R
S if it 

satisfies the deterministic guard condition, and its skeleton protocol satisfies the lossless join, 

synchronous compatibility and autonomy conditions. 

The main proof idea of Theorem 2 is as follows. First, we argue that if the skeleton 

protocol satisfies the synchronous compatibility and autonomy conditions, then during any 

(complete or partial) run of C1PROJ,D,

R
S , each message is consumed “eagerly”, i.e., when the input 

queue is not empty, a peer never sends out a message or terminates. 

The “eager consumption” argument can be proved using proof by contradiction (Fu, 

Bultan, Su, 2003). Assume that there is a partial run against this argument, i.e., we can find a 

corresponding partial run of the skeleton composition of C1PROJ,D,

R
S (which consists of the skeletons 

of each peer of C1PROJ,D,

R
S ) where a message class is not consumed eagerly (without loss of 

generality, suppose this is the shortest one). Then there must be a pair of consecutive 

configurations where a peer i has a message at the head of its queue and it sends a message rather 

than receiving the message. Due to synchronous compatible condition we know that peer i 

should be able to receive the message at the head of the queue immediately after it was sent. We 

also know that due to autonomy condition peer i can only execute receive transitions if it has one 

receive transition from a configuration. Then, sending a message will violate these conditions 

and create a contradiction. Hence we conclude that each message class is consumed eagerly. 
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Now it suffices to show that C( C1PROJ,D,

R
S ) ⊆ L(R), as L(R) ⊆ C( C1PROJ,D,

R
S ) is obvious. Let 

R = ((P, M, Σ), A) and let C1PROJ,D,

R
S = ((P, M, Σ), A1, ..., An). Given a word w ∈ C( C1PROJ,D,

R
S ), and 

γ be the corresponding run, we can always construct a run γ′ of A to recognize w. Since πi(w) is 

accepted by each peer Ai, πi(πTYPE(w)) is accepted by skeleton(Ai). Because skeleton(A) is lossless 

join, it follows that πTYPE(w) is accepted by skeleton(A), and let T : τ1τ2...τ|w| be the path of 

skeleton(A) traversed to accept πTYPE(w). Since each transition in skeleton(A) is the result of 

dropping the guard of a corresponding transition, we can have a corresponding path T′ in A by 

restoring message contents. Notice that we can always do so because in each step, the global 

configuration allows the guards to be evaluated as if it is executed synchronously. This results 

from the fact that whenever a message is to be sent, its contents always depend on the latest 

copies of arrived messages, because queue is empty, and every input message which causally 

happens before it has already been consumed.               

Based on Theorem 2, we obtain a light-weight realizability analysis for conversation 

protocols. We check the first three realizability conditions on the skeleton of a conversation 

protocol (i.e, without considering the guards), and then examine the fourth realizability condition 

by syntactically checking the guards (but actually without analyzing their data semantics). 
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Figure 9. Alternating Bit Protocol 

 
SYMBOLIC ANALYSIS 

 
Sometimes skeleton analysis may be too coarse and fail to show the realizability of a 

realizable conversation protocol. For example, Figure 9(a) presents an alternating bit protocol 

which is realizable. However, the skeleton analysis presented in the previous section fails to 

show its realizability.  

Let Aa, Ab, Ac be the three conversation protocols shown in Figure 9. The conversation 

protocol Aa consists of two peers A and B. Message class α is a request, and message class β is 

an acknowledgment. Both message classes contain an attribute called id. Message class γ is 
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used by A to notify B the end of conversation. The protocol states that the id attribute of α 

should alternate between 0 and 1, and every acknowledgment β must have the matching id. It is 

clear that the conversation protocol is non-ambiguous and realizable; however, the skeleton 

analysis fails to recognize it.  

Clearly the projection of skeleton(Aa) to peer A does not satisfy the autonomy condition, 

because at state 3, there are both input and output transitions. However, Aa is actually 

autonomous. If we explore each configuration of Aa, we get Ab, the “equivalent” conversation 

protocol of Aa. The pair of values associated with each state in Ab stands for the id attribute of α 

and β. It is obvious that Ab satisfies the autonomy condition, and hence Aa should satisfy 

autonomy as well. In fact to prove that Aa is autonomous we do not even have to explore each of 

its configurations like Ab. As we will show later, it suffices to show Ac is autonomous.  

Analysis of Autonomy Using Iterative Refinement 

The examples in Figure 9 motivate the analysis of the autonomous condition using 

iterative refinement (Fu, Bultan, Su, 2004c, 2005a) as follows: Given a conversation protocol A, 

we can first check its skeleton. If the skeleton analysis fails, we can refine the protocol (e.g. 

refine Aa and get Ac), and apply the skeleton analysis on the refined protocol. We can repeat this 

procedure until we reach the most refined protocol which actually plots the transition graph of 

the configurations of the original protocol (such as Ab to Aa). In the following, we first present the 

theoretical background for the analysis of the autonomy condition using iterative refinement. 

This analysis is based on the notion of simulation, which is defined below.  

A transition system is a tuple (M, T, s, ∆) where M is the set of labels, T is the set of 

states, s the initial state, and ∆ is the transition relation. Generally, a transition system can be 

regarded as an FSA (or an infinite state system) without final states. On the other hand, a 
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standard FSA (M, T, s, F, ∆) can be regarded as a transition system of (M, T, s, ∆); and a GA (M, 

Σ, T, s, F, ∆) can be regarded as a transition system of the form (Σ, T′, s′, ∆′) where T′ contains 

all configurations of the GA, and ∆′ defines the derivation relation between configurations. 

Definition 8 (Simulation). A transition system A′ = (M′, T′, s′, ∆′) is said to simulate 

another transition system A = (M, T, s, ∆), written as A ≤ A′, if there exists a mapping ρ : T �  T′ 

and ξ : M �  M′ such that for each (s, m, t) in ∆ there is a (ρ(s), ξ(m), ρ(t)) in ∆′. Two transition 

systems A and A′ are said to be equivalent, written as A ! A′, if A ≤ A′ and A′≤ A. 

Intuitively a transition A′ simulates A if we can find a corresponding action in A′ for 

every action of A, i.e., A′ can subsume the set of actions of A. For example, the following is true 

for the three conversation protocols Aa, Ab, Ac in Figure 9. 

skeleton(Ab) ≤ skeleton(Ac) ≤ skeleton(Aa) 

For example, in the simulation relation skeleton(Ac) ≤ skeleton(Aa), ρ maps states 1, 2, 3, 

4, 5 in skeleton(Ac) to states 1, 2, 3, 3, 4 of skeleton(Aa) respectively, and ξ is the identity 

function which maps each message class to itself. For another example, Aa ≤ skeleton(Aa), and Aa 

≤ Ab ≤ Ac. 

It is not hard to infer the following properties of simulation relation, detailed proof can be 

found in Fu, Bultan, and Su’s work (2004c).  

o For any GA A, A ≤ skeleton(A). In another word, the skeleton of a conversation protocol 

simulates the protocol. 

o For each GA A = (M, Σ, T, s, F, ∆) on a finite alphabet Σ, there is a standard FSA on 

alphabet Σ such that A !  A′. This can be easily achieved by exploring the configuration 

space of the GA protocol, which is finite.  
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o If A ≤ A′ and A′ is autonomous, then A is autonomous.  The proof follows directly from 

the fact that each run of A has a corresponding run in A′. If during each run of A′, 

autonomy condition is not violated, obviously any run of A will not violate it either.     

From the above results, we can immediately infer the following: 

Theorem 3. A GA conversation protocol is autonomous if its skeleton is autonomous.   

 

 

Figure 10. The algorithm which examines the autonomy condition of a guarded conversation 

protocol using iterative refinement. 
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Based on Theorem 3 we have an error-trace guided symbolic analysis algorithm, 

presented in Figure 10. If the input GA is autonomous, procedure AnalyzeAutonomy returns 

null; otherwise it returns the error trace which is a list of configurations that eventually leads to 

the violation of the autonomy condition. AnalyzeAutonomy starts from the input GA, and 

refines it incrementally. During each cycle, it analyzes the skeleton of the current GA A′. If the 

skeleton is autonomous, by Theorem 3, the procedure simply returns and reports that the input 

GA is autonomous; otherwise, it identifies a pair of input/output transitions violating autonomy. 

For example, the two transitions starting at state 3 of Figure 9(a) will be identified. Then the 

Refine procedure is invoked to refine the current GA. This refinement process continues until 

the input GA is proved to be autonomous or a concrete error trace is found.  

The bottom part of Figure 10 presents the algorithm of the Refine procedure. Its input 

includes two transitions (with guards g1 and g2 respectively) which lead to the violation of the 

autonomy condition on the skeleton. The Refine procedure will try to refine the current GA by 

splitting the source state of these two transitions. If refinement succeeds, the refined GA is 

returned; otherwise, a concrete error trace is returned to show that the input GA is not 

autonomous. 

The first step of Refine is to compute the conjunction of the precondition of the two 

guards, i.e., Pre(g1)∧Pre(g2). If the conjunction is satisfiable, there is a possibility that at 

some configuration both transitions are enabled. Then we call the procedure FindPath to find 

a concrete error trace, which will be explained later. If the conjunction is not satisfiable, we can 

proceed to refine the GA. The basic idea is to split the source state of the two transitions into two 

states, each corresponds to the precondition of one guard in the input. The transitions are re-
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wired correspondingly. Finally the procedure eliminates transitions that cannot be reached during 

any execution of the GA. 

For example, if Refine is applied to Figure 9(a) and the two transitions starting at state 

3, it first computes the conjunction of the two preconditions: α.id ≠ β.id ∧ α.id = β.id. Obviously 

the conjunction is not satisfiable. Then state 3 is split into two states, (states 3 and 4 in Fig. 9(c)), 

and transitions are modified accordingly. Finally, unreachable transitions are removed, which 

results in the GA in Figure 9(c). 

 
Fig. 11. Generation of a concrete error trace 
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The precondition operator Pre is a standard operator in symbolic model checking, in 

which, all primed variables are eliminated using existential quantifier elimination. For example 

given a constraint g as “a = 1 ∧ b′ = 1”, its precondition is Pre(g) �  ∃a′ ∃b′ (a = 

1∧ b′ = 1), which is equivalent to “a = 1”. 

Figure 11 presents the algorithm to locate a concrete error trace. FindPath has three 

inputs: a GA A, a state s in A, and a symbolic constraint g0. FindPath computes an error trace (a 

list of configurations) which starts from the initial state of A, and finally reaches s in a 

configuration satisfying constraint g0.  

The algorithm of FindPath is a variation of the standard symbolic backward 

reachability analysis used in model checking. It starts with the construction of a symbolic 

transition system T based on the control flow as well as the data semantics of A. Then given the 

target constraint g0, the main loop computes the constraint which generates g0 via transition 

system T. The loop terminates when it reaches the initial configuration, or it reaches a fixed 

point. 

We use the following example to illustrate the symbolic backward analysis. In the 

example of Figure 9(a), if we redefine the guard g2 as �.id = �.id ∧ �.id’ = �.id , 

when procedure Refine is called on Figure 9(a), the conjunction of preconditions of g1 and g2, 

i.e., �.id = �.id , is satisfiable. Then procedure FindPath is called with inputs Figure 9(a), 

state 3, and constraint �.id = �.id ∧ state = 3. The while loop of FindPath 

eventually includes in variable path the following constraints: 

1) �.id = �.id ∧ state = 3. 

2) �.id = 1 ∧ state = 2. 

3) state = 1. 
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For example, given the formula (1) α.id = β.id ∧ state = 3 at state 3, the guard of the 

transition from state 2 to state 3 is α.id ′ = α. id ∧ β.id ′=1∧ state′ = 3 ∧ state=2, using the 

formula  ))(  '( /' TgM MM !" to compute its backward image at state 2 (where MMg /'
means to 

substitute every message in M with its corresponding primed form) we have: 

2state 1.id

))3state'  2state  1.id' .id.id'3state'  .id'.id'(  '(

)))3state'  2state  1.id' .id.id'()3state  .id.id((  '(
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 Then the order of path is reversed, and cvalue is randomly generated which satisfies 

constraint state = 1 and each message attribute has an exact value in cvalue. For example, 

let cvalue be �.id =1 ∧ �.id = 0 , then the list ret will record the following 

constraints: 

1) �.id = 1 ∧ �.id = 0 ∧ state = 1. 

2) �.id = 1 ∧ �.id = 0 ∧ state = 2. 

3) �.id = 1 ∧ �.id = 1 ∧ state = 3. 

It is not hard to see that the above list of system configurations captures an error trace leading to 

state 3 which violates the autonomy condition.         

Complexity of the algorithms in Figures 10 and 11 depends on the data domains 

associated with the input GA. When the message alphabet is finite, they are guaranteed to 

terminate. For infinite domains, a constant loop limit can be used to terminate algorithms by 

force; however, the analysis is still conservative. 

Symbolic Analysis of Other Realizability Conditions 

It is interesting to ask: are there similar iterative analysis algorithms for the lossless join 

and synchronous compatibility conditions? The answer is negative, because the lossless join and 
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synchronous compatibility of a GA conversation protocol do not depend on those of its skeleton. 

In another word, there exists a GA conversation protocol which is lossless join and whose 

skeleton is not. There also exists a GA conversation protocol which is not lossless join however 

its skeleton is. Similar observation holds for synchronous compatibility.  

In the following we introduce “conservative” symbolic analyses for these two conditions. 

We introduce the analysis for synchronous compatibility first. Recall the algorithm to check 

synchronous compatibility of a FSA conversation protocol. The protocol is projected to each 

peer and determinized (including ε-transition elimination). Then the Cartesian product is 

constructed from the deterministic projection to peers. Each state in the Cartesian product is 

examined. A state is called an illegal state if at the state some peer is not ready to receive a 

message that another peer is ready to send. Note that, the determinization of each peer projection 

is a necessary step. The analysis of synchronous compatibility for a GA conversation protocol 

follows a same procedure. However, we have to discuss two different cases on GA conversation 

protocols with finite or infinite domains. Given a FC conversation protocol R, we can always 

construct its exact equivalent FSA conversation protocol (let it be R’), and use the synchronous 

compatibility analysis for standard FSA protocols to analyze R’. However, for IC conversation 

protocols we might not be able to do so, because there may not exist projections for IC 

conversation protocols. In the following, we introduce a “conservative” symbolic analysis for the 

synchronous compatible condition. 

Given an IC (or FC) conversation protocol R, we can project it to each peer using coarse 

projection (either Coarse Processing 1 or Coarse Processing 2 in Figure 5). Then we determinize 

each peer in C1PROJ,

R
S (or C2PROJ,

R
S ) using the DeterminizeGA in Figure 7. We construct the 

product of those determinized GA. If no illegal state is found, the IC conversation protocol R is 
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synchronous compatible. The method is conservative, i.e., if an illegal state is found, R might 

still be synchronous compatible, because a coarse projection accepts a superset of the language 

accepted by the exact projection. However, if a conversation protocol is identified as 

synchronous compatible by the approximation algorithm, it is guaranteed to be truly synchronous 

compatible. 

The analysis of lossless join condition is similar. Recall that each GA A can be regarded 

as a transition system, and can be represented symbolically. Let T(A) denote the symbolic 

transition system derived from A. From the initial configuration of A, we can compute all the 

reachable configurations of T(A), and let the set of reachable configurations be SA. Given A1 and 

A2, the following statement is true: 

(SA1 ∧ T(A1) ⇒  SA2 ∧ T(A2)) ⇒ (L(A1) ⊆ L(A2)).                                                  

Intuitively, the equation means that if A2 as a transition system is a superset of A1, i.e., for any 

reachable configuration, there are more enabled transitions in T(A2) than T(A1), then L(A2) should 

be a superset of L(A1). The equation naturally implies a symbolic analysis algorithm. Given a 

conversation protocol R (with finite or infinite domains), let its GA specification be A. We can 

project A using coarse projection. Then construct the product of C1PROJ,

R
S (or C2PROJ,

R
S ), and let it be 

A′. Then we construct T(A) and T(A′), and compute SA and SA′. It is not hard to see that if (SA′ ∧ 

T(A′)) ⇒ (SA ∧ T(A)), we can conclude that R is lossless join. The above symbolic analysis 

algorithm is decidable when the domain is finite. When R has an infinite domain, we can simply 

use the approximate closure of SA and SA′, and it is still a conservative algorithm. 
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CONCLUSION 
 

This chapter presents Bultan, Fu, Hull, and Su’s discovery on the realizability problem of 

conversation protocols. The analysis can be conducted on two levels: the abstract level without 

data semantics and the concrete level with message contents. The chapter reveals the relationship 

between the realizability analyses on the two models. It is shown that realizability of the 

“skeleton” of a conversation protocol does not imply the realizability of the conversation 

protocol itself. Only by enforcing an additional condition, we are able to identify some classes of 

realizable conversation protocols. When skeleton analysis is not precise enough, refined 

symbolic realizability analyses can be used to improve both the accuracy and efficiency of the 

analysis. 

The skeleton realizability analysis presented in this chapter has been implemented as a 

part of the Web Service Analysis Tool (WSAT) (Fu, Bultan, & Su, 2004d).  The front-end of 

WSAT accepts industry web service standards such as WSDL and BPEL. The core analysis 

engine of WSAT is based on the intermediate representation GA. The back-end employs model 

checker SPIN (Holzmann, 1997) for verification. At the front-end, a translation algorithm from 

BPEL to GA is implemented. Then at the core analysis part, realizability analysis and another 

similar analysis called “synchronizability analysis” are implemented to avoid the difficulty of 

verification in the presence of asynchronous communication. At the back-end, translation 

algorithms are implemented from GA to Promela, the input language of SPIN. Based on the 

results of the realizability and the synchronizability analyses, LTL verification at the back-end 

can be performed using the synchronous communication semantics instead of asynchronous 
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communication semantics. WSAT is applied to verify a wide range of examples, including 

conversation protocols converted from IBM Conversation Support Project (IBM, n.d.), five 

BPELS services from BPEL4WS standard and Collaxa.com, and the SAS example (Fu, Bultan, 

Su, 2004d). The empirical experiences suggest that the realizability conditions presented in this 

chapter can capture a large class of real-world web service designs. 
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