
Realizability Analysis 1

Running head: REALIZABILITY ANALYSIS

Realizability Analysis of Top-down Web Service Composition Specifications

Xiang Fu

School of Computer and Information Sciences, Georgia Southwestern State University

Tevfik Bultan

Department of Computer Science, University of California, Santa Barbara

Jianwen Su

Department of Computer Science, University of California, Santa Barbara

Realizability Analysis 2

Abstract

A conversation protocol specifies the desired global behaviors of a web service composition in a

top-down fashion. Before implementing a conversation protocol, its realizability has to be

determined, i.e., can a bottom-up web service composition be synthesized so that it generates

exactly the same set of conversations as specified by the protocol? This chapter presents three

sufficient conditions to restrict control flows of a conversation protocol for achieving

realizability. The model is further extended to include data semantics of web services into

consideration. To overcome the state-space explosion problem, symbolic analysis techniques are

used for improving the accuracy of analysis. The realizability analysis can effectively reduce the

complexity of verifying web services with asynchronous communication.

KEY WORDS:

Web service composition, verification, conversation protocol, message, realizability, asynchronous
communication

Realizability Analysis 3

Realizability Analysis of Top-down Web Service Composition Specifications

To construct a mission critical web service composition (also called “composite web

service”) is a very challenging task, as any design or implementation fault could lead to great

losses. Recently, automated verification and testing of web services have attracted attention in

both academia and industry (Bultan, Fu, Hull, & Su, 2003; Foster, Uchitel, Magee, & Kramer,

2003; Narayanan, & Mcllraith, 2003; Betin-Can, Bultan, & Fu, 2005; Canfora & Di Penta,

2006). However, before any automatic verification technique can be applied, a formal model has

to be defined to describe behaviors of web services. This chapter presents a top-down

specification approach called “conversation protocol” and studies the realizability problem of

conversation protocols. It is an extension of the work by Fu, Bultan, and Su (2004c, 2005b) and

covers other results by Fu et al. (2003, 2004a, 2004b, 2004d, 2004e, 2005a) in the area.

INTRODUCTION

In general, there are two different ways of specifying a web service composition: (1) The

bottom-up approach, favored by many industry standards such as WSDL (World Wide Web

Consortium [W3C], 2001) in which each participant of the composition is specified first and then

the composed system is studied; and (2) The top-down approach, e.g., Message Sequence Charts

(ITU-T , 1994), conversation policies (Hanson, Nandi, & Kumaran, 2002), WSCI (W3C, 2002),

and WSCL (Banerji, Bartolini, Beringer, Chopella, Govindarajan, Karp, et al., 2002) in which

the set of desired message exchange patterns is specified first and detailed specification of peer

implementation is left blank.

In this chapter we concentrate on the top-down specification approach due to its simplicity

and the potential benefits in verification complexity (Bultan, Fu, Hull, & Su, 2003). One natural

idea for top-down specification of web services is to use finite state machines (FSA) to represent

Realizability Analysis 4

some aspects of the global composition process. The state machines can involve two parties

(Hanson, Nandi, & Levine, 2003) or multi-parties (Bultan et al., 2003), and may describe the

global composition process directly (Hanson, et al., 2003) or may specify its local views

(Banerji, Bartolini, Beringer, Chopella, Govindarajan, Karp, et al., 2002).

A top-down conversation protocol has to be realized by a bottom-up web service

composition. In studying the composition behaviors, asynchrony usually complicates analyses.

Asynchronous communication is one of the benefits provided by the web service technique. It is

supported by many industry platforms such as Java Message service (Sun, n.d.) and Microsoft

Message Queuing service (Microsoft, n.d.). In an asynchronous communication environment,

receiver of a message does not have to synchronize its action with the send action by the sender.

However, asynchrony may significantly increase the complexity of many verification problems.

Fu, Bultan, and Su (2003) proved that the general problem of verifying a Linear Temporal Logic

property on a bottom-up specified web service composition is undecidable, which is essentially

caused by the undecidable nature of communicating finite state machines (Brand & Zafiropulo,

1983).

Asynchronous communication is usually modeled by equipping participating services with

FIFO queues. For example, Bultan, Fu, Hull, and Su (2003) established a conversation oriented

framework where each participating web service (called a “peer”) of a composition is

characterized using a finite state automaton, with the set of input/output message classes as the

FSA alphabet. To capture asynchronous communication, each peer is equipped with a FIFO

queue to store incoming messages. The behaviors generated by a composition of peers can be

characterized using the set of message sequences (conversations) exchanged among peers. Linear

Temporal Logic (Clarke, Grumberg, & Peled, 2000) can be naturally extended to this

Realizability Analysis 5

conversation based framework. Desired system properties such as “a cancel request always

results in a confirmation message” can be expressed using Linear Temporal Logic and the web

service composition can then be verified using automatic verification tools such as the Web

Service Analysis Tool (Fu, Bultan, & Su, 2004d).

A conversation protocol is not always realizable, i.e., there exists conversation protocols

which do not have any peer implementations whose composition generates exactly the same set

of conversations as specified by the protocol. Hence, before implementing a conversation

protocol, its realizability has to be studied first. Fu, Bultan, and Su (2003) proposed three

sufficient conditions that can guarantee the realizability of conversation protocols. Later the

realizability analysis technique is extended to a model with data semantics (Fu et al, 2004c).

Related Work

Realizability of software systems has been investigated for decades in different branches of

computer science. In the late 1980’s, researchers proposed the realizability problem of open

systems (Abadi, Lamport, & Wolper, 1989; Pnueli, & Rosner, 1989). It studies whether a peer

has a strategy to cope with the environment no matter how environment moves. A closer notion

to the realizability problem studied in this chapter is the concept of “weak/strong realizability”

on the Message Sequence Chart Graphs (MSCG) model by Alur, McMillan, and Peled (2000)

and Alur, Etessami, and Yannakakis (2001). In the MSCG model each peer is also equipped with

a message buffer to simulate the asynchronous communication environment. The difference is

that the MSCG model includes both send and receives events, while the conversation model used

in this chapter studies the send events only. This leads to delicate difference in the analysis

complexity and the realizability conditions on the two models. A detailed comparison of the two

Realizability Analysis 6

models can be found in Fu, Bultan, and Su’s work in IEEE Transaction on Software Engineering

(2005b).

Figure 1. Three non-realizable conversation protocols, adapted from the Büchi autumata

protocol examples by Fu, Bultan, and Su (2003).

BASIC REALIZABILITY ANALYSIS WITHOUT MESSAGE CONTENTS

Consider the three conversation protocols presented in Figure 1, and let them be Pa, Pb and

Pc. Each conversation protocol is expressed using a finite state machine. In a finite state machine,

the initial state is denoted using an incoming edge without source, and a final state is denoted

using a double cycle. Each of these three protocols involves four peers A, B, C, and D.

Conversation protocol Pa is not realizable. It specifies one single conversations αβ, where

message α is sent from A to B and message β is sent from C to D. Clearly any implementation of

the four peers which generates a conversation αβ can also generate the conversation βα.

Similarly Pb is not realizable because there is no way for peer C to learn about the time message

α is sent. Hence, any peer implementation which generates αγ will also generate γα.

Realizability Analysis 7

Protocol Pc defines a conversation set: {αβ, βαγ}. This protocol is more interesting in the

sense that peers might have “confusion” when executing the protocol. It is possible that peers A

and B take the left and the right branches of the protocol (respectively), unaware that the other

peer is taking a different branch. For example, the following execution sequence can generate a

conversation not specified by the protocol although each peer is executing the protocol faithfully.

Peer A first sends a message α, which is then stored in the queue of B; then B sends a message β,

which is then stored in the queue of A. Peers A and B consume (i.e., receive) the messages in

their respective queues, and finally B sends the message γ. Hence a conversation αβγ is produced

by the peer implementations. However, this conversation is not specified by Pc.

Fu, Bultan, and Su (2003) proposed three realizability conditions for conversation protocols

(without message contents). When these sufficient conditions are satisfied, a conversation

protocol is guaranteed to be realizable. In the following we briefly present these conditions.

(1) Lossless join condition: A conversation protocol is said to be lossless join if its

conversation set is equal to the join of its projections to all peers. Here, the terms “join” and

“projection” are borrowed from relational database theory.

The projection of a conversation to a peer i generates a message sequence by removing all

the messages that are not related to peer i from the given conversation. For example, consider the

conversation αβ defined by Pa in Figure 1. Its projection to peer A is α (where message β is

removed from the conversation because A is neither its sender nor its receiver); similarly, the

projection of αβ to C is β.

Given a set of languages (one language for each peer), their join is a set which includes all

conversations whose projection to each peer is included in the corresponding language for that

peer. For example, suppose message α is sent from A to B and message β is sent from C to D.

Realizability Analysis 8

The join of four languages {α}, {α}, {β}, {β} (for A, B, C, and D respectively) results in the set

{αβ, βα}.

A conversation protocol is said to be a lossless join if its conversation set is the join of its

projections to all peers. For example, the join of the projections of Pa to all peers is {αβ, βα}

which is a strict superset of the conversation set specified by Pa. Hence, Pa is not lossless join.

However, it can be verified that Pb and Pc in Figure 1 satisfy the lossless join condition.

Lossless join condition is actually a necessary condition of realizability. It is not hard to see

that it reflects the requirement that a conversation protocol should be complete in the sense that

the relative order of messages should not be restricted if they do not have causal relationship.

(2) Synchronous compatibility condition: Intuitively a conversation protocol is

synchronous compatible if its straightforward implementation (by projecting the protocol to each

peer) can work without conflicts using synchronous communication semantics. Formally, a

conversation protocol satisfies the synchronous compatibility condition if it can be implemented

using synchronous communication semantics without generating a state in which a peer is ready

to send a message while the corresponding receiver is not ready to receive that message.

The synchronous compatibility condition is checked as follows: (a) Project the protocol to

each peer by replacing all the transitions labeled with messages for which that peer is neither the

sender nor the receiver with ε-transitions (empty moves); (2) Determinize the resulting

automaton for each peer; (3) Generate a product automaton by combining the determinized

projections based on the synchronous communication semantics (i.e., each pair of send and

receive operations are taken simultaneously at the sender and receiver); (4) Check if there is a

state in the product automaton where a peer is ready to send a message while the corresponding

receiver is not ready to receive that message.

Realizability Analysis 9

Consider the conversation protocol Pb in Figure 1. Its projection to peer A returns the same

FSA. However, its projection to B replaces γ transition with an ε-transition, and its projection to

C replaces the α transition with an ε-transition. After the determinization, the automaton for peer

C consists of one initial and one final state, and a single transition labeled γ from the initial state

to the final state. When we generate the automaton which is the product of the projections, in the

initial state of the product automaton, peer C is ready to send the message γ but the receiver, i.e.,

A, is not yet ready to receive the message. Hence, Pb in Figure 1 does not satisfy the synchronous

compatibility condition. It can be verified that Pa and Pc in Figure 1 satisfy the synchronous

compatibility condition.

(3) Autonomy condition: A conversation protocol satisfies the autonomy condition if at

every state each peer is able to do exactly one of the following: to send a message, to receive a

message, or to terminate.

Note that a state may have multiple transitions corresponding to different send operations

for a peer, and this does not violate the autonomy condition. Similarly, a peer can have multiple

receive transitions from the same state. However, the autonomy condition is violated if there are

two (or more) transitions originating from a state such that one of them is a send operation and

another one is a receive operation for the same peer. For example, consider the conversation

protocol Pc in Figure 1. The two transitions labeled α and β originating from the initial state

violate the autonomy condition, because at the initial state, peer A can either send or receive.

However, notice that the conversation protocols Pa and Pb in Figure 1 satisfy the autonomy

condition.

We have the following results concerning the three conditions introduced above.

Realizability Analysis 10

Theorem 1. If a conversation protocol (without message contents) satisfies the lossless join

condition, synchronous compatibility condition, and autonomy condition, it is realized by its

projections to each peer.

The key proof idea of Theorem 1 (Fu, Bultan, & Su, 2003) is that when a conversation

protocol satisfies the realizability conditions, the composition of its projections to peers has a

property called “eager consumption”, which ensures that during any execution (interleaving) of

the peers, whenever a peer sends out a message it is not in a final state and its input queue is

always empty, i.e., each incoming message is consumed “eagerly” before any send action is

taken by its receiver. When a composition satisfies the “eager consumption” property, for any

conversation generated by the composition (using the asynchronous communication semantics),

its projection to a peer is an accepted word by that peer FSA. This naturally leads to the

conclusion that the conversation set is in the join of the languages accepted by all peers. If the

conversation protocol is lossless join, the conversation set generated using the asynchronous

semantics is the same as the one generated using the synchronous communication. Therefore a

conversation protocol is realizable if the three sufficient conditions are satisfied.

THE GUARDED AUTOMATA MODEL

The abstract model of conversation protocol presented in the previous section is still not

sufficient for real-world practice, because messages exchanged among web services are simply

abstract “message classes” without contents. In this section we present a formal model, called the

“guarded automata” (GA) model, which takes message contents into consideration. We begin

this section by defining the composition schema (i.e., the structure of a web service

composition). Then we present the formal models for both the top-down and bottom-up

specification approaches, namely, conversation protocols and web service compositions.

Realizability Analysis 11

Figure 2. The composition schema and the conversation protocol for a simplified warehouse

example.

Composition Schema

A composition schema entails the information about peers, message classes and the

message domains for each message class. Formally, a composition schema is defined as follows:

Definition 1 (Composition Schema): A composition schema is a tuple (P, M, Σ) where P

is the finite set of peers, M is the finite set of message classes, and Σ is the set of messages. Each

message class c ∈ M has a finite set of attributes and each attribute has a static data type. Each

message m ∈ Σ is an instance of a message class. Thus the message alphabet Σ can be defined as

follows:

Realizability Analysis 12

),(}{ cDOMc

Mc

!=
"

U

where DOM(c) is the domain of the message class c. Notice that Σ may be a finite or an infinite

set, which is determined by the domains of the message classes.

Shown in Figure 2 is a composition schema which consists of three peers, Store, Bank,

and Warehouse. Instances of message classes such as Order, Bill, and Payment, are

transmitted among these three peers. Let us assume that each of Bill, Payment, and

Receipt has two integer attributes id and amount (shortened by “amt”), and all other

message classes in Figure 2 have a single integer attribute id. A message, i.e., an instance of a

message class, is written in the following form: “class(contents)”. For example, B(100, 2000)

stands for a Bill message whose id is 100 and amount is 2000. Here Bill is represented

using its capitalized first letter B. Note that, the domains of message classes Bill, Payment,

and Receipt are Z × Z, where Z is the set of integers.

Conversation Protocol

Given a composition schema, the design of a web service composition can be specified

using a conversation protocol, in a top-down fashion. A conversation protocol is a guarded

automaton, which specifies the desired global behaviors of the web service composition.

Definition 2 (Conversation Protocol). A conversation protocol is a tuple R = ((P, M,

Σ), A), where (P, M, Σ) is a composition schema, and A is a guarded automaton (GA). The

guarded automaton A is a tuple (M, Σ, T, s, F, δ) where M and Σ are the set of message classes

and messages respectively, T is the finite set of states, s ∈ T is the initial state, F ⊆ T is the set of

final states, and δ is the transition relation. Each transition τ ∈ δ is in the form τ = (s, (c, g), t),

where s, t ∈ T are the source and the destination states of τ, c ∈ M is a message class and g is the

Realizability Analysis 13

guard of the transition. A guard g is a predicate on the attributes of the message that is being sent

(which are denoted by the attribute names with apostrophe) and the attributes of the latest

instances of the message classes (which are denoted by the attribute names without apostrophe)

that are received or sent by the peer involved.

During a run of a guarded automaton, a transition is taken only if the guard evaluates to

true. For example, in Figure 2, the guard of the transition that sends an Order is:

Order.id′ = Order.id+1.

The guard expresses that the id attribute of an Order message is incremented by 1 after

executing the transition. Notice that in the above formula “id′” refers to the value of the next

Order message being sent, and “id” refers to the value of the id attribute of the latest Order

message. With the use of primed forms of variables, the symbol “=” in guards stands for the

“equality” instead of “assignment”. The declarative semantics (instead of procedural semantics)

used here is more convenient for symbolic analysis.

 By studying the semantics of transition guards in Figure 2, it is not hard to see that the

conversation protocol in Figure 2 describes the following desired message exchange sequence of

the warehouse example: an Order is sent by the Store to the Warehouse, and then the

Warehouse sends a Bill to the Bank. The Bank either responds with a Payment or rejects

with a Fail message. Finally the Warehouse issues a Receipt or a Cancel message. The

guards determine the contents of the messages. For example, the id and the amount of each

Payment must match those of the latest Bill message.

The language accepted by a guarded automaton can be naturally defined by extending

standard finite state automaton semantics. Given a GA A = (M, Σ, T, s, F, δ), a run of A is a path

which starts from the initial state s and ends at a final state in F. A message sequence w ∈ Σ∗ is

Realizability Analysis 14

accepted by A if there exists a corresponding run. For example, it is not hard to infer that the

following is a message sequence accepted by the GA in Figure 2:

O(0), B(0, 100), P(0, 100),R(0, 100),O(1), B(1, 200), F(1),C(1).

Given a conversation protocol R = ((P, M, Σ), A), its language is defined as L(R) = L(A).

In another word, the conversation set defined by a conversation protocol is the language accepted

by its guarded automaton specification.

Figure 3. A realization of the conversation protocol in Figure 2.

Realizability Analysis 15

Web Service Composition

Bottom-up web service compositions can be also specified using the GA model.

However, the GA used to describe a peer is slightly different than the one used to describe a

conversation protocol. The formal definition is as follows:

Definition 3 (Web Service Composition). A web service composition is a tuple S = ((P,

M, Σ), A1, ..., An), where (P, M, Σ) is the composition schema, n = |P|, and for each i ∈ [1..n], Ai

is the peer implementation for pi ∈ P. Each Ai is a tuple (Mi, Σi, Ti, si, Fi, δi) where Mi, Σi, Ti, si,

Fi, and δi denote the set of message classes, set of messages, set of states, initial state, final

states, and transition relation, respectively. A transition τ ∈ δi can be one of the following three

types: a send transition (t, (!α, g1), t′), a receive transition (t, (?β, g2), t′), and an ε-transition (t, (ε,

g3), t′), where t, t′ ∈ Ti, α ∈ out

i
M , β ∈ in

i
M , and g1, g2, and g3 are predicates.

The send and receive transitions are denoted using symbols “!” and “?”, respectively. In

an ε-transition, the guard determines if the transition can take place based on the contents of the

latest message for each message class related to that peer. For a receive transition (t, (?β, g2), t′),

its guard determines whether the transition can take place based on the contents of the latest

messages as well as the class and the contents of the message at the head of the queue. For a send

transition (t, (!α, g1), t′), the guard g1 determines not only the transition condition but also the

contents of the message being sent. For example, Figure 3 shows a web service composition

which realizes the conversation protocol in Figure 2. Note that, if the guard for a transition is not

shown, then it means that the guard is “true”.

The conversations produced by a web service composition can be defined similarly as the

language accepted by a guarded automaton. However, one important difference is that the effect

of queues has to be taken into account. To characterize the formal semantics of a conversation,

Realizability Analysis 16

we need to define the notion of global configuration of a web service composition. A global

configuration is used to capture a “snapshot” of the whole system. A global configuration

contains the information about the local state and the queue contents of each peer, as well as the

latest sent and received copies for each message class (so that the guards can be evaluated). The

initial configuration of a web service composition is obviously the one where each peer is in its

initial state, each FIFO queue is empty, and the latest copies for each message class are the

constant “undefined value”. Similarly, a final global configuration is a configuration where each

peer is in a final state, and each peer queue is empty. Then a run of a web service composition

can be defined as a sequence of global configurations, which starts from the initial configuration

and ends with a final configuration. Between each pair of neighboring configurations ci and ci+1

in a complete run, ci evolves into ci+1 by taking one action by a peer. This action can be a send,

receive (from queue), or ε-action which corresponds to a transition in that peer GA. Obviously,

for this action to take place, the associated guard of that transition must be satisfied. A

conversation is a message sequence, for which there is a corresponding run.

Now given both the definitions of conversation protocols and web service compositions,

we can define the notion of realizability that relates them. Let C(S) denote the set of

conversations of a web service composition S. We say S realizes a conversation protocol R if

C(S) = L(R).

CONVERSION BETWEEN TOP-DOWN AND BOTTOM-UP SPECIFICATIONS

One interesting question concerning the specification of web service compositions is if it

is possible to convert a specification from top-down specification to bottom-up, and vice versa.

This section introduces two operations to achieve this goal, namely “projection” and “product”

Realizability Analysis 17

operations. The projection of a conversation protocol produces a web service composition, and

the product of a web service composition produces a conversation protocol. However, the

projection of a conversation protocol is not guaranteed to generate exactly the same set of

conversations as specified by the protocol. Similarly, the product of a bottom-up web service

composition is not guaranteed to specify all the possible conversations that can be generated by

that web service composition. Only when additional conditions (such as the ones presented in the

skeleton analysis in later sections) are satisfied, can the projection and the product operations be

used to convert from one specification approach to the other while preserving the semantics (i.e.,

the set of conversations).

Product

Intuitively, the product operation is to construct the synchronous composition of a set of

guarded automata. In synchronous composition, each send operation and the corresponding

receive operation have to be executed simultaneously. Formally, the product operation is defined

as follows:

Definition 4 (Product). Let S = ((P, M, Σ), A1, ..., An) be a web service composition,

where for each i ∈ [1..n], Ai is a tuple (Mi, Σi, Ti, si, Fi, δi). The product of all peers in S is a GA

A′ = (M, Σ, T′, s′, F′, δ′), where each state t′ ∈ T′ is a tuple (t1, ..., tn), such that for each i ∈ [1..n],

ti is a state of peer Ai. The initial state s′ of A′ corresponds to the tuple (s1, ..., sn), and a final state

in F′ corresponds to a tuple (f1, ..., fn) where for each i ∈ [1..n], fi is a final state of Ai. Let ρ map

each state t′ ∈ T′ to the corresponding tuple, and further let ρ(t′)[i]denote the i’th element of

ρ(t′). For each pair of states t and t′ in T′, a transition (t, (m, g′), t′) is included in δ′ if there exists

two transitions (ti, (!m, gi), t′i) ∈ δi and (tj, (?m, gj), t′j) ∈ δj such that

1) (sending and receiving peers take the send and receive transitions simultaneously)

Realizability Analysis 18

o ρ(t)[i]= ti , and

o ρ(t′)[i] = t′i, and

o ρ(t)[j] = tj , and

o ρ(t′)[j] = t′j, and

o for each k ≠ i ∧ k ≠ j, ρ(t′)[k] = ρ(t)[k], and

 2) (both guards need to hold) Let g′ = gi ∧ gj, then g′ must be satisfiable.

Clearly, by the above definition, the construction of the product can start from the initial

state of the product (which corresponds to the tuple of initial states of all peers), then iteratively

include new transitions and states. From a state in the product, a transition is added to point to

another destination state, only if there is a pair of peers which execute the corresponding send

and receive actions from the source state simultaneously. Obviously, the construction can always

terminate because the number of transitions and states of each peers is finite. However, the

algorithm requires that none of the peer implementations should have ε-transitions. We will

present the algorithm to remove ε-transitions later in this section.

Projection

Projection of a GA conversation protocol is complex and interesting. For example, a GA

conversation protocol with an infinite message alphabet may not always have an “exact”

projection. However, if its message alphabet is finite, a GA conversation protocol is always

guaranteed to have an exact projection. For GA conversation protocols with infinite message

alphabet, several “coarse” approximation algorithms exist. We start our discussion with the

following classification of conversation protocols.

Definition 5 (FC and IC Protocol). A conversation protocol R = ((P, M, Σ), A) is called

an Infinite Content (IC) conversation protocol if Σ is an infinite set; otherwise R is called a Finite

Realizability Analysis 19

Content (FC) conversation protocol. Similarly, a guarded automaton is either an IC-GA or FC-

GA and a web service composition is either an IC composition or a FC composition.

Figure 4. The Infinite Content (IC) Conversation Protocol which does not have an accurate

projection to each peer.

An IC conversation protocol may not have an exact projection, as shown in the following

example. Figure 4 presents an IC conversation protocol (call it R) which involves three peers

Front-Desk, processing Center, and Log center. The processing Center processes files from

Front-Desk in a batch sequential mode. For each incoming file, a backup of the request is

recorded in the Log center and another backup is also created for the corresponding result.

The interaction between the three peers works as follows. The processing Center first

sends a message Prepare and Start to the Front-Desk and Log center respectively to initiate

Realizability Analysis 20

the process. Then the Front-Desk sends a collection of Files one by one to the processing

Center. For each incoming File, a corresponding Backup copy is sent to Log center. The

Backup message has a counter named “c” to count the number of messages. When Front-Desk

has sent out all the cases, it sends out an Input_end message to mark the end of the data input

process. The processing Center then processes the cases one by one, sends out a corresponding

Result message to Front-Desk, accompanied with a Backup message for each Result. The

counter attribute of the Backup message for each Result is decremented by one each time

until its values reaches zero. Finally, the processing Center sends out the End and Commit

message to inform both the Front-Desk and Log center to complete the interaction. Here all

messages do not have contents except the Backup message. If we use the first character to

represent each message, obviously the conversation set can be represented using the following

formula:

PS(FB)nI(RB)nEC

If we project this conversation set to peer Log center, it is not hard to see that the

projection is the following set { PBnBnC | n ≥ 0}, which is obviously a context free language.

However, since none of the messages (sent or received) by peer Log center has message

contents, any GA with the alphabet of Log center is essentially a standard FSA, and it cannot

accept the projection language, which is not regular.

On the contrary, for FC conversation protocols, it is always possible to construct a

corresponding projected composition PROJ

P
S where each peer implementation of PROJ

P
S is an

“exact” projection of P. Given a conversation protocol R = ((P, M, Σ), A) where n = |P|. Since Σ

is finite, we can easily construct a standard FSA A′ from A such that L(A′) = L(A), where the

alphabet of A′ is the message alphabet Σ of A. The construction of A′ is essentially an exploration

Realizability Analysis 21

of all reachable global configurations of A. Note that, since Σ is finite, the number of global

configurations of A is finite; hence, the size of A′ is finite. Let the projection of A′ to each peer be

A1, ..., An, respectively. Obviously, each of the standard FSA A1, ..., An can be converted into an

equivalent GA by associating dummy guards with each transition.

 The construction of PROJ

R
S , however, can be very costly—it requires essentially a

reachability analysis of the state space of the FC conversation protocol. In Figure 5, we present a

light-weight projection algorithm, which is not “exact”, but works for both FC and IC

conversation protocols.

Figure 5. Algorithm of coarse projection from a Guarded Automaton A to peer i.

Given a GA protocol and a peer to project to, the coarse projection algorithm in Figure 5

simply replaces each transition that is not related to the peer with ε-transitions, and adds “!” and

“?” for send and receive transitions respectively. The algorithm provides two different levels of

Realizability Analysis 22

“coarse processing”. In Coarse Processing 1, the guards of the ε-transitions and the receive

transitions are essentially dropped (by setting them to “true”), and the guards of the send

transitions remain the same. In Coarse Processing 2, existential quantification is used to

eliminate the unrelated message attributes from the guards. The following example illustrates the

existential quantification operation.

Given a GA conversation protocol on three peers p1, p2 and p3. Let τ = (t, (m1, g), t′) be a

transition in the protocol, where m1 ∈ in

1

out

3
MM ! , m2 ∉ M1, and

g � m1.id + m2.id < 3 ∧ m2.id > 0.

We assume that m1.id and m2.id are both of integer type. During the projection to peer p1, if τ is

being processed using Coarse Processing 1, the corresponding transition would be (t, (?m1, true),

t′); if Coarse Processing 2 is used, the corresponding transition would be (t, (?m1, g′), t′) where g′

� ∃ m2.id g, and after simplification, g′ � m1.id < 2.

Given a GA conversation protocol R, the web service composition generated using

coarse-1 and coarse-2 processing algorithms are denoted as C1PROJ,

R
S and C2PROJ,

R
S , respectively.

Clearly C1PROJ,

R
S and C2PROJ,

R
S have the following relationship:

 Given a conversation protocol R = ((P, M, Σ), A), and its projections C1PROJ,

R
S and C2PROJ,

R
S .

For each 1 ≤ i ≤ |P|, let C1

i
A and C2

i
A be the peer implementation of pi in C1PROJ,

R
S and C2PROJ,

R
S (resp.).

Then, the following holds: πi(L(R)) ⊆ L(C2

i
A) ⊆ L(C1

i
A), i.e., the actual projection language is

contained by the resulting set produced by the approximation algorithms.

Realizability Analysis 23

Figure 6. Elimination of ε-transitions for Guarded Automata

Determinization of Guarded Automata

We now introduce a “determinization” algorithm for guarded automata, which is useful

in the decision procedures for realizability conditions. The “determinization” process consists of

two steps: (1) to eliminate the ε-transitions, and (2) to determinize the result from step (1).

The ε-transition elimination algorithm is presented in Figure 6, which is an extension of

the ε-transition elimination algorithm for standard FSA. It first collects a set of nodes which are

reachable via ε-paths for each node. Then for each pair of nodes which are connected by an ε-

path plus one normal transition, the algorithm packs the guards associated with the ε-path to the

non ε-transition so that the ε-path can be eliminated. This operation is accomplished at line 11 of

Figure 6. The transition (t, (m, g′), t′′) is a replacement for a set of paths, where each path is a

concatenation of the transition (t, (m, g), t′) and an ε-path from t′ to t′′. The guard g′ has to be the

conjunction of g and g′′ where g′′ is the disjunction of the conjunctions of guards along each ε-

path from t′ to t′′. Note that for each ε-transition, its guard is only a “transition condition” which

Realizability Analysis 24

does not affect the message instance vector in a GA configuration, according to the guarded

automata model. Hence it suffices to consider those non-redundant paths. Since the number of

non-redundant paths is finite, the algorithm in Figure 6 will always terminate.

Figure 7. Determinization of Guarded Automata

Figure 7 presents the determinization algorithm for a guarded automaton, which is rather

different than the determinization algorithm for a standard FSA. The key idea is the part between

lines 9 and 20, where for each state and each message class, we collect all the transitions for that

Realizability Analysis 25

message class, enumerate every combination of guards, and generate a new transition for that

combination. For example, suppose at some state t, two transitions are collected for message

class m, and let their guards be g1 and g2 respectively. Three new transitions g1 ∧ g2, g1 ∧ ¬ g2,

and ¬ g1 ∧ g2 will be generated, and the two original transitions are removed from the transition

relation. It is not hard to see that for each word w ∈ L(A′), where A′ is the resulting GA, there

exists one and only one run for w, due to the enumeration of the combinations of guards. Since

the procedure of enumerating guards and reassembling states does not deviate from the

semantics of the original guards, for example,

g1∧g2 ∨ g1∧¬ g2 ∨ ¬g1∧g2 = g1∨ g2,

each A is equivalent to its determinization A′ (after applying DeterminizeGA), i.e., L(A) = L(A′).

SKELETON ANALYSIS

One interesting question concerning the GA model is: can the realizability analysis of a

GA protocol be conducted using the techniques available on the standard FSA model? This

section answers this question and shows that an abstract analysis method called skeleton

analysis works for both FC and IC conversation protocols. We start with the definition of a

skeleton.

Definition 6 (Skeleton). Given a GA A = (M, Σ, T, s, F, δ), its skeleton, denoted as

skeleton(A), is a standard FSA (M, T, s, F, δ′) where δ′ is obtained from δ by replacing each

transition (s, (c, g), t) with (s, c, t).

Note that L(skeleton(A)) ⊆ M∗, while L(A) is a subset of Σ∗. For a conversation protocol R

= ((P, M, Σ), A), we can always construct an FSA conversation protocol ((P, M), skeleton(A)).

We call this protocol the skeleton protocol of P. Now, one natural question is the following:

Realizability Analysis 26

If the skeleton protocol of a conversation protocol is realizable, does this imply

that the GA protocol is realizable?

Figure 8. Two examples which demonstrate the relationship between a conversation protocol

and its skeleton. (a) is an example where the GA conversation protocol is not realizable but its

skeleton is. (b) is an example of realizable GA conversation protocol which has a non-realizable

skeleton.

We can easily find counter examples against the above conjecture. As shown in Figure

8(a), four peers A, B, C, D are involved in a guarded conversation protocol. Message α is from A

to B and β is from C to D. Both message classes have an attribute a. The protocol specifies two

possible conversations α(1)β(1), and β(2)α(2), where the “1” and “2” are values of attribute a in

Realizability Analysis 27

messages. Obviously, the skeleton protocol, which specifies the conversation set {αβ, βα}, is

realizable because it satisfies all the three realizability conditions. However, the guarded protocol

itself is not realizable, because any implementation that generates the specified conversations

will also generate the conversation β(1)α(1).

Interestingly, there exist examples where the skeleton is not realizable but the guarded

conversation protocol is. In addition, the lossless join, and synchronous compatibility conditions

of a guarded conversation protocol are not implied by the corresponding properties satisfied by

its skeleton, and vice versa.

For example, the GA protocol in Figure 8(a) is not lossless join, however its skeleton is.

The guarded protocol in Figure 8(b) is lossless join, however its skeleton is not. As shown in

Figure 8(b), there are four peers A, B, C, D, and all message classes contain a single attribute a.

In the beginning, peer D informs peer A and B about which path to take by the value of the

attribute a (1 for left branch, 2 for right branch). Then A and B know who is going to send the

last message (α or β), so there is no ambiguity. It can be verified that the protocol is lossless join.

However the skeleton is obviously not lossless join, because ηγα is included in its join closure.

The counter examples in Figure 8 seem to suggest pessimistic results -- we cannot tell if a

conversation protocol is realizable or not based on the properties of its skeleton protocol.

However, in the following, we will show that with an additional condition, we can use the

properties of a protocol’s skeleton to reason about its realizability. We now introduce a fourth

realizability condition to restrict a conversation protocol so that it can be realized

by PROJ

R
S , C1PROJ,

R
S , and C2PROJ,

R
S when its skeleton satisfies the three realizability conditions

discussed above.

Realizability Analysis 28

Definition 7 (Deterministic Guard Condition). Let R = ((P, M, Σ), A) be a conversation

protocol where A = (M, Σ, T, s, F, δ). R is said to satisfy the deterministic guard condition if for

each pair of transitions (t1, (m1, g1), t1′) and (t2, (m2, g2), t2′), g1 is equivalent to g2 when the

following conditions hold:

1) m1 = m2, and

2) Let pi be the sender of m1. There exists two words w and w′ where a partial run of w

reaches t1, and a partial run of w′ reaches t2, and πi(πTYPE(w)) = πi(πTYPE(w′)).

Here the operation πTYPE projects a conversation to a sequence of message classes by replacing

each message in the conversation with its message class. Intuitively, the deterministic guard

condition requires that for each peer, according to the conversation protocol, when it is about to

send out a message, the guard that is used to compute the contents of the message is uniquely

decided by the sequence of message classes (note, not message contents) exchanged by the peer

in the past.

The decision procedure for the deterministic guard condition proceeds as follows: given a

conversation protocol R, obtain its coarse-1 projection C1PROJ,

R
S , and let C1PROJ,

R
S = ((P, M, Σ), A1,

..., An). For each i ∈ [1..n], regard Ai as a standard FSA, and get its equivalent deterministic FSA

(let it be Ai′). Now each state t in Ai′ corresponds to a set of states in Ai, and let it be represented

by T(t). We examine each state t in Ai′. For each message class c ∈ M, we collect the guards of

the transitions that start from a state in T(t) and send a message with class c. We require that all

guards collected for a state/message class pair (t, c) should be equivalent.

Running the algorithm on Figure 8(a) leads to the result that Figure 8(a) violates the

deterministic guard condition, because (intuitively) peer A has two different guards when

sending out α at the initial state. Formally, to show that the deterministic guard condition is

Realizability Analysis 29

violated, we can find two transitions (t1, (α, [a′ = 1]), t2) and (t3, (α, [a′ = 2]), t4), and two words

w = ε and w′ = β(2) that lead to the states t1 and t3, respectively. Since a run of w reaches t1, a run

of w′ reaches t3, and πA(πTYPE(w)) = πA(πTYPE(w′)) = ε. By Definition 7, the guards of the two

transitions should be equivalent. However, they are not equivalent, which violates the

deterministic guard condition.

Theorem 2. A conversation protocol R is realized by PROJ

R
S , C1PROJ,

R
S , and C2PROJ,

R
S if it

satisfies the deterministic guard condition, and its skeleton protocol satisfies the lossless join,

synchronous compatibility and autonomy conditions.

The main proof idea of Theorem 2 is as follows. First, we argue that if the skeleton

protocol satisfies the synchronous compatibility and autonomy conditions, then during any

(complete or partial) run of C1PROJ,D,

R
S , each message is consumed “eagerly”, i.e., when the input

queue is not empty, a peer never sends out a message or terminates.

The “eager consumption” argument can be proved using proof by contradiction (Fu,

Bultan, Su, 2003). Assume that there is a partial run against this argument, i.e., we can find a

corresponding partial run of the skeleton composition of C1PROJ,D,

R
S (which consists of the skeletons

of each peer of C1PROJ,D,

R
S) where a message class is not consumed eagerly (without loss of

generality, suppose this is the shortest one). Then there must be a pair of consecutive

configurations where a peer i has a message at the head of its queue and it sends a message rather

than receiving the message. Due to synchronous compatible condition we know that peer i

should be able to receive the message at the head of the queue immediately after it was sent. We

also know that due to autonomy condition peer i can only execute receive transitions if it has one

receive transition from a configuration. Then, sending a message will violate these conditions

and create a contradiction. Hence we conclude that each message class is consumed eagerly.

Realizability Analysis 30

Now it suffices to show that C(C1PROJ,D,

R
S) ⊆ L(R), as L(R) ⊆ C(C1PROJ,D,

R
S) is obvious. Let

R = ((P, M, Σ), A) and let C1PROJ,D,

R
S = ((P, M, Σ), A1, ..., An). Given a word w ∈ C(C1PROJ,D,

R
S), and

γ be the corresponding run, we can always construct a run γ′ of A to recognize w. Since πi(w) is

accepted by each peer Ai, πi(πTYPE(w)) is accepted by skeleton(Ai). Because skeleton(A) is lossless

join, it follows that πTYPE(w) is accepted by skeleton(A), and let T : τ1τ2...τ|w| be the path of

skeleton(A) traversed to accept πTYPE(w). Since each transition in skeleton(A) is the result of

dropping the guard of a corresponding transition, we can have a corresponding path T′ in A by

restoring message contents. Notice that we can always do so because in each step, the global

configuration allows the guards to be evaluated as if it is executed synchronously. This results

from the fact that whenever a message is to be sent, its contents always depend on the latest

copies of arrived messages, because queue is empty, and every input message which causally

happens before it has already been consumed.

Based on Theorem 2, we obtain a light-weight realizability analysis for conversation

protocols. We check the first three realizability conditions on the skeleton of a conversation

protocol (i.e, without considering the guards), and then examine the fourth realizability condition

by syntactically checking the guards (but actually without analyzing their data semantics).

Realizability Analysis 31

Figure 9. Alternating Bit Protocol

SYMBOLIC ANALYSIS

Sometimes skeleton analysis may be too coarse and fail to show the realizability of a

realizable conversation protocol. For example, Figure 9(a) presents an alternating bit protocol

which is realizable. However, the skeleton analysis presented in the previous section fails to

show its realizability.

Let Aa, Ab, Ac be the three conversation protocols shown in Figure 9. The conversation

protocol Aa consists of two peers A and B. Message class α is a request, and message class β is

an acknowledgment. Both message classes contain an attribute called id. Message class γ is

Realizability Analysis 32

used by A to notify B the end of conversation. The protocol states that the id attribute of α

should alternate between 0 and 1, and every acknowledgment β must have the matching id. It is

clear that the conversation protocol is non-ambiguous and realizable; however, the skeleton

analysis fails to recognize it.

Clearly the projection of skeleton(Aa) to peer A does not satisfy the autonomy condition,

because at state 3, there are both input and output transitions. However, Aa is actually

autonomous. If we explore each configuration of Aa, we get Ab, the “equivalent” conversation

protocol of Aa. The pair of values associated with each state in Ab stands for the id attribute of α

and β. It is obvious that Ab satisfies the autonomy condition, and hence Aa should satisfy

autonomy as well. In fact to prove that Aa is autonomous we do not even have to explore each of

its configurations like Ab. As we will show later, it suffices to show Ac is autonomous.

Analysis of Autonomy Using Iterative Refinement

The examples in Figure 9 motivate the analysis of the autonomous condition using

iterative refinement (Fu, Bultan, Su, 2004c, 2005a) as follows: Given a conversation protocol A,

we can first check its skeleton. If the skeleton analysis fails, we can refine the protocol (e.g.

refine Aa and get Ac), and apply the skeleton analysis on the refined protocol. We can repeat this

procedure until we reach the most refined protocol which actually plots the transition graph of

the configurations of the original protocol (such as Ab to Aa). In the following, we first present the

theoretical background for the analysis of the autonomy condition using iterative refinement.

This analysis is based on the notion of simulation, which is defined below.

A transition system is a tuple (M, T, s, ∆) where M is the set of labels, T is the set of

states, s the initial state, and ∆ is the transition relation. Generally, a transition system can be

regarded as an FSA (or an infinite state system) without final states. On the other hand, a

Realizability Analysis 33

standard FSA (M, T, s, F, ∆) can be regarded as a transition system of (M, T, s, ∆); and a GA (M,

Σ, T, s, F, ∆) can be regarded as a transition system of the form (Σ, T′, s′, ∆′) where T′ contains

all configurations of the GA, and ∆′ defines the derivation relation between configurations.

Definition 8 (Simulation). A transition system A′ = (M′, T′, s′, ∆′) is said to simulate

another transition system A = (M, T, s, ∆), written as A ≤ A′, if there exists a mapping ρ : T � T′

and ξ : M � M′ such that for each (s, m, t) in ∆ there is a (ρ(s), ξ(m), ρ(t)) in ∆′. Two transition

systems A and A′ are said to be equivalent, written as A ! A′, if A ≤ A′ and A′≤ A.

Intuitively a transition A′ simulates A if we can find a corresponding action in A′ for

every action of A, i.e., A′ can subsume the set of actions of A. For example, the following is true

for the three conversation protocols Aa, Ab, Ac in Figure 9.

skeleton(Ab) ≤ skeleton(Ac) ≤ skeleton(Aa)

For example, in the simulation relation skeleton(Ac) ≤ skeleton(Aa), ρ maps states 1, 2, 3,

4, 5 in skeleton(Ac) to states 1, 2, 3, 3, 4 of skeleton(Aa) respectively, and ξ is the identity

function which maps each message class to itself. For another example, Aa ≤ skeleton(Aa), and Aa

≤ Ab ≤ Ac.

It is not hard to infer the following properties of simulation relation, detailed proof can be

found in Fu, Bultan, and Su’s work (2004c).

o For any GA A, A ≤ skeleton(A). In another word, the skeleton of a conversation protocol

simulates the protocol.

o For each GA A = (M, Σ, T, s, F, ∆) on a finite alphabet Σ, there is a standard FSA on

alphabet Σ such that A ! A′. This can be easily achieved by exploring the configuration

space of the GA protocol, which is finite.

Realizability Analysis 34

o If A ≤ A′ and A′ is autonomous, then A is autonomous. The proof follows directly from

the fact that each run of A has a corresponding run in A′. If during each run of A′,

autonomy condition is not violated, obviously any run of A will not violate it either.

From the above results, we can immediately infer the following:

Theorem 3. A GA conversation protocol is autonomous if its skeleton is autonomous.

Figure 10. The algorithm which examines the autonomy condition of a guarded conversation

protocol using iterative refinement.

Realizability Analysis 35

Based on Theorem 3 we have an error-trace guided symbolic analysis algorithm,

presented in Figure 10. If the input GA is autonomous, procedure AnalyzeAutonomy returns

null; otherwise it returns the error trace which is a list of configurations that eventually leads to

the violation of the autonomy condition. AnalyzeAutonomy starts from the input GA, and

refines it incrementally. During each cycle, it analyzes the skeleton of the current GA A′. If the

skeleton is autonomous, by Theorem 3, the procedure simply returns and reports that the input

GA is autonomous; otherwise, it identifies a pair of input/output transitions violating autonomy.

For example, the two transitions starting at state 3 of Figure 9(a) will be identified. Then the

Refine procedure is invoked to refine the current GA. This refinement process continues until

the input GA is proved to be autonomous or a concrete error trace is found.

The bottom part of Figure 10 presents the algorithm of the Refine procedure. Its input

includes two transitions (with guards g1 and g2 respectively) which lead to the violation of the

autonomy condition on the skeleton. The Refine procedure will try to refine the current GA by

splitting the source state of these two transitions. If refinement succeeds, the refined GA is

returned; otherwise, a concrete error trace is returned to show that the input GA is not

autonomous.

The first step of Refine is to compute the conjunction of the precondition of the two

guards, i.e., Pre(g1)∧Pre(g2). If the conjunction is satisfiable, there is a possibility that at

some configuration both transitions are enabled. Then we call the procedure FindPath to find

a concrete error trace, which will be explained later. If the conjunction is not satisfiable, we can

proceed to refine the GA. The basic idea is to split the source state of the two transitions into two

states, each corresponds to the precondition of one guard in the input. The transitions are re-

Realizability Analysis 36

wired correspondingly. Finally the procedure eliminates transitions that cannot be reached during

any execution of the GA.

For example, if Refine is applied to Figure 9(a) and the two transitions starting at state

3, it first computes the conjunction of the two preconditions: α.id ≠ β.id ∧ α.id = β.id. Obviously

the conjunction is not satisfiable. Then state 3 is split into two states, (states 3 and 4 in Fig. 9(c)),

and transitions are modified accordingly. Finally, unreachable transitions are removed, which

results in the GA in Figure 9(c).

Fig. 11. Generation of a concrete error trace

Realizability Analysis 37

The precondition operator Pre is a standard operator in symbolic model checking, in

which, all primed variables are eliminated using existential quantifier elimination. For example

given a constraint g as “a = 1 ∧ b′ = 1”, its precondition is Pre(g) � ∃a′ ∃b′ (a =

1∧ b′ = 1), which is equivalent to “a = 1”.

Figure 11 presents the algorithm to locate a concrete error trace. FindPath has three

inputs: a GA A, a state s in A, and a symbolic constraint g0. FindPath computes an error trace (a

list of configurations) which starts from the initial state of A, and finally reaches s in a

configuration satisfying constraint g0.

The algorithm of FindPath is a variation of the standard symbolic backward

reachability analysis used in model checking. It starts with the construction of a symbolic

transition system T based on the control flow as well as the data semantics of A. Then given the

target constraint g0, the main loop computes the constraint which generates g0 via transition

system T. The loop terminates when it reaches the initial configuration, or it reaches a fixed

point.

We use the following example to illustrate the symbolic backward analysis. In the

example of Figure 9(a), if we redefine the guard g2 as �.id = �.id ∧ �.id’ = �.id ,

when procedure Refine is called on Figure 9(a), the conjunction of preconditions of g1 and g2,

i.e., �.id = �.id , is satisfiable. Then procedure FindPath is called with inputs Figure 9(a),

state 3, and constraint �.id = �.id ∧ state = 3. The while loop of FindPath

eventually includes in variable path the following constraints:

1) �.id = �.id ∧ state = 3.

2) �.id = 1 ∧ state = 2.

3) state = 1.

Realizability Analysis 38

For example, given the formula (1) α.id = β.id ∧ state = 3 at state 3, the guard of the

transition from state 2 to state 3 is α.id ′ = α. id ∧ β.id ′=1∧ state′ = 3 ∧ state=2, using the

formula))('(/' TgM MM !" to compute its backward image at state 2 (where MMg /'
means to

substitute every message in M with its corresponding primed form) we have:

2state 1.id

))3state' 2state 1.id' .id.id'3state' .id'.id'('(

)))3state' 2state 1.id' .id.id'()3state .id.id(('(

))('(

/'

/'

=!="

=!=!=!=!=!=#"

=!=!=!=!=!=#"

!#

$

%$$%$

%$$%$

M

M

TgM

MM

MM

 Then the order of path is reversed, and cvalue is randomly generated which satisfies

constraint state = 1 and each message attribute has an exact value in cvalue. For example,

let cvalue be �.id =1 ∧ �.id = 0 , then the list ret will record the following

constraints:

1) �.id = 1 ∧ �.id = 0 ∧ state = 1.

2) �.id = 1 ∧ �.id = 0 ∧ state = 2.

3) �.id = 1 ∧ �.id = 1 ∧ state = 3.

It is not hard to see that the above list of system configurations captures an error trace leading to

state 3 which violates the autonomy condition.

Complexity of the algorithms in Figures 10 and 11 depends on the data domains

associated with the input GA. When the message alphabet is finite, they are guaranteed to

terminate. For infinite domains, a constant loop limit can be used to terminate algorithms by

force; however, the analysis is still conservative.

Symbolic Analysis of Other Realizability Conditions

It is interesting to ask: are there similar iterative analysis algorithms for the lossless join

and synchronous compatibility conditions? The answer is negative, because the lossless join and

Realizability Analysis 39

synchronous compatibility of a GA conversation protocol do not depend on those of its skeleton.

In another word, there exists a GA conversation protocol which is lossless join and whose

skeleton is not. There also exists a GA conversation protocol which is not lossless join however

its skeleton is. Similar observation holds for synchronous compatibility.

In the following we introduce “conservative” symbolic analyses for these two conditions.

We introduce the analysis for synchronous compatibility first. Recall the algorithm to check

synchronous compatibility of a FSA conversation protocol. The protocol is projected to each

peer and determinized (including ε-transition elimination). Then the Cartesian product is

constructed from the deterministic projection to peers. Each state in the Cartesian product is

examined. A state is called an illegal state if at the state some peer is not ready to receive a

message that another peer is ready to send. Note that, the determinization of each peer projection

is a necessary step. The analysis of synchronous compatibility for a GA conversation protocol

follows a same procedure. However, we have to discuss two different cases on GA conversation

protocols with finite or infinite domains. Given a FC conversation protocol R, we can always

construct its exact equivalent FSA conversation protocol (let it be R’), and use the synchronous

compatibility analysis for standard FSA protocols to analyze R’. However, for IC conversation

protocols we might not be able to do so, because there may not exist projections for IC

conversation protocols. In the following, we introduce a “conservative” symbolic analysis for the

synchronous compatible condition.

Given an IC (or FC) conversation protocol R, we can project it to each peer using coarse

projection (either Coarse Processing 1 or Coarse Processing 2 in Figure 5). Then we determinize

each peer in C1PROJ,

R
S (or C2PROJ,

R
S) using the DeterminizeGA in Figure 7. We construct the

product of those determinized GA. If no illegal state is found, the IC conversation protocol R is

Realizability Analysis 40

synchronous compatible. The method is conservative, i.e., if an illegal state is found, R might

still be synchronous compatible, because a coarse projection accepts a superset of the language

accepted by the exact projection. However, if a conversation protocol is identified as

synchronous compatible by the approximation algorithm, it is guaranteed to be truly synchronous

compatible.

The analysis of lossless join condition is similar. Recall that each GA A can be regarded

as a transition system, and can be represented symbolically. Let T(A) denote the symbolic

transition system derived from A. From the initial configuration of A, we can compute all the

reachable configurations of T(A), and let the set of reachable configurations be SA. Given A1 and

A2, the following statement is true:

(SA1 ∧ T(A1) ⇒ SA2 ∧ T(A2)) ⇒ (L(A1) ⊆ L(A2)).

Intuitively, the equation means that if A2 as a transition system is a superset of A1, i.e., for any

reachable configuration, there are more enabled transitions in T(A2) than T(A1), then L(A2) should

be a superset of L(A1). The equation naturally implies a symbolic analysis algorithm. Given a

conversation protocol R (with finite or infinite domains), let its GA specification be A. We can

project A using coarse projection. Then construct the product of C1PROJ,

R
S (or C2PROJ,

R
S), and let it be

A′. Then we construct T(A) and T(A′), and compute SA and SA′. It is not hard to see that if (SA′ ∧

T(A′)) ⇒ (SA ∧ T(A)), we can conclude that R is lossless join. The above symbolic analysis

algorithm is decidable when the domain is finite. When R has an infinite domain, we can simply

use the approximate closure of SA and SA′, and it is still a conservative algorithm.

Realizability Analysis 41

CONCLUSION

This chapter presents Bultan, Fu, Hull, and Su’s discovery on the realizability problem of

conversation protocols. The analysis can be conducted on two levels: the abstract level without

data semantics and the concrete level with message contents. The chapter reveals the relationship

between the realizability analyses on the two models. It is shown that realizability of the

“skeleton” of a conversation protocol does not imply the realizability of the conversation

protocol itself. Only by enforcing an additional condition, we are able to identify some classes of

realizable conversation protocols. When skeleton analysis is not precise enough, refined

symbolic realizability analyses can be used to improve both the accuracy and efficiency of the

analysis.

The skeleton realizability analysis presented in this chapter has been implemented as a

part of the Web Service Analysis Tool (WSAT) (Fu, Bultan, & Su, 2004d). The front-end of

WSAT accepts industry web service standards such as WSDL and BPEL. The core analysis

engine of WSAT is based on the intermediate representation GA. The back-end employs model

checker SPIN (Holzmann, 1997) for verification. At the front-end, a translation algorithm from

BPEL to GA is implemented. Then at the core analysis part, realizability analysis and another

similar analysis called “synchronizability analysis” are implemented to avoid the difficulty of

verification in the presence of asynchronous communication. At the back-end, translation

algorithms are implemented from GA to Promela, the input language of SPIN. Based on the

results of the realizability and the synchronizability analyses, LTL verification at the back-end

can be performed using the synchronous communication semantics instead of asynchronous

Realizability Analysis 42

communication semantics. WSAT is applied to verify a wide range of examples, including

conversation protocols converted from IBM Conversation Support Project (IBM, n.d.), five

BPELS services from BPEL4WS standard and Collaxa.com, and the SAS example (Fu, Bultan,

Su, 2004d). The empirical experiences suggest that the realizability conditions presented in this

chapter can capture a large class of real-world web service designs.

Realizability Analysis 43

REFERENCES

Abadi, M., Lamport, L., & Wolper, P. (1989). Realizable and unrealizable specifications of
reactive systems. In Proceedings of 16th International Colloquium on Automata,
Languages and Programming, 1–17.

Alur, A., Etessami, K., & Yannakakis, M. (2001). Realizability and verification of MSC graphs.
In Proceedings of 28th International Colloquium on Automata, Languages, and
Programming, 797–808.

Alur, R., McMillan, K. , & Peled, D. (2000). Model-checking of correctness conditions for
concurrent objects. Information and Computation, 160, 167–188.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., et al, (2003),
Business Process Execution Language for Web Services (BPEL) 1.1. Retrived from
http://www.ibm.com/developerworks/library/wsbpel.

Banerji, A., Bartolini, C., Beringer, D., Chopella, V. , Govindarajan, K., Karp, A., Kuno, H. ,
Lemon, M. , Pogossiants, G., Sharma, S., & Williams, S. (2002). Web Services
Conversation Language (WSCL) 1.0. Retrieved from
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/.

Betin-Can, A., Bultan, T., Fu, X. (2005). Design for verification for asynchronously
communicating Web services, in Proceedings of 14th international conference on World
Wide Web (WWW).

Brand, D., & Zafiropulo, P. (1983). On communicating finite-state machines. Journal of the
ACM, 30(2), 323–342.

Bultan, T., Fu, X., Hull, R., & Su, J. (2003). Conversation specification: A new approach to
design and analysis of e-service composition. In Proceedings of the Twelfth International
World Wide Web Conference (WWW), 403–410.

Canfora, G., & Di Penta, M. (2006). Testing Services and Service-Centric Systems: Challenges
and Opportunities. IT Professional, 8(2), 10–17.

Clarke, E. M., Grumberg, O., & Peled, D. A. (2000). Model Checking. MIT Press.
Foster, H. , Uchitel, S., Magee, J. , & Kramer, J. (2003) Model-based verification of web service

compositions. In Proceedings of 18th IEEE International Conference on Automated
Software Engineering Conference (ASE), 152–161.

Fu, X., Bultan, T. & Su, J. (2003). Conversation protocols: A formalism for specification and
verification of reactive electronic services. In Proeedings of 8th International Conference
on Implementation and Application of Automata (CIAA), 188–200.

Fu, X., Bultan, T., & Su, J. (2004a). Analysis of interacting web services. In Proceedings of 13th
International World Wide Web Conference (WWW), 621–630.

Fu, X., Bultan, T., & Su, J. (2004b). Model checking XML manipulating software. In
Proceedings of 2004 International Symosium on Software Testing and Analysis (ISSTA),
252–262.

Realizability Analysis 44

Fu, X., Bultan, T., & Su, J. (2004c).Realizability of conversation protocols with message
contents. In Proceedings of 2004 IEEE International Conference on Web Services
(ICWS), 96–103.

Fu, X., Bultan, T., & Su, J. (2004d). WSAT: A tool for formal analysis of web service
compositions. In Proceedings of 16th International Conference on Computer Aided
Verification (CAV), 510–514.

Fu, X., Bultan, T., & Su, J. (2004e). Conversation protocols: A formalism for specification and
analysis of reactive electronic services. Theoretical Computer Science, 328(1-2), 19–37.

Fu, X., Bultan, T., & Su, J. (2005a). Realizability of conversation protocols with message
contents (Extended version of the ICWS’04 paper), International Journal of Web
Services Research (JWSR) 2(4), 68–93.

Fu, X., Bultan, T., & Su, J. (2005b). Synchronizability of conversations among web services.
IEEE Transactions on Software Engineering, 31 (12), 1042–1055.

Hanson, J. E., Nandi, P., & Levine, D. W. (2002). Conversation-enabled web services for agents
and e-business. In Proceedings of 2002 International Conference on Internet Computing
(IC), 791–796.

Hanson, J. E., Nandi, P., & Kumaran, S. (2002). Conversation support for business process
integration. In Proceedings of 6th IEEE International Enterprise Distributed Object
Computing Conference (EDOC), 65–74.

Holzmann, G. J. (1997) The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295.

IBM. (n.d.). Conversation Support Project. Retrieved Feb 14, 2007, from
http://www.research.ibm.com/convsupport/.

ITU-T. (1994). Message Sequence Chart (MSC).Geneva Recommendation Z.120.
Microsoft. (n.d.). MicroSoft Message Queuing Service. Retrieved Feb 14, 2007, from

http://www.microsoft.com/msmq/.
Narayanan, S. & Mcllraith, S. A. (2002) Simulation, verification and automated composition of

web services. In Proeedings of 11th International World Wide Web Conference (WWW),
77–88.

Pnueli, A., & Rosner, R. (1989). On the synthesis of a reactive module. In Proceedings of 16th
ACM Symposium on Principles of Programming Languages, 179–190.

Sun. (n.d.) Java Message Service. Retrieved Feb 14, 2007, from
http://java.sun.com/products/jms/.

World Wide Web Consortium. (2001). Web Services Description Language (WSDL) 1.1.
Retrieved Feb 14, 2007, from http://www.w3.org/TR/wsdl, March 2001.

World Wide Web Consortium. (2002). Web Service Choreography Interface (WSCI) 1.0.
Retrieved Feb 14, 2007, from http://www.w3.org/TR/2002/NOTE-wsci-20020808.

