UNIVERSITY of CALIFORNIA
Santa Barbara

Specification and Automated Verification of
Concurrent Software Systems

A Dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy
in

Computer Science
by

Tuba Yavuz-Kahveci

Committee in charge:

Professor Tevfik Bultan, Chair
Professor Richard Kemmerer
Professor Ambuj Singh

June 2004

The dissertation of Tuba Yavuz-Kahveci is approved.

Professor Richard Kemmerer

Professor Ambuj Singh

Professor Tevfik Bultan, Committee Chair

June 2004

Specification and Automated Verification of Concurrent Software Systems

Copyright (© 2004
by

Tuba Yavuz-Kahveci

iii

To my parents: Cahide and Mustafa Yavuz

v

Acknowledgements

First and foremost, I would like to thank my advisor Professor Tevfik Bultan.
It is his enthusiasm in doing model checking research that attracted me to the
field. Throughout the five years in my Ph.D. study, I have always felt his support
and encouragement. I am very grateful to him for teaching me how to be a good
researcher and, maybe more importantly, how to be a good writer. I would like
to thank Professor Ambuj Singh for being a mentor for me from the first day
I came to UCSB and being a member of the committee. I would like to thank
the committee member Professor Richard Kemmerer for the useful comments
and the feedback. I would like to thank Professor Oscar Ibarra for teaching the
most exciting course that I have ever taken in my life. I would like to thank my
dear husband Tamer Kahveci for his support, understanding, and encouragement,
which made the seamless integration of the academic life with the family life
possible. I would like to thank my parents, Cahide and Mustafa Yavuz, for making
the quality of their children’s education their number one priority. I would like
to thank my brothers Osman Yuksel and Emre Yavuz for their constant love and
support. I would like to thank my little son Omer Kahveci for giving me energy
through his love. I would like to thank the graduate students Aysu Betin-Can,
Constantinos Bartzis, Xiang Fu, Lingli Zhang, Murat Tuncer, and Christian Lang
for their friendship. I have always enjoyed discussing research related issues with
them. Last, but not least, I would like to thank the computer science department

staff for their help in making things work.

June 1997

August 1999

June 2004

Fields of Study

Publications

Curriculum Vitae
Tuba Yavuz-Kahveci

Bachelor of Science
Department of Computer Science
Bilkent University, Ankara, Turkey

Master of Science
Department of Computer Science
Bilkent University, Ankara, Turkey

Doctor of Philosophy
Department of Computer Science
University of California, Santa Barbara

Software engineering, automated verification, model check-
ing, static analysis.

Tuba Yavuz-Kahveci and Tevfik Bultan. A Symbolic
Manipulator for Automated Verification of Reactive Sys-
tems with Heterogeneous Data Types. International
Journal on Software Tools for Technology Transfer
(STTT), vol. 5, no. 1, pp. 15-33, November 2003.

Tuba Yavuz-Kahveci and Tevfik Bultan. Automated
Verification of Concurrent Linked Lists with Counters.
Proceedings of the 9th International Static Analysis
Symposium (SAS 2002). M. V. Hermenegildo, G. Pueble
eds., LNCS 2477, pp. 69-84, Springer, Madrid, Spain,
September 2002.

Tuba Yavuz-Kahveci and Tevfik Bultan. Specification,
Verification, and Synthesis of Concurrency Control
Components. Proceedings of the 2002 ACM/SIGSOFT
International Symposium on Software Testing and Anal-
ysis (ISSTA 2002), pp. 169-179, Via di Ripette, Rome,
Ttaly, July 22-24, 2002.

Tuba Yavuz-Kahveci and Tevfik Bultan. Heuristics for
Efficient Manipulation of Composite Constraints. Pro-
ceedings of the 4th International Workshop on Frontiers
of Combining Systems (FroCoS 2002), Alessandro Ar-

vl

mando, ed., LNAI 2309, pp. 57-71, Springer, Santa
Margherita Ligure, Italy, April 8-10, 2002.

Tuba Yavuz-Kahveci, Murat Tuncer, and Tevfik Bul-
tan. A Library for Composite Symbolic Representa-
tions. Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2001), Tiziana Margaria and
Wang Yi, eds., LNCS 2031, pp. 52-66, Springer, Gen-
ova, Italy, April 2001.

Tevfik Bultan and Tuba Yavuz-Kahveci. Action Lan-
guage Verifier. Proceedings of the 16th IEEE Interna-
tional Conference on Automated Software Engineering
(ASE 2001), pp. 382-386, Coronado Island, California,
November 2001.

Tuba Yavuz-Kahveci, Tamer Kahveci, and Ambuj Singh.
Buffering of Multimedia Index Structures. The Interna-
tional Society for Optical Engineering (SPIE) - Internet
Multimedia Management Systems, Boston, 2000.

vii

Abstract

Specification and Automated Verification of Concurrent Software Systems
by

Tuba Yavuz-Kahveci

Correctness is the most important quality of software systems. This disserta-
tion focuses on automated verification of concurrent software systems using sym-
bolic model checking. Model checking techniques exhaustively explore the state
space of a system in order to determine whether it satisfies the given temporal
properties such as safety and liveness. Use of symbolic representations (compact
data structures for efficiently encoding the state space) in model checking has
enabled the verification of systems with large (even infinite) state spaces.

In order to make symbolic model checking a viable technique for software sys-
tems, we have designed several tools and techniques. We have built the Compos-
ite Symbolic Library to provide a framework for combining different, type-specific
symbolic representations. Our infinite-state symbolic model checker, the Action
Language Verifier, uses the Composite Symbolic Library to implement the model
checking algorithms. We use the Action Language to specify the behavior of
concurrent, software systems.

Based on these tools, we have proposed an approach for automatic generation
of concurrency controller implementations that are correct by construction. We
have applied our approach to a case study in airport ground traffic control.

We have extended our verification technique to verify invariant properties of

concurrent linked lists. Our composite framework enables the verification of in-

viii

variant properties that relate the shape of the linked list to the integer variables

used in the specification.

1X

Contents

List of Tables
List of Figures

1 Introduction

1.1 Summary of Contributions
1.2 Outline of the Dissertation

2 The Action Language

21 ACaseStudy Lo
2.2 Syntax of the Action Language
2.3 Semantics of the Action Language
24 Related Work o oo

3 The Composite Symbolic Library

3.1 The Composite Symbolic Representation

3.2 Manipulation of the Composite Representation

3.3 Heuristics for Efficient Automated Verification with the Composite
Representation
3.4 Experimental Evaluation of the Heuristics

3.5 Related Work

4 Action Language Verifier

4.1 Fixpoint Computations
4.2 Heuristics Lo
4.3 Parameterized Verification
4.4 Counter-Example Generation
4.5 Experimentso

4.6 Related Work 102

5 Automated Concurrency Controller Synthesis 104
5.1 Concurrency Control with Monitors 106
5.1.1 Monitorsin Java 107

5.1.2 Specifying Monitors in the Action Language 109

5.2 Synthesis of Monitors oL o000 111
5.2.1 Specific Notification Pattern 113

5.3 Related Work oL 120

6 Verifying Concurrent Linked Lists 122
6.1 An Example Concurrent Linked List 124
6.2 Pattern-based Representation 130
6.2.1 Pattern-based summarization 135

6.2.2 Manipulation of pattern-based representation 140

6.2.3 Improving the precision 149

6.3 Integrating Shape Analysis to Composite Representation 155
6.3.1 Encoding Shape Graphs with BDDs 159

6.4 Experimentso Lo L 160
6.5 Related Work Lo 161

7 Conclusions and Future Work 165
7.1 Future Work 167
A-1 Action Language Specifications 169
A-2 Proofs for the Pattern-Based Representation 170
Bibliography 189

xi

List of Tables

2.1

3.1
3.2

3.3

3.4

3.5

3.6

The transition systems that correspond to the modules runway,
environment, and main of the Action Language specification in
Figure 0.6. I, S, and R denote the initial states, the state space,
and the transition relation, respectively..

List of problem instances used in the experiments
Sizes of the transition relations for the problem instances used in
the experiments L
Maximum fixpoint iteration result sizes and the number of fixpoint
iterations for the optimized version of the Composite Symbolic Li-
brary for problem instances used in the experiments
Verification time (in secs) results for different versions of the simpli-
fication heuristic vs. no simplification (1 means that the program
ran out of memory, > 2 means that the execution did not termi-
nate in x seconds, and (L) indicates that the specification has been
verified for a liveness property)
Verification memory (in Mbytes) results for different versions of
the simplification heuristic vs. no simplification (1 means that the
program ran out of memory, > x means that the execution did not
terminate in x seconds, and (L) indicates that the specification has
been verified for a liveness property)
Verification time (T, in seconds) and memory (M, in Mbytes) re-
sults demonstrating the impact of different heuristics (— denotes
exclusion of the specified heuristic and All-Heuristics denotes that
all the heuristics are enabled)

xii

26

a0

52

33

o4

35

4.1

4.2

4.3

4.4

6.1
6.2

6.3
6.4
6.5

The transitions that correspond to the actions of the Action Lan-
guage specification in Figure 0.26. — and + denote exclusion and
inclusion, respectively. oL
The results of the first 4 iterations of computing EF = puZ.¢ v
Pre(Z) with and without the marking heuristic.— and + denote
exclusion and inclusion, respectively.
Transition system information for an instantiation of Departing
module in Figure 0.3 and arbitrary number of instantiations of
Departing module using counting abstraction. S denotes the state
space, I denotes the initial states, and R denotes the transition re-
lation. r; and ry denote the atomic transitions that correspond
to reqTakeOff and leave, respectively. parkedC, depFlowC, and
takeOffC denote the number of airplanes in parked, depFlow, and
takeOff modes, respectively. C is a parameterized constant that
denotes the number of departing airplanes.
Sizes of the transition relations for the problem instances used in
the experiments. PAX D denotes arbitrary number (P) of arriving
(A) airplanes and X number of departing D airplanes. PAPD
denotes the arbitrary number of departing and arriving airplanes.

Summarization patterns for concurrent linked lists.
List of the heap formulas that can appear in guard and update
parts of a specification (id; and id, are heap variables and sel is a
field selector)
The operations and the corresponding interference constraints. . .
Verification results for the concurrent linked list specifications. . .
Safety properties of the concurrent linked list specifications.

xiii

79

80

87

97

List of Figures

1.1
2.1
2.2
2.3

24
2.5

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

3.9

Architecture of the Action Language Verifier Tool

An airport ground network similar to that of the Seattle Tacoma
International Airporto Lo
The Action Language Specification of the Airport Ground Traffic
Control Case Study
Syntax of the Action Language
Syntax of a composite formula 0L,
A sample Action Language specification modeling status change of
runway 16L as the relevant event occurs.

Class diagram for the Composite Symbolic Library
An example composite formula. a is an integer variable and b is a
boolean variable.00 oo L
An instance of the CompSym class representing the composite for-
mulain Fig. 0.8o
Algorithm for checking the subsumption relation between two com-
posite atoms L.
Algorithm for checking the subsumption relation between two com-
posite formulaso oo
Algorithm for checking emptiness of a composite atom
Algorithm for checking satisfiability of a composite formula
Algorithm for computing the pre-condition of a composite atom
with respect to a composite atom L.
Algorithm for computing the pre-condition of a composite formula
with respect to a composite formula

3.10 Algorithm for computing the complement of a composite atom . .
3.11 Algorithm for computing the complement of a composite formula

Xiv

10
11
12
14

25
32
34
34
36
37
38
39
40
41

42
42

3.12

3.13 A pre-condition algorithm with subsumption check and disjunction

3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

Algorithm for computing the least fixpoint for EF

A more efficient algorithm for computing the least fixpoint for EF

Class diagram of the composite model checker
The algorithm for computing the states that satisfy EXp
The algorithm for computing the states that satisfy EGp
The algorithm for computing the states that satisfy p EU ¢
The algorithm for computing the states that satisfy p AU ¢
A sample Action Language specification.
The result of the first three iterations of computing EF(z > y)
naively for the Action Language specification given in Figure 0.26.
I, I, and I5 denote the result of the first, the second, and the third
iteration, respectively. pre a; denotes that the constraint pointed by
the arrow is obtained by performing the pre-condition computation
on the source constraint using action a;, where 1 <7 < 5. ..

The results of the first three iterations of computing EF(x > y) for
the Action Language specification given in Figure 0.26. I, I3, and
I3 denote the results of the first, the second, and the third iteration,
respectively. I} and I} denote the results of the iterations after the
simplification operation and Ij denotes the result of the iteration
after the widening operation.
The results of the first three iterations of computing FG(z < y)
for the Action Language specification given in Figure 0.26. None
denotes the states with no successors. I; and I, denote the results
of the first and the second iterations, respectively. I} denotes the
result of the iteration after the collapsing operation.
The result of the first three iterations of computing FF(z > v)
using the Marking heuristic for the Action Language specification
given in Figure 0.26. I, Iy, and I3 denote the results of the first, the
second, and the third iterations, respectively. pre a; denotes that
the constraint pointed by the arrow is obtained by performing the
pre-condition computation on the source constraint using action a;,
where 1 < ¢ < 5. The constraints that are marked by the Marking
heuristic is enclosed in a rounded-corner box.

XV

72

73

76

4.11

4.12

4.13

4.14
4.15

4.16

4.17
4.18

5.1
5.2
9.3
5.4

6.1

6.2

6.3

6.4

6.5

6.6
6.7

The dependency graph for the Action Language specification in
Figure 0.26. A directed edge between the nodes a; and a; means
that the constraints generated as a result of the pre-condition com-
putation using the action a; may enable the action a; for computing
the pre-condition computation. L. 82
The results of the first three iterations of computing EF(z > y) us-
ing the Dependency heuristic for the Action Language specification
given in Figure 0.26. I, I5, and I3 denote the results of the first,
the second, and the third iterations, respectively. pre a; denotes
that the constraint pointed by the arrow is obtained by perform-
ing the pre-condition computation on the source constraint using

action a;, where 1 <4 <b5. 84
The algorithm for applying counting abstraction to a module m of
an Action Language specification. 89
The algorithm for applying counting abstraction to a formula f. . 90
The algorithm for applying counting abstraction to an action a of
modulem.o L 91
The algorithm for generating witness for the CTL formula ¢ in
{EX,EU,EG} basis starting from state s. 94
Comparison of the Dependence and the Marking Heuristics 98
A counter-example path as output by the Action Language Verifier. 100
A Monitor Template in the Action Language 110
Airport Class Using the specific notification pattern 115
Extracting Synchronization Information. 117
The translation of (a) guarded and (b) unguarded actions 118
A Java class that implements a queue using a circular doubly linked
list with concurrent enqueue and dequeue operations 125
An Action Language specification for the circular doubly linked list
implementation given in Figure 043 126
Specification of the enqueue method of the Queue class in the Ac-
tion Language 126
Specification of the dequeue method of the Queue class in the Ac-
tion Languageo 127
Part of the reachable states for the Enqueue module given in Figure
0.45 when pc=pl and lock=true. 128
A circular doubly linked linked list with four nodes. 130
The algorithm for summarizing a given shape graph SG. 137

Xvi

6.8 The algorithm for finding the maximal matching sets of a shape
graph SG reachable formnodem.
6.9 The algorithm for checking the constraints 2-4 of maximal matching
sets for the given candidate set maxSet.
6.10 The output of the summarization operation on the shape graph of
Figure 0.48
6.11 The output of the type-2 left-materialization operation on the shape
graph of Figure 0.52 o0,
6.12 The output of the type-2 right-materialization operation on the
shape graph of Figure 0.52o
6.13 The algorithm for computing the post-condition of a heap config-
uration represented by a shape graph SG with respect to a heap
update formular Lo
6.14 The algorithm for setting a heap variable tonull

138

139

140

142

143

150

6.15 The algorithm for setting a field of a heap variable to a heap variable.150

6.16 The algorithm for setting a field of a heap variable to null.

150

6.17 The algorithm for setting a heap variable to a field of a heap variable.151

6.18 The algorithm for setting a heap variable to a heap variable. . . .
6.19 The algorithm for setting a heap variable to a new node.
6.20 The algorithm for setting a field of a heap variable to a field of a
heap variable. o oo
6.21 The algorithm for setting a field of a heap variable to a new node.
6.22 The approximate reachable state computation for the Enqueue mod-
ule given in Figure 0.45 when pc=p1 and lock=true. I, Is, I7, Is,
and Iy denote the result of the fixpoint iterations. [I5 is shown in
Figure 0.47. o

A.1 The Action Language Specification of the Airport Ground Traffic
Control Case Study. The modules Departing and Arriving are
given in Figures A.66 and A.67, respectively.

A.2 The module Departing of the Action Language Specification given
in Figure A.65 L

A.3 The module Arriving of the Action Language Specification given
in Figure A.65o

A.4 The specification of Bakery Mutual Exclusion Protocol for two pro-
cesses in the Action Language.

A.5 The specification of Ticket Mutual Exclusion Protocol for two pro-
cesses in the Action Language.

xvii

152
152

153
154

158

169

170

174

175

A.6 The specification of solution to the Sleeping Barber Problem in the

Action Language. Lo 177
A.7 The specification of a Cache Coherence Protocol in the Action Lan-

BUAZE. « « v v e e e e e e e e e e e e 178
A.8 The specification of a Cache Coherence Protocol in the Action Lan-

BUALE. « v v v e e e e e e e e e e e e e e 179
A.9 The specification of a solution to the Readers-Writers Problem in

the Action Language. 180
A.10 The specification of a solution to the Bounded-Buffer Producer-

Consumer Problem in the Action Language. 181
A.11 The specification of a Insertion Sort for Array Bounds Checking in

the Action Language. L. 182
A.12 The specification of an Office Light Control System in the Action

Language. Lo 183

A .13 The specification of a Safety Injection System in the Action Language.184
A.14 The specification of a queue using a singly linked list in the Action

Language. Lo 185
A.15 The specification of a queue using a doubly linked list in the Action

Language. Lo 186
A.16 The specification of a queue using a linked list with connection to

the last element in the Action Language. 187
A.17 The specification of a queue using a linked list with data and con-

nection to the last element in the Action Language. 188

xviil

Chapter 1

Introduction

Correctness is the most important quality of software systems. There are various
techniques for assuring the correctness of software systems such as testing and
automated verification. Testing involves analysis of a software system for only a
subset of all the possible inputs/events. Although testing is widely used in the
software industry, it can only show the existence of errors but not their absence
(30].

Automated verification techniques require both software systems and their
correctness properties to be specified as mathematical objects in order to formally
reason about them. Model checking is an automated verification technique, which
exhaustively explores the state space of a system in order to verify that it satis-
fies a given property. Model checking techniques vary in the way they represent
the state space. Explicit-state model checking enumerates the set of all possi-
ble states; hence, it can only verify properties of finite state systems. Symbolic
model checking, on the other hand, uses symbolic representations to encode the
state space, which enables the representation of large (even infinite) state spaces

in a compact way. Hence, it is possible to verify systems with very large state

Introduction Chapter 1

spaces using symbolic model checking [19]. Although the automated verification
of infinite state systems is undecidable, symbolic model checking can be combined
with conservative approximation techniques, which can effectively verify or falsify
a large set of properties. The disadvantage of approximate analysis is that some-
times the result of the analysis can be inconclusive. In some cases, it is possible
to verify (or falsify) a larger set of properties by increasing the precision of the
approximate analysis.

In our research, we have focused on symbolic model checking of infinite state
concurrent software systems. QOur main objective is to make symbolic model
checking a viable technique for the verification of concurrent software systems.
We think that verifying software systems at the programming language level is
not feasible due to the existence of implementation details, which increase the
size of the state space. Instead, we verify software systems at a higher level of
abstraction using a specification language, which is called the Action Language.
Software components that implement these specifications can be automatically
synthesized after the specifications are verified for certain correctness properties.

We have designed and built a tool, which is called the Action Language Ver-
ifier, for the automated verification of concurrent software specifications. The
architecture of our tool is shown in Figure 1.1. Our tool consists of four main
parts: 1) The front-end, 2) The symbolic manipulator, 3) The Action Language
translator, and 4) The model checker. Our tool accepts a specification in the
Action Language as input. The Action Language is a high-level specification lan-
guage for reactive systems. The front-end of our tool, which consists of a lexer and
a parser, generates an abstract syntax tree from the input Action Language spec-
ification. The Action Language translator generates a symbolic transition system

from the abstract syntax tree using our symbolic manipulator, which is called the

Introduction Chapter 1

FRONTEND | ACTIONLANGUAGE TRANSLATOR MODEL CHECKER ~Verified
. Abe mbolic - mbolic mbolic
Action st 5?’lansitio Counting arlansitio . ixpoint| Counter
Language|— d Abstractor Verifier Example |—»| Counter
Spec i System Sysfem Iterates | Generator Example
e g R s \Unafl)nllet?a] ity
H Verity or s
 MANIPULATOR [Composite]
i mbolic
ibrary

Figure 1.1: Architecture of the Action Language Verifier Tool

Composite Symbolic Library. The Counting Abstractor, which is a part of the
Action Language translator, can automatically generate transition systems that
are parameterized in the number of concurrent processes using an abstraction
technique called counting abstraction. The model checker uses symbolic model
checking along with infinite-state verification heuristics to analyze correctness of
the symbolic transition system for Computation Tree Logic (CTL) properties.
CTL is a formalism that can be used to express safety and liveness properties.
For the verification of infinite-state transition systems, the Action Language Ver-
ifier may not be able to give a definite answer. When the correctness property is
falsified, it can generate a counter-example path, which can be used to find the
source of the failure.

Section 1.1 summarizes our contributions along with presentation of the under-

lying motivation for our work. Section 1.2 explains an outline of the dissertation.

1.1 Summary of Contributions

Specification of a concurrent software system may include multiple data types.
Effective symbolic analysis of such a specification would require the ability to ma-

nipulate the symbolic representations for several data types compositionally. To

Introduction Chapter 1

serve this purpose we have designed and implemented the Composite Symbolic Li-
brary [69, 66, 68|, which is a symbolic manipulator for systems with heterogeneous
data types. It combines different, type-specific symbolic representations using a
disjunctive representation. The implementation of each symbolic representation
provides the basic set manipulation and the pre-condition and the post-condition
operations, which are sufficient to implement symbolic model checking algorithms.
We have designed and implemented several heuristics for efficient manipulation
of the composite symbolic representation and shown their effectiveness on a large
set, of examples. The earlier versions of the Composite Symbolic Library provided
the symbolic representations for boolean and integer types. Recently, we have ex-
tended the Composite Symbolic Library with a symbolic representation for heap
type for the automated verification of concurrent linked lists [65]. The extensible
design of the Composite Symbolic Library enabled other researchers to extend it
with other symbolic representations and to use it in their research [42, 6].

We have designed and implemented the Action Language Verifier
[17], which is an infinite state symbolic model checker. It verifies CTL prop-
erties of concurrent systems specified in the Action Language [13]. The Action
Language Verifier uses the Composite Symbolic Library to implement the verifi-
cation algorithms for symbolic model checking. It employs several heuristics to
accelerate or to ensure the termination of the analysis. We have also designed and
implemented the heuristics for improving the performance of the Action Language
Verifier.

The Action Language is the specification language of the Action Language
Verifier. The Action Language is a modular language for specifying concurrent
software systems. It supports both asynchronous and synchronous semantics of

concurrency where the communication is achieved via shared variables. Currently,

Introduction Chapter 1

the Action Language provides boolean, enumerated, and integer data types. We
formalized the semantics of the Action Language using denotational semantics ap-
proach. We have used the Action Language to specify several concurrent systems
including the concurrency controller of an airport ground traffic control simulation
software [67].

In [67] we have proposed an approach for developing reliable concurrency con-
trollers. Our approach involves i) the specification of a concurrency controller
using the Action Language ii) the verification of the Action Language specifica-
tion of the concurrency controller using the Action Language Verifier, and iii) the
automated generation of an efficient Java implementation for the verified concur-
rency controller specification using the Composite Symbolic Library.

We have integrated shape analysis to our automated verification framework.
Shape analysis involves the exploration of the shape related properties of data
structures that reside on the heap, such as linked lists. Since such data struc-
tures can grow arbitrarily large due to dynamic memory allocation, compact and
abstract representations are needed for encoding their unbounded state spaces.
We have proposed an approach for automatically verifying invariant properties of
concurrent singly linked lists in [65]. The novelty of our approach lies in its ability
to verify properties that relate the integer variables to the heap variables, e.g., we
can verify properties such as head = null = numlItems = 0. Recently, we have

extend the proposed approach to linked lists with multiple fields.

1.2 Outline of the Dissertation

Chapter 2 presents the Action Language in terms of its formal syntax and se-

mantics. It also provides a case study on airport ground traffic control. Chapter

Introduction Chapter 1

3 explains the Composite Symbolic Library in detail. It includes the symbolic
manipulation algorithms along with the time complexities, several heuristics for
efficient manipulation of the symbolic representations, and experimental evalua-
tion of the composite approach and the heuristics. Chapter 4 presents the Action
Language Verifier. It explains the fixpoint computations for non-total transition
systems, the heuristics for efficient image computations, the verification of parame-
terized systems, the counter-example generation, and the experimental evaluation
of the heuristics. Chapter 5 explains our approach for automated synthesis of con-
currency controllers. It focuses on monitors as a concurrency control mechanism
and proposes an approach for the specification and automated synthesis of efficient
monitor implementations in Java. Chapter 6 presents our pattern-based approach
for the automated verification of concurrent linked list specifications. It explains
the pattern-based symbolic representation of heap configurations, presents the
manipulation algorithms and the integration of the shape analysis technique to

the composite framework, and reports some experimental results.

Chapter 2

The Action Language

Formal specification is the first step of the formal reasoning process. Formal spec-
ification languages have been developed in order to ease the task of the users in
their mathematical formulation of both the system behavior and the correctness
properties. Most specification languages for reactive software systems have been
proposed without considering the automated verification. On the other hand,
most model checkers have come up with their own input languages for specifying
the transition system models instead of adopting the existing specification lan-
guages [58, 51]. Hence, to use a model checker, one has to translate the input
specification to the input language of the model checker. Most of the time such
translations are based on ad hoc techniques and result with unreadable transla-
tions. The Action Language [13] has been designed to come up with a specification
language which can compactly represent reactive software specifications. The Ac-
tion Language supports both synchronous and asynchronous compositions as the
basic operations. Asynchronous and synchronous composition operators of the
Action Language were initially defined in [13]. In this chapter we extend the lan-

guage by introducing a module hierarchy and the associated scoping rules. We

The Action Language Chapter 2

also added parameters to modules, which enables renaming of the variables for
each instantiation of a module.

Currently, the Action Language supports variables with boolean, enumerated,
and (unbounded) integer types. Additionally, one can declare parameterized inte-
ger constants, which enables specification of both data parameterized and control
parameterized systems. Parameterized constants are treated as variables that
have unknown initial values and do not change value.

This chapter is organized as follows. Section 2.1 presents our case study on
airport ground traffic control. Section 2.2 presents the syntax of the Action Lan-
guage. Section 2.3 presents the semantics of the Action Language. Finally, Section

2.4 discusses the related work.

2.1 A Case Study

Airport ground traffic control handles allocation of the airport ground network
resources such as runways, taxiways, and gates for the arriving and the depart-
ing airplanes. Simulations play an important role for the safety of the airport
ground traffic control. Simulations enable early prediction of possible runway in-
cursions, which is a growing problem at the busy airports throughout the world.
[70] presents a concurrent simulation program for modeling airport ground traffic
control using Java threads. As a case study, we model the concurrency control
component of this simulation program in the Action Language. We use the same
airport ground network model used in [70] (shown in Figure 2.1) similar to that of
the Seattle/Tacoma International Airport. There are two runways: 16R and 16L.
The Runway 16R is used by the arriving airplanes during landing. After landing,
an arriving airplane takes one of the exits C3-C8. After taxiing on C3-C8, the

The Action Language Chapter 2

arriving airplanes need to cross the runway 16L. After crossing the runway 16L,
they continue on to one of the taxiways B2, B7, B9-B11 and reach the gates in
which they park. The departing airplanes use the runway 16L for takeoff. The
control logic for the ground traffic of this airport must implement the following

rules:

1. An airplane can land (takeoff) using the runway 16R (16L) only if no airplane
is using the runway 16R (16L) at the moment.

2. An airplane taxiing on one of the exits C3-C8 can cross the runway 16L only

if no airplane is taking off at the moment.

3. An airplane can start using the runway 16L for taking off only if none of the
crossing exits C3-C8 are occupied at the moment. (The arriving airplanes

have priority over the departing airplanes.)
4. Only one airplane can use a taxiway at a time.

In the following sections and chapters we will show that the above control logic
can be specified in the Action Language, and its properties can be automatically

verified using the Action Language Verifier.

2.2 Syntax of the Action Language

An Action Language specification consists of a set of module definitions. Fig-
ure 2.2 shows the Action Language specification of the control logic for the airport
ground traffic control simulation software discussed in Section 2.1. The speci-
fication consists of three module definitions: main, Departing, and Arriving.

The module main (lines 1-36) models the airport ground traffic control system,

The Action Language Chapter 2

B B7 B9 B10 Bl

runway 16R

Figure 2.1: An airport ground network similar to that of the Seattle Tacoma
International Airport

the module Departing (lines 5-13) models a departing airplane, and the module
Arriving (lines 14-30) models an arriving airplane. The Action Language syntax
is given in Figure 2.3. An Action Language module consists of the formal param-
eter declarations, the local variable declarations, the initial state and the state
space specifications, the submodule definitions, the action definitions, the transi-
tion relation definition, and the temporal property specifications. In every Action
Language specification the top level module is named main and main module does
not have any formal parameters.

A module definition starts with the variable declarations. The variable decla-
rations consist of type definitions of the formal parameters and the local variable
declarations. The local variables and the formal parameters of a module are only
visible to the submodules of that module, i.e., lexical scoping is used. When an

identifier for a variable (which is either a local variable or a formal parameter) is

10

The Action Language Chapter 2

1 module main()

2 integer numRW16R, numRW16L, numC3 ...;

3 initial: numRW16R=0 and numRW16L=0 numC3=0 ...;

4 restrict: numRW16R>=0 and numRW16L>=0 and numC3>=0...;

5 module Departing()

6 enumerated pc {parked, depFlow,takeOff};

7 initial: pc=parked;

8 reqTakeOff: pc=parked and numRW16L=0 and numC3+numC4+numC5+
9 numC6+numC7+numC8=0 and pc’=take0ff and

10 numRW16L’=numRW16L+1;

11 leave: pc=takeOff and pc’=depFlow and numRW16L’=numRW16L-1;
12 Departing: reqTakeOff | leave;

13 endmodule

14 module Arriving()

15 enumerated pc {arFlow, touchDown, taxiTol6LC3, taxiTol6LC4,
16 taxiTo16LC5, taxiTol6LC6, taxiTol6LC7, taxiTol1l6LCS,

17 taxiFr16LB2, taxiFr16LB7, taxiFr16LB9, taxiFr16LB10,

18 taxiFri16LB11};

19 initial: pc=arFlow;

20 reqland: pc=arFlow and numRW16R=0 and pc’=touchDown and

21 numRW16R’=numRW16R+1;

22 exitRW3: pc=touchDown and numC3=0 and numC3’=numC3+1 and

23 numRW16R’=numRW16R-1 and pc’=taxiTol16LC3;

24 crossRW3: pc=taxiTo16LC3 and numRW16L=0 and numB2A’=numB2A+1
25 and pc’=taxiFr16LB2 and numC3’=numC3-1 and numB2A=0;

26 park2: pc=taxiFr16LB2 and pc’=parked and numB2A’=numB2A-1;

28 Arriving: reqland | exitRW3 | crossRW3 | park2 | ... ;

29 spec: invariant(pc=arFlow => eventually(pc=parked)) // P4
30 endmodule

31 main: Arriving() | Departing() ;

32 spec: invariant(numRW16R<=1 and numRW16L<=1) // P1

33 spec: invariant(numC3<=1) // P2

34 spec: invariant((numRW16L=0 and numC3+numC4+numC5+numC6+numC7+
35 numC8>0) => next (numRW16L=0)) // P3

36 endmodule

Figure 2.2: The Action Language Specification of the Airport Ground Traffic
Control Case Study

11

The Action Language Chapter 2

Module ::= module Id (IdL)

VarDecl Sys ModuleL Action ModTrans Prop

endmodule
ModuleL ::= Module ModuleL | e
VarDecl ::= boolean IdL ; | integer IdL ; | parameterized integer IdL ;

| enumerated IdL { IdL } ; | VarDecl VarDecl | €

Sys ::= dinitial : Form ; | restrict : Form ; | Sys Sys | €
ModInst ::= 1Id (IdL)
Comp ::= Id| ModInst| Comp | Comp | Comp & Comp
Action ::= Id: Form ; | Action Action | €
ModTrans ::= Id: Form ; | Id : Comp ;
Prop ::= spec : CtlForm ; | Prop Prop | €

Figure 2.3: Syntax of the Action Language

used in a formula it denotes the value of that variable in the current state. One
can refer to the value of a variable in the next state using a primed identifier, i.e.,
by appending a “’” character at the end of the identifier. We distinguish the two
by calling the former current state variables and the latter next state variables. In
the specification of Figure 2.2, integer variables model the shared resources of the
airport ground traffic control, which are runways and taxiways. For example, vari-
ables numRW16R and numC3 (line 2) denote the number of airplanes on the runway
16R and on the taxiway C3, respectively. The enumerated variables (pc of module
Departing (line 6) and pc of module Arriving, (lines 15-18) are used to encode
the states of the arriving and the departing airplanes. A departing airplane can

be in one of the following states: parked, take0ff, and depFlow, where the state

12

The Action Language Chapter 2

parked denotes that the airplane is parked at the gate, the state take0ff denotes
that the airplane is taking off from the runway 16L, and the state depFlow denotes
that the airplane is in the air departing from the airport. Similarly, an arriving
airplane can be in one of the following states: arFlow, touchDown, taxiToXY,
taxiFrXY and parked, where the state arFlow denotes that the airplane is in
the air approaching to the airport, the state touchDown denotes that the airplane
has just landed and is on the runway 16R, the state taxiToXY denotes that the
airplane is currently in the taxiway Y and is going to cross the runway X, the
state taxiFrXY denotes that the airplane is currently in the taxiway Y and has
just crossed the runway X, and finally, the state parked denotes that the airplane
is parked at the gate.

The initial states and the state space of a system are specified in terms of
composite formulas (Form) with the grammar given in Figure 2.4. A compos-
ite formula is obtained by combining boolean and integer formulas with logical
connectives. A boolean formula (BoolForm in Figure 2.4) consists of boolean
variables or constants combined with logical connectives. An integer formula
(IntForm in Figure 2.4) consists of integer variables or constants combined with
arithmetic operators, arithmetic predicates, logical connectives, and existential
or universal quantifiers. Note that, only multiplication with an integer constant
is allowed (Integer denotes an integer constant). For the formulas defining the
initial states and the state space, we additionally impose the restriction that only
the current state variables appear in the formula. In the specification of Figure
2.2, a departing airplane is initially in parked mode (line 7), whereas an arriving
airplane is initially in arFlow mode (line 19). Additionally, the state space of the
system is restricted to nonnegative values of the integer variables modeling the

runways and the taxiways (line 4).

13

The Action Language Chapter 2

Form ::= Form and Form | Form or Form | not Form
| (exists IdL : Form) | (forall IdL : Form)
| BoolForm | EnumForm | IntForm
IntForm ::= IntTerm > IntTerm | IntTerm < IntTerm | IntTerm >= IntTerm
| IntTerm <= IntTerm | IntTerm = IntTerm | IntTerm '= IntTerm
IntTerm ::= IntTerm + IntTerm | IntTerm - IntTerm | - IntTerm |

IntTerm * Integer | Id | Id’ | Integer

BoolForm ::= BoolTerm | BoolTerm = BoolTerm | BoolTerm '= BoolTerm
BoolTerm ::= Id| Id’ | true | false
EnumForm ::= EnumTerm = EnumTerm | EnumTerm '= EnumTerm
EnumTerm ::= Id|Id’
CtlForm ::= Form |EX (CtlForm) | AX (CtlForm) | EF (CtlForm)

| AF (CtlForm) | EG (CtlForm) | AG (CtlForm)
| EU (CtlForm, CtlForm) | AU (CtlForm, CtlForm)

| CtlForm and CtlForm | CtlForm or CtlForm | not CtlForm

Figure 2.4: Syntax of a composite formula

Actions model the atomic transitions of a system. A module can have multiple
actions. An action is defined as a composite formula on the current and the next
state variables. In the specification of Figure 2.2, the action reqTake0ff (lines 8
and 9) models the request of a departing airplane for takeoff: when the airplane
is in parked mode it checks whether all of the exits C3-C8 are empty. If so, it
transitions to take0ff mode and occupies the runway 16L.

Actions and module instantiations can be composed (Comp) synchronously

(&) or asynchronously (|). Transition relation of a module is defined in terms

14

The Action Language Chapter 2

of either a composite formula or a composition of its actions and submodule
instantiations (ModTrans). Submodules can be instantiated with different actual
parameters. In each instantiation of a module the formal parameters are replaced
with the corresponding actual parameters and all the local variables are uniquely
renamed. In the specification of Figure 2.2, the behavior of a departing airplane
(module Departing) is specified in terms asynchronous composition of the actions
reqTakeOff and leave (line 12) and the behavior of the whole system is specified
as asynchronous composition of instantiations of the module Departing and the
module Arriving (line 28).

The temporal properties of a module are defined in CTL. A CTL formula
consists of composite formulas combined with the temporal operators (EX, AX,
EF, AF, EG, AG, EU, AU) and logical connectives. Syntax of a CTL formula
(CtlForm) is given in Figure 2.4. In the specification of Figure 2.2, four temporal
properties are specified (lines 29, 32, 33, and 34). The property at line 29 states
that it is always the case that if an arriving airplane is in the flow mode then it
will eventually be in the parked mode. The properties given in lines 22-34 specify

the rules given in Section 2.1.

2.3 Semantics of the Action Language

The formal semantics of an Action Language specification is defined by a tuple
(M, ¢), where M is a transition system and ¢ denotes the CTL property. Transi-
tion system M is a tuple (I, S, R), where I, S, and R denote the initial states, the
state space, and the transition relation, respectively. An Action Language spec-
ification is called a correct specification iff M = @, i.e., M satisfies the property
¢. This can be checked using the Action Language Verifier (see Section 4).

15

The Action Language Chapter 2

Notation We make use of the following notational conventions: Given a func-
tion f: X — Y and 27,29 € X and y € Y, then the function fly/z,]: X — Y is

defined as follows
flyfele) =1 Y "
f(z2) otherwise
We use []-type brackets to denote the semantic domains. Depending on the
context, [Id] denotes one of the following: an action name, a module name, or a
variable name. [IdL] denotes a set of strings that correspond to a list of variable
names. [Form] and [CtlForm] denote a composite formula and a CTL formula,

respectively.

We define several functions that map actions or modules to their attributes.

e An action function o € Act = [Id]— [Form] maps each action to the

composite formula that corresponds to that action.

e The initial states, the state space, and the transition relation functions
Init, State,
Trans = [Id]— [Form] map each module to the composite formulas that
characterize its initial states, state space, and transition relation, respec-
tively. Note that, the formulas for the initial states and the states space use
only current state variables, whereas the formula for the transition relation

can use both the current state and the next state variables.

e Functions for the formal parameters, the local variables and the parameter-
ized constants Formals, Locals, Params = [Id]— [IdL] map each module
to the set of identifiers that correspond to its formal parameters, local vari-

ables and parameterized constants, respectively.

16

The Action Language Chapter 2

e The instantiation counter function InstCount = [Id]— N maps each mod-
ule to its instantiation counter, which keeps track of the number of instan-

tiations.

e The CTL property function 7 € CtlProp = [Id]— [CtIForm] maps each

module to the CTL property associated with that module.
We define the following tuples based on the functions defined above:

e The variable environment tuple is defined as ¥ € VarEnv = Locals X

Formals x Params.
e The system environment tuple is defined as € € SysEnv = Init X State.

e The current environment tuple is defined as: p € Cur Env = Init x State X

[Form] x CtlProp x Locals x InstCount.

e The environment tuple is defined as: € Env = Init x State X CtlProp x

InstCount x Locals X Formals x Params X Act x Trans.
We make use of the following functions:

e Renamer :
([Form]U[CtiForm]) x [IdL]x[IdL]x N x [IdL]— ([Form]U[CtlForm])
function takes a formula, the set of actual parameters, the set of formal
parameters, the current value of the instantiation counter, and the set of
local variables as input and returns the formula in which the formal param-
eters are replaced with the corresponding actual parameters and the local

variables are renamed uniquely using the value of the instantiation counter.

17

The Action Language Chapter 2

e Renamey : [IdL]xN — [IdL] function takes a set of variables and an in-
stantiation counter as input and renames the set of input variables uniquely

using the value of the instantiation counter.

e NextStateVar : [Form]— [IdL] function takes a composite formula as
input and returns the set of variables whose next state versions appear in

the composite formula.

e Identity : [IdL]— [Form] function takes a set of variables as input and
returns a composite formula that preserves the current value of every current
state variable in the input in the next state. Note that if the input is an

empty set then it returns true.

e Guard : [Form]— [Form] function takes a composite formula that denotes
a transition relation as input and returns a composite formula that corre-
sponds to the domain of the transition relation. This can be computed by

existentially quantifying out all the next state variables in the input formula.

Finally, a tuple is denoted by enclosing the list of its components with ().
Projections of a tuple are shown using the subscripts consisting of the first char-
acter or the first two characters of the component domains, e.g., given a tuple

€ € SysEnv = I'nit x State, ¢; € Init and eg € State.

Semantic Functions We define the semantics of the Action Language by map-
ping an Action Language specification to a tuple (M, ¢) using denotational seman-
tics, where M is a transition system and ¢ is the CTL property of the system.
The transition system M is a tuple (I, S, R) where I, S, and R denote the initial

states, the state space, and the transition relation, respectively. Each module in

18

The Action Language Chapter 2

an Action Language specification is associated with a tuple that consists of: a
composite formula describing the initial states (true by default), a composite for-
mula describing the state space (true by default), a CTL formula describing the
property, a counter keeping the number of instantiations, a set of local variables, a
set, of formal parameters, a set of parameterized integer constants, a set of action
definitions, and a composite formula describing its transition relation. Note that
the set Env defined above is the set of such tuples.

Below we present the definitions of the semantics functions and their explana-

tions.

1. 2:VarDecl — [Id]— VarEnv — VarEnv

(a) Z[boolean IdL]my =
(IL[[IdL]UIL(m)/m], Ip,9p) if [IdL]E Ir(m)
{ (9,9, 9p) otherwise
(b) E[integer IdL]md =
(IL[[IdL]UIL(m)/m],Ip,9p) if [IdL]E Ir(m)
(9r,9F,Vp) otherwise
(c) E]enumerated IdL; {IdLy}|mv =
(VL[[IdL U, (m)/m], Ir,9p) if [IdLi]¢ Ir(m)
{ (9,9F, Vp) otherwise
(d) E[parameterized IdL]mv = (I,9F,9p[[IdL]UIp(m)/m]).

(e) Z[VarDecly VarDecloJmd = E[V ar DeclyJmZ[V ar Decly Jmd.
A variable becomes the local variable of the module in which it is defined
provided that it is not used as a formal parameter in that module (cases 1.a,

1.b, and 1.¢). Since the values of the parameterized variables do not change,

they need to be kept separately and treated in a different way (see 6.a).

19

The Action Language Chapter 2

2. I': Sys — [Id]— SysEnv — SysEnv

(a) I'[initial : Form]me = (erle;(m) A [Form]/m], es).
(b) T'[restrict : Form]me = (e;,es[es(m) A [Form]/m]).

(c) T[Sys1 Syse]me = I'[Sysa]mI'[Sysi]me.

The initial states of a module are described by the conjunction of the com-
posite formulas from the system definitions inside that module with the
initial keyword (cases 2.a and 2.c) and the composite formulas describing
the initial states of its submodules that are instantiated in the transition
relation definition (case 3, equation 2.2 below). The state space of a mod-
ule is described by the conjunction of the composite formulas in the system
definitions using the restrict keyword inside that module (cases 2.b and
2.c) and the composite formulas describing the state space of its submodules
that are instantiated in the transition relation definition (case 3, equation
2.3 below). When the initial states or the state space is not specified (i.e.,

there are no system definitions) the default value, true, is used.

3. ©: ModInst — [Id]— Env — CurEnv
O[Id (IdL)]mi8 = p where m = [Id], | = [IdL] and

prc = Brc[Brc(m) +1/m] 21

pr = pr[Renamer(81(m),l, Br(m), prc(m), B(m)) A Br(mi)/mi] (2.2

(
ps = PBs|Renamer(Bs(m),l, Br(m), prc(m), Br(m)) A Bs(mi)/mi] (2.3

[\
=~

pr = Renamer (ﬁT (m)a l’ ﬁF (m)a pic (m)’ ﬂL (m))
pc = BclRenamer(Bc(m),l, Br(m), pro(m), Bo(m)) A Bo(mi)/mi)(2.5

2

(
(
(
(
(
(2.6

)
)
)
)
)
pr = PrlRenamey (Br(m), prc(m)) U Br(ma)/mi])

20

The Action Language Chapter 2

The local variables of a module are uniquely renamed for each instantiation
using the instantiation counter for that module. Each instantiation causes
the instantiation counter to be incremented by one (equation 2.1). The en-
vironment for a new instantiation of a module is defined by renaming the
local variables and by replacing the formal parameters with the correspond-
ing actual parameters in the composite formulas describing the initial states
and the state space of the module (equations 2.2 and 2.3), the composite
formula describing the transition relation of the module (equation 2.4), and
the CTL formula describing the property of the module (equation 2.5). All
these transformations are achieved using the Renamep function. Finally,
after renaming (using the Renamey function), the local variables of the in-
stantiated module are added to that of the parent module in which it is

instantiated (equation 2.6).
4. A : Comp — [Id]— Env — CurEnv
(a) A[Id]mpB = p where pr = B4([Id]) and VX € {I,S,C,L,IC},
px = Bx.
(b) A[ModInstlmp = ©[ModInst]mp.

(c) Let p' = A[Comp]mp and

p” = Aﬂcomp2]1m<plla pfS’: pICa pIICa pILa /8F, ﬁPa ﬂAa BT>
A[Comp, | Compy]mfB = p" where

o1 = (pp A Identity(NextStateVar(p}) \ NextStateVar(py))) V

(o7 A Identity(NextStateVar(py) \ NextStateVar(ph)))

and VX € {I,S,C, L, IC}, p% = pk.

21

The Action Language Chapter 2

(d) Let p' = A[Comp,]|mp and
p” = A[[Cbmpﬂlm(plla p{S’: pIC'7 pIIC’a pILa /BFa ﬁPa ﬂAa ﬂT>
A[Comp, & Comp,] 3 = p"" where
or = (P V —Guard(py) A Identity(NextStateVar(py))) A

(o1 V —Guard(p}) A Identity(NextStateVar(pt)))
and VX € {I,S,C,L,IC}, p%¥ = pk.

The Action Language supports both asynchronous and synchronous compo-
sition of actions and module instantiations. Asynchronous composition (de-
noted by |) models interleaving semantics of concurrency (case 4.c). When
a transition is executed the values of the variables that are modified only
by the other transition are preserved. In asynchronous composition all pos-
sible interleavings of the composed transitions are taken into consideration.
In synchronous composition (denoted by &) two transitions are executed in
parallel. However, if one of the transitions is disabled then it does not block

the other transition (case 4.d).
5. Q: Action — Act — Act

(a) Q[Id : Form]a = of[Form]/[Id]].

(b) Q[Action, Actions]a = Q[Actions]|Q[Action:]a.

Actions model atomic transitions of the system. Actions are specified as

composite formulas on current and next state variables.
6. ¥: ModTrans — Env — Env

(a) ¥[Id: Form]B = (' where B} = pr[[Form] A Identity(Bp([1d]))/[1d]]
and VX € {I,S,C,1C, L, F, A, T}, By = fx.

22

The Action Language Chapter 2

(b) ¥[Id : Comp|p = ' where

p = A[Comp][1d]s
By = Brlpr A Identity(Bp([1d]))/[1d]]
3{ = PXx, VX € {I,S,C,IC,L}
/BIF = /BFv /8}3 = ﬁPa and ﬂ,lél = ﬂA
Behavior of a module is defined either as a composite formula on current and

next state variables or as a composition of instantiations of its submodules

and its actions.
7. ®: Prop — [Id]— CtlProp — CtlProp
(a) ®[spec : CtiForm]mt = 7[r(m) A [CtiForm]/m].
(b) ®[Prop, Props|mr = ®[PropJm®[Prop|mr.

The CTL property of a module is described by conjunction of the CTL
formulas given in all property specifications of that module (cases 7.a and
7.b) and the CTL formulas describing the CTL properties of its submodules
that are instantiated in that module’s transition relation definition (case 3,

equation 2.5).
8 T : Module —» Env — Env

(a) Y[module Id (IdL) VarDecl Sys Module
Action ModTrans Prop endmodule] = (3" where

m = [Id]
| = [IdL]

23

The Action Language Chapter 2

e = I[SysIm(Br,Bs)

B = TY[Modulel(er,es, Bo, Brc, B, Brll/m, Bp, Ba, Br)
o = QAction]8,

T = ®[Proplmp;

/6” = \Ill[MOdTTa’nS]]m<ﬂ}a ﬂ,,Sa T, B}C’a /Bin ﬁéﬁ /B}a «, ﬂé“>

Semantics of a module m is defined by ((Z, S, R), ¢) where

I = ﬁ}l(m)’ S :ﬁg(m)’ R = 551“(7”)’ and ¢ = ﬁg'(m)

Therefore, the transition system ((I,S, R), ¢) that is defined by an Action

Language specification is defined as
I = ff(main), S = B4(main), R = B} (main), and ¢ = f7(main).
where the initial environment (3 is defined as

Or = Ax.true, Bs = A\x.true, Bc = Ar.undefined, Bic = Az.0,

Br = Ax.0, Br = M\x.0, Bp = Ax.0, B4 = A\x.0, Br = \z.0.

Figure 2.5 shows a sample Action Language specification in the context of the
case study given in Figure 2.1. There are two submodules of module main: runway
and environment. Variable rw16L models availability status of the runway 16L
and evl6L models events that denotes either an enter request or an exit request.
Module runway models status change of a runway and its behavior is modeled by
asynchronous composition of its actions r1 and r2. Module environment models
the creation of enter and exit events for a particular runway. Whenever an enter

event is created, in the next state an exit event is created (action el). After the

24

The Action Language Chapter 2

module main()
enumerated evi6L {enter, exit};
boolean rwl6L;

module runway(rw, ev)
boolean rw;
enumerated ev {enter, exit};
initial: rw;
rl: rw and ev=enter and !'rw’;
r2: !'rw and ev=exit and rw’;
runway: rl | r2;

endmodule

module environment (ev)
enumerated ev {enter,exit};
initial: ev=enter;
el: ev=enter and ev’=exit;
e2: ev=exit and ev’=enter;
e3: ev=exit and ev’=exit;
environment: el | e2 | e3;

endmodule

main: runway(rwl6L,ev16L) & environment (ev16L);

spec: AG(!'rwl6L => AX(rwl6L))
endmodule

Figure 2.5: A sample Action Language specification modeling status change of
runway 16L as the relevant event occurs.

exit event is created, either an enter event (action e2) or an exit event (action
e3) is created nondeterministically. Its behavior is modeled by the asynchronous
composition of its actions el, e2, and e3. The behavior of the whole system is
defined by synchronous composition of instantiation of the modules runway and
environment using rwl6L and ev16L. The correctness property states that when-
ever the runway 16L is occupied it is emptied in the next state. Table 2.1 shows
the transition systems that correspond to the modules runway, environment, and

main.

25

The Action Language Chapter 2

Module I S R
runway rw true | (rw A ev = enter A —rw') V
(=rw A ev = exit A rw')
environment | ev = enter true | (ev = enter A ev' = exit) V
(ev = ewit A ev' = enter) V
(ev = exit A ev' = exit)
main rwl6LA true | ((rwl6L A evl6L = enter A —rwl6L’)

evl6L = enter V (~rwl6L A evl6L = exit A rwl6L')
V =(rwl6L A evl6L = enter V
—rwl6L A evl6L = exit)A

rwl6L' = rwl6L) A ((evl6L = enterA
evl6L' = exit) V (evl6L = exitA
evl6L' = enter) V (evl6L = exitA
evl6L' = exit) V —(evl6L = enter V
evl6L = exit) A evl6L' = evl16L)

Table 2.1: The transition systems that correspond to the modules runway,
environment, and main of the Action Language specification in Figure 2.5. I,
S, and R denote the initial states, the state space, and the transition relation,
respectively.

2.4 Related Work

The Action Language has been designed as an input language of an infinite-
state symbolic model checker. This design decision has been very influential on
the features that it possesses. Unlike the input languages of explicit-state model
checkers [51, 38] or the input languages of symbolic model checkers that is based
on finite-state symbolic representations [58], it allows unbounded integer variables
and parameterized constants. This makes it possible to specify behavior of param-
eterized systems (see Section 4.3) as well as systems that manipulate unbounded
integer domains. Explicit-state model checkers either provide input languages
with high-level constructs such as bounded arrays [38] and channels [51] or use an
existing high-level programming language and explore the unbounded state space
for a certain depth [10]. On the other hand, the underlying model checker of the

Action Language explores unbounded state spaces to provide a conservative re-

26

The Action Language Chapter 2

sult, i.e., any property that is verified is actually satisfied by the specified system.
This is achieved by employing various abstract interpretation techniques, which
requires the existence of precise abstractions for unbounded data domains. There-
fore, the Action Language can support a data type provided that the underlying
model checker can effectively represent the corresponding data domain. As the
Action Language has been designed to specify behavior of concurrent software
systems, we envision that it will be extended with new data types and Chapter
6, indeed, serves as an example. The Statechart [47] is a visual formalism for
specifying behavior of hierarchical reactive systems and it is included in UML
[9], which is a popular modeling language for software systems. The modular
nature of the Action Language and the semantics of the asynchronous and syn-
chronous composition operators of the Action Language, enables translating the
Statechart specifications to the Action Language such that the hierarchical struc-
ture is preserved. The Action Language is similar to Temporal Logic of Actions
(TLA) [55]. Asin TLA, in the Action Language a system is specified using logical
connectives. However, in the Action Language the semantics of the asynchronous
and the synchronous composition operations deviates from pure logic to make
these operations more readable. Also the Action Language does not use temporal

operators to specify the behaviors of systems as in TLA.

27

Chapter 3

The Composite Symbolic Library

Compact and efficient symbolic representations have enabled the automated ver-
ification of large hardware and software systems by overcoming the state-space
explosion problem [18, 58, 22]. Symbolic representations are efficient alternatives
to explicit state exploration, since they provide a compact representation of the
state space. Properties of a system can be verified by manipulating the symbolic
representations that represent its transition relation and states. Binary Decision
Diagrams (BDDs) [11] (for representing boolean logic formulas) and polyhedral
representation [45] (for representing linear arithmetic formulas) are two examples
for such symbolic representations. BDDs have been successfully used in the ver-
ification of finite-state systems that could not be verified explicitly due to the
size of the state space [18, 58, 22]|. Linear arithmetic constraint representations
have been used in the verification of real-time systems, and infinite-state systems
[3, 16, 34, 46], which cannot be verified using the explicit representations.

One problem with these symbolic representations is that they are specialized
for certain domains; i.e., BDDs are specialized for encoding boolean variables and

the polyhedral representation is specialized for representing the states of integer

28

The Composite Symbolic Library Chapter 3

and real variables as linear arithmetic constraints. As a result, BDDs are restricted
to finite domains and the polyhedral representation becomes inefficient when it is
used for a large set of boolean variables.

Generally, model checking tools have been built using a single symbolic repre-
sentation [58, 3]. As model checkers become more widely used, it is not hard to
imagine that a user would like to use a model checker built for real-time systems
on a system with lots of boolean variables and only a couple of real variables.
Similarly another user may want to use a BDD-based model checker to check a
system with few boolean variables but lots of integer variables. Currently, such
users may need to obtain a new model-checker for these instances, or use various
abstraction techniques to solve a problem that may not be suitable for the sym-
bolic representation their model checker is using. More importantly, as symbolic
model-checkers are applied to larger problems, they are bound to encounter spec-
ifications with different variable types that may not be efficiently representable
using a single symbolic representation.

This chapter summarizes our work on the Composite Symbolic Library, which
was presented in [69, 66, 68]. The Composite Symbolic Library is a symbolic
manipulator for systems with heterogeneous data types. It combines different
symbolic representations using the composite model checking approach presented
in [14, 15]. Each variable type in the input specification is assigned to the most
efficient representation for that variable type. The goal is to have a platform
where the strength of each symbolic representation is utilized as much as possible,
and the deficiencies of a representation are compensated by the existence of other
representations.

The rest of the chapter is organized as follows. In Section 3.1 we define the

composite symbolic representation and describe the architecture and the design of

29

The Composite Symbolic Library Chapter 3

the Composite Symbolic Library. We present the algorithms for manipulating the
composite symbolic representation in Section 3.2. In Section 3.3 we describe some
heuristics for improving the performance of the Composite Symbolic Library. We
present the experiments that demonstrate the effectiveness of our heuristics in

Section 3.4. In Section 3.5 we discuss the related work.

3.1 The Composite Symbolic Representation

To combine different symbolic representations we use the composite model
checking approach presented in [14, 15]. The basic idea in composite model check-
ing is to map each variable in the input specification to a symbolic representation
type. For example, boolean and enumerated variables can be mapped to the BDD
representation, and integers can be mapped to an arithmetic constraint represen-
tation. We encode the sets of system states and transitions as a disjunction of
conjunctions of type specific representations. For example, a disjunct may con-
sist of a boolean formula stored as a BDD representing the states of the boolean
and the enumerated variables, and a linear arithmetic constraint representation
representing the states of the integer variables. We call this disjunctive repre-
sentation a composite representation. Each atomic event in the input specifica-
tion is conjunctively partitioned where each conjunct specifies the effect of the
event on the variables represented by a single symbolic representation. For exam-
ple, one conjunct specifies the effect of the event on the variables encoded using
BDDs, whereas another conjunct specifies the effects of the event on the vari-
ables encoded using linear arithmetic constraints. The pre- and post-condition
computations are computed independently for each symbolic representation by

exploiting the conjunctive partitioning of the atomic events. The key observa-

30

The Composite Symbolic Library Chapter 3

tion here is the fact that conjunctive partitioning of the atomic events allows pre-
and post-condition computations to distribute over different symbolic representa-
tions. We also implement algorithms for conjunction, disjunction, complement,
subsumption, equivalence and satisfiability checking for the disjunctive compos-
ite representation, which use the corresponding methods for different symbolic
representations.

Our current implementation of the Composite Symbolic Library uses two sym-
bolic representations: BDDs for boolean logic formulas and the polyhedral rep-
resentation for Presburger arithmetic formulas. We call these the basic symbolic
representations. For the BDD representations we use the Colorado University
Decision Diagram Package (CUDD) [1]. For the Presburger arithmetic formula
manipulation we use the Omega Library [54, 2|.

We implemented the Composite Symbolic Library in C++ and Fig. 3.1 shows
its class hierarchy as a UML class diagram!. The abstract class Symbolic serves as
an interface to all symbolic representations including the composite representation.
The classes BoolSym and IntSym are the symbolic representations for boolean and
integer variable types, respectively. The class BoolSym serves as a wrapper for the
BDD library CUDD [1]. It is derived from the abstract class Symbolic. Similarly,
the class IntSym is also derived from the abstract class Symbolic and serves as a
wrapper for the Omega Library [2].

The class CompSym is the class for the composite representation. It is derived
from the class Symbolic and uses the classes IntSym and BoolSym (through the
Symbolic interface) to manipulate the composite representation. There is no

dependency among the classes CompSym, IntSym, and BoolSym. Note that this

'In UML class diagrams, triangle arcs denote generalization, diamond arcs denote aggrega-
tion, dashed arcs denote dependency, and solid lines denote association among classes.

31

The Composite Symbolic Library Chapter 3

Symbolic

+myType symbolicType

+isSet: boolean

+construct(Node,boolean) :
Symbolic

+conjunction(Symboalic)

+digiunction(Symbolic)
+complement

+isSatisfiable() boolean
+i sSubsumed(Symbolic):
boolean
+isEquivalent(Symbolic):
boolean

+pre(Symbolic)
+post(Symboalic)
+widen(Symbolic)
+collapse(Symbalic)

BoolSym CompSym IntSym
-compositeRepresentation : -presburgerFormula : Relation
* LinkedList<compAtom> -numVariables : integer
req izbles()
: Q |
| I
1 I
I
| compAtom I
I
| -atom : *Symbolic <>_ A
Ca—r OMEGA Library
i +conjunction(compAtom)
CUDD Library +complement(): CompSym

+i sSati sfiable(compAtom):
boolean
+isSubsumed(compAtom):
boolean
+isEo,uivaI ent(compAtom):
boolean
+pre(compAtom)
+post(compAtom)
+widen(compAtom)
+collapse(compAtom)

Figure 3.1: Class diagram for the Composite Symbolic Library

design is an instance of the composite design pattern given in [43].

To verify a system with our tool, one has to specify its initial condition, tran-

32

The Composite Symbolic Library Chapter 3

sition relation, and state space using a set of composite formulas, whose syntax is
given in Figure 2.4.

A transition relation can be specified using a composite formula by using the
unprimed variables to denote the current state variables and the primed vari-
ables to denote the next state variables. A method called registerVariables in
BoolSym and IntSym is used to register the current and the next state variable
names during the initialization of the representation.

Given a composite formula, the method construct() in the class Symbolic
traverses the syntax tree and calls the constructor of the class BoolSym when
a boolean formula is encountered and calls the constructor of the class IntSym
when an integer formula is encountered. If the composite formula consists of both
integer and boolean formulas then the constructor of the class CompSym is called.
In the class CompSym, a composite formula, A, is represented in our composite

representation as

Az\n//\ait

i=1teT

where a;; denotes the formula of type t in the ith disjunct, and n and T" denote the
number of disjuncts and the set of basic symbolic representations, respectively.

We call each disjunct Aiera;; a composite atom. Fig. 3.2 shows the composite
atoms in an example composite formula. Each composite atom is implemented
as an instance of a class called compAtom (see Fig. 3.1). Each compAtom object
represents a conjunction of formulas each of which is either a boolean or an integer
formula.

A composite formula that is stored in a CompSym object is implemented as a
list of compAtom objects, which corresponds to the disjunction in the composite

representation. Note that Symbolic members of the compAtom class cannot be of

33

The Composite Symbolic Library Chapter 3

(a>0 A\ a=a+1A b) V (a<0/\ a=a A Db=b)

S N/

polyhedral BDD
representation representation

AN

composite atom

composite atom

composite fromula

Figure 3.2: An example composite formula. ¢ is an integer variable and b is a
boolean variable.

: CompSym
compositeRepresentation : * LinkedList<compAtom>
: LinkedL istNode<compAtom> . LinkedL istNode<compAtom>
data: compAtom data: compAtom
atom : *Symbolic[] atom : * Symbolicf]
0 b’ 0 b =b
lja>0Na =a+1 1l a<0ANa=a
next : LinkedListNode<compAtom> next : LinkedListNode<compAtom> T

Figure 3.3: An instance of the CompSym class representing the composite formula
in Fig. 3.2

type CompSym. Fig. 3.3 shows internal representation of the composite formula
given in Fig. 3.2 in a CompSym object. The field atom is an array of pointers
to the class Symbolic and the size of the array is the number of basic symbolic
representations.

The classes CompSym and compAtom use a TypeDescriptor class, which records

34

The Composite Symbolic Library Chapter 3

the variable types used in the input specification. Our library can adapt itself to
any subset of the supported variable types, i.e., if a variable type is not present in
the input specification, the symbolic library for that type will not be called during
the execution. For example, given an input specification with no integer variables
our tool will behave as a BDD-based model checker without making any calls to

the Omega Library.

3.2 Manipulation of the Composite Representa-
tion

In this section we present algorithms for basic set operations and pre- and
post-condition computations on our disjunctive composite representation. These
algorithms are implemented as methods in the classes compAtom and CompSym in
the Composite Symbolic Library. Note that the algorithms given in this section
are independent of the type and the number of the basic symbolic representations
used.

Throughout this section, ny4, 7T, and T(t)p denote the number of composite
atoms in composite formula A, the set of basic symbolic representations in the
Composite Symbolic Library, and the time complexity of the operation Op for
the basic symbolic representation ¢t. The operations are Op € {Conjunction,
Disjunction, Complement, IsSubsumed, IsEquivalent, [sSatis fiable}.

Subsumption Check: A composite atom a = A;cr a; is subsumed by a compos-
ite atom b = A;cr by iff for each symbolic representation a; in a, a; is subsumed

by b;, which is the corresponding symbolic representation in b. For instance let

35

The Composite Symbolic Library Chapter 3

1 IsSubsumed(a, b): boolean

2 a, b: composite atom

3 for each basic symbolic representation ¢ do
4 if a; & b; then

5 return false

6

return true

Figure 3.4: Algorithm for checking the subsumption relation between two com-
posite atoms

composite atoms a and b be
a=xAyAz>0b=xAN2>0

where x and y are boolean variables and z is an integer variable. a = b since
the valuations of the variables x and y that satisfy the formula x A ¥ is subsumed
by the valuations of the variables x and y that satisfy the formula z, and the
valuations of the variable z that satisfy the formula z > 0 is subsumed by the
valuations of the variable z that satisfy the formula z > 0. Fig. 3.4 shows the
IsSubsumed algorithm for checking subsumption relation between two composite
atoms. The worst case time complexity of the algorithm is O(Y;cq T, subsumed)-
A composite formula A = V4, a; is subsumed by a composite formula B =

V2B by iff Vi s.t. 1 <7< nyu, a; = B. For instance let A and B be
k=1 >
A=z ANz>0)V(@eAyANz<0),B=2>0Vz

where x and y are boolean variables and z is an integer variable. A is subsumed

by B since both composite atoms (z Az > 0) and (x Ay Az < 0) are subsumed by

36

The Composite Symbolic Library Chapter 3

1 IsSubsumed(A, B): boolean
2 found: boolean
3 A, B, C: composite formula

4 for each composite atom a in A do

5 found « false

6 for each composite atom b in B do
7 if a = b then

8 found < true

9 break

10 if = found then

11 C<+aAN-B

12 if isSatis fiable(C) then

13 return false

l4 return true

Figure 3.5: Algorithm for checking the subsumption relation between two com-
posite formulas

B. Note that (x Az > 0) is subsumed by z > 0 and (z Ay Az < 0) is subsumed by
x. So the most straightforward way of checking the subsumption relation between
two composite formulas A and B is to iterate through the composite atoms in A
and check the subsumption relation between each composite atom a; in A and B.
If there exists a composite atom a; in A such that a; is not subsumed by B we
can conclude that A is not subsumed by B. On the other hand, if there exists no
such composite atom in A then we can conclude that A is subsumed by B.

Fig. 3.5 shows the algorithm for checking the subsumption relation between

the two composite formulas A and B. For each composite atom a; in A, first the

37

The Composite Symbolic Library Chapter 3

IsSatisfiable(a): boolean

a: composite atom

for each symbolic representation ¢t do
if —isSatisfiable(a;) then

return false

S Ut s W N =

return true

Figure 3.6: Algorithm for checking emptiness of a composite atom

algorithm checks if a; is subsumed by any composite atom in B (lines 5-9). If
there exists no composite atom b in B such that a is subsumed by b then this does
not mean that a is not subsumed by B. Next, the algorithm computes a A =B
and assigns the result to a composite formula C'. If C is satisfiable, then this
means that a is not subsumed by B and the algorithm exits by returning false
(lines 10-13). Otherwise, the algorithm continues until either it finds out that
there exists a composite atom a that is not subsumed by B or it has checked all
the composite atoms in A, in which case it returns true (line 14).

The worst case time complexity of the algorithm is

t t
O(nA Xnp X ZtET TIsSubsumed +na X (nB X ZtGT TComplement+

t.
|T‘nB X Z?:Bl,tjET Téonjunction + |T‘nB X Xter T}SSGtiSfiablE))'

The exponential component of the formula is due to the complement operation at
line 11 in Fig. 3.5, which is of exponential time complexity, as will be explained
below.

Satisfiability Check: A composite atom a is not satisfiable iff there exists a

symbolic representation a; in a such that a; is not satisfiable. Fig. 3.6 shows

38

The Composite Symbolic Library Chapter 3

IsSatisfiable(A): boolean

A: composite formula

for each composite atom a in A do
if isSatisfiable(a) then

return true

S Ut s W N =

return false

Figure 3.7: Algorithm for checking satisfiability of a composite formula

IsSatisfiable algorithm for checking satisfiability of a composite atom. The worst
case time complexity of the algorithm is O(Xier Thssatis fiapie)-

A composite formula A is not satisfiable iff for all composite atoms a; in A, a;
is not satisfiable. Fig. 3.7 shows IsSatisfiable algorithm for a composite formula.
The worst case time complexity of the algorithm is O(na X ¥ier Tf,satis fiabie)-

Pre-Condition Computation: Given two composite formulas A = V4 Awer it
and B = V2, Ajer bk, where A represents the set of states and B represents the

transition relation, the pre-condition of A with respect to B can be computed as

nA N naA MpB nA NB
Pre(A,B) = \/ \/ Pre(a;, b)) = \/ | N\ Pre(ai,biy) =\ \/ N\ IV'dy A by
i=1k=1 i=1k=11teT i=1 k=11€T

where V' is the set of next state variables and al, is obtained by replacing ev-
ery variable in a; with the corresponding next-state variable. Note that the
above property holds because the existential variable elimination in the Pre(A, B)
computation distributes over the disjunctions, and due to the partitioning of the
variables based on the basic symbolic types, the existential variable elimination
also distributes over the conjunction above [15].

Computing the pre-condition of A with respect to B is equivalent to computing

39

The Composite Symbolic Library Chapter 3

Pre(a,b): composite atom
a,b: composite atom

c: composite atom

1
2
3
4 for each symbolic representation ¢ do
5 ¢t + IV'a, A by

6

return ¢

Figure 3.8: Algorithm for computing the pre-condition of a composite atom
with respect to a composite atom

the set of states that can reach the set of states represented by A by a single

transition in B. For instance let A and B be
A=y=1, B=(@Ay=1)V(azAy>0Ay =y+1)

where z is a boolean variable and y is an integer variable. Then Pre(A, B) can be

computed as:
Pre(A,B) = Pre(y=1,x Ay =1)VPre(ly=1,~zAy>0Ay =y +1)

zV (~zAy=0)

Il

Fig. 3.8 and 3.9 show the pre-condition computation algorithms for compos-
ite atoms and composite formulas, respectively. The worst case time complex-
ity of the pre-condition algorithm for composite atoms is O et Thre-condition)
and that of the pre-condition algorithm for composite formulas is O(n4 X ng X
Y ter Thre-condition)-

Conjunction: Given two composite formulas, A and B, their conjunction can

be computed as:
nA NB

AANB= \/ \/ /\(ait/\bkt)

i=1k=1teT

40

The Composite Symbolic Library Chapter 3

Pre(A, B): composite formula

A, B, C: composite formula

C + false

for each composite atom a in A do
for each composite atom b in B do

C + CV Pre(a,b)

N O Ut s W N =

return C

Figure 3.9: Algorithm for computing the pre-condition of a composite formula
with respect to a composite formula

The worst case time complexity of computing the conjunction of two compos-
ite atoms is O(Xier Téonjunction) and that of computing the conjunction of two
composite formulas is O(na X np X Xier Thonjunction)-

Complement : The complement of a composite atom a = A, a; is a com-

posite formula B = \/,cr —a;. Given a composite formula A we can compute A’s

complement as

— 7" na
SA=Vi e, a = /\j:1,tjeT Qg -

Fig. 3.10 and 3.11 show the complement algorithms for a composite atom and
a composite formula, respectively. The worst case time complexity of the com-
plement algorithm for a composite atom is O(,er Téompiemens) and that of the
complement algorithm for a composite formula is
na .
O(TLA X Z Té’omplement + ‘T|nA X Z TCZonjunction)'
teT j=1,t;€T
Disjunction: The disjunction of a composite atom a with a composite atom b

is a composite formula A = a V b. Given two composite formulas, A and B, we

41

The Composite Symbolic Library Chapter 3

Complement(a): composite formula

a, A: composite formula

A+ false

for each symbolic representation a; in a do

A(—AV"Gt

S Ut s W N =

return A

Figure 3.10: Algorithm for computing the complement of a composite atom

Complement(A): composite formula

A, B: composite formula

B + false

let A= V74 Aer Gt

let n4 be the number of composite atoms in A

let a; = /\feT a;+ be a composite atom in A

for each combination of (a1, ,az,,,..,@n,) st. t; € T and 1 <i <ny do

B+ Bv /\?:Al _'a’iti

© o N O Ot ks W N -

return B

Figure 3.11: Algorithm for computing the complement of a composite formula

define A disjunction B as

naA+np
AV B= V /\ Cit
i=1 teT

where for 1 <7 <nycy =a; and forng +1<i<ny+np ¢ = by.

The worst case time complexity of computing the disjunction of two composite

42

The Composite Symbolic Library Chapter 3

atoms is constant and that of computing the disjunction of two composite formulas
is O(na+np). As the worst case time complexity formulas show, while computing
the disjunction of two composite atoms or two composite formulas, no operation is
performed on symbolic representation level. Since we use a disjunctive composite
representation, the disjunction operation can be performed by a concatenation
operation on the linked list structure that is used to implement a CompSym object

(see Fig. 3.3).

3.3 Heuristics for Efficient Automated Verifica-
tion with the Composite Representation

In this section we present several heuristics that improve the performance of
automated verification using the Composite Symbolic Library [66]. Our heuris-
tics make use of the following observations: 1) the efficient operations on BDDs
(e.g., satisfiability checking) can be used to mask expensive operations on poly-
hedra (e.g., image computations and satisfiability checking), 2) our disjunctive
representation can be exploited by interleaving the computation of pre- and post-
conditions with subsumption checks, and 3) the size of a composite representation
can be minimized by iteratively merging matching constraints and removing re-
dundant ones.

Masking Integer Operations: The Composite Symbolic Library currently sup-
ports two basic symbolic representations: BDDs to represent boolean and enu-
merated variables and polyhedral representation of linear arithmetic formulas to
represent integer variables. Existential variable elimination for linear integer arith-

metic formulas is NP-hard and it is used in the satisfiability check and the pre- and

43

The Composite Symbolic Library Chapter 3

post-condition computations. However, since the BDD representation is canonical,
a satisfiability check for BDDs can be performed in constant time by comparing
the root node of a BDD representation to the unique BDD that corresponds to
false. This discrepancy in the performances of the BDD representation and the
polyhedral representation in checking satisfiability can be exploited to speed up
the pre- and post-condition computations on the composite symbolic representa-
tion.

Given two composite formulas A =V}, aj Aaj; and C = Vi<, cxp A cri, Where
A represents a set and C' represents the transition relation, a;, and cg, correspond
to boolean formulas, and a;; and ¢, correspond to integer formulas, pre-condition

of A with respect to C' can be written as

naA nc
Pre(A,C) = \/ \/ e(ajb, ckn) N Pre(aji, cri)

Instead of computing Pre(a;p, ckb) and Pre(a;i, cx;) and then taking the conjunction
of the two, we can first compute Pre(a;s, ckp) and then check it for satisfiability.
Since Pre(a;s, ckp) is a boolean formula and represented by BDDs, checking satisfi-
ability of Pre(a;s, ckp) is cheaper than checking satisfiability of Pre(a;;, cxi), which
is represented by polyhedra. We should compute Pre(a;;, ck;), which involves the
manipulation of the polyhedral representation only if Pre(a;s, cxs) is satisfiable.
If it is not satisfiable then we will not compute Pre(aj;, cx;) since we can deduce
that Pre(ap, ckp) A Pre(aji, axi) evaluates to false. As a result expensive integer
manipulation is masked by cheaper boolean manipulation.

Subsumption Check: The subsumption check algorithm given in Fig. 3.5 uses
the complement operation at the composite formula level (line 11). The worst

case time complexity of the complement operation on a composite formula B is

44

The Composite Symbolic Library Chapter 3

exponential in the number of composite atoms in B. For the subsumption check
algorithm, computing the complement of B means that all the composite atoms
in B are taken into consideration to decide if a composite atom a is subsumed by
B. However, deciding if a composite atom a is subsumed by a composite formula
B does not always require one to consider all the composite atoms in B. For

instance, let the composite atom a and the composite formula B be,
a=(xAyANz>0), B=(zxAz=0)V(@Az>1)V(zAz<0)

where x and y are boolean variables and z is an integer variable. Since each
composite atom in a composite formula corresponds to a disjunct of the composite
formula, B has three composite atoms by, be, and bz, which correspond to (z Az =
0), (xAz >1), and (-z Az < 0), respectively. In order to decide if @ is subsumed
by B we do not need to consider all the composite atoms in B. For this example,
it is sufficient to compare @ against b; and by (note that a is subsumed by b; V bs)
only to conclude that a is subsumed by B. However, the algorithm given in Fig.
3.5 will process by, by, and bs by computing the complement of B.

In the light of this observation we propose a more efficient solution to the sub-
sumption check problem for composite formulas. Given two composite formulas
A and B, for each composite atom a in A, our solution iteratively computes the
unsubsumed part of a, U that is not covered by the composite atoms in B that
have been examined so far. U is initialized to a and for each ks.t. 1 < k < np, U
is updated as U A —bg. After U is updated using by it is checked for satisfiability.
If it becomes not satisfiable then the algorithm skips checking the remaining com-
posite atoms in B and concludes that a is subsumed by B. Otherwise, it continues
with by1. After checking all composite atoms in B if U is not satisfiable then the

algorithm concludes that a is not subsumed by B.

45

The Composite Symbolic Library Chapter 3

Simplification Algorithms: The number of composite atoms in a composite
formula that results from the conjunction operation is linear in the product of
the number of composite atoms of the input composite formulas. The number
of composite atoms in a composite formula that results from the complement
operation is exponential in the number of composite atoms of the input composite
formula. Most of the time these resulting composite formulas are not minimal in
terms of the number of composite atoms they have. Since time complexity
of manipulating a composite formula is dependent on the number of composite
atoms in it, we need to reduce the number of composite atoms in a composite
formula as much as possible to make the verification feasible in terms of both time
and memory. We describe a simplification method that can be tuned for three
different degrees of aggressiveness, which are S1, S2, and S3 in the increasing
aggressiveness order.

A composite formula having two composite atoms, a and ¢, can be simplified

and represented by a single composite atom d if one of the following holds:

1. a is subsumed by c. In this case d = c.
2. cis subsumed by a. In this case d = a.

3. There exists a symbolic representation ¢; s.t. for all symbolic representations
ti s.t. t; # tj, a,, = ¢,. In this case for all ¢; s.t. ¢; # ¢, d;, = a;, and
dtj = ag; \% btj-

The most aggressive version of the simplification method (S3) combines pairs
of composite atoms in a composite formula until there exists no pair of composite
atoms that can be combined according to the above rules. So, for each pair of

compatom it performs the above rules in the order 1, 2, and 3. S3 simplification

46

The Composite Symbolic Library Chapter 3

ComputeEF(A, C): composite formula
A, C: composite formula
Snew — A
do
Sotd < Snew
Snew — Pre(Seid, C) V Soia
Snew — Simpli fy(Snew)
while (S,ew 7 Sotd)

return S,

© o N O Ut s W N -

Figure 3.12: Algorithm for computing the least fixpoint for EF

method can be changed into a less aggressive version (S2) by checking the equiv-
alence only on the boolean type when applying rule 3. S1 simplification method
is similar to S2 but it eliminates the subsumption check (rules 1 and 2).
Combining Pre-Condition, Subsumption Check, and Disjunction Computa-
tions: All CTL operators can be defined in terms of the least and the great-
est fixpoints. Temporal operator EF is defined as a least fixpoint as EF p =
pr . p V EX z. Fig. 3.12 shows the algorithm for computing the least fixpoint
for EF. Given two composite formulas A = ;4 a; and C = v;.‘gl ¢;j, where A
represents a set of states and C' represents the transition relation, the algorithm
computes the set of states that satisfy EF(A) iteratively. Sy, represents the
largest set computed so far. At line 5 of ComputeEF algorithm S, = V)5, s

and Syq = V.2, by where one of the following holds for sy:

1. s, = Pre(bi,c;), where 1 < i <ngand 1< j <ng, and sp % S,

47

The Composite Symbolic Library Chapter 3

PreDisjunction(A,C, isSubsumed): composite formula
Sres, A, C: composite formula
isSubsumed: boolean
isSubsumed < true
Sres + A
for each composite atom a in A do
for each composite atom ¢ in C do
s = Pre(a,c)
if s, # A then

10 isSubsumed < false

© o N O Ut s W N =

11 Sres «— Sres V sk

12return S,

Figure 3.13: A pre-condition algorithm with subsumption check and disjunction

2. s, = Pre(b;,c;), where 1 < i <npgand 1<j<ng, and sy = S,

3. 8 = Soaq and there exists no 7,5, where 1 < ¢ <ngand 1 < j < ng, s.t

sk = Pre(b;, c;).

Note that composite atoms that satisfy (1) can be used to decide if S, is
subsumed by S,;; earlier during the computation of pre-condition and eliminate
subsumption check at line 7 of the algorithm. This may serve as an improvement
over the algorithm in Fig. 3.12 since we can eliminate processing composite atoms
in Sy,ep that satisfy (3) during the subsumption check at line 7 of the algorithm.
An additional improvement can be achieved by taking the disjunction of s, with

Sres only if s, is not subsumed by A and prevent the unnecessary increase in

48

The Composite Symbolic Library Chapter 3

1 EfficientEF(A, C): composite formula

2 A, C: composite formula

3 isSubsumed: boolean

4 Spew +— A

5 do

6 Sotd + Snew

7 Snew < PreDisjunction(Soia, C,isSubsumed)
8 Snew — Simpli fy(Snew)

9 while (—isSubsumed)

10return S,

Figure 3.14: A more efficient algorithm for computing the least fixpoint for EF

the number of composite atoms in S,.;. Fig. 3.13 and 3.14 show the algorithms
PreDisjunction, which computes the pre-condition along with the subsumption
check and the disjunction, and EfficientEF, which computes the least fixpoint for
EF using the PreDisjunction algorithm, respectively.

3.4 Experimental Evaluation of the Heuristics

We have experimented with the heuristics explained in Section 3.3 using a
large set of specifications, which we describe below. Table 3.1 shows the different
properties verified for each specification. Each instance is labeled using NAME[n,,,]-
[npr] where ny, and n,, are the number of processes and the property number,
respectively. Specifications of all these examples and properties are available at:

http://www.cs.ucsb.edu/ ~ bultan/composite/

49

The Composite Symbolic Library

Problem Instance || Property

BK2-1 AG(—(pl = cs Ap2 = ¢s))

BK3-1 AG(—((pl = es Ap2=cs)V (pl = cs Ap3 =cs)V
(p2 = cs Ap3 = cs)))

BK[2,3]-2 AG(~(pl =try) V AF(pl = cs))

TK2-1 AG(—(pl = cs Ap2 = cs))

TK3-1 AG(—((pl = cs Ap2 =cs) V (pl = cs Ap3 = cs)V
(p2 = cs A p3 = cs)))

TK[2,3]-2 AG(~(pl =try) V AF (pl = ¢s))

BR[2,3,4,P]-1 AG(chair <1)

BR[2,3,4,P]-2 AG(open < 1)

BR[2,3,4,P]-3 AG(barber < 1)

c-1 AG(—((xShared > 1 A xExclusive > 1)V
zEzclusive > 2))

c-2 AG(zWaitS > 1 = AF(zShared > 1))

c-3 AG(zWaitS > n = AF(zShared > n))

c-4 AG(zWaitE > 1 = AF (zEzclusive > 1))

C-REF-1 AG(—((zShared >= 1 A zExclusive >= 1)V
zEzclusive >= 2))

C-REF-2 AG(zWaitS > 1 = AF(xShared > 1))

C-REF-3 AG(zWaitS > n = AF (zShared > n))

ISORT AG(—~((pc = entryA1 Ak > n) V (pc = entryALIA
kE<-1)V(pc=entryA3Ai>n—-1)V
(pc = entryA3 Ni < —2) V (pc = entry A2A
i< —=1)V (pc=entryA2 Ni < —2)V
(pc = entryA2 Ni >n—1)
V(pc = entryA2 Ai > n —1)))

RW[16,32,64,P] AG(busy = nr = 0)

s1s-1 AG(Inject = Pressure = TooLow)

S1s-2 AG((Reset A —(Pressure = TooHigh) = —Overridden)
A(Reset A Pressure = TooLow = Inject))

LC AG(count > 1 <= Of fice = OccupiedA
Occupants = Multiple)

Table 3.1: List of problem instances used in the experiments

Chapter 3

e BK|[2,3,4] and TK[2,3,4] are mutual exclusion protocols (for (2,3,4) pro-
cesses, respectively). We verified both mutual exclusion (BK[2,3,4]-1,
TK|[2,3,4]-1) and starvation-freedom (BK[2,3,4]-2, TK|[2,3,4]-2) properties

for these protocols.

a0

The Composite Symbolic Library Chapter 3

e We verified three properties for sleeping barber monitor specifications with
2, 3, and 4 customer processes and one barber process (BR[2,3,4]-[1,2,3]).
We also verified the three properties (BRP-[1,2,3]) on the parameterized

system.

e We analyzed a parameterized cache coherence protocol specification
(c-[1,2,3,4], c-REF-[1,2,3]) given in [33]. We verified all the properties

given in [33].

e ISORT is a specification from [34], for array bound checking of an implemen-

tation of insertion sort algorithm.

e RW[16,32,64] is a monitor specification for the readers-writers problem for

various numbers of processes [4].

e LC and sIS are two reactive software specifications. LC is an office light
control system specification written in statecharts [17]. SIS is specification

of a safety injection system for a nuclear reactor [27]

We obtained the experimental results on a SUN ULTRA 10 workstation with
768 Mbytes of memory, running SunOs 5.7.

In Table 3.2 we show the sizes of the problem instances we used in our exper-
iments. Each row in Table 3.2 shows the size of the composite symbolic represen-
tation for the transition relation used in that instance. The size of a composite
representation is shown in terms of the number of composite atoms, the number
of polyhedra, the number of equality (EQ) and greater-than-or-equal-to (GEQ)
constraints, the number of BDD nodes, the number of integer variables, and the

number of boolean variables in it. Table 3.3 shows the size of the maximum

o1

The Composite Symbolic Library Chapter 3

Problem Transition Relation Size

Instance Composite | Polyhedra | EQ, GEQ | BDD | # int. | # bool.
BK2-[1,2 6 8 32 69 2 4
BK3-[1,2 9 121 126 165 3 6
TK2-[1,2 6 6 38 69 4 4
TK3-({1,2 9 9 66 165 5 6
BR2-[1,2,3 8 8) 88 3 1
BR3-[1,2,3 10 10 60 | 140 3 5
BRA-[1,2,3 12 12 72| 204 3 6
BRP-[1,2,3 6 6 62 32 6 2
c-[1,2,3,4] 10 10 120 94 6 1
C-REF-[1,2,3] 10 10 120 88 6 4
ISORT 8 8 27 56 3 3
RW16 32 32 64 1570 1 17
RW32 64 64 128 6210 1 33
RWG64 128 128 256 | 24706 1 65
RWP 4 4 56 11 7 1
S1s-1 8 10 50 117 3 6
SIS-2 8 14 1573 117 6 6
LC 12 12 25 271 1 7

Table 3.2: Sizes of the transition relations for the problem instances used in

the experiments

fixpoint iteration result for the optimized version of the Composite Symbolic Li-

brary with all the presented heuristics included. For 14 of 35 problem instances

the verification procedure runs out of memory if the heuristics are not used.

Experimental results for the verifier with different versions of the simplification

algorithm and without simplification are given in Tables 3.4 and 3.5. The label

S1-52-53 indicates that at each simplification point the simplification algorithm

with S1, §2, and S3 are called in this order. So a multi-level simplification is

achieved starting with the least aggressive version and continuing by increasing

the degree of aggressiveness. Results show that multi-level simplification performs

better than single level simplification. It also indicates that the speedup obtained

by simplifying the composite representation is significant. Without simplification,

52

The Composite Symbolic Library

Chapter 3

Problem Maximum Fixpoint Iteration Result Size Fixpoints
Instance | Composite | Polyhedra | EQ, GEQ | BDD | EF | EG
BK2-1 6 10 20 28 4 -
BK2-2 4 5 10 21 1 9
BK3-1 22 61 183 171 5 -
BK3-2 16 48 146 141 4 15
TK2-1 6 11 36 31 9 —
TK2-2 8 25 74 41 7 5
TK3-1 19 28 117 168 | 11 -
TK3-2 27 54 191 195 6 8
BR2-1 14 29 87 60 9 -
BR2-2 4 4 12 13 5 -
BR2-3 9 10 30 42 | 11 -
BR3-1 16 35 105 90 | 10 —
BR3-2 4 4 12 15 5 -
BR3-3 12 14 42 75| 12 -
BR4-1 18 41 123 128 | 11 -
BR4-2 4 4 12 17 5 —
BR4-3 15 18 54 122 | 13 —
BRP-1 4 24 167 10 8 -
BRP-2 4 6 26 10 5 —
BRP-3 5 14 73 13 | 11 —
c-1 5 7 42 23 4 —
c-2 11 43 258 51 5 3
c-3 15 81 494 72 8 3
c-4 15 20 111 73| 13 11
C-REF-1 4 6 36 20 4 —
C-REF-2 7 8 46 33 5 3
C-REF-3 11 186 1116 53 9 3
ISORT 5 8 10 19 5 —
RW16 1 1 1 2 1 —
RW32 1 1 1 2 1 —
RW64 1 1 1 2 1 —
RWP 1 1 7 2 1 —
S1s-1 1 1 1 3 1 —
SIS-2 2 7 49 14 2 —
LC 4 4 5 35 3 —

Table 3.3: Maximum fixpoint iteration result sizes and the number of fixpoint
iterations for the optimized version of the Composite Symbolic Library for

problem instances used in the experiments

23

The Composite Symbolic Library Chapter 3

Problem S1-S2-S3 S1 S2 S3 | None
Instance

BK2-1 0.21 0.09 | 0.10 0.2 0.1
(L)BK2-2 0.26 | 0.53 | 0.31 0.35 0
BK3-1 8.26 | 3.44 | 348 8.85 | 5.71
(L)BK3-2 51.32 370 | 109.7 | 81.23 0
TK2-1 1.07 | 0.59 | 0.60 0.87 1.81
(L)TK2-2 3.13 1.31 1.30 2.19 0
TK3-1 14.71 | 15.49 | 13.56 | 21.42 T
(L)TK3-2 29.73 | 75.48 | 28.2 | 119.95 0
BR2-1 462 | 4.52 | 3.59 4.52 | 59.3
BR2-2 0.27 | 0.25| 0.23 0.27 | 0.28
BR2-3 1.58 1.49 1.51 1.55 | 2.93
BR3-1 10.93 | 13.22 | 9.14 10.59 0
BR3-2 035 | 032 0.33 0.30 0.5
BR3-3 412 | 4.39 | 4.31 3.93 | 66.89
BR4-1 21.98 | 29.92 | 18.85 | 21.05 +
BR4-2 043 | 0.46 | 0.43 0.39 | 0.83
BR4-3 8.76 | 10.09 | 9.93 8.61 0
BRP-1 6.76 | 5.64 | 6.53 7.8 173
BRP-2 0.22 | 0.16 | 0.19 0.20 | 0.38
BRP-3 1.17 | 0.78 | 0.89 1.14 | 3.77
c-1 0.34 | 0.25| 0.29 0.30 | 0.23
(L)c-2 2.74 | 0.74 | 0.82 4.03 2.1
(L)c-3 11.97 | 2.11 2.42 18.8 | 21.97
(L)c-4 13.14 | 193 | 2.03| 27.09 0
C-REF-1 0.27 | 0.19 | 0.22 0.25 | 0.16
(L)C-REF-2 097 | >83 | >83 >83 T
(L)C-REF-3 0.48 | >139 | >139 >139 0
ISORT 0.2 | 0.11 0.11 0.23 | 0.21
RW16 0.02 | 0.02 | 0.02 0.02 0
RW32 0.03 | 0.03| 0.03 0.03 0
RW64 0.056 | 0.05 | 0.05 0.05 0
RWP 0.01 0.01 0.01 0.01 0.01
sis-1 0.01 0.01 0.01 0.01 0.01
SIS-2 0.07 | 0.02 | 0.03 0.06 | 0.02
LC 0.12 | 0.10 | 0.09 0.09 | 0.09

Table 3.4: Verification time (in secs) results for different versions of the sim-
plification heuristic vs. no simplification (1 means that the program ran out
of memory, > z means that the execution did not terminate in x seconds, and
(L) indicates that the specification has been verified for a liveness property)

for most of the examples, the verifier ran out of memory.

o4

The Composite Symbolic Library Chapter 3

Problem S1-S2-S3 S1 S2 S3 | None
Instance

BK2-1 7.8 7.8 7.7 7.7 80
(L)BK2-2 7.9 8.8 8.5 7.8 0
BK3-1 19.6 | 21.5 20.3 19.5 30
(L)BK3-2 34.7 323 775 | 34.9 1
TK2-1 10.2 10.3 10.4 10.2 17.4
(L)Tk2-2 13.8 13.8 13.5 134 T
TK3-1 28 58 | 43.3 | 35.2 T
(L)TK3-2 29 173 62 60 T
BR2-1 17.7 21 17.6 17.6 197
BR2-2 8.8 9 9 8.8 9.3
BR2-3 12.8 13.8 13.8 12.8 20
BR3-1 26.6 | 34.5 26.4 | 26.4 0
BR3-2 9.5 9.7 9.8 9.5 10
BR3-3 18.1 21 21 18 205
BR4-1 38.5 52.7 | 38.1 38.1 0
BR4-2 10.1 10.5 10.5 10.1 13.3
BR4-3 25.9 | 32.2 32 25.8 0
BRP-1 24 24 24 24 228
BRP-2 9.4 9.3 9.3 9.3 10.3
BRP-3 13.5 13.4 13.4 13.4 19.5
c-1 11.3 11.2 11.2 11.3 11.5
(L)c-2 14.8 13.6 13.1 156 | 24.8
(L)c-3 29.8 | 22.2 21.1 32.8 161
(L)c-4 24.6 19.3 19.3 | 36.9 0
C-REF-1 11 11 11 11 11.1
(L)C-REF-2 114 | >60| >60| >60 t
(L)C-REF-3 11.6 | >181 | >181 | >181 0
ISORT 8.5 8.5 8.4 8.4 8.7
RW16 8.1 8.1 8.1 8.1 0
RW32 10.8 10.8 10.8 10.8 1
RW64 20.6 | 20.6 20.6 | 20.6 1
RWP 9 9 9 9 9
sis-1 7.5 7.5 7.5 7.5 7.7
SIS-2 194 194 194 194 | 23.8
LC 7.9 8 8 7.9 8.4

Table 3.5: Verification memory (in Mbytes) results for different versions of the
simplification heuristic vs. no simplification (T means that the program ran out
of memory, > = means that the execution did not terminate in x seconds, and
(L) indicates that the specification has been verified for a liveness property)

95

The Composite Symbolic Library Chapter 3

The results in Table 3.6 show that combining the subsumption check and
the disjunction computations with the pre-condition computation speeds up the
verification. There are two reasons for the speedup: 1) Since disjuncts that are
computed as the result of the pre-condition computation are not included in the
resulting composite formula if they are subsumed by the result from the previous
iteration, the resulting composite formula has a smaller size. 2) Only the disjuncts
that are the result of the pre-condition computation in the current iteration are
checked for subsumption relation against the resulting composite formula from
the previous step. Average speedup for this heuristic is 29%.

Verification times with and without masking the integer pre-condition com-
putation by boolean satisfiability check are given in Table 3.6. Results show that
masking the integer pre-condition computation speeds up the verification and the
speedup becomes higher for the specifications where the temporal property to be
checked is a liveness property. The reason may be that the liveness properties
involve two fixpoint computations: one for EG and one for EF?. Additionally, a
fixpoint iteration for EG involves a pre-condition computation followed by con-
junction operation whereas a fixpoint iteration for EF involves a pre-condition
computation followed by a disjunction operation. Since the conjunction causes a
quadratic increase (whereas the disjunction causes a linear increase) in the com-
posite formula size, the results of the EG fixpoint iterations are likely to grow
faster. Average speedup for masking heuristic is 12%.

Verification times for the two different versions of the subsumption check algo-

rithm are given in Table 3.6. In most of the experiments the subsumption check

2Note that the verifier computes the negation of a liveness property AGAFp and computes
the fixpoint for EF EG(—p). Then it checks satisfiability of I A EFEG(—p). Similarly, for an
invariant property AGp it computes the fixpoint for the negation of AGp and checks satisfiability
of I A EF(—p)

26

The Composite Symbolic Library Chapter 3

Problem —Subsumption | —PreDisjunction —Mask All-Heuristics
Instance T | M T | M T| M T | M
BK2-1 0.26 109 | 0.32 78| 024 | 87| 0.21 7.8
(L)BK2-2 0.34 94 0.3 79| 041 8| 0.26 7.9
BK3-1 20.99 268 | 20.37 16.1 | 834 | 288 | 8.26 19.6
(L)BK3-2 54 69 | 50.04 34.7 | 57.34 | 36.6 | 51.32 | 34.7
TK2-1 1.16 183 | 1.22 96| 1.14 | 132 | 1.07 10.2
(L)TK2-2 3.31 23.2 | 3.26 123 | 3.35|19.7 | 3.13 13.8
TK3-1 18.87 159 | 29.14 20.1 | 14.76 | 374 | 14.71 28
(L)TK3-2 36.47 204 | 66.53 34.2 | 32.67 | 49.9 | 29.73 29
BR2-1 8.03 122 | 6.32 15.7 | 4.65 | 21.4 | 4.62 17.7
BR2-2 0.2 10.1 | 0.37 83| 0.24 91 0.27 8.8
BR2-3 1.69 34.4 2 11.1 | 163 | 145 | 1.58 12.8
BR3-1 21.75 299 | 11.53 18.8 | 11.07 | 31.1 | 10.93 26.6
BR3-2 0.21 11.2 | 0.46 86| 036 | 9.7 035 9.5
BR3-3 6.03 105 | 4.15 13.7 | 4.12 | 20.5 | 4.12 18.1
BR4-1 43.77 554 | 20.62 22.8 | 22.21 | 444 | 21.98 | 38.5
BR4-2 0.27 123 | 0.59 89| 044|104 | 043 10.1
BR4-3 16.94 264 | 8.38 16.7 | 887 | 29.1 | 8.76 25.9
BRP-1 4.64 31.9 | 6.48 188 | 6.83 | 25.3 | 6.76 24
BRP-2 0.25 104 | 0.44 94| 024 | 92| 0.22 9.4
BRP-3 1.59 23.5 | 5.11 21.8 | 1.27 14| 1.17 13.5
c-1 0.37 134 | 0.86 10 | 0.38 13 | 0.34 11.3
(L)c-2 4.92 53.9 | 4.88 154 | 343|293 | 2.74 14.8
(L)c-3 21.61 169 | 26.45 35.4 | 13.93 | 91.1 | 11.97 | 29.8
(L)c-4 15.65 96.2 | 13.38 22.1 | 25.64 | 49.7 | 13.14 24.6
C-REF-1 0.28 119 | 0.56 10.1 | 033|127 | 0.27 11
L)C-REF-2 1.17 21.2 | 1.93 11.2 | 1.26 | 14.3 | 0.97 114
(L)C-REF-3 0.59 182 | 0.50 116 | 1.01 | 11.8 | 0.48 11.6
ISORT 0.2 91| 0.26 8.6 0.3 | 10.8 0.2 8.5
RW16 0.02 81| 0.03 81| 0.02| 81| 0.02 8.1
RW32 0.03 10.8 | 0.05 10.8 | 0.04 | 10.8 | 0.03 10.8
RW64 0.04 20.6 0.1 20.6 | 0.08 | 20.6 | 0.05 20.6
RWP 0.01 9| 0.01 91 0.01 91 0.01 9
s1s-1 0.01 7.5 | 0.01 75| 001] 7.5 | 0.01 7.5
S1S-2 0.07 19.4 | 0.08 194 | 038|272 | 0.07 194
LC 0.13 88| 0.17 76| 012 | 85| 0.12 7.9

Table 3.6: Verification time (T, in seconds) and memory (M, in Mbytes) results
demonstrating the impact of different heuristics (— denotes exclusion of the
specified heuristic and All-Heuristics denotes that all the heuristics are enabled)

o7

The Composite Symbolic Library Chapter 3

algorithm with the heuristic performs better than the subsumption check algo-
rithm shown in Fig. 3.5, which computes the complement operation at the com-
posite formula level. The results demonstrate that processing composite atoms as
needed and performing the complement operation at the composite atom level in-
stead of composite formula level is more efficient. Average speedup for the efficient

subsumption check heuristic is 10%.

3.5 Related Work

There have been other studies that combine different symbolic representations.
In [23], Chan et al. present a technique in which (both linear and non-linear)
constraints are mapped to BDD variables and a constraint solver is used during
model checking computations (in conjunction with SMV) to prune the infeasible
combinations of these constraints. Although this technique is capable of handling
non-linear constraints, it is restricted to systems where the transitions are either
data-memoryless (i.e., next state value of a data variable does not depend on its
current state value), or data-invariant (i.e., data variables remain unchanged).
Hence, even a transition that increments a variable (i.e., ' = = + 1) is ruled out.
It is reported in [23] that this restriction is partly motivated by the semantics of
RSML, and it allows modeling of a significant portion of TCAS II system.

In [8], a tool for checking inductive invariants on SCR specifications is de-
scribed. This tool combines automata based representations for linear arithmetic
constraints with BDDs. This approach is similar to our approach but it is spe-
cialized for inductive invariant checking. Another difference is, our tool uses poly-
hedral representations as opposed to automata based representations for linear

arithmetic. However, because of the object-oriented design of our tool it should

28

The Composite Symbolic Library Chapter 3

be easy to extend it with the automata-based linear constraint representations.

The Symbolic Analysis Laboratory provides a framework for combining differ-
ent tools in the verification of concurrent systems [7]. The heart of the Symbolic
Analysis Laboratory is a language for specifying concurrent systems in a composi-
tional manner. Our Composite Symbolic Library is a low-level approach compared
to the Symbolic Analysis Laboratory. We are combining different libraries at the
symbolic representation level as opposed to developing a specification language to
integrate different tools.

Techniques that are similar to our heuristics have been used in the literature.
In [34], local subsumption test is used during the fixpoint computations to remove
the redundant constrained facts. This is similar to our approach for preventing
the increase in the size of the disjunctive composite representation during fix-
point computation by removing the redundant disjuncts. However, we use full
subsumption test. Local subsumption test can also be used as a heuristic to test
the convergence of fixpoint computations [34]. However, there can be cases where
a fixpoint computation that uses the local subsumption test does not converge
whereas the fixpoint computation that uses the full subsumption test converges.

Hytech, a tool for verification of hybrid systems, simplifies formulas using
rewrite rules [3]. The approach used in [3] is for simplification of linear arithmetic
formulas on real variables. Our work is different in two respects: 1) We use linear
arithmetic formulas on integer variables. 2) Our heuristics are not for simplifica-
tion of linear arithmetic formulas, this is handled by the constraint manipulator
that we use [2]. Rather, our heuristics are for simplification of the composite
formulas, which contain a mixture of boolean and integer variables. In Hytech
boolean and enumerated variables (for example, control states) are eliminated by

partitioning the state space [3].

29

The Composite Symbolic Library Chapter 3

In [62], a linear partitioning algorithm for convex polyhedra is used to effi-
ciently test if a single convex polyhedron is subsumed by a disjunction of convex
polyhedra. This approach is analogous to our subsumption check heuristic where
the disjunction of convex polyhedra corresponds to our disjunctive composite rep-
resentation and the single convex polyhedron corresponds to a single disjunct of

a composite representation.

60

Chapter 4

Action Language Verifier

The Action Language Verifier is an automated verification tool for analyzing the
Action Language specifications using model checking technique. Given a transi-
tion system 7" = (S,I, R), where I, S, and R denote the initial states, the state
space, and the transition relation, respectively, and a CTL property ¢, model
checking problem is to decide whether I = [¢] holds, where [¢] denotes the
states that satisfy ¢.

The main challenge regarding model checking is to alleviate the so called state
explosion problem, which indicates the exponential growth of the state space with
the increasing number of concurrent components and variables. Symbolic model
checking [25] emerged as a partial solution to the state explosion problem by
encoding the state space symbolically instead of explicitly. As a result it enabled
verification of very large (even infinite) state systems. Symbolic model checking
owes its success to compact representations such as Binary Decision Diagrams
(BDDs) [12].

The Action Language Verifier is a symbolic model checker. Its distinguishing

feature is to encode the transition system using the composite symbolic repre-

61

Action Language Verifier Chapter 4

sentation to provide the flexibility and the efficiency required for analyzing soft-
ware specifications. The composite representation is implemented as an extensible
framework as described in Chapter 3.

The Action Language Verifier can analyze infinite-state systems. CTL model
checking for infinite-state systems is undecidable. However, the Action Language
Verifier employs several heuristics for speeding or guaranteeing the termination of
the analysis. These heuristics make the Action Language Verifier conservative, i.e.,
it does not generate any false positives, however, the analysis may be inconclusive.

This chapter is organized as follows. Section 4.1 presents the fixpoint char-
acterization of CTL operators for non-total systems. Section 4.2 presents the
heuristics for accelerating or guaranteeing the convergence of the fixpoint compu-
tations and the heuristics for efficient fixpoint computations. Section 4.3 presents
the algorithms for implementing an abstraction technique, called counting abstrac-
tion, for the composite representation. Section 4.4 explains the counter-example
generation algorithms. Section 4.5 presents the experimental results. Finally,

Section 4.6 discusses the related work.

4.1 Fixpoint Computations

The Action Language Verifier is built on top of the Composite Symbolic Li-
brary. An Action Language specification is translated to a transition system (see
Section 2.3) that is encoded symbolically by the Composite Symbolic Library
and passed to the verification engine implemented by the class TransSys given in
Figure 4.1.

The class TransSys implements a CTL model checker. The CTL operators

have either least fixpoint or greatest fixpoint characterizations [25]. The class

62

Action Language Verifier Chapter 4
Node
-children: *Node
-numChild: integer
-symType: symbolicType QIF?;?;EUS So0ien
-Operator: opType E:?A 5 o
] : + roxStatus(boolean

+getNu_mCh| 1dQ) - Integer +getA?>F;))roxStatuss((): bool e)an
+setCh|_I d(l_\lode, integer) +convertEUEGBasi§()
+getChild(integer): Node +convertEUAUBas ()
+setSymbolicType(symbolicType)
+getSymbolicType(): symbolicType
+setOperator(opType)
+getOperator(): opType

TransSys

-transRelation : Symbolic

-initial State : Symbolic

-stateSpace : Symbolic

-witnessTree : WitnessTreeNode

+verify(formula: Node)

-computeEX é&mbol ic,boolean): Symbolic

gﬁ)ménfgeEU Symbolic,Symbolic,boolean): WitnessTreeNode

mbolic

-computeEG(Symbolic,boolean): Symbolic
-computeA U(Symbolic,Symbolic,boolean):
Symbolic

-computeForwardFixpoint()

-computel oopClosures()

-iterates: LinkedList<Symbolic>
-witnessPath: LinkedList<Symbolic>
-formula: Node

+generateWitness(Symbolic)

Symbolic

+myType s?/mbolicType
+isSet: boolean
+construct(Node,boolean) :
Symbolic
+conjunction(Symbolic)
+disjunction(Symbolic)
+complement
+isSatisfiable(} boolean
+isSubsumed(Symbolic):
boolean
+isEciuivaI ent(Symbolic):
boolean

+post(Symbalic)
+pre(Symbolic)
+widen(Symbolic)
+coll Symbolic)

Figure 4.1: Class diagram of the composite model checker

63

Action Language Verifier Chapter 4

TransSys implements the fixpoint algorithms by calling the method pre of the
class Symbolic in order to compute the states that satisfy a given CTL formula,
which is implemented by the class Ct1Formula given in Figure 4.1.

The pre- and post-condition computations are among the basic operations in
a symbolic model checker. Given states p and a transition relation R, the pre-
condition Pre(p, R) are all the states that can reach a state in p with a single
transition in R (i.e., the predecessors of all the states in p). Post(p, R) is defined
similarly.

Given states p and a transition relation R both represented using the composite

symbolic representation as

np T ng T
p=V Ape R=\ Aru
i=11t=1 i=1t=1

the pre-condition, as we have already mentioned in Section 3.2, can be computed

as
ng Np T

Pre(p,R) =\ \/ N\ Pre(pjt,rit)

i=1j=1t=1
Since the pre-condition computation distributes over both the disjunction and the

conjunction, we are able to compute the pre-condition of a composite representa-
tion using pre methods of the basic symbolic representations.
The CTL temporal operators are generated from the basic temporal operators

for paths:

e G p (Globally p) p holds in every state
e I p (Future p) p will hold in a future state
e p U ¢ (p Until ¢) p will hold until ¢ holds

e X p (Next p) p will hold in the next state

64

Action Language Verifier Chapter 4

by adding one of the path quantifiers A (for all paths) or E (there exists a path)
as a prefix. For example, AG p denotes that p is an invariant, AF p denotes that
p is always eventually reached, and AG(p = AF q) denotes that p leads-to ¢ (i.e.,
whenever p becomes true, eventually ¢ will be reached).

Based on the equivalences among the CTL operators [25], one can show that
{EX, EG, EU} forms a basis for CTL, i.e., all CTL formulas can be expressed using
only these temporal operators. Similarly, another basis for CTL is {EX, EU, AU}.
In the Action Language Verifier both basis are implemented and can be chosen
by the user. Another option is to leave the temporal operators as they are. In
that case the Action Language Verifier computes each temporal operator directly
using the corresponding fixpoint.

The temporal operator EX corresponds to the pre-condition computation, i.e.,
EX p = Pre(p, R). AX can also be computed as AX p = —Pre(—p, R). The rest
of the CTL operators can be computed as least and greatest fixpoints using EX
and AX [25]

pEUgq = pr.q VvV (p N EX x)

pAUqg = pr.q VvV (p AN AX)

EGp = ve.p AN EXz

AGp = vr.p N AXz
However, the above characterizations of AU and EG are not complete if we do
not restrict the transition relation to be total. Since a non-total transition system
can have states that do not have any next states, AX false will be satisfied in
such states vacuously. Hence, those states will satisfy AF false too. This creates
a problem, since we will have states that satisfy AF p without p being satisfied in

any future state. To prevent this we alter the fixpoint computation for AU (and

65

Action Language Verifier Chapter 4

similarly for AF) as follows
pAUqg=pux.q vV (p N AX 2z AN AtLeastOne)

where AtLeastOne denotes the states that have at least one successor.

Dual of this problem appears in the EG fixpoint. If all the states in a finite
path that ends at a state that does not have any successors satisfies p, then the
states on that path should satisfy EGp. Then, we need to change the EG fixpoint
as:

EGp=vz.p AN (EX2 V None)

where None denotes the states that have no successors
(i.e., None = —AtLeastOne). Note that, this fixpoint always considers all the
paths that end in a state with no successors. In the Action Language Verifier
AtLeastOne and None are pre-computed and stored with the transition system,
so that they are not recomputed in each fixpoint iteration.

The Action Language Verifier iteratively computes the fixpoints for the tem-

poral operators. Given a monotonic functional F [63]

\/ F false = puzr.Fx (4.1)
i=0
vy . Fz = [\ F true (4.2)
i=0

where F* p denotes the application of F to p i consecutive times, and F° corre-
sponds to the identity relation. Using these properties we can compute the least
fixpoints iteratively by starting with false and then applying the functional to
get the result of the next iteration. Similarly, the greatest fixpoints can be com-
puted starting from true. In an infinite state model checker convergence is not

guaranteed. Although each iteration takes us closer to the fixpoint, we are not

66

Action Language Verifier Chapter 4

1 EX(p): composite formula
2 p: composite formula
3 let R denote the transition relation

4 return Pre(p, R)

Figure 4.2: The algorithm for computing the states that satisfy EXp

guaranteed to reach it. However, if a fixpoint is reached we are sure that it is the

least or the greatest fixpoint based on the type of the iteration.

EG(p): composite formula
p, 8, sold, None: composite formula
let R denote the transition relation

let None denote the states with no successors

1

2

3

4

5 s¢p
6 sold + false

7 while —isEquivalent(s, sold) do

8 sold + s

9 s « (Pre(s,R)V None) A sold

10return s

Figure 4.3: The algorithm for computing the states that satisfy EGp

Figures 4.2, 4.3, 4.4 and 4.5 show the algorithms for computing the states that
satisfy the CTL formulas EXp, EGp, p EU ¢, and p AU q. The algorithm in Figure
4.2 computes EXp by simply computing the pre-condition computation on p. The
algorithm in Figure 4.3 computes the set of states that satisfy EGp. It starts with

67

Action Language Verifier Chapter 4

EU(p, q): composite formula

D, q, 8, sold: composite formula

s+ q

sold < false

let R denote the transition relation

while —isFEquivalent(s, sold) do
sold < s

s + Pre(s,R) ApV sold

© 0 N O Ut ks W N -

return s

Figure 4.4: The algorithm for computing the states that satisfy p EU ¢

AU(p, ¢): composite formula

D, q, s, sold, AtLeastOne: composite formula

s+ q

sold < false

let R denote the transition relation

let AtLeastOne denote the states with at least one successor
while —isFEquivalent(s, sold) do

sold + s

© 00 N O Ut s W N =

s < —Pre(—s, R) Ap A AtLeastOne V sold

10 return s

Figure 4.5: The algorithm for computing the states that satisfy p AU ¢

68

Action Language Verifier Chapter 4

the states that satisfy p. Then it iteratively restricts these states to the states
that can reach the states that satisfy p in one step, in two steps, and so on using
the pre-condition computation. The iteration stops when there is no change in
the states computed so far and returns the result. The algorithm in Figure 4.4
computes p EU q. It starts with the states that satisfy ¢. Then it iteratively adds
the states that satisfy p and can reach ¢ in one step, in two steps, and so on to
these states using the pre-condition computation. The iteration stops when there
is no change in the states computed so far and returns the result. The algorithm
in Figure 4.5 computes p AU ¢. It starts with the states that satisfy ¢. Then it
adds states that satisfy p and cannot reach —¢ in one step, in two steps, and so
on to these states using the pre-condition computation. The iteration stops when

there is no change in the states computed so far and returns the result.

4.2 Heuristics

If we cannot directly compute the states that a temporal property ¢ satisfies
for a transition system M = (S,I, R), we can try to generate a lower bound for
¢, denoted ¢, such that ¢~ = ¢. Then, if we determine that the initial states
satisfy this lower bound (i.e., I = ¢~), we have also shown that I = ¢, i.e., we
proved that transition system M satisfies the property ¢. However, if I A ¢,
we cannot conclude anything, because it can be a false negative. In that case
we can compute a lower bound for the negated property: (—¢)~. If I A (—¢)~
is satisfiable, then we can generate a counter example, which would be a true
negative. If both cases fail, i.e., both I % ¢~ and I A (—¢)~ = false, then the
verifier cannot report a definite answer.

Since the Action Language Verifier computes the temporal formulas recursively

69

Action Language Verifier Chapter 4

starting from the innermost temporal operators, we have to compute an approxi-
mation to a formula by first computing the approximations for its sub formulas.

[{3
-

All temporal and logical operators other than are monotonic. This means
that any lower/upper approximation for a negation free formula can be computed
using the corresponding lower /upper approximation for its sub formulas. To com-
pute a lower bound for a negated property like p = —¢, we can compute an upper
bound ¢* for the sub formula ¢ where ¢ = ¢*, and then let p~ = —¢*. Similarly
we can compute an upper bound for p using a lower bound for g. Thus, we need
algorithms to compute both lower and upper bounds of temporal formulas. In this
section we explain the heuristics for accelerating the convergence of the fixpoint
computations, which are truncated fixpoint calculations, the widening and the
collapsing operators, the loop-closures, and the reachable states. We also propose
two heuristics, which are marking and dependency heuristics, for avoiding the re-
dundant computations during fixpoint computations. We have implemented these
heuristics in the Action Language Verifier. We will explain these heuristics using
the sample specification given in Figure 4.6, in which two integer variables (x and
y) are periodically assigned values that have the same absolute value and are of
different signs (x=-size and y=size, by action ab). Between two such consecutive
assignments the negative value is incremented till it becomes zero (actions a1 and
a2) and then the positive value is decremented till it becomes zero (actions a3
and a4). The correctness property is specified as x is always smaller than or equal

toy.

Truncated Fixpoint Computations FEach iteration of a least fixpoint compu-
tation gives a lower bound for the least fixpoint. Hence, if we truncate the fixpoint

computation after a finite number of iterations we will have a lower bound for the

70

Action Language Verifier Chapter 4

module main()

parameterized integer size;

integer x,y;

enumerated pc {a,b,c};

restrict: size>0;

initial: x=-size and y=size;

al: pc=a and x<0 and x’=x+1 and pc’=a;
a2: pc=a and x=0 and pc’=b;
9 a3: pc=b and y>0 and y’=y-1 and pc’=b;
10 a4: pc=b and y=0 and pc’=c;

11 ab: pc=c and x’=-size and y’=size and pc’=a;
12 main: al | a2 | a3 | a4 | a5;

13 spec: AG(x<=y)

14 endmodule

O N O WN -

Figure 4.6: A sample Action Language specification.

least-fixpoint. Similarly, the result of each iteration of a greatest fixpoint com-
putation gives an upper bound for the greatest fixpoint. For instance, for the
specification in Figure 4.6, truncating the fixpoint computation of EF(z > y),
given in Figure 4.7, after two iterations yields /5, which is a lower approximation
for the least fixpoint. The Action Language Verifier has a flag that can be set to
determine the bound on number of fixpoint iterations. If the obtained result is not
precise enough to prove the property of interest, it can be improved by running

more fixpoint iterations.

The Widening and Collapsing Operators For computing upper bounds for
least-fixpoints we use the widening technique [28] generalized to the composite
symbolic representation [15]. Let p and ¢ denote two composite formulas such
that p = ¢ and 7 denote the widening operator. Then p 7/ ¢ is defined as

JAVAR= V /\pz‘tVtthV \/ q;

1<i<n, 1<j<m, pi=q; t€T 1<j<m, ~31<i<n, pi=q;

71

Atomic property: x>y

v }sysx A\ false
sizez1Apc=b

R
false V <

2<yg X+1p >

12: x>y v falsey [YXST A) (sysx A v (L2 Ay -
sizex1ppc=a sizez1p pc=b sizex1 A pc=a sizex1Apc=b

¢l

4, ab

9‘6
preal, a2, a

preal
Gd

13: x>nyaJsev<ysXs'l A >v <l§y§x A >v <y—ngg—2/\ >vfa|se v <2§y§X+l"b>v <y-2ng-3 A > v false v
a a a

3<y<X+2 A
sizex1)\ pc= size>1 A pc=b size>1 A pc= size>1 A pc= size>1 A pc= size>1 A pc=b

Figure 4.7: The result of the first three iterations of computing EF(z > y) naively for the Action Language
specification given in Figure 4.6. Iy, I3, and I3 denote the result of the first, the second, and the third
iteration, respectively. pre a; denotes that the constraint pointed by the arrow is obtained by performing
the pre-condition computation on the source constraint using action a;, where 1 <7 < 5.

Jauus A 98en3ue uoidy

y 191dey)

Action Language Verifier Chapter 4

Atomic property: X>y
11 x>y V y_sXs-l Ay }sysx A
sizez1Apc=a sizex1) pc=b

12: x>y V)_/sxs-l Ay y_-lsxs-Z Ay 1§ysx A v 2sys X+IA
Sizex1Apc=a sizex1 A pc=a size>1A pc=b sizez1Apc=b
AN simplify / AN smplify

- - - <
12 x>y v y_lsxsl Ayl v 1§ysx+1/\ 1sx
sizex 1 A pc=a sizex1 A pc=b

2 Y-lgxel Aysl y-2<Xs2 Aysl Igygx+1p 1sx 2<yg X2 1sx
LYY sizex 1 A pc=a v sizex 1 A pc=a sizex1 A pc=b v sizex1 A pc=b

N\ simplify / N\ simplify /
13xsy v (y-2sxs-1 A ys-1> v (1sys><+2/\ 1< X>

J sizex 1 A pc=a sizex1) pc=b

13 xgl A yg-l gy Al<x
x>y v sizez 1 A pc= v sizex1 A pc=b

Figure 4.8: The results of the first three iterations of computing EF(z > y)
for the Action Language specification given in Figure 4.6. I, I, and I3 denote
the results of the first, the second, and the third iteration, respectively. I}, and
I5 denote the results of the iterations after the simplification operation and I3
denotes the result of the iteration after the widening operation.

73

Action Language Verifier Chapter 4

where n, T, ps, and 5/; denote the number of the set of basic symbolic repre-
sentations, a symbolic representation of type ¢, and the type-specific widening
operator, respectively. All widening operators satisfy the following constraint:
pV q = pv/ q. Intuitively, <7 operator guesses the direction of the growth in the
results of the fixpoint iterations, and extends the results of the successive itera-
tions in that direction. The least fixpoint computations are modified so that at
each iteration the result p; is set to p; 1 v p;- For the polyhedral representation
we use the widening operator defined in [16] for Presburger arithmetic constraints
by generalizing the convex widening operator in [29]. The basic idea is to find
pairs of polyhedra p and ¢ such that p = ¢ and set p \V;n: ¢ to conjunction of
constraints in p that are also satisfied by ¢. Intuitively, if a constraint of p is not
satisfied by ¢ this means that the results of the iterations are increasing in that
direction. By removing that constraint we extend the result of the iterations in
the direction of growth as much as possible without violating other constraints.
For the boolean representation the widening operator (S/poo) is simply the dis-
junction operation. Figure 4.8 shows an example of the widening operator, which
is used for the computation of EF(z > y) fixpoint for the specification in Figure
4.6. In this example the Action Language Verifier was directed to start apply-
ing the widening operation after the second iteration. For computing I} <7 I},
the Action Language Verifier compares each pair of disjuncts where one of them
comes from Ij and the other comes from I3. For pairs that satisfy the sub-
sumption relation it applies the widening operation. For instance, the disjunct
y—1 <z < —1Ay < —1Asize > 1Apc = a that comes from I} is subsumed by the
disjunct y—2 <z < —1Ay < —1Asize > 1Apc = a that comes from [}. Applying
integer based widening operation on the integer parts of these two disjuncts, i.e.,

(y—1<z<-1Ay<—-1Asize> 1) Vi (y—2< 2 < -1Ay < —1Asize > 1),

74

Action Language Verifier Chapter 4

yields x < —1 Ay < —1 A size > 1. Note that the conjunct y — 2 < zx is not
satisfied by y — 1 < 2 < =1 Ay < —1 A size > 1, so it does not appear in the
result.

To compute lower-bounds for the greatest fixpoint computations we define the
dual of the widening operator and call it the collapsing operator (and denote it
with /). Let p and g denote two composite formulas such that ¢ = p. Then the
pv/q is defined as

pVq = V N\ P v V pi

1<i<n, 1<j<m, pi=q; t€T 1<i<n, ~31<j<m, p;=q;

where n, T, py, and 57, denote the number of the set of basic symbolic represen-
tations, a symbolic representation of type ¢, and type-specific collapsing operator,
respectively. The collapsing operators satisfy the following: p\/qg = p A ¢. Intu-
itively, 7 operator finds which parts of the result of the fixpoint iterations are
decreasing and removes them to accelerate the fixpoint computation. The greatest
fixpoint computations are modified so that at each iteration the result p; is set to
pi—1\/p;- In our symbolic representation for integers each Presburger arithmetic
formula is represented as a disjunction of polyhedra. Given two such represen-
tations p and ¢, our collapsing operator for linear arithmetic constraints (3/;,;)
looks for a polyhedron in p that subsumes and is not equal to a polyhedron in q.
When a pair is found the subsumed polyhedron is removed from q. The result
of the collapsing operation is the union of the polyhedra remaining in g. For the
boolean representation the collapsing operator (3/,,,;) is the conjunction opera-
tor. Figure 4.9 shows an example of the collapsing operator, which is used for
the computation of EG(x < y) fixpoint for the specification in Figure 4.6. In this
example the Action Language Verifier was directed to start applying the collaps-

ing operation after the first iteration. For computing I;5/],, the Action Language

75

Action Language Verifier Chapter 4

; Dy (1Isx A ys-1 A
Atomic property: X<y None: < oc=a v pc=b
X<y-1A x<-1 yX ALy _ X<y
v sizexl v sizexl A
—IL | x=0A0sy A A |V |[y=0Axs0O A v | sizes1
\ pc=a \ c=b A
1$x<y x<y<-1 Pe= pc=c
XSy
XSY-2A X$-2 szesl x<y-2A 28y sizeyl A .
-12: v A A |y v A A Vv S'ie?
-1 <x<y A Oy pc=a x<y<1A x<0 pc=b pc=c
— -1 <x<y A Ogy x<y<1A x<0 X<y
V A A)
|2 sizes1 v sizexl v sizexl
A A A
pc=a pc=b pc=C

Figure 4.9: The results of the first three iterations of computing EG(z < y)
for the Action Language specification given in Figure 4.6. None denotes the
states with no successors. I; and Iy denote the results of the first and the
second iterations, respectively. I} denotes the result of the iteration after the
collapsing operation.

76

Action Language Verifier Chapter 4

Verifier compares each pair of disjuncts where one of them comes from I; and the
other comes from I,. For pairs that satisfy the subsumption relation it applies
the collapsing operation. For instance, the disjunct (z <y—-2Az< -2 VvV —1<
z <yA0 < y)Asize > 1Apc = a that comes from I, is subsumed by the disjunct
(x<y—1Az<-1Vz=0Ay>0V 1<z<y)Asize>1Apc=a that comes
from I,. Applying integer based collapsing operation on the integer parts of these
two disjuncts, i.e.,, (z <y—1Az< -1V z=0Ay>0V 1<z<yV 1<
<y Asize > 1yt <y—2A2< -2V —1<z<yA0<y)Asize> 1,
yields —1 <z <y Ay > 0Asize > 1. Note that the disjunct x <y —2Azx < -2
is subsumed by and is not equal to x <y — 1Az < —1, so it does not appear in

the result.

The Loop-Closures Another heuristic we use to accelerate convergence is to
compute the closures of self-loops in the specifications. Given a transition system

(1, S, R) we can use any relation R’ that satisfies the constraint
Vs = S, Post(s, R) = Post(s, R') = Post(s, R")

(where R* denotes the reflexive-transitive closure of R) to accelerate the fixpoint
computations for temporal operators EF and EU [16].
To exploit this idea, given a transition relation R in the composite symbolic

representation R = V[Aier 7it, the Action Language Verifier transforms it to

n

R=R YV \(rime A N\ IR,)

i=1 tET t£int
where IR, is the identity relation for the variables represented with the basic
symbolic representation type ¢, and the subscript int denote the symbolic repre-

sentation for integers. Note that, /\feT’t#m IR, corresponds to identity relation for

7

Action Language Verifier Chapter 4

all the variables other than integers. Hence, Vi_|(Tiint A Avertzint IRt) denotes
the part of the transition relation where all the variables other than the integer
variables stay the same. To compute r;;,;’s we conjunct the transition relation R
with Aseqizine IRy and collect the resulting disjuncts that are satisfiable. Then,
for each 7; ins we compute an r{ ;.. where Vs = S, Post(s, 75,nt) = Post(s, 1] ;,;) =

Post(s, 7} ;). We take the disjunction of the result with the original transition

relation R to compute

n T

R=RV \(rizu N N IR)

i=1 tET t#int
Then, we use R' in the fixpoint computations for EF and EU instead of R to
accelerate the fixpoint computations. Note that we cannot use closure computa-
tions for EG or AU fixpoints since they may introduce cycles that do not exist in
the original transition system. Table 4.1 shows the transitions that correspond to
the actions in Figure 4.6 for both cases with and without using the loop-closures
heuristic. Note that when the loop-closures heuristic is used only the transitions
that correspond to the actions al and a3 change, since they are the ones that
model loops, i.e., they model iterative increment and decrement operations, re-

spectively.

The Reachable States The fixpoint algorithms described thus far are backward
techniques. They start with a property ¢, and then use Pre to determine which
states can reach ¢. The last step is to determine whether the initial states I imply
the derived states. Alternatively, it may be useful to start with the initial states I,
compute an upper approximation RS™ to the reachable state-space RS and then
use RS to help in the model-checking process. We can accomplish this by altering

the symbolic model checker to restrict its computations to states in RS*. To

78

Action Language Verifier Chapter 4

Action —Loop-Closures +Loop-Closures

ail pc=aAz <O0A (pc=aNz<0AZ' =x+1Apc =a)V
=z+1Apc =a (pc=anz+1>2">0Apcd =a)

a2 pc=aAz=0Apd =b pc=aANz=0Apd =b

a3 pc=bAy > 0A (pe=bAy>0Ay =y—1Apc =b)V
Y =y—1Apc =b (pe=bA0<y <yApcd =Db)

a4 pc=bAy=0Apcd =c¢c pc=bAy=0Apd =c

ab pc=cAz' = —sizeA | pc=cAz' = —sizeAy' = —sizeApc =a
y' = —sizeApc =a

Table 4.1: The transitions that correspond to the actions of the Action Lan-
guage specification in Figure 4.6. — and + denote exclusion and inclusion,
respectively.

generate the upper bound RS™, we used the Post function. The (exact) reachable
state-space of a transition system is the least fixpoint RS = px . I V Post(z, R),
and it can be computed using the techniques we previously developed for EU.
Moreover, we can use the widening method to compute an upper bound for RS as
well. After computing RS™, we restrict the result of every operation in the model

checker to RS™T.

The Marking Heuristic The states that satisfy EF¢ are characterized by the
least fixpoint uZ.¢ V Pre(Z). The states that satisfy EF¢ can be computed iter-
atively such that the result of the kth iteration denotes the states that can reach
a state that satisfies ¢ in at most £ transitions. As composite symbolic represen-
tation is a disjunctive representation and in the least fixpoint computations the
result of the kth iteration includes the disjuncts from the previous iteration (k—1st
iteration), a naive approach that computes the pre-condition on the result of the
k — 1st iteration to obtain the result of the kth iteration would perform redundant
computations, i.e., recomputes the pre-condition for the disjuncts coming from
the result of the £ — 2nd iteration. We can alleviate this problem by marking the

disjuncts from the result of the k — 1st iteration after computing the result of the

79

Action Language Verifier

Chapter 4

Iter. Result —Marking +Marking
computed computed marked
0 1) none none none
1 ¢V Pre(¢) Pre(¢) Pre(¢) ¢
2 6V Pre(d) Pre(9), Pre(Pre(3)) 5
V Pre(Pre(¢)) Pre(Pre(¢)) Pre(9)
3 ¢V Pre(¢) Pre(¢), Pre(Pre(Pre(¢))) 9,
V Pre(Pre(¢))V Pre(Pre(¢)), Pre(¢),
Pre(Pre(Pre(¢))) | Pre(Pre(Pre(¢))) Pre(Pre(¢))

Table 4.2: The results of the first 4 iterations of computing EF = yZ.¢V Pre(Z)
with and without the marking heuristic.— and + denote exclusion and inclusion,
respectively.

kth iteration. Hence, at the kth iteration the pre-condition is computed only on
the disjuncts that are not marked, i.e., disjuncts that were computed at the k —1st
iteration. Table 4.2 shows the results of the first 4 iterations for computing EF¢
for both with and without the marking heuristic. At the kth iteration the fix-
point algorithm without the marking heuristic computes k£ — 1 more pre-condition
computation than that computed by the the fixpoint algorithm with the marking
heuristic. Another benefit of marking heuristic is to reduce the number of the
widening operations performed when the Action Language Verifier runs in the
approximate fixpoint computation mode. The Marking heuristic can also be used
for computing the states satisfied by pEUq and for computing the reachable states
RS as they also have least fixpoint characterization in the form uZ.¢ v F(Z2).
Figure 4.10 shows the results of the first three iterations for computing EF (z >
y) using the Marking heuristic for the specification given in Figure 4.6. The
disjuncts that are enclosed by rounded-corner boxes denote the marked ones. The
Marking heuristic makes sure that the pre-condition computation on the disjuncts
r>y,y<z< —-1Asize>1Apc=a,andy—1<z<2Asize>1Apc=a

is performed only in the first iteration, in the second iteration, and in the third

80

Atomic property: x>y

. y<Xgl A IgygX A
11:|x V(33 L S Vv false
v () (et

sizex1Apc=b

sizex1\ pc=

&4, >
-1 1 -1 -2 2 +1
12: v ysxs A v 'sysx A v y Xgz2 A V false V _sysx A
Sizex1ppc=a sizex1\ pc=b size>1 A pc=a sizez1Apc=b

I8
a5

preal, a2, a4,

ygxgl A 1<y<X A y-1<X<2 A 2<y<x+1A y-2 <X<3 A 3ygx+2 A
: V|(737S v v v v Vv fase v {
I3 [<size;l A pc:a>] [(size;l A pc:b>] [(size;l A Pc=a size>1 A pc=b size>1) pc=a sizex1 \ pc=b

Figure 4.10: The result of the first three iterations of computing EF(z > y) using the Marking heuristic
for the Action Language specification given in Figure 4.6. I;, I, and I3 denote the results of the first,
the second, and the third iterations, respectively. pre a; denotes that the constraint pointed by the arrow
is obtained by performing the pre-condition computation on the source constraint using action a;, where
1 <4 < 5. The constraints that are marked by the Marking heuristic is enclosed in a rounded-corner box.

Jauus A 98en3ue uoidy

y 191dey)

Action Language Verifier Chapter 4

e
)

Figure 4.11: The dependency graph for the Action Language specification in
Figure 4.6. A directed edge between the nodes a; and a; means that the con-
straints generated as a result of the pre-condition computation using the action
a; may enable the action a; for computing the pre-condition computation.

iteration, respectively.

In addition to eliminating the redundant pre and post-condition computa-
tions, the Marking heuristic eliminates the redundant simplification operations
among the sets that have been computed in the previous iterations. However,
we allow merging an unmarked state with a marked state. Although this reduces
the effectiveness of the marking heuristic, we think that this will improve the
overall performance. The reason is that merging the matching constraints during

simplification will create new opportunities for simplification.

The Dependency Heuristic Given a state s and the transition relation R =

» . r; where each r; is an atomic transition, the pre-condition (post-condition)
is computed by distributing the pre-condition (post-condition) operator over the
disjuncts of R. However, for the case of the pre-condition computation there
may be an atomic transition r; such that there are no states from which s can
be reached by executing the transition r, and for the case of the post-condition

computation there may be an atomic transition r; that is not enabled at state s.

82

Action Language Verifier Chapter 4

Computing the pre-condition or the post-condition for such cases is redundant.
Below we show how this kind of redundancies can be eliminated when using the
pre-condition computations. It can be adapted for the post-condition computation
in a similar way.

We first compute a directed graph, which we call the dependency graph, (N, E)
where N = {ry,79,...,7,} and E denotes the set of edges. (r;,r;) € E if and only
if the following holds:

Pre(Pre(true,r;),r;) # false

The dependency graph, in a way, describes all the feasible interleaving of the
atomic transitions. Figure 4.11 shows the dependency graph for the Action Lan-
guage specification given in Figure 4.6. During the fixpoint computations, which
use the pre-condition computation, we associate every state with the enable back-
ward set, which denotes the set of transitions that it can enable via the pre-
condition computation. For instance, let s, = Pre(s;,a;) where s; and s, rep-
resent states, a; represents the atomic transition that corresponds to the action
al given in Figure 4.6. The enable backward set for s is {a1, as}, which consists
of the neighbors of the transition a; according to the dependency graph. Before
performing the pre-condition computation on s, using a transition a;, one can
first check whether a; is in the backward enable set of s,. If it is the case then it
performs the computation, otherwise it skips the computation. For instance, the
pre-condition computation on s, using the transition as can be skipped as ag is
not an element of the set {a;,as}. Figure 4.12 shows the results of the first three
iterations for computing EF(x > y) for the specification given in Figure 4.6. The
disjunct y < x < —1 A size > 1 A pc = a is generated in the first iteration as a

result of the pre-condition computation using the a;. Since the neighbors of node

83

78

Atomic property: x>y

>v<1<y<X A v false
—a sizex1p\pc=b

\

12: x>y V falsey Y<X<1 A >V<1YXA >V <yl<x<2/\ > tale V 2<y< x+l/\
3 b sze>1/\p0—

sizez1p pc= sizex1 A pc=a

sze>l/\ pc=
\ ﬁl\
o

y<xgl A 1<y<x A <y—lgxs—2,\ > 2<y<x+l/\b>v <y—2gxs—3 A >Vfa]se v <3gygx+2/\ >
a

13: x>y V falsev . . .
sizex1 A pc— sze>1 A pc=b size>1) pc=a sizex1) pc= size>1 A pc= size>1 A pc=b

Figure 4.12: The results of the first three iterations of computing EF(z > y) using the Dependency
heuristic for the Action Language specification given in Figure 4.6. Iy, I, and I3 denote the results of the
first, the second, and the third iterations, respectively. pre a; denotes that the constraint pointed by the
arrow is obtained by performing the pre-condition computation on the source constraint using action a;,
where 1 <7 < 5.

Jauus A 98en3ue uoidy

y 191dey)

Action Language Verifier Chapter 4

a; are a; and as, the enable backward set for this constraint is set to {a, a5}. As
a result, on y < x < —1 A size > 1 A pc = a the pre-condition is not computed
using ag, az, and a4, by which we avoid computing some of the pre-condition
computations that would yield unsatisfiable constraints.

In addition to using the dependency information for avoiding the redundant
pre-condition computations, the Action Language Verifier uses this information
during the simplification of the results of the fixpoint iterations (see Section 3.3).
Two disjuncts are compared for equivalence during the simplification phase only

if their enable backward sets are the same.

Comparison of the Marking and the Dependency Heuristics If we com-
pare Figures 4.10 and 4.12 with Figure 4.7, we can see that the Marking heuris-
tic prunes the computation tree such that the pre-condition computations that
are performed on the constraints already generated are eliminated, whereas the
Dependency heuristic prunes the computation tree such that some of the pre-
condition computations that would yield unsatisfiable constraints are eliminated.
The effectiveness of the Dependence heuristic highly depends on the dependency
graph, i.e., the number of edges between the nodes. However, since the Depen-
dency heuristic is sound for both the least fixpoint computations and the greatest
fixpoint computations, it can be used for any property verification, whereas the
Marking heuristic can only be used for the least fixpoint computations. The Mark-
ing and the Dependency heuristics can be combined to achieve a greater degree of

reduction as long as the Action Language Verifier is computing a least fixpoint.

85

Action Language Verifier Chapter 4

4.3 Parameterized Verification

In this section we will present the adaptation of an automated abstraction
technique called counting abstraction [31] to the parameterized verification of
specifications in the Action Language. Using counting abstraction one can au-
tomatically verify the properties of a system with arbitrary number of finite-state
processes. The basic idea is to define an abstract transition system in which the
local states of the processes are abstracted away but the number of processes in
each local state is counted by introducing an auxiliary integer variable for each lo-
cal state. Counting abstraction preserves the CTL properties that do not involve
the local states of the processes [31].

For this abstraction technique to work we need the local states of the sub-
modules to be finite. For example, if a submodule has a local variable that is
an unbounded integer, we cannot directly use the counting abstraction. Note
that, in the general case, each local state corresponds to a valuation of all the
local variables of a submodule, i.e., the set of local states of a submodule is the
Cartesian product of the domains of the local variables of that submodule. In
the Action Language one can specify a module instantiation to be parameter-

ized by appending the ™*

" character, e.g., main: Arriving() | Departing()*
indicates that the transition system is an asynchronous composition of an instan-
tiation of the module Arriving and an arbitrary number of instantiations of the
module Departing.

Table 4.3 shows the components of the transition system with one depart-
ing airplane (Departing) versus the transition system with arbitrary number of

departing airplanes (Departing#) using counting abstraction. The only local vari-

able of the module Departing is pc, which is an enumerated variable and can take

86

Action Language Verifier

Chapter 4

rp

ra

pc = parked A numRW16L =0
A numC3 + numC4 + numC5+
numC6 + numC7 + numC8 = 0

A pc’ = takeOff A

numRW16L' = numRW16L + 1

pc = takeOff A
pc’ = depFlow A
numRW16L' = numRW16L — 1

Departing Departingx*
S pc = parked V pc = depFlow V | parkedC >0 A depFlowC >0
pc = takeOff A takeOffC > 0 A parkedC+
depFlowC + takeOffC = C'
I pc = parked parkedC = C A depFlowC =0
A takeOffC =0
R

parkedC > 0 A numRWI16L =0
A numC3 + numC4 + numC5+
numC6 + numC7 + numC8 = 0
A takeOffC' = takeOffC + 1 A
numRW16L' = numRW16L + 1
A parkedC' = parkedC — 1 A
depFlowC’ = depFlowC

takeOffC > 0 A

depFlowC' = depFlowC + 1 A
numRW16L' = numRW16L — 1
A takeOffC' = takeOffC — 1 A
parkedC' = parkedC

Table 4.3: Transition system information for an instantiation of Departing
module in Figure 2.2 and arbitrary number of instantiations of Departing
module using counting abstraction. S denotes the state space, I denotes the
initial states, and R denotes the transition relation. r; and ro denote the atomic
transitions that correspond to reqTakeOff and leave, respectively. parkedC,
depFlowC, and takeOffC denote the number of airplanes in parked, depFlow,
and takeOff modes, respectively. C is a parameterized constant that denotes
the number of departing airplanes.

87

Action Language Verifier Chapter 4

one of the values parked, depFlow, and takeOff. Therefore, the local state space
of the module Departing consists of pc taking one of these values. For the pa-
rameterized system, we need to introduce three counters, parkedC, depFlowC, and
take0ffC, which denote the number of the departing airplanes in parked mode,
the number of the departing airplanes in depFlow mode, and the number of the
departing airplanes in take0Off mode, respectively. We introduce an additional
parameterized integer constant, C, which denotes the number of the departing
airplanes. The state space for the parameterized system consists of non-negative
values for parkedC, depFlowC, and take0ffC where their sum is restricted to be
equal to C. In the initial state of the transition system for a single departing air-
plane the airplane is in parked mode. For the parameterized system, in the initial
state parkedC is equal to C and depFlowC and takeQffC are equal to zero to
denote the fact that all the departing airplanes are initially in the parked mode.
A departing airplane can perform any of the two atomic actions: reqTakeOff
or leave. For the transition system for a single departing airplane, reqTakeOff
represents a departing airplane’s transition from parked mode to take0ff mode
provided that the runway 16L (numRWL=0) is not occupied and there are no air-
planes on the taxiways C3-C8 (numC3+numC4+...+numC8=0). For the transition
system for arbitrary number of departing airplanes, reqTake0ff represents tran-
sition of any departing airplane that is in parked mode (parkedC>0) to takeOff
mode (parkedC’=parkedC-1, take0ffC’=take0ffC+1). Note that the execution
of reqTake0ff does not change the status of the departing airplanes in depFlow
mode, which is taken care of by keeping the value of depFlow same in the next
state (depFlowC’=depFlowC).

The algorithm for parameterization of a module of an Action Language speci-

fication using counting abstraction is given in Figure 4.13. The algorithm accepts

88

Action Language Verifier Chapter 4

1 COUNTABS(m)

2 m: module name

3 s: composite formula

4 s+ Ef:o counter; = paramCons N /\f’:0 counter; > 0 A paramCons > 0
5 State(m) < 3 Locals(m).State(m) A s

6 Init(m) < COUNTABS_STATES(Init(m))

7 for each action a of module m do

8 Act(a) < COUNTABS_TRANSITIONS(Act(a))

9 Locals(m) + ()

Figure 4.13: The algorithm for applying counting abstraction to a module m
of an Action Language specification.

a module name, m, as the input and generates L + 1 number of auxiliary integer
variables, where L denotes the size of the local state space of m. One of the
auxiliary variables is a parameterized constant. It is used to denote the arbitrary
number of processes. Each of the remaining L auxiliary variables denote the num-
ber of processes in a local state. We call the latter the counters. We distinguish
two counters that correspond to two different local states by assigning an integer
value to each local state and using this value as the subscript. For instance, let lo-
cal state s be represented by the integer value 7, then counter; is the counter that
corresponds to s. The algorithm in Figure 4.13 changes the state formula, initial
formula, and the actions of the input module m by replacing the constraints on
the local variables with constraints that use the counters and the parameterized
constant. It changes the state formula so that the sum of the counters is equal to
the parameterized constant, each counter is a nonnegative value, and the param-

eterized constant is a positive value. It changes the initial formula by calling the

89

Action Language Verifier Chapter 4

COUNTABS_STATES(m, f) : composite formula
m: module name
f, 1, s, resultDis, result: composite formula

index: integer

1
2
3
4
5 let V; be the list of all the boolean variables other than m’s local boolean variables
6 let 1} be the list of m’s local boolean variables

7 result < false

8 for each composite atom d = A, d; of f do

9

resultDis < false

10 for each minterm e of dp,,; do

11 I+ 3J Ve

12 s+« 3V.e

13 let index denote an integer value that uniquely represents [

14 resultDis < resultDis V (s A counteripge; >0 A /\ogi<L,z’¢z’ndex counter; = 0)

15 result < result V' N\;cq,1p00 dt A TesultDis

16 return result

Figure 4.14: The algorithm for applying counting abstraction to a formula f.

algorithm COUNTABS_STATES given in Figure 4.14, whereas it changes the tran-
sition formula of each action by calling the algorithm COUNTABS_TRANSITIONS
given in Figure 4.15.

The algorithm COUNTABS_STATES accepts a module name m and a composite
formula f as the input. It enumerates all the minterms e of the boolean part of

1

each composite atom'. By existentially quantifying out the non-local variables,

INote that counting abstraction can only be applied on finite local state spaces and in the
Action Language finite local state spaces can be defined by boolean and enumerated variables.
Since enumerated variables are converted to boolean variables, in a composite atom boolean
part is the one that encodes the finite state space.

90

Action Language Verifier

Chapter 4

© o N O Ut s W N -

NN NN R R e e
AR W N R O © NS U W N RO

26

COUNTABS_TRANSITIONS(m,a): composite formula
m: module name

a: action name

index:integer

l, s, result: composite formula

result <« false

boolean variables

let V; denote the list of m’s local boolean variables

let Vj,e0t denote the list of m’s local next state boolean variables
let Act(a) = Nyer e

for each minterm e of 7y, do

lg < 3 Vinewt-3 Vinewt.3 Vi€

I, <« 3AV.3 Vipere.3 Vsee

$ A Vipers-A Vie

let indexy denote an integer value that uniquely represents l4
let index, denote an integer value that uniquely represents [,.

if indexy = index, then

!

result Abs < counteringez, > 0 A countery, ;..

= counterindes,

else

!

result Abs < counteringez, > 0 N counter;, ;..

= counterindes,

!
counter;, jo..

for each 0 <i < L Ai #indexq Ai # index, do

= counteringes, + 1

resultAbs « resultAbs A counter, = counter;

result < result V resultAbs A s

27 return \;cr ;00 7t A TESULL

let V, denote the list of all boolean variables other than m’s local boolean variables

let V,,..: denote the list of all next state boolean variables other than m’s local next state

—1A

91

Figure 4.15: The algorithm for applying counting abstraction to an action a of
module m.

Action Language Verifier Chapter 4

the algorithm extracts a local state [and generates a constraint that states that
the counter that corresponds to [is greater than zero and the other counters
are all equal to zero. It conjuncts this constraint with the non-local part of the
minterm. It performs this for all minterms and gets the disjunction of the resulting
constraints. Finally, it conjuncts the generated constraint with the non-boolean
parts of the composite atom.

The algorithm COUNTABS_TRANSITIONS takes a module name m and an action
name a as the input. It enumerates the minterms of the boolean part of Act(a),
which denotes the transition formula that corresponds to the action a. Similar
to the algorithm COUNTABS_STATES it existentially quantifies out the non-local
variables from the boolean part to obtain an atomic local transition formula on
the boolean variables. It obtains the local state {; at which the local transition is
enabled by existentially quantifying the next state variables and obtains the local
state [, at which one can reach by executing the local transition by existentially
quantifying out the current state variables. Then, depending on whether /; and
l, denote the same state, it generates a constraint. If [; and [, denote the same
state then the constraint states that the counter that corresponds to l; is greater
than zero and in the next state the counter that corresponds to [; keeps its value.
Otherwise, the constraint states that the counter that corresponds to I, is greater
than zero and in the next state the counter that corresponds to [; is decremented
by one and the counter that corresponds to [, is incremented by one. In both cases
the constraint states that the other counters keep their value in the next state. It
conjuncts the constraint with the non-local part of the minterm. It performs this
for all minterms and gets the disjunction of the resulting constraints. Finally, it

conjuncts the generated constraint with the non-boolean parts of the action a.

92

Action Language Verifier Chapter 4

4.4 Counter-Example Generation

An important feature of model checkers is their ability to generate counter-
example behaviors. the Action Language Verifier is able to generate counter-
examples for the properties that it falsifies. Generating a counter-example for a
property ¢ corresponds to generating a witness for its negation —¢. A witness
for a CTL property is a path that starts from the initial states and demonstrates
that the property is satisfied [25]. We cannot generate witnesses for universal
properties, since we need to list all the paths in the system to demonstrate that
the property holds. This is equivalent to saying that we cannot generate a counter-
example for an existential property.

When asked to generate a counter-example, the Action Language Verifier
negates the input property ¢, converts it to {EX, EG, EU} basis, and pushes all
the negations inside, i.e., there exists no negation in front of a temporal formula.
Then it computes the states that satisfy the sub formulas bottom-up, starting
from the atomic properties. However, it also stores the intermediate fixpoint
computations for EG and EU when it is looking for a counter-example. After the
computation ends it looks for an initial state s = I'N—¢. If there is no such state,
it reports that no counter-example has been found. (If the computed fixpoints are
exact this means that the property is proved.) Otherwise, it starts constructing
a witness path for —¢ starting from s in a top-down manner, i.e., first it gener-
ates the witness that corresponds to the top-most temporal operator and then it
continues to generate the witnesses for the sub formulas.

Figure 4.16 shows the algorithm for computing the witness path for a given
CTL formula in {EX,EU,EG} basis. The algorithm first reverses the results of

fixpoint iterations for the input CTL formula. The reason is that fixpoint com-

93

Action Language Verifier Chapter 4

GEN_WITNESS(S, ¢)
s, s1: Symbolic, ¢: CtlFormula, witness, iterR: List
if ¢.isAtomic() then return

iter R + ¢.iterates.reverse()

case ¢ = EX¢1: 81 < s.post(R) witness.add(s,.conjunction(iter R.get(1)))
GEN_WITNESS(witness.get(1),41)
case ¢ = 1 EUga:

1
2
3
4
5 witness.add(s)
6
7
8
9 if —s.isSubsumed(iter R.getLast()) then

10 while 0 < i < iterR.size()A

11 —witness.get(i).isSubsumed(iter R.getLast()) do

12 s1 ¢ witness.get(i — 1).post(R) witness.add(sy.conjunction(iter R.get(i)))
13 for 0 < i < witness.size() do

14 if ¢ = witness.size() — 1 then

15 GEN_WITNESS(witness.get(i),¢2)

16 else GEN_WITNESS(witness.get(i),p1)

17 case ¢ = EG¢1: cycleNotReached + true
18 for1<i< MAX_ITER and cycleNotReached do

19 81 « witness.get(i — 1).post(R)

20 if —s1.isSatis fiable() then break witness.add(s,.conjunction(iter R.get(i)))
21 for 0 < j <i do

22 if witness.get(i).isSubsumed(witness.get(j)) then

23 cycleNotReached + false break

24 for 0 <i < witness.size() do GEN_WITNESS(witness.get(i),¢1)

Figure 4.16: The algorithm for generating witness for the CTL formula ¢ in
{EX,EU,EG} basis starting from state s.

94

Action Language Verifier Chapter 4

putation is propagated backwards starting from the inner CTL formula, whereas
witness computation is propagated forwards starting from an initial state. To gen-
erate a witness for the property EX¢ starting from a state s that satisfies EX¢,
the algorithm saves s as the initial state of the witness path. Then it computes
Post(s, R) and conjuncts the result with the next one of the reversed results of
the fixpoint iterations, which denotes the state that satisfy ¢. The conjunction is
saved as the next state in the witness path and used to generate a witness path
for ¢.

To generate a witness for the property EU(¢1, ¢o) starting from a state s that
satisfies EU(¢1, ¢2), the algorithm starts with the result of the last iteration of
the fixpoint. Since that corresponds to the states that satisfy EU(¢q, ¢o), it is
guaranteed that s is in it. If s satisfies ¢9 then the algorithm stops. Otherwise,
Post(s, R) is conjuncted with the next one of the reversed results of the fixpoint
iterations. Note that, this conjunction cannot be false, since, based on the fixpoint
computation for EU, s must have a next state in the result of the next iteration.
The algorithm picks one of the states that satisfy the conjunction as the next
state in the witness path. It continues until a state that satisfies ¢, is reached.
This state is used to generate a witness for ¢s.

To generate a witness for the property EG¢, the algorithm only needs the last
of the reversed results of the fixpoint iterations, which corresponds to the states
that satisfy EG¢. It starts from a state s that satisfies EG¢. Then, Posi(s, R) is
computed and conjuncted with the states that satisfy EG¢. The algorithm picks
a state that satisfy the conjunction and continues this iteration until a cycle or a
state that does not have any next states is found. In either of these cases we print
the path as the witness path. However, since the Action Language specifications

can be infinite, it is not guaranteed to find a witness that contains a cycle or a

95

Action Language Verifier Chapter 4

finite path. It is possible that all the witnesses are infinite paths that do not have
any repeating states. Hence, the algorithm puts a bound (M AX_ITER) on our
search. When it reaches that bound it prints the path computed so far as the
prefix of a witness path.

The algorithm in Figure 4.16 does not show how the logical operators not,
and, and or are handled. As we have stated before, before generating a witness
for a CTL formula, the Action Language Verifier pushes all the negations inside
the atomic property. Therefore, the witness generation algorithm does not need
to handle the not operator. It handles the and operator by generating a witness
for each subformula, whereas it handles the or operator by choosing one of the
subformulas that yields a witness.

We have to be careful with counter-example generation when we are using the
approximate fixpoint computations. Assume that we are using the {EX, EG, EU}
basis for the CTL and we try to verify the property AGp. Then we would compute
—(EF-p). If we are computing the approximate fixpoint computations then this
will require us to compute an upper bound for EF—p to get a lower bound for AGp.
If we can show that I = (AGp)~ then we are done. However, if I # (AGp)~
we cannot use our computations for (EF-p)* to generate a counter-example.
Since (EF-p)* is an upper bound it can include spurious counter-examples. If
we want to generate a counter-example, then we need to compute a lower bound
for EF—p (negation of the original property). If we can generate a counter-
example using (EF-p)~ we are sure that it is a valid counter-example. Because
of this issue the Action Language Verifier works in two phases; 1) the verification
phase and 2) the falsification phase. In the verification phase it does not try to
generate a counter-example. If it cannot prove the property in the verification

phase then it recomputes the fixpoints and tries to generate a counter-example.

96

Action Language Verifier Chapter 4

Problem Transition Relation Size

Instance | Composite | Polyhedra | EQ, GEQ | BDD | # int. | # bool.
PA2D 22 22 1388 518 29 4
PA4D 26 26 1642 986 29 8
PA8D 34 34 2150 | 2258 29 16
PA16D 50 50 3166 | 6146 29 32
PAPD 20 20 1481 326 33 6

Table 4.4: Sizes of the transition relations for the problem instances used in the
experiments. PAX D denotes arbitrary number (P) of arriving (A) airplanes
and X number of departing D airplanes. PAPD denotes the arbitrary number
of departing and arriving airplanes.

As explained above, these phases will use different types of approximations if
approximate fixpoints are being used. FEither of these cases can be skipped by the

user using the input flags of the the Action Language Verifier.

4.5 Experiments

This section presents the experimental results that are obtained using the
Airport Ground Control case study.

Table 4.4 shows the size of the transition systems used in the experiments. We
have varied the number of the departing airplanes and kept the number of the
arriving airplanes arbitrary (parameterized). There is also an instance where both
the number of the arriving airplanes and the number of the departing airplanes
are arbitrary (parameterized.

Figure 4.17 shows performance of the Dependence and the Marking heuristics
for the verification of the safety and liveness properties in terms of construction
time, verification time, and memory usage. The verifier used the widening and

the approximate reachable states heuristics for this experiment. Results show that

97

Action

Language Verifier

Chapter 4

Construction Time (sec)

50

45 - None ——
Dependence ——
40 ¢ Marking -
35 | Dependence+Marking ——.~

30
25
20
15
10

2 4 6 8 10 12 14

Number of processes

(a) Safety Construction Time (sec)

Verification Time (sec)

Memory (MB)

1.4

16

12 ¢
l L
0.8

0.6 |
Dependence —

None —— -

04 Marking = 1
Dependence+Marking
0.2 el |
,,,,,,,,,, —
0 ‘ ! : : L L
2 4 6 8 10 12 14 16

Number of processes

(c) Safety Verification Time (sec)
50 w w w

"None ——
45 Dependence -+
40 | Marking -=--

Dependence+Marking -
35 ¢

30
25 1
20
15 +
10 |

5 n n n n n n
2 4 6 8 10 12 14
Number of processes

(e) Safety Memory (MB)

16

60 ‘ ‘ |
None ——
r Dependence ——
> Marking - .
40 | Dependence+Marking -~ 7

30

20

Construction Time (sec)

0]

0 n n n n n n
2 4 6 8 10 12 14 16
Number of processes

(b) Liveness Construction Time (sec)
60 w w w w

None ——
50 Dependence -+

Marking -~/
| Dependence+Marking = #

40

30

20

Verification Time (sec)

10

2 4 6 8 10 12 14 16

Number of processes

(d) Liveness Verification Time (sec)
180 w \ \ : : :

?g 140 |

2 100 |

Py

g 100

= -

e None ——

Dependence ——
60 7 Marking = 1
Dependence+Marking =

40 ‘ ‘ ‘ | ‘ ‘

2 4 6 8 10 12 14 16

Number of processes

(f) Liveness Memory (MB)

Figure 4.17: Comparison of the Dependence and the Marking Heuristics

Action Language Verifier Chapter 4

the Marking heuristic performs better than the Dependence heuristic in terms of
the construction time, which includes the time spent for the approximate reach-
able state computation. Note that the approximate reachable state computation
involves least fixpoint computation where Marking is effective. Moreover, the De-
pendence heuristic incurs a startup cost due to construction of the dependence
graphs. On the other hand, the Dependence heuristic performs better than the
Marking heuristic in terms of the verification time since it performs significant
savings during the simplification phase by avoiding redundant equality checks
(see Section 3.3) using the dependence information. The Dependence heuristic
uses more memory than that is used by the Marking heuristics since it stores the
dependence graph, which is of size n? where n is the number of atomic transitions,
and the dependence information for each composite atom during the analysis.

Our experimental results indicate that the verification results for the fully
parameterized case, where both the number of the arriving and the number of the
departing airplanes are arbitrary, become smaller than the partially parameterized
case, where the number of the arriving airplanes is arbitrary and the number of
the departing airplanes is a constant, when the number of the departing airplanes
is greater than or equal to 16. This is due to the symmetry reduction obtained as
a result of the counting abstraction.

We have changed the specification in Figure 2.2 by redefining action
reqTakeOff as

reqTakeOff: pc=parked and numRW16L=0 and pc’=take0ff and
numRW16L’=numRW16L+1;

By doing so we have introduced an error, since a departing airplane can start
taking off even though there may be some airplanes at the exits C3-C8. This

violates rule 3 given in Section 2.1. The Action Language Verifier checked this

99

Action Language Verifier Chapter 4

UNABLE TO VERIFY !'EF (numRW16L=0 and numC3+numC4+numC5+numC6+numC7
+numC8 > 0 and EX('!'numRW16L=0)

THE FORMULA EF (numRW16L=0 and numC3+numC4+numC5+numC6+numC7+
numC8>0 and EX(!numRW16L=0)

IS WITNESSED BY THE FOLLOWING PATH

PATH STATE O (Departing.pc=parkedD and Arriving.pc=arFlow and
numRW16R=0 and numRW16L=0 and numC3=0 and numC4=0 and numC5=0 and
numC6=0 and numC7=0 and numC8=0 and numB2A=0 and numB7A=0 and
numB9A=0 and numB10A=0 and numB11A=0)

PATH STATE 1 (Departing.pc=parkedD and Arriving.pc=touchDown and
numRW16R=1 and numRW16L=0 and numC3=0 and numC4=0 and numC5=0 and
numC6=0 and numC7=0 and numC8=0 and numB2A=0 and numB7A=0 and
numB9A=0 and numB10A=0 and numB11A=0)

PATH STATE 2 (Departing.pc=parkedD and Arriving.pc=taxiTo16LC3
and numRW16R=0 and numRW16L=0 and numC3=1 and numC4=0 and numC5=0
and numC6=0 and numC7=0 and numC8=0 and numB2A=0 and numB7A=0 and
numB9A=0 and numB10A=0 and numB11A=0)

THE FORMULA numRW16L=0 and numC3+numC4+numC5+numC6+numC7+numC8>0
and EX(!numRW16L=0)

IS SATISFIED BY THE STATE
(Departing.pc=parkedD and Arriving.pc=taxiTo16LC3 and numRW16R=0
and numRW16L=0 and numC3=1 and numC4=0 and numC5=0 and numC6=0 and
numC7=0 and numC8=0 and numB2A=0 and numB7A=0 and numB9A=0 and
numB10A=0 and numB11A=0)

AND THE FORMULA EX(!numRW16L=0)

IS WITNESSED BY THE FOLLOWING PATH

PATH STATE O (Departing.pc=parkedD and Arriving.pc=taxiTol6LC3
and numRW16R=0 and numRW16L=0 and numC3=1 and numC4=0 and numC5=0
and numC6=0 and numC7=0 and numC8=0 and numB2A=0 and numB7A=0 and
numB9A=0 and numB10A=0 and numB11A=0)

PATH STATE 1 (Departing.pc=takeOff and Arriving.pc=taxiTo16LC3
and numRW16R=0 and numRW16L=1 and numC3=1 and numC4=0 and numC5=0
and numC6=0 and numC7=0 and numC8=0 and numB2A=0 and numB7A=0 and
numB9A=0 and numB10A=0 and numB11A=0)

Figure 4.18: A counter-example path as output by the Action Language Verifier.

100

Action Language Verifier Chapter 4

erroneous specification for property P3, which corresponds to rule 3, and falsi-
fied the property by providing a counter-example path as shown in Figure 4.18.
The counter-example path given in Figure 4.18 is a witness path for the negated
property

EF (numRW16L=0 and numC3+numC4+numC5+numC6+numC7+numC8>0 and
EX('numRW16L=0))

and consists of two sub-witness paths:

1. The witness path for the property

EF (numRW16L=0 and numC3+numC4+numC5+numC6+numC7+numC8>0 and
EX('numRW16L=0))

consists of three states. According to the counter-example path given in
Figure 4.18, initially the departing airplane, denoted by Departing.pc, is in
the parked state and the arriving airplane, denoted by Arriving.pc, is in the
arFlow state (PATH STATE 0). Then the arriving airplane lands and transitions
to the touchDown state (PATH STATE 1). Having landed, the arriving airplane
selects exit C3 and starts taxiing on it by transitioning into taxiTo16LC3
state (PATH STATE 2). During this transition note that the departing airplane

is still in parked state.

2. The witness path for property EX(!(numRW16L=0)) consists of two states. It
starts from the state where the departing airplane is still in the parked state
and the arriving airplane is in the taxiTo16LC3 state (PATH STATE 2 of the
sub-witness path 1). Then the departing airplane starts the takeoff and
transitions into the take0ff state (PATH STATE 1). This violates the property

since exit C3 is occupied while the departing airplane is taking off.

101

Action Language Verifier Chapter 4

4.6 Related Work

SMV [58] and NuSMV [24] are symbolic model checkers based on BDDs. SPIN
[51] is an explicit-state model checker. These model checkers are bound to the
verification of finite state systems. To analyze infinite-state spaces (defined on the
integer domain) with these model checkers, one needs to first generate an abstrac-
tion of the original specification. On the other hand, with the Action Language
Verifier the only thing a user is required to do is to select among various heuristic
options for infinite-state verification and feed these selections as flags to the Action
Language Verifier. Then, the Action Language Verifier applies the selected ab-
straction heuristics automatically. Additionally, the counter-example paths that
are generated by the Action Language Verifier is on the concrete system, whereas
with the model checkers mentioned above the generated counter-example paths
for the abstraction of an infinite-state system would be on the abstract system
and needs to be mapped backed to the original infinite-state system in order to
understand the source of the error.

Hytech [49] is an infinite-state symbolic model checker for hybrid systems. It
uses linear arithmetic representation on reals as the underlying symbolic repre-
sentation. It uses heuristics for infinite-state verification similar to those used in
the Action Language Verifier. Although the Action Language Verifier currently
uses linear arithmetic representation on integers, by integrating the linear arith-
metic representation for reals to the Composite Symbolic Library it can easily be
extended to model check software specifications with reals.

Mur¢ [38] is an explicit-state model checker that uses symmetry reduction
techniques [52] to combat the state space explosion problem. It reduces the

state space significantly for systems with identical components and verifies some

102

Action Language Verifier Chapter 4

data-independent systems with unbounded state space. The counting abstraction
technique used by the Action Language Verifier also makes use of symmetries
in systems with identical components. However, the Action Language Verifier
uses these symmetries to generate a parameterized version of the system instead
of reducing the state space. Mur¢ [53| analyzes parameterized systems using a
less precise version of the counting abstraction technique, hence, regarding pa-
rameterized systems Mur¢ can only verify ACTL properties, whereas the Action
Language Verifier can verify full CTL properties.

[32] uses counting abstraction to verify safety properties of parameterized cache
coherence protocols. Our work differs from [32] in the following ways: 1) The
Action Language Verifier can automatically translate an Action Language speci-
fication to its parameterized version, whereas [32] uses hand translation, 2) The
translation algorithm that the Action Language Verifier employs is more general
since it can handle any type of predicate that can be specified in the Action
Language, whereas in [32] it is required that the predicates defining the enabling
condition of a transition involve only the number of caches in a local state, 3) The
Action Language Verifier can verify CTL properties of parameterized systems
using counting abstraction, whereas the technique that is presented in [32] is spe-
cialized for the verification of safety properties of parameterized cache coherence

protocols.

103

Chapter 5

Automated Concurrency

Controller Synthesis

Writing a concurrent program is an error prone task. A concurrent programmer
has to keep track of not only the possible values of the variables of the program, but
also the states of its concurrent processes. Failing to use concurrency constructs
such as semaphores or monitors correctly results in the run-time errors such as
deadlocks and the violation of the safety properties. The conventional validation
techniques such as testing become ineffective for concurrent programs, since the
state space of a concurrent program increases exponentially both with the number
of variables and the number of concurrent processes in it.

A monitor is a programming language construct introduced to ease the difficult
task of concurrent programming [50]. Structured programming languages help
programmers in keeping track of the states of the program variables by providing
abstractions such as procedures and associated scoping rules to localize variable

access. Monitors are a similar mechanism for structuring concurrent programs,

104

Automated Concurrency Controller Synthesis Chapter 5

they provide scoping rules for concurrency. Even though monitors provide a better
abstraction for concurrent programming compared to other constructs such as
semaphores, they are still error prone. Coordinating wait and signal operations
on several condition variables among multiple processes can be very challenging
even for the implementation of simple algorithms.

In this chapter we propose a new approach for developing reliable concurrent
programs. The first step of our approach starts with a formal specification of
the concurrency control component of the program rather than its implementa-
tion. We use monitors as the underlying concurrency control primitive and specify
them in the Action Language. The second step of our approach uses the Action
Language Verifier to check temporal correctness properties of the monitor speci-
fications. The third step of our approach consists of automated code generation
for synthesizing monitors from the Action Language specifications. Our goal is
not generating complete programs, rather, we are proposing a modular approach
for generating the concurrency control component of a program that manipulates
shared resources.

We use a case study on airport ground traffic control (see Section 2.1) to
show the effectiveness and the scalability of our technique. We have presented the
verification results for this case study in Section 4.5. The Action Language Verifier
verifies all the correctness properties of the specification for this case study and
our code generation tool automatically generates an optimized (in terms of the
context switch overhead that would be incurred in a multi threaded application)
Java class.

This chapter is organized as follows. Section 5.1 explains monitors as a concur-
rency control mechanism, the way they are implemented in Java, and how one can

use the Action Language to specify behavior of monitors. Section 5.2 presents the

105

Automated Concurrency Controller Synthesis Chapter 5

automated and property-preserving synthesis of Java code for monitors that are
specified in the Action Language and verified using the Action Language Verifier.

Finally, Section 5.3 discusses the related work.

5.1 Concurrency Control with Monitors

A monitor is a synchronization primitive that is used to control access to a
shared resource by multiple concurrent processes. A monitor consists of a set of
variables and procedures with the following rules: 1) The variables in a monitor
can only be accessed through the procedures of the monitor. 2) No two processes
can execute procedures of the monitor at the same time. We can view the second
rule as the monitor having a mutual exclusion lock. Only the process that has
the monitor lock can be active in the monitor. Any process that calls a monitor
procedure has to acquire the monitor lock before executing the procedure and
release it after it exits. This synchronization is provided implicitly by the monitor
semantics, hence, the programmer does not have to explicitly write the acquire
lock and release lock operations.

Monitors provide additional synchronization operations among processes based
on condition variables. Two operations on condition variables are defined: wait
and signal. A process that performs a wait operation on a condition variable sleeps
and releases the monitor lock. It can only be awakened by a signal operation on
the same condition variable. A waiting process that has been awakened has to
re-acquire the monitor lock before it resumes operation. If there are no waiting
processes, then signal operation is ignored (and forgotten, i.e., it does not affect
processes that execute a wait later on). Wait and signal operations can be imple-

mented using one wait queue per condition variable. When a process executes the

106

Automated Concurrency Controller Synthesis Chapter 5

wait operation on a condition variable it enters the corresponding wait queue. A
signal operation on a condition variable removes one process from the correspond-
ing wait queue and resumes its operation (after re-acquiring the monitor lock).
In signal and continue semantics for the signal operation, the signaling process
keeps the monitor lock until it exits or waits. Different semantics and additional
operations have also been used for signaling such as signal and wait semantics and
signalAll operation [4].

Typically condition variables are used to execute a set of statements only after
a guard condition becomes true. To achieve this, a condition variable is created
that corresponds to the guard condition. The process that will execute the guarded
statements tests the guard condition and calls the wait on the corresponding
condition variable if the guard condition is false. Each process that executes a
statement that can change the truth value of the guard condition signals this to
the processes that are waiting on the corresponding condition variable.

The state of a monitor is represented by its variables. The set of states that
are safe for a monitor can be expressed as a monitor invariant [4]. The monitor
invariant is expected to hold when no process is accessing the monitor (i.e., it is

not guaranteed to hold when a process is active within a monitor procedure).

5.1.1 Monitors in Java

Java is an object-oriented programming language that supports concurrent
programming via threads and monitors. Each Java object has a mutual exclu-
sion lock. A monitor in Java is implemented using the object locks and the
synchronized keyword. A block of statements can be declared to be synchro-

nized using the lock of an object o as synchronized(o) { ... }. This block

107

Automated Concurrency Controller Synthesis Chapter 5

can only be executed after the lock for the object o is acquired. Methods can
also be declared to be synchronized, which is equivalent to enclosing the method
within a synchronized block using the object this, i.e., synchronized(this) {

}. A monitor object in Java is created by declaring a class with private
variables that correspond to the shared variables of the monitor. Then each mon-
itor procedure is declared as a synchronized method to meet the mutual exclusion
requirement.

Wait and signal operations are implemented as wait and notify methods in
Java. However, in Java, each object has only one wait queue. This means that
when there is a notify call, any waiting process in the monitor can wake up. If
there is more than one condition that processes can be waiting for, awakened
processes have to recheck the conditions that they have been waiting for. Note
that, if a process that was waiting for a different condition is awakened, then the
notify call is lost. This can be prevented by using the notifyAll method, which
wakes up all the waiting processes.

Using a single wait queue and notifyAll method one can safely implement
monitors in Java. However, such an implementation will not be very efficient.
To get better efficiency, one can use other objects (declared as members of the
monitor class) as condition variables together with the synchronized blocks on
those objects. Since each object has a lock and an associated wait queue, this
makes it possible to put processes waiting on different conditions to different
queues. However, this implies that there will be more than one lock used in the
monitor. (In addition to the monitor lock there will be one lock per condition
variable.) The use of multiple locks in Java monitor classes is prone to deadlocks

and errors [56].

108

Automated Concurrency Controller Synthesis Chapter 5

5.1.2 Specifying Monitors in the Action Language

Although monitors provide a higher level of abstraction for concurrent pro-
grams compared to mechanisms such as semaphores, they can still be tedious and
difficult to implement. We argue that the Action Language can be used to specify
monitors in a higher level of abstraction. Monitor specifications in the Action
Language do not rely on condition variables. Since in the Action Language an ac-
tion is executed only when its guard evaluates to true, we do not need conditional
waits.

Figure 2.2 (in Section 2.2) shows the monitor specification for the Airport
Ground Traffic Control (see Section 2.1) without specifying the details about
the implementation of the monitor. It is a high level specification compared
to a monitor implementation, in the sense that, it does not introduce condition
variables and waiting and signaling operations, which are error prone.

We give a general template for specifying monitors in the Action Language in
Figure 5.1. It consists of a main module m and a list of submodules mq, ..., m,.
The variables of the main module (denoted VAR(m)) define the shared variables
of the monitor specification. Currently, available variable types in the Action
Language are boolean, enumerated and integer. This restriction comes from the
symbolic manipulation capabilities of the Action Language Verifier (which can be
extended as we discuss in [69]). We also allow the declaration of parameterized
constants. For example, a declaration such as parameterized integer size
would mean that size is an unspecified integer constant, i.e., when a specification
with such a constant is verified it is verified for all possible values of size.

Each submodule m; corresponds to a process type, i.e., each instantiation of

a submodule corresponds to a process. Each submodule m; has a set of local

109

Automated Concurrency Controller Synthesis Chapter 5

module m()

integer i1, i2, ...; boolean by, bs, ...; enumerated e1, { valy, vals, ... };

parameterized integer py, po, ...
restrict: restrictCondition;
initial: initial Condition;
module m;()

integer ...

boolean ...

enumerated ...

restrict: ...

Ayt o
my: ar | az | ... | any;

endmodule

module my,() ... endmodule
m: my() | mi() | ... | m2() | m2() ..
spec: monitorInvariant

endmodule

Figure 5.1: A Monitor Template in the Action Language

110

Automated Concurrency Controller Synthesis Chapter 5

variables (VAR(m;)) and atomic actions (ACT(m;)). Note that, in a monitor spec-
ification our goal is to model only the behavior of a process that is relevant to
the properties of the monitor. Therefore, local variables VAR(m;) of a submod-
ule should only include the variables that are relevant to the correctness of the
monitor. The transition relation of a submodule is defined as the asynchronous

execution of its atomic actions.

5.2 Synthesis of Monitors

In the monitor specification given in Figure 2.2, the shared variables such as
numRW16R and numC3 represent the resources that will be shared among multiple
processes. Submodules Arriving and Departing specify the type of processes
that will share these resources. Our goal is to generate a monitor class in Java
from monitor specifications such as the one given in Figure 2.2. First, we will
declare the shared variables of the monitor specification (for example, numRW16R
and numC3 in Figure 2.2) as private fields of the monitor class. Hence, these
variables will only be accessible to the methods of the monitor class.

We will not try to automatically generate code for the threads that will use
the monitor. This would go against the modularization principle provided by
the monitors. Rather, we will leave the assumption that the threads behave ac-
cording to their specification as a proof obligation. In general, a submodule in
a monitor specification (Figure 5.1) should specify the most general behavior of
the corresponding thread, or, equivalently, it should specify the minimum require-
ments for the corresponding thread for the monitor to execute correctly. Since
the specifications about the local behavior of the threads are generally straight-

forward (such as an Arriving process should not execute exitRW3 action before

111

Automated Concurrency Controller Synthesis Chapter 5

executing reqLand) we think that it would not be too difficult for the concurrent
programmer to take the responsibility for meeting these specifications.
We will generate a monitor method corresponding to each action of each sub-

module in the monitor specification. Consider the action:

exitRW3: pc=touchDown and numC3=0 and numC3’=numC3+1 and
numRW16R’=numRW16R-1 and pc’=taxiTol16L3;

We are not interested in the expressions on local variables pc of the submodules
Arriving and Departing. As we discussed above, we are only generating code
for the monitor class that only has access to the shared variables. For the ac-
tion exitRW3 removing the expressions on the local variables leaves us with the

expression

exitRW3: numC3=0 and numC3’=numC3+1 and numRW16R’=numRW16R-1;

To implement this action as a monitor method we first have to check the guard
condition numC3=0 and then update numRW16R and numC3. However, if the guard
condition does not hold, we should wait until a process signals that the condition
might have changed. A straightforward translation of this action to a monitor

method would be

public synchronized void exitRW3() {
while (!(numC3==0))
wait();
numC3=numC3+1;
numRW16R=numRW16R-1;
notifyAl1();
}

The reason we call the notifyAll method at the end is to wakeup processes that
might be waiting on a condition related to variable numRW16R or numC3, which

have just been updated by this action. Also note that the wait method is inside

112

Automated Concurrency Controller Synthesis Chapter 5

a while loop to make sure that the guard still holds after the thread wakes up. In
the above translation, we used the synchronized keyword to establish atomicity.
Note that atomicity in Java is established only with respect to other methods or
blocks that are also synchronized. So for this approach to work we have to make
sure that shared variables are not modified by any part of the program that is
not synchronized. We can establish this by declaring shared variables as private
variables in the monitor class and making sure that all the methods of the monitor
class are synchronized.

Using this straightforward approach, we can translate a monitor specification
(based on the template given in Figure 5.1) to a Java monitor class using the
following rules: 1) Create a monitor class with a private variable for each shared
variable of the specification. 2) For each action in each submodule, create a
synchronized method in the monitor class. 3) In the method for action a start
with a while loop that checks if d;(a) is true and waits if it is not. Then, put a set
of assignments to update the variables according to the constraint in r5(a). After
the assignments, call notifyAll method and exit. We will call this translation
single-lock implementation of the monitor since it uses only this lock of the monitor

class.

5.2.1 Specific Notification Pattern

The single-lock implementation described above is correct but it is inefficient
[20, 59]. If we implement the airport ground traffic control monitor using the
above scheme an exitRW3 action would awaken all the airplane threads that are
sleeping. However, the departing airplane threads should be awakened only when

the number of airplanes on the runway 16L or one of the taxiways in C3-C8 changes

113

Automated Concurrency Controller Synthesis Chapter 5

(when one of the variables numRW16L, numC3, numC4, numC5, numC6, numC7, and
numC8 become zero) and they do not need to be awakened on an update to status
of the runway 16R (when numRW16R is updated) or on entrance of an airplane into
the taxiway C3 (when numC3 is incremented). Using different condition variables
for each guard condition improves the performance by awakening only related
threads and eliminating the overhead incurred by the context switch for threads
that do not need to be awakened. In [20] using separate objects to wait and
signal for separate conditions is described as a Java design pattern called specific
notification pattern.

Figure 5.2 shows a fragment of the Java monitor that is automatically gener-
ated by our code generator from the Action Language specification of the airport
ground traffic control monitor given in Figure 2.2 using the specific notification
pattern. The method for action exitRW3 calls Guard _exitRW3 method in a while
loop till it returns true. If it returns false it waits on the condition variable
exitRW3Cond. Any action that can change the guard for exitRW3 from false to
true notifies the threads that are waiting on condition variable exitRW3Cond using
exitRW3Cond. If the guard (numC3==0) is true then Guard _exitRW3 method decre-
ments the number of airplanes using the runway 16R (numRW16R=numRW16R-1) and
increments the number of airplanes using the taxiway C3 atomically and returns
true. Since executing exitRW3 can only change the action reqLand’s guard from
false to true, only threads that are waiting on the condition variable reqLandCond
are notified before method exitRW3 returns.

The action leave does not have a guard, i.e., its execution does not depend on
the state of the shared variables of the monitor. Hence, the method for the action
leave does not need to wait to decrement the number of airplanes on the runway

16L (numRW16L=numRW16L-1). After updating numRW16L, however, it notifies the

114

Automated Concurrency Controller Synthesis

Chapter 5

public class Airport{
private int numC3;
private int numRW16L;
private int numRW16R;
private Object exitRW3Cond;
private Object reqTake0ffCond;
private Object reqlLandCond;
private Object crossRW3Cond;

public Airport(){
numC3=0;
numRW16L=0;
numRW16R=0;

exitRW3Cond=new Object();
reqTakeOffCond=new Object();
reqLandCond=new Object();
crossRW3Cond=new Object();
}
private synchronized
boolean Guard_reqLand(){
if (numRW16R==0){
numRW16R=numRW16R+1;
return true;
}
else return false;
}
public void reqLand(){
synchronized (reqLandCond) {
while(!Guard_reqLand())
try{ reqlandCond.wait();}
catch(}
InterruptedExceptione) {}

private synchronized
boolean Guard_exitRW3(){
if (numC3==0){
numC3=numC3+1;
numRW16R=numRW16R-1;
return true;
} else return false;

}

public void exitRW3(){
synchronized (exitRW3Cond) {
while('Guard_exitRW3())
try{ exitRW3Cond.wait();}
catch(
InterruptedExceptione){}

}
synchronized (reqlLandCond){
reqlandCond.notify();
}
}
public void leave(){
synchronized (this){
numRW16L=numRW16L-1;
}
synchronized (crossRW3Cond) {
crossRW3Cond.notify();
}
synchronized (reqTake0ffCond) {
reqTake0ffCond.notify();
}

// other notificatioms.

Figure 5.2: Airport Class Using the specific notification pattern

115

Automated Concurrency Controller Synthesis Chapter 5

threads waiting on the condition variables crossRW3Cond and reqTakeOffCond.
We will give an algorithm for generating Java code from the monitor specifi-
cations in the Action Language using the specific notification pattern below. We

will assume that each action expression is in the form:
EXP(a) = di(a) A ri(a) A ds(a) A rs(a)

where d;(a) is an expression on the unprimed local variables of module
m; (VAR(m;)), r;(a) is an expression on the primed and the unprimed local vari-
ables of m;, ds(a) is an expression on the unprimed shared variables (VAR(m)),
and 75(a) is an expression on the primed and the unprimed shared variables. Since
we are not interested in the local states of the processes, we will only use ds(a) and
rs(a) in the code generation for the monitor methods. Let guard, denote a Java
expression equivalent to ds(a). We will also assume that 74(a) can be written in
the form r,(a) = AyervAR(a) V' = €» Where e, is an expression on the domain vari-
ables in VAR(m). Let assign, denote a set of assignments in Java that correspond
to rs(a).

To use the specific notification pattern in translating the Action Language
monitor specifications to Java monitors we need to associate the guard of each
action with a lock specific to that action. Let a be an action with a guard, guard,,
and let cond, be the condition variable associated with a. The thread that calls
the method that corresponds to action a will wait on cond, when guard, evaluates
to false. Any thread that calls a method that corresponds to another action, b,
that can change the truth value of guard, from false to true will notify cond,.
Hence, after an action execution only the threads that are relevant to the updates
performed by that action will be awakened.

The algorithm given in Figure 5.3 generates the information about the syn-

116

Automated Concurrency Controller Synthesis Chapter 5

for each action a do
if d;(a) # true then
mark a as guarded

create condition variable cond,

for each action b s.t. a # b do

1

2

3

4

5 else mark a as unguarded
6

7 if Post(—ds(b),EXP(a)) Nds(b) # () then
8

add condy to notification list of a

Figure 5.3: Extracting Synchronization Information

chronization dependencies among different actions needed in the implementation
of the specific notification pattern. For each action a in each submodule m; the
algorithm decides whether action a is guarded or unguarded by checking the ex-
pression ds(a). If ds(a) is true (meaning that there is no guard) then the action is
marked as unguarded. Otherwise, it is marked as guarded and a condition vari-
able, cond,, is created for action a. Execution of an unguarded action does not
depend on the shared variables, hence, it does not need to wait on any condition
variable. Next, the algorithm finds all the actions that should be notified after
the action a is executed. We can determine this information by checking for each
action b # a, if executing the action a when d,(b) is false can result in a state
where d,(b) is true. If this is possible, then the condition variable created for the
action b, cond,, is added to the notification list of the action a, which holds the
condition variables that must be notified after the action a is executed.

Figure 5.4 shows the translation of guarded and unguarded actions to Java

[59]. For each guarded action a a specific notification lock, cond, is declared and

117

Automated Concurrency Controller Synthesis Chapter 5

private Object cond, = new Object();
public void Guarded W ait,() {
synchronized(cond,) {
while (Guarded_Execute,()) {
try { cond,.wait();}
catch(InterruptedException e) {}
}
}
}

private synchronized boolean Guarded_Ezecutey() {
if (guard,) {assigng;return true;}
else return false;

}

public void Ezecute,() {synchronized(this) {assigng;}}

(b)
Figure 5.4: The translation of (a) guarded and (b) unguarded actions

one private method and one public method is generated. The private method
Guarded_Ezecute, is synchronized on this object. If the guard of the action a is
true then this method executes assignments in assign, and returns true. Other-
wise, it returns false. The method Guarded_W ait, first gets the lock for cond,.
Then it runs a while loop till Guarded_Ezecute, method returns true. In the body
of the while loop it waits on cond, till it is notified by some thread that performs
an update that can change the truth value of the method guard, and, therefore,

Guarded_Ezecute,. For each unguarded action a a single public method Ezecute,

118

Automated Concurrency Controller Synthesis Chapter 5

is produced. This method first acquires the lock for this object. Then executes
the assignments assign, of the corresponding action. Before exiting the public
methods Guarded W ait, and Ezxecute,, synchronized(cond,) { condy.notify All();
} is executed for each action b in the notification list of the action a (note that
this is not shown in Figure 5.4).

The automatically generated Java monitor class should preserve the verified
properties of the Action Language specification. This can be shown in two steps:
1) Showing that the verified properties are preserved by the single-lock implemen-
tation of the Action Language specification. 2) Showing the equivalence between
the single-lock implementation and the specific notification pattern implementa-
tion. The proof of correctness of specific notification pattern (step 2) is given
in [59]. The algorithm we give in Figure 5.3 extracts the necessary information
in order to generate a Java monitor class that correctly implements the specific
notification pattern.

Below, we will give a set of assumptions under which the monitor invariants
that are verified on an the Action Language specification of a monitor are pre-

served by its single-lock implementation as a Java monitor class.

1. Initial Condition: The set of program states immediately after the construc-
tors of the monitor and the threads are executed satisfy the initial expression

of the Action Language specification.

2. Atomicity: The observable states of the monitor are defined as the program
states where this lock of the monitor is available, i.e., the states where no

thread is active in the monitor.

3. Thread Behavior: The local behavior of the threads are correct with respect

to the monitor specification.

119

Automated Concurrency Controller Synthesis Chapter 5

4. Scheduling: 1f there exists an enabled action then an enabled action will be

executed.

Assuming that the above conditions hold we claim that the observable states of the
single-lock implementation of the Action Language monitor specification satisfy

the monitor invariants verified by the Action Language Verifier.

5.3 Related Work

Recently, there have been several attempts at adopting model checking to the
verification of concurrent programs [21, 48]. These approaches translate a concur-
rent Java program to a finite model and then check it using the available model
checking tools. Hence, they rely on the ability of model checkers to cope with the
state space explosion problem. However, to date, model checkers are not pow-
erful enough to check implementations of concurrent programs. Hence, most of
the recent work on the verification of concurrent programs have been on efficient
model construction from concurrent programs [21, 48, 35]. Static analysis guided
abstractions can be useful in model construction. For example, abstractions can
reduce the state-space either by mapping variables to smaller domains [35] or by
eliminating some of the variables that do not affect the correctness of the spec-
ification [21]. Slicing can be used to guide the abstractions. Using the property
to be verified a slicing criterion can be extracted, and program parts that do not
affect the correctness of the specification can be eliminated using program slicing
[40]. Other techniques such as shape analysis [26] and predicate abstraction [5]
have also been used for the efficient model construction.

Our approach provides a different direction for creating reliable concurrent

programs. It has several advantages: 1) It avoids the implementation details in

120

Automated Concurrency Controller Synthesis Chapter 5

the program that do not relate to the property to be verified. 2) There is no
model construction problem since the specification language used has a model
checker associated with it. 3) By pushing the verification to an earlier stage in
software development (to the specification phase rather than the implementation
phase) it reduces the cost of fixing bugs. However, our approach is unlikely to
scale to the generation of complete programs. This would require the specification
language to be more expressive and would introduce a model construction problem
at the specification stage. Hence we focus on synthesizing concurrency control
components that are correct by construction and can be integrated to a concurrent
program safely. Another aspect of our approach that is different from the previous
work is the fact that we are using an infinite state model checker rather then finite
state techniques. Using our infinite state model checker we can verify properties
of specifications with unbounded integer variables and an arbitrary number of
threads.

While this work was under review, independently, Deng et al. also presented
an approach that combines specification, synthesis and verification for concurrent
programs [36]. One crucial difference between our approach and the approach
presented in [36] is apparent in the (otherwise remarkably similar) titles. In our
approach automated verification is performed on the specification, not on the
implementation. Hence, our approach shields the automated verification tool

from the implementation details.

121

Chapter 6

Verifying Concurrent Linked Lists

The implementation of dynamic data structures is a tricky concept since a small
error can cause unexpected aliasing between the pointer variables. Concurrency
increases the possibility of such errors even further. Therefore, automated verifica-
tion of concurrent programs that use dynamic data structures is highly desirable.
This chapter presents a technique for the automated verification of concurrent
linked lists such as doubly linked lists with multiple concurrent producer and
consumer processes. Our technique can verify linked list implementations for
structural invariant properties, which can also relate the structure to the integer
variables in the implementation, for example, to a variable that denotes the size
of the linked list.

Our technique uses the Composite Symbolic Representation framework. We
provide a symbolic representation for encoding the state space of the heap. The
main challenge for symbolically representing the heap configurations is to provide
a bounded representation for an unbounded state space due to dynamic memory
allocation and at the same time to keep the precision of the representation as high

as possible. To make our symbolic representation for the heap bounded we use

122

Verifying Concurrent Linked Lists Chapter 6

the summarization patterns, which is a user provided pattern specification about
the shape of the linked list. The summarization patterns are specified in terms
of a restricted class of graph grammars that is expressive enough to specify the
pattern that the correct implementation of a linked list should match. The idea
is to summarize a set of nodes that are connected with each other according to
the edge relations specified by the summarization pattern by a single abstract
node, which we call a summary node. However, summarizing a set of concrete
nodes with a single abstract node means that we lose the information on the
number of nodes that are summarized. In order to alleviate this imprecision, we
introduce an integer counter, which we call the summary count, for each summary
node. Note that using the summary counts makes the representation unbounded
due to the integer domain. However, we show that the number of topologies
for the heap configurations become bounded for a correct implementation. The
unboundedness of the representation due to the integer summary counts is handled
by the widening heuristic for the integer domains, which is presented in Chapter
4.2.

This chapter is organized as follows. Section 6.1 presents a concurrent linked
list specification. Section 6.2 introduces the pattern-based representation, ex-
plains the pattern-based summarization and reports the boundedness results, and
presents the algorithms for manipulation of the pattern-based representation. Sec-
tion 6.3 explains the integration of the pattern-based shape analysis with the
Composite Symbolic Library. Section 6.4 reports our experimental results. Fi-
nally, Section 6.5 summarizes the related work and compares our approach with

the existing approaches for shape analysis.

123

Verifying Concurrent Linked Lists Chapter 6

6.1 An Example Concurrent Linked List

In this section we present a circular doubly linked list implementation that
involves concurrent enqueue and dequeue operations. Figure 6.1 shows the Java
implementation for the linked list. The Node class is used to implement a node
in the linked list and the Queue class implements the circular doubly linked list.
Each node in the linked list has three field selectors: next, prev, and data. The
next field connects a node to the succeeding node in the linked list. The prev
field connects a node to the preceding node in the linked list. The data field
points to a unique data object. Since the linked list is circular, the next field of
the last node points to the first node and the prev field of the first node points
to the last node. The head field of the Queue class designates the first node in
the linked list, whereas the count field of the Queue class denotes the number of
nodes in the linked list.

Figures 6.2, 6.3, and 6.4 show the Action Language specification that models
the linked list implementation given in Figure 6.1. We have extended the Action
Language with a new type called heap. Heap type is similar to a restricted ver-
sion of structure types in C where all the fields are pointers to the structure type
that they belong. We call variables of the heap type heap variables. The heap
type in Figure 6.2 models the Node class in Figure 6.1. The heap variable head
models the head field of the Queue class. In Java each object is associated with
a synchronization lock, which needs to be acquired in order to execute a synchro-
nized block. The boolean variable 1ock models the synchronization lock. The
Enqueue and the Dequeue modules model the enqueue and the dequeue methods
of the Queue class, respectively. Asynchronous composition of instantiation of the

Enqueue and the Dequeue modules model concurrently running threads that call

124

Verifying Concurrent Linked Lists

Chapter 6

public class Node {

public Node next;
public Node prev;
public Object data;
public Node(Object o) {

data=o;

next=null;

prev=null;

}

public class Queue {

private Node head;
private int count;
public Queue() {
head=null;
count=0;
}
public synchronized
void enqueue(Object d) {
Node templ, temp2;
templ=new Node(d);
templ.next=templ;
templ.prev=templ;
if (count==0) head=temp1l;
else {
temp2=head.prev;
templ.next=head;
templ.prev=temp2;
temp2.next=templ;
head.prev=templ;
}

count++;

public synchronized

Object dequeue() {
Node templ, temp2;
if (count>0) {

}

templ=head.next;

if (templ==head) {
temp2=head;
head=null;

}

else {
temp2=head.prev;
templ.prev=temp2;
temp2.next=templ;
temp2=head;
head.next=null;
head.prev=null;
head=tempil;

}

count—-;

return temp2.data;

return null;

}

Figure 6.1: A Java class that implements a queue using a circular doubly linked
list with concurrent enqueue and dequeue operations

125

Verifying Concurrent Linked Lists Chapter 6

module main()
heap head {next,prev,datal;
boolean lock;
integer count;

initial: count=0 and lock and head=null;
module Enqueue()

endmodule
module Dequeue()

endmodule
main: Enqueue() | Dequeue();
endmodule

Figure 6.2: An Action Language specification for the circular doubly linked list
implementation given in Figure 6.1

the enqueue and the dequeue methods, respectively.

module Enqueue ()

heap templ, temp2 {next,prev,data};

enumerated pc {pl, p2, p3, p4, p5, pP6, p7, p8, p9};

el: pc=pl and lock and !lock’ and templ’=new and pc’=p2;

e2: pc=p2 and templ’.next=templ and pc’=p3;

e3: pc=p3 and templ’.prev=templ and pc’=p4;

e4: pc=p4 and templ’.data=new and pc’=p5;

eb: pc=p5 and count=0 and head’=templ and count’=count+1

and lock’=true and pc’=pl;

e6: pc=p5 and count!=0 and temp2’=head.prev and pc’=p6;

e7: pc=p6 and templ’.next=head and pc’=p7;

e8: pc=p7 and templ’.prev=temp2 and pc:=p8;

e9: pc=p8 and temp2’.next=templ and pc:=p9;

e10: pc=p9 and head’.prev=templ and count’=count+1 and

lock’=true and pc’=pil;

Enqueue: el | e2 | e3 | e4 | e6 | e6 | e7 | e8 | €9 | e10;

endmodule

Figure 6.3: Specification of the enqueue method of the Queue class in the
Action Language

Given the specification of a concurrent linked list as shown in Figure 6.2, we

126

Verifying Concurrent Linked Lists Chapter 6

module Dequeue()

heap templ, temp2 {next,prev,data};

enumerated pc {pl, p2, p3, p4, p5, p6, p7, p8, p9, pl0, plil,
pl2, p13, pl4, pi5};

dl: pc=pl and lock and count>0 and !lock’ and
templ’=head.next and pc’=pl0;

d2: pc=pl0 and templ=head and head’=null and lock’ and

count’=count-1 and pc’=pl;

d3: pc=pl0 and templ!=head and temp2’=head.prev and pc’=pll;

d4: pc=pll and templ.prev’=temp2 and pc’=pl2;

d5: pc=pl2 and temp2’.next=templ and pc’=pl3;

d6: pc=p13 and head’.next=null and pc’=pil4;

d7: pc=p14 and head’.prev=null and pc’=pl5;

d8: pc=p15 and head’=templ and lock’ and count’=count-1 and

pc’=pl;
Dequeue: d1 | d2 | d3 | d4 | 45 | d6 | 47 | 48;
endmodule

Figure 6.4: Specification of the dequeue method of the Queue class in the
Action Language

would like to be able to reason about its correctness in terms of the shape related
invariant properties of the data structure. Note that both the Java implemen-
tation (Figure 6.1) and the Action Language specification (Figures 6.3 and 6.4)
for the circular doubly linked list keeps an integer variable (count) and checks
conditions that depend on its value, e.g., count > 0. One way for handling such
conditions is to ignore them completely by turning them into nondeterministic
choice operations. However, we are interested in verifying the correctness prop-
erties of the concurrent linked list specifications such that the conditions on the
integer variables would be handled as precisely as possible. Section 6.3 explains
how our technique can achieve this.

Figure 6.5 shows the part of the reachable states for the Enqueue module given
in Figure 6.3. The dots denotes the fact that the reachable states is infinite, hence,

the shown sequence will continue indefinitely where each state in the sequence

127

Verifying Concurrent Linked Lists Chapter 6

head=null
I templ=nul
temp2=null

N count=0

Count=0 (Initial States)

head temp1

12: temp2=nu|| /\ count=1 \/ 11
prev next
data

head temp2 templ

A count=2 \Y4 12

A count=3 V I3

A count=4 V 14

Figure 6.5: Part of the reachable states for the Enqueue module given in Figure
6.3 when pc=p1 and lock=true.

128

Verifying Concurrent Linked Lists Chapter 6

will differ from the preceding one by one more node in the linked list and count
being one greater. In order to reason about the correctness properties of this
specification we need to approximate the infinite reachable states to a finite but
precise abstraction. Section 6.2 explores how the unbounded growth in the heap
can be made bounded and Section 6.3 explores approximating the unbounded
integer domain.

Provided that we are able to provide an approximate and finite reachable
state for the specification given in Figure 6.2, we are interested in verifying the

correctness of the following invariant properties:
1. If the linked list is empty, i.e., head = null, then the value of count is zero.

2. If both the next and the prev fields of the first node of the linked list point

to itself then the value of count is one.

3. If the next field of the first node points to itself then its prev field also points
to itself.

4. If both the next and the prev fields of the first node of the linked list point

to the same node other than itself then the value of count is two.

Note that each of the invariants are expected to hold when the mutual exclusion
lock is available in the specification given in Figure 6.2, i.e., when the value of
lock is true.

In the following sections, we explain our technique for automatically verifying

the shape related invariant properties of concurrent linked lists.

129

Verifying Concurrent Linked Lists Chapter 6

Figure 6.6: A circular doubly linked linked list with four nodes.
6.2 Pattern-based Representation

We focus on the linked lists that conform to a user-specified pattern. For
instance, the circular doubly linked list whose instance with four nodes is shown
in Figure 6.6 conforms to a pattern that can be informally described as “Every
node in the linked list points to the succeeding node with its next field, points to
the preceding node with its prev field, and points to a distinct location with its
data field”. The importance of being able to associate a pattern with a linked list
becomes obvious when considering the fact that linked lists can grow arbitrarily
large and hence requires a special encoding for a finite representation. Using a
pattern specification one can use a compact representation in which some nodes
represent themselves and some nodes actually represent a set of nodes all of which
satisfies the pattern and forms a connected graph. We call the latter type of nodes
summary nodes. Such a representation would also be precise since any manipula-
tion of the linked list that requires a node that is represented by a summary node
to be materialized, i.e., to be represented by itself, will be performed precisely.
This is simply because of the availability of the pattern information, i.e., we know

how the set of nodes represented by a summary node are connected to each other.

130

Verifying Concurrent Linked Lists Chapter 6

Now, we would like to formalize the pattern-based representation concept.
Since we use a pattern to create summary nodes, we use the term summarization
pattern. A summarization pattern is a four-tuple P = (L, Sel, Nyor, PR) where
L is the non-terminal symbol, Sel is the set of selectors, N, is the set of node

variables, and PR is a graph grammar production rule in the following form:

L vjpst1xo ... Ty — y1.5ely = t1,y2.5€lo =1to, ..., Ym-.S€lym = tm,

L Upps1o ... 2y

where Nvar = {ylay% <. ':ym} U {tlatZ: . :tm} and Vihs € Nvar and Urhs € Nvar
and vps # Upps and x; € Ny and z; # vy and z; # v for all 1 < 7 <

u, and sel; € Sel for all 1 < 7 < m. wy, is called the lhs-only variable and

Urns 18 called the rhs-only variable. We call Sjps = {vins, T1, %o, - - ., Ty} the lhs-
variables, Syns = {Vrns, L1, Ta, - - ., Ty } the rhs-variables, and y;.sel; = t1, ys.s€ly =
toy ... Ym.Sel,, = t,, the matching constraints of the production rule PR. For

the circular doubly linked list given in Figure 6.6, the pattern can be specified
as Lzy — xz.next = z,z.prev = z,x.data = y Lzy. Here Sel = {prev,next},
Nyar = {2, 9, 2}, Vihs = T, Vphs = 2, Sins = {2, y}, and Syps = {2, 4}

We represent instances of a linked list using the shape graphs. Given a set
of heap variables V' and a set of field selectors Sel, a shape graph is a six-tuple
SG = (P,N,E,PT,SM,0). P is the summarization pattern as defined above.
N is the set of nodes. E denotes the set of edges in the form (n;, sel, ny) where
ni,no € N, sel € Sel, and n; is the source node and n, is the destination node.
PT : V — N U {null,undef} maps each heap variable v € V to undef if it is
not initialized, null if it is set to null, or to the node that it points to. SM C N
is the set of summary nodes. © : SM — N maps each summary node to a tail

node, which will be explained later. Note that whenever SM = (), SG represents

131

Verifying Concurrent Linked Lists Chapter 6

a single instance of the linked list and whenever SM # (), SG represents a set
of instances of the linked list. Figure 6.6 shows the shape graph that represents
an instance of the circular doubly linked list specified by the Action Language

specification given in Figures 6.2, 6.3, and 6.4. Here

Sel = {prev, next,data}, V = {head, temp? temp’ temp? temp’’},

N = {n1,ng, n3, ny, ns, ng, N7, Ng},

E = {(n1, next,n3), (n3, next, ns), (ns, next, ny), (n7, next,ny), (n1, prev,ny),
(n7,prev,ns), (ns, prev,n3), (ns, prev,ny), (n1, data, ns), (n3, data, ny),

(ns, data, ng), (n7, data,ng)}, PT(head) = ny,

PT(temp?) = PT(temp?) = PT(temp?) = PT (templ) = null, SM = {).

A one-step match function f € Fpsg = Nyor — N is defined as a one-to-
one function that maps each node variable in N,,, to a node in the shape graph
such that V1 < i < m, (f(vi),sel;, f(t;))) € FE holds. We further restrict the
production rule of P as follows: instantiation of each node variable by a one-step
match function f is reachable by the instantiation of the lhs-only variable, i.e.,
Vny, € Nyar,3(n1,n9,...,m%),V1 < i < kk > 1,n; € Nyng = f(ups) Ang =
f(ny) AV1 < j <i—1,3sel, € Sel, (nj,sely,,nji1) € E. Given the production
rule Lxy — x.next = z,z.prev = x,z.data = y Lzy and the shape graph given
in Figure 6.6, two example one-step match functions f; and f, are defined as
fi(@) = n3, fi(y) = n4, f1(2) = ns, fa(z) = ns, fa(y) = ne, and fa(z) = n.

Given a shape graph SG = (P, N, E, PT,SM,©), where SM = (), a matching
set between nodes n and m, M(SG, n,m), is not empty if there exists a sequence
of one-step match functions fi, fo, ..., fr, where k£ > 1, that satisfy the following

constraints:

132

Verifying Concurrent Linked Lists Chapter 6

L. fi(vins) = n,

2. fe(vrns) = m,

3. V5,1 <<k, Vi,1 <i<u, fi(z)= fi(2),

4. Yv € Nyar, v & Sips U Spns, Vi, 5,1 < 6,5 < ki # 5 — fi(v) # f;(v),

5. M(SG,n,m) = {f;(v) |1 < j < kAv € Ny ANV & Spps}, otherwise
M(SG,n,m) = 0.

Note that M (SG,n, m) includes all the nodes that are in the range of the one-step
match functions other than m. The matching set that is defined by the one-step
match function f; is {ng,n4}, whereas the matching set that is defined by the
one-step match functions f; and f, defined above is {ns, ny, ns, ng}-

Given a shape graph SG = (P, N, E, PT,SM,®©), where SM =), a mazimal
matching set between nodes n and m, M, (SG,n, m), is a matching set between

nodes n and m that satisfies the following constraints:

1. For any matching set M(SG,n',m') for any pair of nodes n’ and m/,
Moz (SG,n,m) ¢ M(SG,n',m'), i.e., Mpa:(SG,n, m) is not a proper sub-
set of any other M(SG,n',m').

2. No node in M,,,;,(SG,n, m) is pointed by a heap variable, i.e., Vv € V,
PT(v) & Mpaz(SG,n,m).

3. No node in M4, (SG,n,m) has more than one incoming edge with the
same selector, i.e., Vg € M0 (SG,n, m), =3ng, n3, ne # nz A (ng, sel,ny) €

N A (ns, sel,ny) € N.

133

Verifying Concurrent Linked Lists Chapter 6

4. If the nodes in M4, (SG, n, m) has incoming edges from the nodes that are
not in M, (SG,n,m) then either n is the destination of such an edge or m
is the source of such an edge but not both, i.e., V(nq, sel,ns) € E, (ny,ns €

Mo (SG,n,m) V (ng=nAny#m) V (ng #nAny=m)).

5. If the nodes in M,,4,(SG, n,m) has outgoing edges to the nodes that are not
in Mpaz(SG,n, m) then either n is the source of such an edge or m is the des-
tination of such an edge, i.e., V(ny, sel,ny) € E, (n1,n2 € My (SG,n,m) V

ny=n V ng=m).

6. For the sequence of one-step match functions f1, fo, ..., fi, that corresponds

t0 Myae(SG,n,m), k > 2.

Node n and m are called the entry point and the exit point of the maximal matching
set, respectively. Note that there may not be a maximal matching set between
nodes n and m. The matching set that is defined by the one-step match function
f1 defined above is not a maximal matching set, however, the matching set that
is defined by the one-step matching functions f; and f, is a maximal matching
set, where n3 is the entry point and n; is the exit point. Table 6.1 shows the
production rules of the patterns corresponding to several linked lists along with

their maximal matching sets.

Theorem 6.1 Given a shape graph SG = (P,N,E, PT,SM,©), where SM = (),
there does not exists a node of SG that can be mapped to two different mazrimal

matching sets. (for the proof see the Appendiz)

134

Verifying Concurrent Linked Lists Chapter 6

Table 6.1: Summarization patterns for concurrent linked lists.
Summarization Pattern Linked List
Lx—zmext=y, Ly Singly linked list

tail

head
é next . next . next %xl
Mpaz(n2,n4) = {n2,n3} N

Lx—znext=y, yprev=x, Ly Doubly linked list
head tail

prey, next \/ \/ next /~ __next next
im n2 n3 nd 1
Miaz (n2; TL4) = {n2; n3} - prev prev prev =

Lz z— xznext=y, xlast =z, Ly z | Linked list with connection to

the last element
head

Moz (na,n4) = {na,n3}

Lz z— znext=y, xlast = z, Linked list with data and connection
z.data =w, Ly z to the last element
head
last

Mmaw(n27n4) = {n2;n6,n3,n7} @ @

6.2.1 Pattern-based summarization

After having defined the basic concepts about the summarization patterns, in
this subsection we present the summarization operation, which transforms a shape
graph SG without summary nodes into a minimal shape graph SG’ with summary
nodes. Each summary node in SG’ represents a unique maximal matching set of
SG. Each summary node sm is associated with a tail node, which is the exit point,
m, of the corresponding maximal matching set M,,,(SG,n,m). © : N x N is a

relation between the summary nodes and their tail nodes. Use of tail nodes will

135

Verifying Concurrent Linked Lists Chapter 6

become clear in Section 6.2.2.

SG' is minimal in the sense that for each maximal set of SG there exists a
corresponding summary node in SG’. The property of the summarization op-
eration to generate minimal shape graphs is crucial for the boundedness of the
representation.

Figure 6.7 shows algorithm SUMMARIZE, which implements the summarization
operation. It takes a shape graph SG with no summary nodes as input and returns
a minimal shape graph with summary nodes. Algorithm SUMMARIZE traverses the
input graph starting from each node that is pointed by a heap variable. It calls
algorithm FINDMAXIMALSETS, which is given in Figure 6.8, to find the set of all
maximal matching sets. Algorithm FINDMAXIMALSETS takes as input a shape
graph SG, a node m, and the set of nodes visited so far, visited. If m has not
been visited yet, it tries each selector sel in Sel to reach every node n that has an
incoming edge from m. If n has not been visited yet then the algorithm tries to find
a maximal matching set whose entry point is n (lines 11-19). It finds a maximal
matching set by iteratively finding a sequence of one-step matching functions.
In every iteration it calls algorithm ISMAXIMAL which is given in Figure 6.9, to
check whether the nodes that are mapped by the one-step matching functions
can indeed be summarized. Algorithm ISMAXIMAL checks the constraints 2-4 of
maximal matching sets. Constraint 1 of maximal matching sets is ensured by
traversing the graph starting from each heap variable, and constraints 5 and 6
of maximal matching sets are checked at lines 17-18. Each maximal set that is
found is stored in variable result, which denotes the sets of maximal matching
sets found so far. All the nodes in a maximal matching set are also stored in
visited. When the algorithm discovers that there is no maximal matching set

with n being its entry point or the exit point of the maximal set is reached,

136

Verifying Concurrent Linked Lists Chapter 6

SUMMARIZE(SG = (P, N, E, PT,SM, ©)): shape graph
SG: shape graph, visited: set of nodes, maximalSets:set of maximal sets
visited < (), mazimal Sets < ()
for each v € V do

if PT (v) # null then

maximal Sets + mazimalSets U FINDMAXIMALSETS(SG, PT (v), visited)

N' « N
E'+FE
PT' + PT
SM' + 0

© 00 N O Ut ks W N -

—_
= O

for each m; € maximalSets do

—
[\V]

let m; = (maxSet, entry, exit)
N' + N'\ mazSet;

N' + N'U{sm;}

SM' + SM'U {sm;}

E' « E'\ {(n1,sel,nz) | (n1,sel,n2) € EAny € mazSet; Any € mazSet;}

[e S S
N O Ot s W

E' + E'U {(n1,sel,sm;) | (n1,sel,n2) € E Any € mazSet; Ani & mazSet;}

—
co

E' + E'U {(sm;,sel,ns) | (n1,sel,n2) € E Any € mazSet; Anay & mazSet;}
PT' + PT

20 O' = Olexit/sm;]

21 return (N',E', PT',SM',0")

[y
e

Figure 6.7: The algorithm for summarizing a given shape graph SG.

137

Verifying Concurrent Linked Lists Chapter 6

1 FINDMAXIMALSETS(SG = (P, N, E, PT,SM,©), m, visited): set of maximal sets
2 SG: shape graph, m: node, visited: set of nodes, result: set of maximal sets

3 result + emptyset

4 if m € visited then

5 visited < visited U {m}

6 for each sel € Sel do

7 let (m,sel,n) € E

8 if n & visited A n # null then

9 mazSet <

10 Nihs & N

11 while there exists a one-step match function f where f(vins) = nps do
12 visited « visited U {f(ny) | ny € Nyar}t \ {Urhs}

13 if ISMAXIMAL(SG, n,mazSet, f) then

14 mazSet + mazSet U {f(ny) | ny € Nyar} \ {f(vrns)?}

15 else break

16 Nins < f(Vrhs)

17 if =3my, ma, m1 & maxSet A my € mazxSet, (mo,sel,my) € E

18 Amg #nAmy # f(vrns) A |mazSet| > 2 then

19 result + result U {{mazxSet,n, f(vyps))}

20 result < result U FINDMAXIMALSETS(SG, nyps, visited)

21 return result

Figure 6.8: The algorithm for finding the maximal matching sets of a shape
graph SG reachable form node m.

138

Verifying Concurrent Linked Lists Chapter 6

1 1sMAXIMAL(SG = (P,N, E,PT,SM,0), e, mazSet, f): boolean
2 SG: shape graph, e: node, mazSet: set of nodes, f: one-step match function
3 for each ny € Ny \ {vrns} do
4 if v € V, PT(v) = f(n,) then
return false
if Ing, na, sel,ny # na, (n1, sel, f(ny)) € E A (n2, sel, f(n,)) € E then
return false
if A(n, sel, f(ny)) € E,n & maxSet then
if f(n,) # € A # f(v,ns) then

10 return false

© o 9 O Ut

11 return true

Figure 6.9: The algorithm for checking the constraints 2-4 of maximal matching
sets for the given candidate set mazSet.

algorithm FINDMAXIMALSETS is called on node ny,s. nys is equal to either n or
the node that n,,s was mapped by the last one-step match function. After all the
maximal matching sets are found, algorithm SUMMARIZE creates a minimal shape
graph where each maximal matching set of SG is represented by a summary node.
Figure 6.10 shows the output of algorithm SUMMARIZE on input shape graph given
in Figure 6.6.

Since algorithm SUMMARIZE finds all maximal matching sets and Theorem
6.2 implies that the returned shape graph is unique, the returned shape graph is
guaranteed to be minimal.

Below we claim that the pattern-based representation is a conditionally bounded

representation. First we need to give some definitions.

Definition 6.1 A shape graph SG is minimal iff SUMMARIZE(SG) = SG.

139

Verifying Concurrent Linked Lists Chapter 6

head
next
next N next
nl) P \on7
h prev b prev
prev !
data dat

Figure 6.10: The output of the summarization operation on the shape graph
of Figure 6.6
Definition 6.2 A shape graph SG = (P,N,E,PT,SM,0) is k-well formed iff

SG is minimal and the number of non-summary nodes is k, i.e., [N\ SM| = k.

Theorem 6.2 The number of nodes in a k-well formed shape graph
SG = (P,N,E,PT,SM,0) is bounded by k x (|Sel| + 1). (for the proof see
the Appendiz)

Corollary 6.1 Given a linked list D and a summarization pattern P, let S denote
the set of minimal shape graphs representing all the instances of D. If there exists
a constant n such that every s in S is a ks-well formed shape graph based on
pattern P, where k; < n, then S can be represented by a finite set of minimal
shape graphs. Hence, linked list D can be encoded by a bounded pattern-based

symbolic representation using P.

6.2.2 Manipulation of pattern-based representation

In this subsection, given the pattern-based representation of a heap configu-
ration and a heap formula we explain how to compute the post-condition. Table
6.2 shows the set of heap formulas that can appear in the guard and update part

of an action in an Action Language specification.

140

Verifying Concurrent Linked Lists Chapter 6

Table 6.2: List of the heap formulas that can appear in guard and update parts
of a specification (id; and ids are heap variables and sel is a field selector)

| Guard Formulas | Update Formulas |
idl = Zd2 idl.sel = ng ld'lz ng ldllz idg.sel
id}.sel=idy.sel idy # ids id} .sel= idy id} .sely= idy.sely
idy .sel # ids idy.sely # ids.sely id)= null id} .sel= null
id; = null idy.sel = null id]= new id} .sel= new

Before presenting the algorithms for each type of update formula, we would
like to introduce a key operation that enables precise updates: materialization
operation. To motivate the use of materialization operation , let us assume that
the update formula templ’ = head.next will be performed on the shape graph
given in Figure 6.10. Since head.next refers to a summary node, ng, we cannot
simply make templ point to mg. The reason is that ng, does not represent a
single node but a set of nodes that form a maximal matching set M and templ,
being a heap variable, can only point to a single node. Therefore, in order to
perform the update templ’ = head.next on the shape graph given in Figure 6.10
nodes in a subset M’ of M are made explicit and the summary node ng becomes
a representation of the maximal matching set M \ M’'. The edge relations for
the nodes in M’ are constructed according to the summarization pattern. For
instance, after materializing the shape graph given in Figure 6.10 the shape graph
in Figure 6.6 can be obtained. Below we present three type of materialization

operations and the update algorithms.

Materialization Operation

Since the materialization operation involves the materialization of nodes that
are represented by a summary node, we need to have two types of materialization

operations: i) One type of materialization operation assumes that it is dealing

141

Verifying Concurrent Linked Lists Chapter 6

head
next
next next next
n3
‘ prev prev prev
prev T
data data data

B

Figure 6.11: The output of the type-2 left-materialization operation on the
shape graph of Figure 6.10

with the corner case: the number of one-step match functions for the maximal
matching set that corresponds to the materialized summary node was 2. We call
this type-1 materialization operation. In this type of materialization operation,
since all the nodes that are represented by a summary node are materialized,
the summary node disappears. Figure 6.6 shows the shape graph obtained af-
ter performing the materialization operation on the shape graph given in Figure
6.10. ii) Another type of materialization operation assumes that the number of
one-step match functions for the maximal matching set that corresponds to the
materialized summary node was greater than 2. This type is further divided into
two categories depending on whether the materialized nodes will be to the left of
the summary nodes or to the right of the summary nodes, which we call type-2
left-materialization and type-2 right-materialization operations, respectively. Fig-
ure 6.11 and Figure 6.12 shows the shape graph obtained after performing type-2
left-materialization operation and type-2 right-materialization operation on the
shape graph given in Figure 6.10, respectively.

Below we give the formal definitions of the three materialization operations.

Given a shape graph SG = (P, N, E, PT,SM,0) and a summary node sm € SM,

142

Verifying Concurrent Linked Lists Chapter 6

“prev .' prev i :' prev
B

Figure 6.12: The output of the type-2 right-materialization operation on the
shape graph of Figure 6.10

type-1 materialization operation generates a new shape graph SG' by materializing

sm, ie., SG' = (P,N',E', PT',SM',0®') = TYPE-1M(SG, sm), such that
o N'=(N\ {sm})Um; Umy, where m; # mgy A |my N mg| = [Spusl,

o SM'=SM\ {sm},

E' = (E\{(n,sel,ns) | m = smV ny = sm}) U
{(nn, sel, n3) | 11, mp € My A Gu(na).sel = by (ng)} U
{(nr, sel, n2) | 11,12 € Mg A do(ny).sel = ba(na)} U
{(nn, sel,ny) | (nn, sel, sm) € E Any = O(sm) A
P2(n1).sel = ¢a(ny)} U
{(n1, sel,ng) | (n1,sel,sm) € EAny # O(sm) A
¢1(n2) = vins} U
{(n1, sel,ny) | (sm,sel,ny) € E Ang=0(sm) A
d2(n1).sel = ¢a(n2)} U

{(n1, sel,n2) | (sm, sel,ny) € EAny # O(sm) A ¢1(n1) = vins}

143

Verifying Concurrent Linked Lists Chapter 6

where functions ¢, : m; — Ny and ¢y : my — N, are one-to-one func-
tions such that Vi, 1 < i < u,3In € miNmy, ¢1(n) = ziAda(n) = 2;AO(sm) €
ma A ¢2(O(sm)) = vpps and Yy € Nygr \ Sprs, ¥V € my, ¢1(n) = y = n &
N AYn € mg,po(n) =y=n¢g N.

e PT' = PT,
e Vne€ SM,n # sm,0' (n) =0(n).

Sets m; and msy include new nodes generated based on the summarization pattern
P. The nodes in m; U my form a maximal matching set

in SG', i.e., My (SG',n,m) = my; U my where the length of the sequence
of one-step match functions that corresponds to M,..(SG',n,m) is two. The
edge set E' is obtained from FE by i) removing the incoming edges to sm and
outgoing edges from sm, ii) adding new edges between the nodes in m; according
to summarization pattern P, iii) adding new edges between the nodes in my
according to summarization pattern P, iv) adding new edges from the nodes not
in myUms to the nodes in m;Umsy, which concretizes the edges from non-summary
nodes to sm in SG, and v) adding new edges from the nodes in m; Ums to nodes
that are not in my U mo, which concretizes the edges from sm to non-summary
nodes in SG. Since sm is removed from the set of summary nodes, the tail node
for sm is no longer defined.

Given a shape graph SG = (P, N, E, PT,SM,©) and a summary node sm €
SM, type-2 left-materialization operation generates a
new shape graph SG' by materializing sm from the left, i.e.,

SG' = (P,N',E',PT',SM',©") = TYPE-2LEFTM(SG, sm), such that

e N' = N Um, where |m| = |Nyar| A sm € m,

144

Verifying Concurrent Linked Lists Chapter 6

e SM'=5SM,

E' = (E\{(ny,sel,ng) | (n1 = smAny#0O(sm))V (ng =smA
ny # O(sm))}) U {(ny, sel,ny) | n1,ne € m A ¢(ny).sel = ¢p(ng)} U
{(n1, sel,ng) | (n1, sel,sm) € EAny # O(sm) A
¢(n1) = vins} U
{(riv, sel,135) | (sm, sel,1iz) € E A
(Jyi-sel = y;,y;j € Sins A Yj € Srns A1 = (i) V
(—3y;.sel = yj,Y; € Sins N Y;j € Spas A g # O(sm) A

¢(n1) = Ulhs)}

where function ¢ : m — N, is a one-to-one function such that ¢(sm) = vpps

and ¥y € Nyyr \ Suns, V0 € m, 6(n) =y = n & N.
e PT' = PT.
e O =0.

Set m includes new nodes generated based on the summarization pattern P. The
nodes in m form a matching set in SG’, i.e., M(SG',n, m) = m where the length
of the sequence of one-step match functions that corresponds to M(SG’,n,m) is
one. The edge set E’ is obtained from E by i) removing the incoming edges to
sm whose source node is not the tail node of sm and outgoing edges from sm
whose destination node is not the tail node of sm, ii) adding new edges between
the nodes in m according to summarization pattern P, iii) adding new edges from

the nodes not in m to the nodes in m, which concretizes some of the edges from

145

Verifying Concurrent Linked Lists Chapter 6

non-summary nodes to sm in SG, and iv) adding new edges from the nodes in
m to nodes that are not in m, which concretizes some of the edges from sm to
non-summary nodes in SG.

Given a shape graph SG = (P, N, E, PT,SM,©) and a summary node sm €
SM, type-2 right-materialization operation generates a
new shape graph SG’' by materializing sm from the right, i.e.,

SG' = (P,N',E',PT',SM',©") = TYPE-2RIGHTM(SG, sm), such that
e N'= N Um, where |m| = |Nyer| A O(sm) € m,

e SM'=5SM,

E' = (B\{(n,sel,n) | (n1 = smAng=0(sm))V (ne = sm A
n1 = O(sm))}) U {(n1, sel, ns) | n1,n2 € m A d(ny).sel = ¢(ng)} U
{(ng, sel, sm) | (ni, sel,sm) € E Any = O(sm) A
¢(n2) = vins } U

(
{(sm, sel,ny) | (sm,sel,ng) € E Ang = O(sm) A
(

B(n1) = vips} U
{(n4, sel,ns) | (sm, sel,ny) € E A Jyi.sel = y;,y; € Sins NYj € Srhs
Any = (i)}

where function ¢ : m — N, is a one-to-one function such that ¢(©(sm)) =

Vrhs and Vy € Nyg, \ Srhs, V1 € M, ¢(n) =y=n ¢ N.
e PT' = PT.

e Vn e SM,n# sm,0' (n) =0(n) Adn € m,p(n) = vps A O'(sm) = n.

146

Verifying Concurrent Linked Lists Chapter 6

Set m includes new nodes generated based on the summarization pattern P. The
nodes in m form a matching set in SG’, i.e., M(SG',n, m) = m where the length
of the sequence of one-step match functions that corresponds to M (SG,n, m) is
one. The edge set E’ is obtained from E by i) removing the incoming edges to
sm whose source node is the tail node of sm and the outgoing edges from sm
whose destination node is the tail node of sm, ii) adding new edges between the
nodes in m according to the summarization pattern P, iii) adding new edges from
the nodes not in m to the nodes in m, which concretizes some of the edges from
non-summary nodes to sm in SG, and iv) adding new edges from the nodes in m
to nodes that are not in m, which concretizes some of the edges from sm to non-
summary nodes in SG. The tail node of sm becomes the node, which is mapped

to the lhs-only variable by the function ¢.

Update Algorithms

In this section, we present the post-condition computation algorithm and the
update algorithms for each heap update formula.

Algorithm Post, which is given in Figure 6.13, computes the post-condition
of a heap update formula on a given shape graph. If the heap update formula
is in the form 2’ = null then it calls algorithm SETNULL, which is given in Fig-
ure 6.14. Algorithm SETNULL sets = to null and summarizes the resulting shape
graph. If the heap update formula is in the form z’.sel = y then it calls algorithm
SETFIELD, which is given in Figure 6.15. Algorithm SETFIELD calls algorithm
SETFIELDNULL, which is given in Figure 6.16, to set the sel field of = to null.
Then sets the sel field of z to y. Note that the summarization is handled inside
algorithm SETFIELDNULL. If the heap update formula is in the form z' = y.sel

then it calls algorithm SETTOFIELD, which is given in Figure 6.17. Depending on

147

Verifying Concurrent Linked Lists

Chapter 6

© o N O Otk W N -

NN NN NN e e e e s
G W NN H O © 0NNt R W NN = O

Post(SG, r): set of shape graphs

SG: shape graph, r: heap update formula

case

case

case

case

case

case

case

case

(z' = null):
SETNULL(SG,z);

return {SG};

(z'.sel = y):
SETFIELD(SG,z,sel,y);
return {SG};

(' = y.sel):

return SETTOFIELD(SG,x,y,sel)
(@' =y):

SET(SG,z,y)

return {SG};

(' = new):
SETNEW(SG,x)

return {SG};

(z'.sely = y.sels):
SETFIELDTOFIELD (SG, z, sel1,y,sels);
return {SG};

(z'.sel = null):
SETFIELDNULL(SG,z,sel);
return {SG};

(z'.sel = new):
SETFIELDNEW (SG,x,sel);
return {SG};

Figure 6.13: The algorithm for computing the post-condition of a heap configu-
ration represented by a shape graph SG with respect to a heap update formula

r

148

Verifying Concurrent Linked Lists Chapter 6

whether the node pointed at by y via the sel field is a summary node, algorithm
SETTOFIELD either performs materialization or simply performs the update. In
the case of a summary node two types of materialization operations are performed
so that all possible summary count values are considered, i.e., summary count is
equal to two or greater than two. For the case that summary count is equal to
two it performs TYPE-1Moperation. For the case that summary count is greater
than two, if y points to the tail node of the summary node then it performs
TYPE-2RIGHTM, otherwise performs TYPE-2LEFTM. It sets x to the node pointed
to by y after the materialization is performed. Finally, it performs the summa-
rization operation on each resulting shape graph. If the heap update formula is
in the form z' = new, then it calls algorithm SETNEW, which is given in Figure
6.19. Algorithm SETNEW creates a new node, sets x to n, and performs the sum-
marization. If the heap update formula is in the form z’el; = y'.sely then it calls
algorithm SETFIELDTOFIELD, which performs materialization similar to algorithm
SETTOFIELDexcept that it sets the sel; field of x to the node pointed at by the sels
field of . If the heap update formula is in the form z’.sel = null then it calls al-
gorithm SETFIELDNULL, which is given in Figure 6.16. Algorithm SETFIELDNULL
sets the sel field of x to null and performs summarization. Finally, if the heap
update formula is in the form z'.sel = new then it calls algorithm SETFIELDNEW,
which is given in Figure 6.21. Algorithm SETFIELDNEW creates a new node and

sets the sel field of x to that new node and then performs summarization.

6.2.3 Improving the precision

The pattern-based representation for heap configurations is a compact and

partly an imprecise representation. Although the pattern information makes it

149

Verifying Concurrent Linked Lists Chapter 6

N

SETNULL(SG, z) : shape graph
SG: shape graph, z: heap variable
SG.PT(x) + null

return SUMMARIZE(SG)

Figure 6.14: The algorithm for setting a heap variable to null

D Ut s W N =

SETFIELD(SG, z, sel, y): shape graph

SG: shape graph, sel: selector, x, y: heap variable
SG4 <+ SETFIELDNULL(SG, z, sel)

let SG,.PT(z) =nASG1.PT(y) =m

SG1.E < SG1.EU {(n, sel,m)}

return SG;

Figure 6.15: The algorithm for setting a field of a heap variable to a heap variable.

[B VU S

SETFIELDNULL(SG, z, sel): shape graph

SG: shape graph, z: heap variable, sel: selector

let SG.PT(z) =n

SG.PT « SG.PT U {(n,sel,null)}\ {(n, sel, z)|(n, sel,z) € SG.E}

return SUMMARIZE(SG)

Figure 6.16: The algorithm for setting a field of a heap variable to null.

150

Verifying Concurrent Linked Lists Chapter 6

1 SETTOFIELD(SG = (P,N,E,PT,5M,0), z, y, sel): set of shape graphs
2 SG@: shape graph, x, y: heap variable, sel: selector
3 let (PT(y),sel,n) € E

4 ifn € SM then

5 SG1 « TYPE-1M(SG,n)

6 let (SG1.PT(y), sel,m) € SG1.E

7 SG1.PT(z) + m

8 SG1 + SUMMARIZE(SG1)

9 let (n,t) € ©

10 if PT'(y) =t then

11 SG5 <+ TYPE-2RIGHTM(SG)

12 else

13 SG5 + TYPE-2LEFTM(SG)

14 let (SG5.PT(y),sel,u) € SGy.E

15 SG2.PT(z) < u

16 SG2 < SUMMARIZE(SG?>)

17 return {SG;, SG2}

18 else

19 SGy + SG

20 SG1.PT(z) < n

21 SG1 <+ SUMMARIZE(SG1)
22 return {SG1}

Figure 6.17: The algorithm for setting a heap variable to a field of a heap variable.

151

Verifying Concurrent Linked Lists Chapter 6

SET(SG, z, y): shape graph
SG: shape graph, x, y: heap variable
SG.PT (z) + SG.PT (y)

return SUMMARIZE(SG)

N

Figure 6.18: The algorithm for setting a heap variable to a heap variable.

SETNEW(SG,)

SG: shape graph, x: heap variable
let n ¢ SG.N

SG.N « SG.NU{n}

SG.PT(z) < n

return SUMMARIZE(SGQ)

(=2 T R

Figure 6.19: The algorithm for setting a heap variable to a new node.

152

Verifying Concurrent Linked Lists Chapter 6

© o N O Ut ks W N =

[S S T = S = St
S Ot s W N = O

17
18
19
20
21
22
23

SETFIELDTOFIELD(SG,z,selq,y,sels): shape graph
SG: shape graph, x, y: heap variable, sely, sely: selector
let (PT(y),sel2,n) € E
if n € SM then
SG, « TYPE-1M(SG,n)
let SG1.PT(x) = s A (SG1.PT(y), sela,m) € SG1.E
SG1.E + SG1.EU{(s,seli,m)}\ {(s, sel1,x)|(s,seli,z) € SG1.E
SG1 < SUMMARIZE(SGh)
let (n,t) € ©
if PT(y) =t then
SGy < TYPE-2RIGHTM(SG)
else
SG5 + TYPE-2LEFTM(SG)
let SG>.PT(z) = v A (SG2.PT(y),sel,u) € SG2.E
SG2.E + SG2.EU{(v,sel1,u)}\ {(v, sel1,z)|(v, sel1,z) € SG2.E}
SG2 < SUMMARIZE(SG?2)
return {SG1, SG2}
else
SGy + SG
let SG,.PT(z) =y
SG1.E < SG1.E U {(y, seli,n)} \ {(y, sel1, 2)|(y, sel1,z) € SG1.E}
SG1 + SUMMARIZE(SG1)
return {SG1}

Figure 6.20: The algorithm for setting a field of a heap variable to a field of a
heap variable.

153

Verifying Concurrent Linked Lists Chapter 6

SETFIELDNEW(SG, z, sel): shape graph

SG: shape graph, x: heap variable, sel: selector
SG1 « SETFIELDNULL(SG, z, sel)

let n ¢ SG1.N ASG1.PT(z) =m

SG1.E < SG1.EU {(m,sel,n)}

(= I S L

return SG;

Figure 6.21: The algorithm for setting a field of a heap variable to a new node.

possible to keep the shape information about the summarized nodes, we lose the
information about the number of nodes that are matched to a particular summary
node. We can overcome this imprecision of the pattern-based representation by
associating each summary node with a summary count, which keeps the number
of nodes represented by that summary node.

We introduce the extended shape graphs, which are shape graphs with summary

counts:

Definition 6.3 An extended shape graph 18 an 8-tuple
ESG = (P,N,E,PT,SM,0,V,., SC), where there ezxists a shape graph SG =
(P,N,E,PT,SM,0), Vi. is a set of integer variables denoting the summary
counts, and SC : SM — V., which is called the summary counter, is a func-

tion that maps each summary node to a summary count. SG s called the topology

of the extended shape graph ESG.

A consequence of using the summary counts is that the pattern-based repre-
sentation becomes a precise representation hence it is no longer a bounded rep-

resentation, i.e., the summary counts can take arbitrarily large values. Corollary

154

Verifying Concurrent Linked Lists Chapter 6

6.1 is no longer valid for the version of the pattern-based representation with sum-
mary counts, i.e., we may not have a finite set of shape graphs to encode all the
instances of a linked list even though it has the property that any of its instance
can have maximal matching sets with a bounded size. However, Corollary 6.2

implies a useful result for the pattern-based representation with summary counts:

Corollary 6.2 Given a linked list D and a summarization pattern P, let S denote
the set of minimal extended shape graphs representing all the instances of D. If
there exists a constant n such that topology of every s in S is a kg-well formed
shape graph based on pattern P, where ks < n, then projection of S on the topology

can be represented by a finite set of minimal shape graphs.

Corollary 6.2 states that as long as the summary counts can be abstracted by a
bounded representation the pattern-based representation may become a bounded

representation. We will further explore this in Section 6.3.

6.3 Integrating Shape Analysis to Composite Rep-
resentation

We have extended the Composite Symbolic Library with the pattern-based ex-
tended shape graph representation for symbolically encoding heap configurations.
After this extension a state S that is encoded using the composite representation
can be defined as

S = \/ Sibool N Siint N Siheap

1<i<n

where S; poor; Siint, and S; peqp denote states in the boolean domain, the integer

domain, and the heap domain, respectively. Similarly, a transition relation R

155

Verifying Concurrent Linked Lists Chapter 6

using the composite representation is defined as
R= "\ Rjpoor N Rjint N Rjheap
1<j<m
where R; poo, Riint, and R, peqp denote transition relations in the boolean domain,
the integer domain, and the heap domain, respectively. Given S and R, Post(S,R)
is defined as

POSt(S, R) = V V POSt(Si,bwl, Si,bool) A POSt(Si’heap, Rj,heap) A

1<i<n 1<j<m

POSt(Si,inta Rj,z'nt A IC(Si,heapa Rj,heap))

where IC' is a function that generates the interference constraint, which is a lin-
ear arithmetic update formula that defines the next state values of the summary
counts used in the extended shape graphs. The interference constraints are passed
to linear arithmetic constraint representation in the composite framework and ma-
nipulated inside that representation. This has two main advantages: 1) Linear
arithmetic representation, which is implemented by class IntSym in the Composite
Symbolic Library, already provides heuristics for approximate fixpoint computa-
tions that can be used to guarantee convergence of the shape analysis for linear
linked lists that have finite topology. 2) Handling the linear constraints on the
integer variables of the linked list specification together with the linear constraints
on the summary counts provide a more precise shape analysis that can also reason
about the properties that involve both the integer variables and the structure of
the heap.

Table 6.3 lists the interference constraints that are generated after the sum-
marization, type-1 materialization and type-2 materialization operations. None
denotes the case where neither summarization nor materialization is performed.

ksm denotes the number of nodes summarized by summary node sm, whereas

156

Verifying Concurrent Linked Lists Chapter 6

Operation Interference Constraint
Summarization Nomesa.su SC(sm)' = ks,
Type-1 Materialization SC(sm)=2+I AN SC(sm)' =0

Type-2 Left(Right)-Materialization | SC(sm) > 21 A
SC(sm)' = SC(sm) —2x1I
None Asmesa.su SC(sm)' = SC(sm)

Table 6.3: The operations and the corresponding interference constraints.

I is a constant and denotes the number of nodes each one-step match function
matches for the pattern that the representation is based on.

Our technique for verifying invariant properties for linked lists works as follows.
Using the post condition computation (Post) defined above, it computes an upper
approximation to the set of reachable states, RS = px . I V Post(z,R). Since
computing the reachable states involves a least fixpoint, to compute an upper
approximation for the fixpoint we use the widening operator defined in Section
4.2. Note that the widening operator is defined over linear arithmetic constraints
and it not only approximates the reachable states for the integer variables of
the linked list specification but also the state space for the heap since it is also
applied over the linear arithmetic constraints involving the summary counts via
interference constraints. After RS™ is computed, it is checked whether all the
states in RS™ satisfies the invariant. If so then the property is verified, otherwise
either the property is violated or the approximation is too coarse for the analysis.
At this point one can either use truncated fixpoint computations (see Section 4.2)
or ask the Action Language Verifier to generate a counter-example.

Figure 6.22 shows an example of the approximate reachable state computation
for the Enqueue module given in Figure 6.3. Iy, Ig, I7, I, and Iy denote the result
of the fixpoint iterations. The value of I5 was given in Figure 6.5. Figure 6.22

shows only the reachable states when pc=pl and lock=true. In order to obtain

157

Verifying Concurrent Linked Lists Chapter 6

A count=5v 15

&JMMARIZE

A’/’)
head temp2 templ
nex

A summaryCount 2 v 15
count=5

A summaryCount=2
count=6

summaryCount=2 v 15
count=5

summaryCount=2

A summaryCount 3 v
count=5

15
count=6 v

SIMPLIFY
- post(el),
post(e2),
i} post(e3),
V'as post(ed),
st(e6),
2<summaryCount< 3 v |57pf’7(”)7 2<summaryCount<4 15
count=summaryCount+3 post(e7), count=summaryCount+3
post(e8),
post(e9),
post(e10)
int
2<summaryCount 2<summaryCount |5

count=summaryCount+3 count=summaryCount+3

post(e1), post(e2), post(e3), post(e4), post(e6). post(€7), post(e8), post(ed), post(e10)

Figure 6.22: The approximate reachable state computation for the Enqueue
module given in Figure 6.3 when pc=p1 and lock=true. I5, Ig, I7, I3, and Iy
denote the result of the fixpoint iterations. I5 is shown in Figure 6.5.

158

Verifying Concurrent Linked Lists Chapter 6

I, from I;, one needs to perform the post-condition computation on the actions
el, e2, e3, e4, eb6, e7, e8, €9, and e10. Note that action e5 is not enabled on
the states represented by Is-Iy. After the post-condition computation the Action
Language Verifier performs summarization on the shape graphs, simplification
on the disjuncts of the result of the same iteration, and widening on the pair
of disjuncts from the results of the consecutive iterates that have subsumption
relation between them. The linear arithmetic constraint 2 < summaryCount A
count = summaryCount+3 generated by the widening operation does not change
in the following iteration, Iy. Since as a result of the summarization operation, all
the generated shape graphs are isomorphic to the shape graphs generated in the

previous iterations, the computation converges after computing Iy, i.e., Ig = Iy.

6.3.1 Encoding Shape Graphs with BDDs

We encode the shape graphs symbolically using BDDs. We represent, the nodes
in the shape graph with minterms on a set of boolean variables (conjunctions of
boolean variables or their negations). For example, the nodes of the shape graph
in Fig. 6.6 can be represented using three boolean variables by, by, b3, where the
minterm —b; A —by A —bs encodes node nl, the minterm b; A —by A —bs encodes
node n2, and so on. Then, function PT corresponds to a function from the heap
variables to boolean logic formulas on the boolean variables by, by, and b3. For
example, PT (head) is the boolean logic formula —b; A —by A —bs for the shape
graph in Fig. 6.6 based on the encoding given above.

Each selector defines a binary relation on N, the set of nodes in the shape
graph. To encode binary relations defined by the selectors, we duplicate the

boolean variables used to encode the nodes in the heap. For example for the

139

Verifying Concurrent Linked Lists Chapter 6

above example, we add three new boolean variables b, b),, 5. Now, the binary
relation on N defined by the selector data can be represented as a boolean logic
formula on variables by, by, b3, b}, b, and b;. The formula that corresponds to the
edge between nodes n; and ns via selector data in the shape graph in Fig. 6.6

based on the encodings of the nodes given above is:
=y A —by A —bg A B A —bly, A by

This type of encoding is essentially the same encoding used in BDD based model
checking to encode the transition relations. Note that null corresponds to the
boolean value false. Boolean value true on the other hand is used to encode the
configurations where the selector for a node is not initialized.

To keep the size of the BDD encoding small we introduce boolean variables
only when they are needed. In our encoding, a shape graph with the set of nodes
N will be encoded with 2 x log,(|N|) boolean variables. Since new nodes can be
added to the heap using the new keyword, we introduce new boolean variables to

the encoding dynamically if necessary.

6.4 Experiments

We have experimented with our verification technique that uses summarization
patterns on eight different concurrent linked list specifications: the singly linked
list (singly), the circular singly linked lists (singlycircular), the doubly linked
list (doubly), the circular doubly linked list (doublycircular) and the circular and
noncircular linked lists with an extra selector connecting each element directly to
the last element, which yields four versions depending on whether there is data

selector (datalast and datalastcircular) or not (last and lastcircular). Table 6.1

160

Verifying Concurrent Linked Lists Chapter 6

shows the summarization pattern corresponding to each of these linked lists. Ta-
ble 6.5 shows the invariants that are verified for each linked list. The results of
our experiments are shown in Table 6.4. Each item in Table 6.4 is the average of
the result of verification of the specification for each of the invariants. We verified
each specification with varying number of producer P and consumer C' processes
running concurrently. We also verified each specification with two different ver-
sions. In the first version, HC, we used heap formulas, e.g., head = null, in the
guards of the actions, and in the second version, IC, we replaced heap formula
with an integer formula, e.g., count = 0, in the guard of each action. For the re-
sults of the experiments, we reported the transition system construction time CT
in seconds, verification time V7' in seconds, and the memory usage M in Mbytes.
We obtained the experimental results on a SUN ULTRA 10 workstation with 768
Mbytes of memory, running SunOs 5.7. Our results show that most of the time is
spent, during the verification phase. In most of the cases the verification with the
version where the heap formula in the guard are replaced with the integer formula

is comparable to the version where there is a heap formula in the guard.

6.5 Related Work

In [65] we presented a technique for verifying invariants of singly linked lists
that involve both heap variables and integer variables. The technique presented
in [65] is specialized for singly linked lists. This work extends the techniques
presented in [65] by introducing the summarization patterns. The summarization
patterns enable verification of linked lists such as doubly linked lists.

In [41] shape invariants are described using context-free graph grammars. Each

update on a data structure is represented by a transformer that describes a single-

161

Verifying Concurrent Linked Lists

Chapter 6

Table 6.4: Verification results for the concurrent linked list specifications.

Specification Number of
Processes HC 1C
CT VT M CT vT M

singly 1P-1C 0.29 | 2.54 24.10 | 0.26 | 2.64 23.82
2P-2C 0.50 | 3.73 33.98 | 046 | 3.70 33.55

4P-4C 1.02 | 5.88 54.80 | 0.97 | 6.45 53.68

doubly 1P-1C 0.31 | 4.40 3297 | 031 | 4.49 32.78
2P-2C 0.59 | 6.39 50.77 | 0.61 | 6.46 50.09

4P-4C 1.52 | 15.38 | 88.56 | 1.57 | 15.52 | 87.04

last 1P-1C 0.30 | 9.63 44.10 | 0.27 | 9.63 43.98
2P-2C 0.51 | 14.53 | 66.82 | 0.49 | 14.36 | 66.49

4P-4C 1.20 | 32.98 | 115.42 | 1.16 | 33.00 | 114.71

datalast 1P-1C 0.32 | 1795 | 5832 | 0.32 | 18.39 | 58.23
2P-2C 0.58 | 33.79 | 9143 | 0.57 | 33.42 | 91.37

4P-4C 1.37 | 69.81 | 162.28 | 1.37 | 70.49 | 161.60

singlycircular 1P-1C 0.32 | 2044 | 68.53 | 0.31 | 18.76 | 55.21
2P-2C 0.50 | 40.89 | 112.07 | 0.47 | 31.45 | 86.07

4P-4C 0.95 | 85.76 | 202.04 | 0.95 | 62.35 | 150.33

doublycircular 1P-1C 0.37 | 86.60 | 11593 | 0.40 | 69.31 | 91.26
2P-2C 0.68 | 155.01 | 192.14 | 0.66 | 112.45 | 149.77

4P-4C 1.50 | 371.62 | 351.30 | 1.48 | 246.76 | 269.76

lastcircular 1P-1C 0.35 | 46.41 75.88 | 0.34 | 39.82 | 82.79
2P-2C 0.55 | 80.29 | 114.9 | 0.57 | 66.77 | 135.04

4P-4C 1.10 | 148.77 | 200.35 | 1.14 | 150.31 | 244.36

datalastcircular 1P-1C 0.39 | 49.97 | 79.70 | 0.41 | 52.08 | 79.70
2P-2C 0.69 | 81.21 | 127.53 | 0.69 | 82.29 | 127.31
4P-4C 1.43 | 171.73 | 227.53 | 1.45 | 171.98 | 227.33

step rewriting. An algorithm that employs multiset rewriting techniques is pro-

posed for checking the preservation of the shape invariant by each transformer

in the program. This approach only enables checking the shape invariants and

cannot handle checking the properties that should hold when the shape invariants

are temporarily violated. Our technique, on the other hand, can verify proper-

ties about the state of the heap even when the shape invariants are temporarily

violated.

[37] presents a representation for alias analysis for recursive data structures

that is based on symbolic access paths. Symbolic access paths can be parame-

162

Verifying Concurrent Linked Lists Chapter 6

Table 6.5: Safety properties of the concurrent linked list specifications.
Specification Verified Invariants
singly, doubly, (count = 0 A lock) = (head = null A tail = null)
singlycircular, | (head = null A tail = null) = count =0
doublycircular head # null = count > 0
(head = tail A head # null A lock) = count =1
head # tail A head # null A lock) = count > 2

singlycircular, head.next = tail A head.next = head A head # null A lock) = count = 1
doublycircular head # null A head.next = tail A head.next # head A lock) = count = 2
head # null Alock) = tail.next = head
lock A head.next # head) = tail.next # tail
doublycircular head.next = tail A head.next # null A head # tail A lock) =

count = 2 A tail.prev = head A tail.next = head A head.prev = tail)
head.next # null A head.next = tail A lock) = tail.prev = head
count = 1 A lock) = (head.next = null A head.last = head)

count = 2 A lock) < (head.next = head.last)

head.next # head.last A lock) = count > 2

lastcircular, head.next = head A head.last = head A head.next # null A lock) =
datalastcircular | count =1

(head.next = head.last A head.next # null A lock) =

(count =1V count = 2)

last, datalast

(
(
(
(
(
(
(
(
(
(
(
(

terized on integer variables, which enables 1) encoding of all possible aliasing of
two variables in a compact way 2) making use of widening operators to guarantee
termination of the analysis. Our approach is similar to that of [37] since there
exists an integer formula associated with every summary node in our shape graph
representation and for termination of the fixpoint computation we also make use
of the widening operator defined for linear arithmetic constraints. However, in
[37] the integer formula only states a relation between the integer variables of two
aliased symbolic access paths, whereas in our approach the summary counts can
be related to the integer variables in the specification (e.g., variable count repre-
senting the number of nodes in the data structure) that has nothing to the with
the symbolic representation of the heap. [37] only keeps aliasing information for

recursive data structures that may have more than one field. On the other hand,

163

Verifying Concurrent Linked Lists Chapter 6

our approach keeps the precise shape of the heap for linked lists so that programs
with destructive updates can be verified.

[60] presents an approach for abstracting the heap state using shape graphs.
The abstraction is achieved by representing a set of indistinguishable nodes by a
single abstract node, which is called the summary node. As a result, a finite repre-
sentation for a set of heap configurations is obtained. [61] extends the work in [60]
to a more generalized framework that uses 3-valued logic. In this framework nodes
of the shape graph represent equivalence classes defined by the truth values of the
unary predicates. [39], [57] and [64] use the shape analysis framework presented
in [61], for checking memory errors for programs that manipulate linked lists, for
verifying properties of sorting algorithms that manipulate linked lists, for verify-
ing invariants of concurrent programs that manipulate linked lists, respectively.
Our approach has three main differences compared to the work on shape analysis
described above: 1) Our summarization algorithm is parameterized with respect
to the summarization patterns, and each summary node represents a set of nodes
that match the summarization pattern. 2) We use the summary counts and the
arithmetic constraints on the summary counts to propagate the information on the
number of nodes represented by a summary node. This enables us to verify prop-
erties that relate the integer variables and the heap variables automatically. 3) We
use a disjunctive composite symbolic representation that enables us to combine
different type-specific symbolic representations such as BDDs, polyhedra, and the
shape graphs.

164

Chapter 7

Conclusions and Future Work

In this dissertation we have presented a symbolic model checking tool, the Action
Language Verifier, that can be used to verify the correctness of concurrent software
specifications. The Action Language Verifier can analyze infinite-state transition
systems using the infinite-state verification heuristics. As a result it can analyze
systems with unbounded data domains and systems with an arbitrary number of
concurrent, processes. Although for some cases the analysis may remain inconclu-
sive, our experience with various concurrent software specifications shows that one
can verify or falsify many useful properties using the Action Language Verifier.
Among the various concurrent system specifications is a case study on the airport
ground traffic control.

The capability of the Action Language Verifier to analyze software specifica-
tions depends on the existence of suitable symbolic representations for encoding
the state space of these specifications. We have built the Composite Symbolic
Library, which is the symbolic manipulator used by the Action Language Verifier,
to create an extensible framework under which different symbolic representations

can be combined. The Composite Symbolic Library proved to be a useful tool: 1)

165

Conclusions and Future Work Chapter 7

We could increase the range of software specifications that the Action Language
Verifier can analyze by only extending the Composite Symbolic Library with new
symbolic representations. 2) The Action Language Verifier dynamically chooses
the symbolic representations it is going to use: if there is only one data type then
it becomes a symbolic model checker based on the corresponding symbolic repre-
sentation, otherwise, it uses the composite representation. This is due to the fact
that the verification procedures are polymorphic regarding the symbolic represen-
tations. This feature helped us to implement new heuristics without any change
to the implementation of the basic symbolic representations. 3) The composite
approach used in the Composite Symbolic Library both inspired and enabled the
development of a novel technique for analyzing invariant properties of concurrent
linked list specifications. 4) The Composite Symbolic Library served as an exper-
imental framework, specifically it has been used to compare polyhedra-based and
automata-based linear arithmetic constraint representations.

We have proposed an approach for developing reliable concurrency controllers.
Our approach consists of three steps: 1) The specification of a concurrency con-
troller in the Action Language. 2) Automated verification of the specification
for temporal correctness properties using the Action Language Verifier. 3) Au-
tomated synthesis of an efficient and correct-by-construction implementation of
the concurrency controller in Java using the symbolic manipulation techniques
provided by the Composite Symbolic Library. Considering the fact that model
checking would not scale to whole program analysis, we think that this work serves
as a good example of the cost-effective usage of the Action Language Verifier for

reliable software development.

166

Conclusions and Future Work Chapter 7

7.1 Future Work

The research problems that we are interested in exploring as future work can
be summarized as follows:

Symbolic representations: Programming languages employ various data
and control abstractions. Applicability of infinite-state symbolic model checking
to software systems depends on the existence of symbolic representations that
correspond to such abstractions. We would like to extend the Composite Symbolic
Library with new symbolic representations for the abstractions such as arrays,
strings, and unbounded channels.

Powerful Abstractions: Software may involve unbounded state spaces due
to dynamic memory allocation, dynamic process creation, and so on. We need
powerful abstraction techniques that will be precise enough to reason about the
system while making the analysis feasible. There are two main approaches for em-
ployment of abstraction techniques in this regard. One approach reduces the state
space of a system to a finite abstraction and performs the analysis on this reduced
state space. Another approach performs the analysis on the concrete/original
state space, however it computes an approximation to the result of the analysis.
While the superiority of one approach over the other is controversial, we would like
to explore ways of automatically choosing the right approach for a given system
by analyzing the property to be verified.

Compositional Reasoning: Reasoning about correctness of large software
systems requires employing compositional reasoning techniques, which infer the
correctness of the whole system from the correctness of its components. One
such technique is the assume-guarantee style of reasoning for concurrent systems,

which involves significant human guidance for finding the environment assump-

167

Conclusions and Future Work Chapter 7

tions/component guarantees. We think that we need techniques that will auto-
matically infer environment assumptions by analyzing the behavior of individual
components and the guarantees expected from them. Recently, there have been
similar efforts at NASA Ames ASE Group [44] for automatically generating envi-
ronment assumptions for invariant properties. We are interested to extend their
approach to more general properties including liveness properties.
Specification languages: Currently, there are two main approaches for
model checking software. The first one is to analyze a system on the source-
code level. This requires employing various abstraction techniques in order to
make the analysis feasible. The second one is to design an abstract model of the
software system and specify it using the input specification language of a model
checker. The problem with the former is that it is a kind of reverse engineering
and the verification is employed in the very late stages of the software develop-
ment, process. The problem with the latter is that one would like to be able to
automatically generate an implementation of the verified model. However, the
fact that specification languages of model checkers are very low level compared
to modern object oriented languages complicates the issue. We would like to ex-
plore ways for reducing the gap between the specification languages and modern

programming languages.

168

Conclusions and Future Work Chapter A

APPENDIX

A-1 Action Language Specifications

module main()

// number of airplanes occupying the runways

integer numRW16R, numRW16L;

// number of arriving airplanes occupying the taxiways C[3-8]

integer numC3, numC4, numC5, numC6, numC7, numC8;

// number of arriving airplanes occupying the taxiways

// B[2,7,9,10,11]A

integer numB2A, numB7A, numB9A, numB10A, numB11A;

// runways are initialized as available

initial: numRW16R=0 and numRW16L=0;

// taxiways are initialized as available

initial: numC3=0 and numC4=0 and numC5=0 and numC6=0 and numC7=0
and numC8=0 and numB2A=0 and numB7A=0 and numB9A=0 and
numB10A=0 and numB11A=0;

// the state space is restricted to nonnegative values of the

// integer variables

restrict: numRW16R>=0 and numRW16L>=0 and numC3>=0 and numC4>=0

and numC5>=0 and numC6>=0 and numC7>=0 and numC8>=0
and numB2A>=0 and numB7A>=0 and numB9A>=0 and

numB10A>=0 and numB11A>=0;

module Departing() ... endmodule

module Arriving() ... endmodule

main: Arriving() | Departing();

spec: AG(numRW16R<=1 and numRW16L<=1) //P1

spec: AG(numC3>=0 and numC3<=1) // P2

spec: AG((numRW16L=0 and numC3+numC4+numC5+numC6+numC7+numC8=0)

=> AX(numRW16L=0)) //P3
endmodule

Figure A.1: The Action Language Specification of the Airport Ground Traf-
fic Control Case Study. The modules Departing and Arriving are given in
Figures A.2 and A.3, respectively.

169

Conclusions and Future Work Chapter A

module Departing()
// encodes the state of a departing airplane
enumerated pc {parked, takeOff, depFlow};

// a departing airplane is initially in arrival parked state
initial: pc=parked;

reqTakeOff : pc=parked and numRW16L=0 and numC3+numC4+numC5+
numC6+numC7+numC8=0 and pc’=take0ff and
numRW16L’=numRW16L + 1;

leave : pc=takeOff and pc’=depFlow and
numRW16L’=numRW16L - 1;

Departing: reqTakeOff | leave ;
// P4

spec: AG(pc=parked => AF(pc=depFlow))
endmodule

Figure A.2: The module Departing of the Action Language Specification given
in Figure A.1

A-2 Proofs for the Pattern-Based Representa-
tion

Proof of Theorem 6.1: We use proof by contradiction. Let us assume that node
n can be mapped to both M; = M0, (SG, P,n1,m;) and My = M4, (SG, P, ng, my)
where M; and M, are both defined and M; # My, i.e, n € My An € My A (ny #
ng V my # my). Since n; and ny are the entry points of the maximal sets M; and
M, respectively n is reachable from both n; and n,. We need to consider two

main sub cases: 1) n; # ny and 2) my # mo.
1. ny # no: We should further consider two sub cases:

(a) n # n1 and n # ny. There exists two nodes n' € M; and n” € M,

170

Conclusions and Future Work Chapter A

such that n is reachable from both n' and n”, however neither n' is in
M, nor n" is in M,. However, this is not possible since this contradicts

with constraint 4 for both M; and M,.

(b) n = ny and n # ny. There are two cases: 1) M; ¢ M,. This is not
possible since it contradicts with constraint 5. 2) M; C M,. This

contradicts with constraint 1.
2. my # my: This requires that ny; # no, which is proved above.

Before giving the proof of Theorem 6.2 we think that presenting some defini-

tions and lemmas are in order.

Definition A.1 Given a shape graph SG = (N, E, PT), a heap variable v € V,
and a node s € N, s is reachable from v, Reachablesg(v,s) = true, iff It €

N, PT(v) = tA3(s1, S2, -, Sk), k > 1Nt = 51AVi, 1 < i < k,(84,8i11) € EAs, = s.

Definition A.2 A given shape graph SG = (N, E, PT) is k-well-formed with
respect to a given summarization pattern P = (L, Sel, Nyor, PR), W F(SG, P) =
true, where k € Nat, iff |[Nnpws| = k where Npyr={n|ne NA-3s,t € N,n €
M oz (P, SG, s,1)}.

Lemma A.1 In an abstract shape graph SG = (N, E,PT,SM, ©) each summary
node sm € SM has at least one incoming edge from a non-summary node.

Proof: From the definition of a shape graph, each node in a shape graph is
reachable from a heap variable. From the definition of summary nodes, the nodes
that are mapped to a summary node cannot be directly pointed by a heap variable.
Therefore, for a summary node to be reachable from a heap variable it must have

an tncoming edge from a node that is reachable by that heap variable. It is not

171

Conclusions and Future Work Chapter A

possible for a summary node to have incoming edges only from other summary
nodes. Let us assume that the reverse is true. Then we have to consider two

cases.

1. A summary node has an incoming edge from a single summary node and no
incoming edge from a non-summary node. This case is not possible since

summary nodes represent mazimal matching sets.

2. A summary node sm has incoming edges from multiple summary nodes, e.g.,
ny and n2, and no incoming edge from a non-summary node. This requires
sm to have multiple incoming edges with the same selector. This is because
sm s tail of both ni and ny. The type of edges between a summary node
and a tail is defined by the summarization pattern. Therefore, sm cannot
have incoming edges from ny, and no with different selectors. According to
the definition of mazimal matching sets, no node in a mazximal matching set
have two incoming edges with the same selector. Therefore, sm cannot have

incoming edges with the same selector.

Since we got contradictions for both of the two cases discussed above, there exists

at least one incoming edge to a summary node from a non-summary node. [|

Lemma A.2 In a shape graph SG = (N, E, PT) that is k-well-formed with re-
spect to a given summarization pattern P = (L,Sel, Ny, PR) the number of
summary nodes in the unique abstract shape graph SG = (N, E,]5T, SM,0) cor-

responding to SG can have at most kx|Sel| summary nodes, i.e., |SM| = kx|Sel|.

Proof: From Definition 6.2 the number of nodes in SG that are not mapped
to a summary node in SG is k. Hence the number of non-summary nodes in SG

is k. Since Lemma A.1 states that each summary node must have at least one

172

incoming edge from a non-summary node, given that there are £ non-summary
nodes and each node can have |Sel| many outgoing edges the number of summary
nodes can be at most k x |Sel|. |

Proof of Theorem 6.2: The number of nodes in an abstract shape graph is equal
to the sum of the number of non-summary nodes and the number of summary
nodes. A k-well-formed shape graph is mapped to an abstract shape graph with &
non-summary nodes (from Definition A.2) and at most k& x |Sel| summary nodes
(from Lemma A.2). Hence the number of nodes in the corresponding abstract

shape graph of a k-well-formed shape graph is < k x (|Sel| + 1).

173

module Arriving()

enumerated pc {arFlow, touchDown, taxiTo16LC3, taxiTol16LC4,

taxiTol6LCH, taxiTol6LC6, taxiTol6LC7, taxiTol6LC8, taxiFri16LB2,

taxiFr16LB7, taxiFr16LB9, taxiFr16LB10, taxiFr16LB11, parked};

initial: pc=arFlow;

reqland : pc=arFlow and numRW16R=0 and pc’=touchDown and
numRW16R’=numRW16R+1;

exitRW3 : pc=touchDown and numC3=0 and pc’=taxiTo16LC3 and
numRW16R’=numRW16R-1 and numC3’=numC3+1;

exitRW4 : pc=touchDown and numC4=0 and pc’=taxiTol16LC4 and
numRW16R’=numRW16R-1 and numC4’=numC4+1;

exitRW5 : pc=touchDown and numC5=0 and pc’=taxiTol6LC5 and
numRW16R’=numRW16R-1 and numC5’=numC5+1;

exitRW6 : pc=touchDown and numC6=0 and pc’=taxiTol6LC6 and
numRW16R’=numRW16R-1 and numC6’=numC6+1;

exitRW7 : pc=touchDown and numC7=0 and pc’=taxiTol16LC7 and
numRW16R’=numRW16R-1 and numC7’=numC7+1;

exitRW8 : pc=touchDown and numC8=0 and pc’=taxiTo16LC8 and
numRW16R’=numRW16R-1 and numC8’=numC8+1;

crossRW3 : pc=taxiTol6LC3 and numRW16L=0 and numB2A’=numB2A+1
and pc’=taxiFri16LB2 and numC3’=numC3-1 and numB2A=0;

crossRW4 : pc=taxiTol6LC4 and numRW16L=0 and numB7A’=numB7A+1
and pc’=taxiFr16LB7 and numC4’=numC4-1 and numB7A=0;

crossRW5 : pc=taxiTol6LC5 and numRW16L=0 and numB9A’=numBOA+1
and pc’=taxiFr16LB9 and numC5’=numC5-1 and numB9A=0;

crossRW6 : pc=taxiTol6LC6 and numRW16L=0 and numB10A’=numB10A+1
and pc’=taxiFri16LB10 and numC6’=numC6-1 and numB10A=0;

crossRW7 : pc=taxiTol6LC7 and numRW16L=0 and numB10A’=numB10A+1
and pc’=taxiFr16LB10 and numC7’=numC7-1 and numB10A=0;

crossRW8 : pc=taxiTol6LC8 and numRW16L=0 and numB11A’=numB11A+1
and pc’=taxiFr16LB11 and numC8’=numC8-1 and numB11A=0;

park2 : pc=taxiFr16LB2 and pc’=parked and numB2A’=numB2A-1;

park7 : pc=taxiFr16LB7 and pc’=parked and numB7A’=numB7A-1;

park9 : pc=taxiFr16LB9 and pc’=parked and numB9A’=numB9A-1;

park10 : pc=taxiFr16LB10 and pc’=parked and numB10A’=numB10A-1;

parkill : pc=taxiFr16LB11 and pc’=parked and numB11A’=numB11A-1;

Arriving : reqland | exitRW3 |...| crossRW3 |...| park2 |...;
endmodule

Figure A.3: The module Arriving of the Action Language Specification given
in Figure A.1

174

module main()
enumerated pl,p2 {think, try, cs};
integer a,b;
initial: a=0 and b=0 and pl=think and p2=think;
restrict: a>=0 and b>=0;

module process(yl,y2,pc)
integer yl1,y2;
enumerated pc {think, try, cs};
al: pc=think and y2’=yl+1 and pc’=try;
a2: pc=try && pc’=cs && (y1=0 || y2<y1);
a3: pc=cs and y2’=0 and pc’=think;
process : al | a2 | a3;

endmodule

main: process(a,b,pl) | process(b,a,p2);

spec: invariant(!(pl=cs and p2=cs))

spec: invariant(pl=try => eventually(pl=cs))
endmodule

Figure A.4: The specification of Bakery Mutual Exclusion Protocol for two
processes in the Action Language.

175

module main()
enumerated pl,p2 {think, try, cs};
integer t,s;
initial: t=s and pl=think and p2=think;
restrict: t>=0 and s>=0;

module process(pc)
enumerated pc {think, try, cs};
integer a;
al: pc=think and a’=t and t’=t+1 and pc’=try;
a2: pc=try and s>=a and pc’=cs;
a3: pc=cs and s’=s+1 and pc’=think;
process : al | a2 | a3;
endmodule

main: process(pl) | process(p2);

spec: invariant(!(pl=cs and p2=cs))

spec: invariant(pl=try => eventually(pl=cs))
endmodule

Figure A.5: The specification of Ticket Mutual Exclusion Protocol for two
processes in the Action Language.

176

module main()
integer barber, chair, open;
initial: barber=0 and chair=0 and open=0;
restrict: barber>=0 and chair>=0 and open>=0;

module customerP()
enumerated pc {sl1,s2};
initial: pc=si;
al: pc=sl and barber>0 and barber’=barber-1 and chair’=chair+1
and pc’=s2;
a2: pc=s2 and open>0 and open’=open-1 and pc’=sl;
customerP: al | a2;
endmodule

module barberP()
enumerated pc {s1,s2,s3,s4};
initial: pc=s1i;
al: pc=sl and barber’=barber+l and pc’=s2;
a2: pc=s2 and chair>0 and chair’=chair-1 and pc’=s3;
a3: pc=s3 and open’=open+l and pc’=s4;
a4: pc=s4 and open=0 and pc’=sl;
barberP: al | a2 | a3 | a4;
endmodule

main: customerP() | customerP() | barberP() ;
spec: invariant(chair<=1)
spec: invariant(open<=1)

spec: invariant(barber<=1)
endmodule

Figure A.6: The specification of solution to the Sleeping Barber Problem in
the Action Language.

177

module main()
boolean ex; parameterized integer n;
enumerated state {Idle, ServeE, InvE, GrantE, ServeS, GrantS};
integer xNull, xWaitS, xWaitE, xShared, xExclusive;
initial: state=Idle and !ex and xNull>=1 and xShared=0 and
xExclusive=0 and xWaitE=0 and xWaitS=0;
restrict: xNull>=0 and xWaitS>=0 and xWaitE>=0 and xShared>=0 and
xExclusive>=0 and n>=1;
module Request()
reqgS: state=Idle and xNull>=1 and state’=ServeS and
xNull’=xNull-1 and xWaitS’=xWaitS+1;
reqEl: state=Idle and xNull>=1 and state’=ServeE and
xNull’=xNull-1 and xWaitE’=xWaitE+1;
reqE2: state=Idle and xShared>=1 and state’=ServeE and
xShared’=xShared-1 and xWaitE’=xWaitE+1;
Request: reqS | reqEl | reqE2;

endmodule
module Serve()
inv: state=ServeS and ex and xExclusive>=1 and state’=GrantS
and xExclusive’=xExclusive-1 and xNull’=xNull+1l and !ex’;
nonex: state=ServeS and 'ex and state’=GrantS;
invS: state=ServeE and state’=InvE and xNull’=xNull+xShared
and xShared’=0;
invE: state=InvE and ex and xExclusive >=1 and state’=GrantE

and xNull’=xNull+1l and xExclusive’=xExclusive-1 and 'ex’;
nonexE: state=InvE and !ex and state’=GrantE;
Serve : inv | nonex | invS | invE | nonexE;
endmodule
module Grant()
grantS: state=GrantS and xWaitS>=1 and state’= Idle and
xWaitS’=xWaitS-1 and xShared’=xShared+1;
grantE: state=GrantE and xWaitE>=1 and state’=Idle and
xWaitE’=xWaitE-1 and xExclusive’=xExclusive+l and ex’;
Grant : grantS | grantE;
endmodule
main: Request() | Serve() | Grant();
spec: AG(!((xShared>=1 and xExclusive>=1) or xExclusive>=2))
endmodule

Figure A.7: The specification of a Cache Coherence Protocol in the Action Language.

178

module main()
enumerated state {Idle, ServeE, GrantE, ServeS, GrantS};
boolean ex; parameterized integer n;
integer xNull, xWaitS, xWaitE, xShared, xExclusive;
initial: state=Idle and !ex and xNull>=1 and xShared=0 and
xExclusive=0 and xWaitE=0 and xWaitS=0;
restrict: n>=1 and xNull>=0 and xWaitS>=0 and xWaitE>=0 and
xShared>=0 and xExclusive>=0;
module Request()
reqgS: state=Idle and xNull>=1 and state’=ServeS and
xNull’=xNull-1 and xWaitS’=xWaitS+1;
reqEl: state=Idle and xNull>=1 and state’=ServeE and
xNull’=xNull-1 and xWaitE’=xWaitE+1;
reqE2: state=Idle and xShared>=1 and state’=ServeE and
xShared’=xShared-1 and xWaitE’=xWaitE+1;
Request: reqS | reqEl | reqE2;

endmodule
module Serve()
inv: state=ServeS and ex and xExclusive>=1 and state’=GrantS
and xExclusive’=xExclusive-1 and xNull’=xNull+l and 'ex’;
nonex: state=ServeS and 'ex and state’=GrantS;
invS: state=ServeE and xShared>=1 and state’=ServeE and
xNull’=xNull+1 and xShared’=xShared-1;
invE: state=ServeE and xExclusive>=1 and state’=ServeE and

xNull’=xNull+1 and xExclusive’=xExclusive-1 and !ex’;
nonexE: state=ServeE and xShared=0 and xExclusive=0 and
state’=GrantE;
Serve : inv | nonex | invS | invE | nonexE;
endmodule
module Grant()
grantS: state=GrantS and xWaitS>=1 and state’= Idle and
xWaitS’=xWaitS-1 and xShared’=xShared+1;
grantE: state=GrantE and xWaitE>=1 and state’=Idle and
xWaitE’=xWaitE-1 and xExclusive’=xExclusive+1 and ex’;
Grant : grantS | grantE;
endmodule
main: Request() | Serve() | Grant();
spec: AG(!((xShared>=1 and xExclusive>=1) or xExclusive>=2))
endmodule

Figure A.8: The specification of a Cache Coherence Protocol in the Action Language.

179

module main()
integer nr;
boolean busy;
restrict: nr >=0;
initial: nr=0 and !busy;

module reader ()
boolean reading;
initial: !reading;
r_enter: !'reading and !busy and nr’=nr+1 and reading’;
r_exit: reading and !reading’ and nr’=nr-1;
reader: r_enter | r_exit;
endmodule

module writer()
boolean writing;
initial: !writing;
w_enter: !writing and nr=0 and !'busy and writing’ and busy’;
w_exit: writing and !writing’ and !busy’;
writer: w_enter | w_exit;
endmodule

main: reader() | writer();

spec: invariant(busy => nr=0)
endmodule

Figure A.9: The specification of a solution to the Readers-Writers Problem in
the Action Language.

180

module main()
integer count,produced, consumed;
parameterized integer size;
initial: count=0 and size>=1;
restrict: size>=1;

module producer()

initial: produced=0;

producer: count<size and count’=count+l and produced’=produced+l ;
endmodule

module consumer ()
initial: consumed=0;

consumer: count>0 and count’=count-1 and consumed’=consumed+1;
endmodule

main: producer() | consumer();

spec: invariant(produced-consumed=count and count<=size)
endmodule

Figure A.10: The specification of a solution to the Bounded-Buffer Pro-
ducer-Consumer Problem in the Action Language.

181

module main()
integer i, k;
parameterized integer n;
enumerated pc {init, for, entryAl, while, entryA2, entryA3, end};
initial: pc = init;

al: pc=init and pc’=for and k’=1;

a2: pc=for and pc’=entryAl and k<=n-1;
a3: pc=entryAl and pc’=while and i’=k-1;
a4: pc=while and pc’=entryA2 and i>=0;
ab: pc=entryA2 and pc’=while and i’=i-1;
a6: pc=while and pc’=entryA3;

a7: pc=entryA3 and pc’=for and k’=k+1;
a8: pc=for and pc’=end and k>=n;

main: al | a2 | a3 | a4 | ab | a6 | a7 | a8 ;

spec: AG(!((pc=entryAl and k>=n) or (pc=entryAl and k<=-1)
or (pc=entryA3 and i>=n-1) or (pc=entryA3 and i<=-2)
or (pc=entryA2 and i<=-1) or (pc=entryA2 and i<=-2)
or (pc=entryA2 and i>=n-1) or (pc=entryA2 and i>=n-1)))
endmodule

Figure A.11: The specification of a Insertion Sort for Array Bounds Checking
in the Action Language.

182

module main()

enumerated Office {Empty, Occupied};

enumerated Occupants {One, Multiple};

enumerated Light {On, 0ff};

boolean enter, exit, turn_on, turn_off; integer count;

initial : count=0 and Office=Empty;

restrict: count >= 0
and (enter implies !(exit or turn_on or turn_off))
and (exit implies !(enter or turn_on or turn_off))
and (turn_on implies !(enter or exit or turn_off))
and (turn_off implies !(enter or exit or turn_on));

tl : Office=Empty and enter and Office’=0Occupied and
Occupants’=0One and Light’=0n and count’=count+1;
t2 : Office=0Occupied and Occupants=0One and exit and Office’=Empty
and count’=count-1;
t3 : Office=0Occupied and Occupants=0One and enter and
count’=count+1l and Occupants’=Multiple;
t4 : Office=0Occupied and Occupants=Multiple and count=2 and exit
and Occupants’=0ne and count’=count-1;
t5 : Office=0ccupied and Occupants=Multiple and count>2 and exit
and count’=count-1;
t6 : Office=0ccupied and Occupants=Multiple and enter
and count’=count+1;
t7 : Office=0Occupied and Light=0n and turn_off
and Occupants=0ne and Light’=0ff;
t8 : Office=0Occupied and Light=0ff and turn_on and Light’=0n;
t9 : Office=0Occupied and Light=0ff and enter and Light’=0n;
environment: (enter implies !enter’) and (exit implies !exit’)
and (turn_on implies !turn_on’) and
(turn_off implies !turn_off’);

main : (t1 | t2 | ((¢3 | t4 | t5 | t6) & (7 | t8 | t9))) &
environment;

spec: AG(count>1 iff Office=0ccupied and Occupants=Multiple)
endmodule

Figure A.12: The specification of an Office Light Control System in the Action
Language.

183

module main()
enumerated Pressure {TooLow, Permitted, TooHigh};
boolean Overridden, Block, Reset, Inject;
parameterized integer low;
parameterized integer permit;
integer WaterPres;

initial: !Block and !'Reset and !Inject and !Overridden and
Pressure=Permitted and low<=WaterPres and
WaterPres<permit;

restrict: low<permit;

pl : Pressure=ToolLow and Pressure’=Permitted and WaterPres’>=low
and WaterPres’<permit and !(WaterPres>=low and
WaterPres<permit) ;

P2 : Pressure=Permitted and Pressure’=TooHigh and
WaterPres’>=permit and !(WaterPres>=permit);

p3 : Pressure=Permitted and Pressure’=ToolLow and WaterPres’<low
and ! (WaterPres<low);

p24 : Pressure=TooHigh and Pressure’=Permitted and WaterPres’>=low
and WaterPres’<permit and !(WaterPres>=low and
WaterPres<permit) ;

ol : Overridden’ and Block’ and !Block and !'Reset and
(Pressure=ToolLow or Pressure=Permitted);

02 : !0Overridden’ and (!(Pressure’=Pressure) or Reset’ and
'Reset and (Pressure=ToolLow or Pressure=Permitted));
s : (Inject and Pressure=TooLow and !Overridden or !Inject and

(Pressure=TooHigh or Pressure=Permitted or Pressure=TooLow
and Overridden)) and (Inject’ and Pressure’=TooLow and
!0Overridden’ or !Inject’ and (Pressure’=TooHigh or
Pressure’=Permitted or Pressure’=ToolLow and Overridden’));

main : (pl | p2 | p3 | p4) & (o1l | 02) & s;

spec: invariant(Inject implies Pressure=TooLow)
endmodule

Figure A.13: The specification of a Safety Injection System in the Action Language.

184

module main()
heap head, tail, add {next}; boolean lock; integer count;
initial: count=0 and lock and head=null and tail=null;
module put()
enumerated pc {pl, p2, p3, p4, p5};
initial: pc=pil;
apl: pc=pl and lock and !lock’ and add’=new and pc’=p2;
ap2: pc=p2 and add’->next=null and pc’=p3;
ap3: pc=p3 and tail=null and tail’=add and pc’=p4;
ap4: pc=p4 and head’=add and count’=1 and lock’ and pc’=pi;
ap5: pc=p3 and tail!=null and tail’->next=add and pc’=p5;
ap6: pc=pb and tail’=add and count’=count+l and lock’ and

pc’=pl;
put: apl | ap2 | ap3 | ap4 | ap5 | ap6 ;
endmodule

module take()
enumerated pc {pl, p2};
initial: pc=pil;
atl: pc=pl and lock and head!=null and !lock’ and
head’=head->next and pc’=p2;
at2: pc=p2 and head=null and tail’=null and lock’ and
count’=count-1 and pc’=pl;
at3: pc=p2 and head!=null and lock’ and count’=count-1
and pc’=pil;
take: atl | at2 | at3 ;
endmodule
main: put() | take();
spec: AG((count=0 and lock) implies
(head=null and tail=null))
spec: AG((head != null and lock) implies count>0)
spec: AG((head =tail and head != null and lock) implies

count=1)
spec: AG((head != tail and head != null and lock) implies
count>=2)

endmodule

Figure A.14: The specification of a queue using a singly linked list in the Action
Language.

185

module main()
heap head, tail, add {next,prev}; boolean lock; integer count;
initial: count=0 and lock and head=null and tail=null;
module put()
enumerated pc {pl, p2, p3, p4, p5, p6, pP7};
initial: pc=pil;
apl: pc=pl and lock and !lock’ and add’=new and pc’=p2;
ap2: pc=p2 and add’->next=null and pc’=p3;
ap3: pc=p3 and add’->prev=null and pc’=p4;
ap4: pc=p4 and tail=null and tail’=add and pc’=pb5;
apb5: pc=pb and head’=add and count’=1 and lock’ and pc’=pi;
ap6: pc=p4 and tail!=null and tail’->next=add and pc’=p6;
ap7: pc=p6 and add’->prev=tail and pc’=p7;
ap8: pc=p7 and tail’=add and count’=count+l and lock’ and

pc’=pl;
put: apl | ap2 | ap3 | ap4 | ap5 | ap6 | ap7 | ap8;
endmodule

module take()
enumerated pc {pl, p2, p3};
initial: pc=pil;
atl: pc=pl and lock and head!=null and !lock’ and
head’=head->next and pc’=p2;
at2: pc=p2 and head=null and count’=count-1 and pc’=p3;
at3: pc=p2 and head!=null and head’->prev=null and
count’=count-1 and pc’=p3;
at4: pc=p3 and head=null and tail’=null and lock’ and pc’=pil;
atb: pc=p3 and head!=null and lock’=true and pc’=pl;
take: atl | at2 | at3 | at4 | ath;
endmodule
main: put() | take();

spec: AG((count=0 and lock) => (head=null and tail=null))

spec: AG(head != null => count>0)

spec: AG((head =tail and head != null and lock) => count=1)

spec: AG((head != tail and head != null and lock) => count>=2)
endmodule

Figure A.15: The specification of a queue using a doubly linked list in the
Action Language.

186

module main()
heap head, add, templ {next,last}; boolean lock; integer count;
initial: count=0 and lock and head=null and add=null;
module put()
enumerated pc {pl, p2, p3, p4, p5, p6, pP7};
initial: pc=pil;
apl: pc=pl and lock and !'lock’ and add’=new and pc’=p2;
ap2: pc=p2 and add’->next=null and pc’=p3;
ap3: pc=p3 and add’->last=add and pc’=p4;
ap4: pc=p4 and head=null and head’=add and count’=count+l and
lock’ and pc’=pi;
ap5: pc=p4 and head!=null and add’->next=head
and pc’=pb5;
ap6: pc=pb and templ’=head->last and pc’=p6;
ap7: pc=p6 and add’->last=templ and pc’=p7;
ap8: pc=p7 and head’=add and count’=count+l and lock’ and

pc’=pl;
put: apl | ap2 | ap3 | ap4 | ap5 | ap6 | ap7 | ap8;
endmodule

module take()
enumerated pc {pl, p2, p3, pél};
initial: pc=pi;
atl: pc=pl and lock and !'lock’ and head!=null and
add’=head->next and pc’=p2;
at2: pc=p2 and head’->next=null and pc’=p3;
at3: pc=p3 and head’->last=null and pc’=p4;
at4: pc=p4 and head’=add and count’=count-1 and lock’
and pc’=pil;
take : atl | at2 | at3 | at4;
endmodule
main: put() | take();
spec: AG((head->next=null and head->last=head and lock) implies
count=1)
spec: AG((head->next=head->last and head->next!=null and lock)
implies count=2)
spec: AG((head->next!=null and lock) implies head->last!=null)
endmodule

Figure A.16: The specification of a queue using a linked list with connection
to the last element in the Action Language.

187

module main()
heap head, add, templ {next,last,datal};
boolean lock; integer count;
initial: count=0 and lock and head=null and add=null;
module put()
enumerated pc {pl, p2, p3, p4, p5, p6, p7, p8}t; initial: pc=pl;
apl: pc=pl and lock and !'lock’ and add’=new and pc’=p2;
ap2: pc=p2 and add’->next=null and pc’=p3;
ap3: pc=p3 and add’->last=add and pc’=p4;
ap4: pc=p4 and add’->data=new and pc’=pb;
ap5: pc=pb5 and head=null and head’=add and count’=count+2 and
lock’ and pc’=pi;
ap6: pc=pb and head!=null and add’->next=head
and pc’=p6;
ap7: pc=p6 and templ’=head->last and pc’=p7;
ap8: pc=p7 and add’->last=templ and pc’=p8;
ap9: pc=p8 and head’=add and count’=count+2 and lock’ and
pc’=pl;
put: apl | ap2 | ap3 | ap4 | ap5 | ap6 | ap7 | ap8 | ap9;
endmodule
module take()
enumerated pc {pl, p2, p3, p4, p5}; initial: pc=pil;
atl: pc=pl and lock and !'lock’ and head!=null and
add’=head->next and pc’=p2;
at2: pc=p2 and head’->next=null and pc’=p3;
at3: pc=p3 and head’->last=null and pc’=p4;
at4: pc=p4 and head’->data=null and pc’=pb;
atb: pc=pb and head’=add and count’=count-2 and lock’ and
pc’=pl;
take : atl | at2 | at3 | at4 | ath ;
endmodule
main: put() | take();
spec: AG((head->next=null and head->last=head and lock)
implies count=2)
spec: AG((head->next=head->last and head->next!=null and lock)
implies count=4)
endmodule

Figure A.17: The specification of a queue using a linked list with data and
connection to the last element in the Action Language.

188

Bibliography

[1] CUDD: CU decision diagram package.
http://vlsi.colorado.edu/"fabio/CUDD/

[2] The Omega project. http://www.cs.umd.edu/projects/omega/

[3] R. Alur, T. A. Henzinger, and P. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22(3):181—-
201, March 1996.

[4] G. R. Andrews. Concurrent programming, Principles and Practice. Ben-
jamin/Cummings Publishing Co., 1991.

[6] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of ¢ programs. In PLDI 2001, 2001.

[6] B. Bartzis and T. Bultan. Efficient image computation in infinite state model
checking. In Proc. of the 15th International Conference on the Computer
Aided Verification (CAV 2003), 2003.

[7] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueb,
J. Rushby, V. Rusu, H. Saidi, N. Shankar, E. Singerman, and A. Tiwari.
An overview of SAL. In Proceedings of the Fifth Langley Formal Methods
Workshop, June 2000.

[8] R.Bharadwaj and S. Sims. Salsa: Combining constraint solvers with bdds for
automatic invariant checking. In S. Graf and M. Schwartzbach, editors, Pro-
ceedings of the 6th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science,
pages 378-394. Springer, April 2000.

189

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

G. Brat, K. Havelund, S. Park, and W. Visser. Java path finder: Second
generation of a java model checker. In Proc. of Workshop on Advances in
Verification, 2000.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677-691, 1986.

R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.

T. Bultan. Action Language: A specification language for model checking
reactive systems. In Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), pages 335-344, June 2000.

T. Bultan, R. Gerber., and C. League. Verifying systems with integer con-
straints and boolean predicates: A composite approach. In Proceedings of
the 1998 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 113-123, March 1998.

T. Bultan, R. Gerber., and C. League. Composite model checking: Veri-
fication with type-specific symbolic representations. ACM Transactions of
Software Engineering and Methodology, 9(1):3-50, January 2000.

T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, approximations, and
experimental results. ACM Transactions on Programming Languages and
Systems, 21(4):747-789, July 1999.

T. Bultan and T. Yavuz-Kahveci. Action Language Verifier. In Proceedings of
the 16th IEEE International Conference on Automated Software Engineering,
2001.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang.
Symbolic model checking: 10?° states and beyond. In Proceedings of the

oth Annual IEEE Symposium on Logic in Computer Science, pages 428439,
January 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 10?° states and beyond. Information and Computation,
98(2):142-170, June 1992.

190

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

T. Cargill. Specific notification for Java thread synchronization. In Interna-
tional Conference on Pattern Languages of Programming, 1996.

James C.Corbett, Matthew B.Dwyer, John Hatcliff, Shawn Laubach, Corina
S.Pasarenau, Robby, and Hongjun Zheng. Bandera: Extracting finite-state
models from Java source code. In Proc. 22nd Int. Conf. on Soft. Eng. (ICSE),
2000.

W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and
J. D. Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498-520, July 1998.

W. Chan, R. J. Anderson, P. Beame, and D. Notkin. Combining constraint
solving and symbolic model checking for a class of systems with non-linear
constraints. In O. Grumberg, editor, Proceedings of the 9th International
Conference on Computer Aided Verification, volume 1254 of Lecture Notes
in Computer Science, pages 316—-327. Springer, June 1997.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. In Proc. International Conference on Computer-
Aided Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Den-
mark, July 2002. Springer.

E. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT PRess, 1999.

James C. Corbett. Using shape analysis to reduce finite-state models of
concurrent Java programs. ACM Transactions on Software Engineering and
Methodology, 9(1):51-93, 2000.

P. J. Courtois and D. L. Parnas. Documentation for safety critical software.
In Proceedings of the 15th International Conference on Software Engineering,
pages 315-323, May 1993.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the 4th Annual ACM Symposium on Principles of Program-
ming Languages, pages 238-252, 1977.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th Annual ACM Symposium
on Principles of Programming, pages 84-97, 1978.

191

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

O. J. Dahl, E. W. Dijkstra, and C.A.R. Hoare. Structured Programming.
Academic Press, New York, 1972.

G. Delzanno. Automatic verification of parameterized cache coherence proto-
cols. In Proceedings of the 12th International Conference on Computer Aided
Verification, volume 1855 of Lecture Notes in Computer Science, pages 53-68,
2000.

G. Delzanno. Constraint-based verification of parameterized cache-coherence
protocols. Formal Methods in System Design, 23:257-301, 2003.

G. Delzanno and T. Bultan. Constraint-based verification of client-server
protocols. In Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, 2001.

G. Delzanno and A. Podelski. Constraint-based deductive model checking.
Journal of Software Tools for Technology Transfer, 3(3):250-270, 2001.

C. Demartini, R. Tosif, and R. Sisto. A deadlock detection tool for concurrent
Java programs. Software-Practice and Experience, 29(7):577-603, 1999.

X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno. Invariant-based specifi-
cation, synthesis, and verification of synchronization in concurrent programs.

In Proceedings of the 24th International Conference on Software Engineering
(ICSE 2002), 2002.

A. Deutsch. Interprocedureal may-alis analysis for pointers: Beyond k-
limiting. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 230-241, 1994.

D. L. Dill; A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a
hardware deign aid. In Proc. of IEEE International Conference on Computer
Design: VLSI in computers and processors, pages 522-525, 1992.

N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In Jens
Palsberg, editor, 7th International Static Analysis Symposium, Lecture Notes
in Computer Science. Springer, 200.

Matthew B. Dwyer, John Hatcliff, and Hongjun Zheng. Slicing software for
model construction. In ACM SIGPLAN Partial Evaluation and Program
Manipulation, January 1999.

192

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

P. Fradet and D. L. Metayer. Shape types. In ACM SIGPLAN Conference
on Principles of Programming Languages (POPL’97), 1997.

X. Fu, T. Bultan, and J. Su. Formal verification of e-services and workflows.
In Proc. of the Workshop on Web Services, e-Bussiness, and the Seman-

tic Web: Foundations, Models, Architectures, Engineering and Applications
(WES 2002), 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

D. Giannakopoulou, C. Pasareanu, and H. Barringer. Assumption generation
for software component verification. In Proc. of the 17th IEEFE International
Conference on Automated Software Engineering (ASE 2002), 2002.

N. Halbwachs. Delay analysis in synchronous programs. In C. Courcou-
betis, editor, Proceedings of computer aided verification, volume 697 of Lec-
ture Notes in Computer Science, pages 333-346. Springer-Verlag, 1993.

N. Halbwachs, P. Raymond, and Y. Proy. Verification of linear hybrid systems
by means of convex approximations. In B. LeCharlier, editor, Proceedings of
International Symposium on Static Analysis, volume 864 of Lecture Notes in
Computer Science. Springer-Verlag, September 1994.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

Klaus Havelund and Thomas Pressburger. Model checking Java programs us-

ing Java PathFinder. International Journal on Software Tools for Technology
Transfer (STTT), 2000.

T. A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: a model checker for
hybrid systems. Software Tools for Technology Transfer, 1:110-122, 1997.

C.A.R. Hoare. Monitors: An operating system structuring concept. Commu-
nications of the ACM, 17(10):549-557, 1974.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-295, May 1997.

C. N. Ip and D. L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9(1/2), 1996.

193

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

C. N.Ip and D. L. Dill. Verifying systems with replicated components in mur-
phi. In Proc. of International Conference on Computer Aided Verification,
1996.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wo nnacott.
The Omega library interface guide. Technical Report CS-TR-3445, Depart-
ment of Computer Science, University of Maryland, College Park, March
1995.

L. Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872-923, May 1994.

Doug Lea. Concurrent Programming in Java, Design Principles and Java.
Sun Microsystems, 1999.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to
work for verification: A case study. In International Symposium on Software
Testing And Analysis, 2000.

K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers,
Massachusetts, 1993.

Masaaki Mizuno. A structured approach for developing concurrent programs
in Java. Information Processing Letters, 1999.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in lan-
guages with destructive updating. Transactions on Programming Languages
and Systems, 20(1):1-50, 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In 26th ACM Symposium on Principles of Programming Languages,
1999.

D. Srivastava. Subsumption and indexing in constraint query languages with
linear arithmetic constraints. Annals of Mathematics and Artificial Intelli-
gence, 8:315-343, 1993.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

Eran Yahav. Verifying safety properties of concurrent Java programs using
3-valued logic. In Proc. of POPL’01, January 2001.

194

[65]

[66]

[67]

[68]

[69]

[70]

T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked
lists with counters. In 9th International Static Analysis Symposium, 2002.

T. Yavuz-Kahveci and T. Bultan. Heuristics for efficient manipulation of
composite constraints. In Alessandro Armando, editor, Proceedings of the 4th
International Workshop on Frontiers of Combining Systems (FroCos 2002),
volume LNAT 2309, pages 57-71. Springer, 2002.

T. Yavuz-Kahveci and T. Bultan. Specification, verification, and synthesis
of concurrency control components. In Proc. of International Symposium on
Software Testing And Analysis, 2002.

T. Yavuz-Kahveci and T. Bultan. A symbolic manipulator for automated
verification of reactive systems with heterogeneous data types. International
Journal on Software Tools for Technology Transfer (STTT), to appear 2003.

T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. A library for composite sym-
bolic representation. In Proceedings of the Seventh International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2001), 2001.

C. Zhong. Modeling of Airport Operations Using An Object-Oriented Ap-
proach. PhD thesis, Virginia Polytechnic Institute and State University, 1997.

195

