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Abstract
Automatic Verification of String Manipulating Programs

Fang Yu

In this dissertation, we investigate tls&ring verification problem:Given a pro-
gram that manipulates strings, we want to verify assertatimit string variables. We
formalize the string verification problem as reachabiltalysis ofstring systemand
demonstrate that the string analysis problem is undeadabfieneral. We present
sound automata-based symbolic string analysis technfquasitomatic verification of
string manipulating programs. String analysis is a statalysis technique that deter-
mines the values that a string expression can take durirgygmoexecution at a given
program point. This information can be used to detect sgcuninerabilities and pro-
gram errors, and to verify that program inputs are sanitmegerly.

Most important Web application vulnerabilities, such ad_ SQ)ection, Cross Site
Scripting and Malicious File Execution, are due to inadegumanipulation of string
variables. We use our automata-based string analysisitp@®to detect and pre-
vent such vulnerabilities in web applications. Our apphoagnsists of three phases:
Given an attack pattern, we first conduct a vulnerabilitylgsia to identify if strings
that match the attack pattern can reach security-sengitiions. Next, we com-

pute the vulnerability signature which characterizesradlit strings that can exploit the

Xiii



discovered vulnerability. Given the vulnerability siguia, we then construct sanitiza-
tion statements that 1) check if a given input matches theerability signature and
2) modify the input in a minimal way so that the modified inpoed not match the
vulnerability signature. Our approach is capable of gdmegaelational vulnerability
signatures (and corresponding sanitization statements)ulinerabilities that are due
to more than one input.

We extend our automata-based approach to analyze systémisoth string and in-
teger variables. We present a composite symbolic verifinagchnique that combines
string and size analyses with the goal of improving the ieniof both. Our compos-
ite analysis automatically discovers the relationshipsmgrthe integer variables and
the lengths of the string variables. Finally, we presentlational string verification
technique based on multi-track automata and abstractiom.a@proach is capable of
verifying properties that depend on relations among stvargables.

We have developed a tool callestrancer that implements our automata-based
symbolic string analysis approactrrancer can be used to find and eliminate string-

related security vulnerabilities in PHP applications.

Xiv
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Chapter 1

Introduction

Web applications have become a crucial part of commercertaimiment and so-
cial interaction. They are rapidly replacing desktop agilons. And, in the near
future, they are likely to play critical roles in nationalrastructures such as health-
care, national security, and the power grid. There is a latgmbling-block to this
ever increasing reliance on Web applications: Web appdicatare notorious for secu-
rity vulnerabilities that can be exploited by malicious tsseThe global accessibility
of Web applications makes this an extremely serious problarfact, in the Common
Vulnerabilities and Exposures (CVE) list [19] (which doceints computer security
vulnerabilities and exposures) Web application vulnditeds have occupied the first

three positions in recent years.
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Commom Vulnerability and Exposure [CVE, 2007]

40
B Cross.Site.Scripting
@ SQL.Injection
O File.Inclusion
30
20
. i i i
o I
01 02 03 04 05 06

year

%

Figure 1.1: The Percentages of String-related Web Application Vulbiéitees [19]
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Our motivation in this work is to eliminate string manipudat errors in Web ap-
plications. String variables play an essential role in Wepliaations. They are used
for getting user inputs, querying databases, and constgusponses that are sent to
users. In fact, the most important Web application vulnéiteds are due to inadequate
manipulation of string variables. As shown in Figure 1.Je fercentage of string-
related vulnerabilities over all reported vulnerabibtieas increased from 3% in 2001
to 45% in 2006. According to the Open Web Application Segupitoject (OWASP)'s
top ten list that identifies the most serious Web applicafanerabilities [41], the top
three vulnerabilities reported in 2007 were: 1) Cross Saep8ng (XSS), 2) Injec-
tion Flaws (such as SQL injection) and 3) Malicious File BExgmn (MFE). After three
years, the top two vulnerabilities are still Injection FEand XSS in OWASP’s 2010
top ten list.

A XSS vulnerability results from the application insertipgrt of the user’s input
in the next HTML page that it renders. Once the attacker ca@s a victim to click
on a URL that contains malicious HTML/JavaScript code, theris browser will then
display HTML and execute JavaScript that can result in stgadf browser cookies
and other sensitive data. A SQL Injection vulnerabilityules from the application’s
use of user input in constructing database statements. ffdeker can invoke the
application with a malicious input that is part of a SQL conmthaéhat the application

executes. This permits the attacker to damage or get un@eb@ccess to data stored
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in a database. MFE vulnerabilities occur when developeestly use or concatenate
potentially hostile input with file or stream functions, enproperly trust input files.
All these vulnerabilities involve string manipulation spons and they occur due to
inadequate sanitization and use of input strings provigeasiers.

Clearly, there is an urgent need for an automatic and soymagph to establishing
correctness of string manipulation operations in Web appbns. In this dissertation
we present automata-based symbolic string analysis tggbathat can be used to iden-
tify vulnerabilities related to string manipulation, geate characterization of user in-
puts that might exploit a discovered vulnerability, and gyate sanitization statements
to patch a vulnerability.

This dissertation consists of six parts: (1) String Syste(@8% Automata-based
String Analysis, (3) Symbolic Vulnerability Analysis, (Sanitization Synthesis, (5)
Composite String Analysis, and (6) Relational String Asay In the first part of the
dissertation we formally define the string systems and ptedecidability and unde-
cidability results about the verification of several claseéstring systems. Next, we
discuss how to use automata to represent values of strimgples and how to model
string functions on automata. Based on these automataraotishs, we present sym-
bolic forward and backward reachability analyses alondnaitnovel summarization

technique for interprocedural analysis.
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Vulnerabilities related to string manipulation can be elcterized as attack patterns,
i.e., regular expressions that specify vulnerable valoesénsitive operations (called
sinks). Given an application and an attack pattern, we conawsymbolic forward
reachability analysis to identify if there are any inputued that a user can provide
to the application that could lead to a vulnerable value tpd&sed to a sensitive op-
eration. Once a vulnerability is identified, the next impottquestion is to identify
what set of input values can exploit the given vulnerabilfyvulnerability signature
is a characterization of all such input values. We use a syimbackward reachability
analysis to generate the vulnerability signatures for tkeavered vulnerabilities.

A vulnerability signature can be used to identify how to saaithe user input to
eliminate the discovered vulnerability, or it can be usedlyaamically monitor the
user input and reject or modify the values that can lead toxatoeg. We use the
vulnerability signatures to automatically generate $azatiion statements for patching
vulnerable Web applications.

We extend our approach to the verification of systems with Btring and integer
variables by combining size analysis with our string analyd/e use a forward fixpoint
computation based on a composite symbolic representatimmbpute the possible val-
ues of string and integer variables and to discover theioalstiips among the lengths

of the string variables and integer variables. This compasialysis improves the pre-
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cision of both string and size analyses and can be applieth&r gecurity problems
such as buffer overflows.

Finally, we present a relational string analysis technigased on multi-track au-
tomata. Our approach is capable of verifying propertiesdbpend on relations among
string variables. We further propose alphabet and relatimtractions to adjust the pre-
cision and performance of our symbolic string analysis héglnes.

In the following sections, we present the motivation fofelént parts of our work

and illustrate our techniques on several examples.

1.1 Automata-based String Analysis

The string analysis technique we present utilizes forwadiackward reachability
computations that use deterministic finite automaton (D&&\a symbolic representa-
tion. We use the symbolic DFA representation provided byM@NA DFA library [5],
in which transition relations of the DFAs are representellalii-terminal Binary De-
cision Diagrams (MBDDs). We iteratively compute an overragpmation of the least
fixpoint that corresponds to the reachable values of thegséxxpressions. In each itera-
tion, given the current state DFAs for all the variables, wmpute the next state DFAs.
We present algorithms for next state computation for stojpgrations such as concate-

nation and language-based replacement. Particularly,resept an algorithm for the
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language-based replacement operation that computes thddDIREPLACE(M;, M,
M3) whereM;, M,, and M3 are DFAs that accept the set of original strings, the set of
match strings, and the set of replacement strings, respécti

Our language-based replacement operation is essentiaddeling various built-
in functions that can be used to perform input validatiorhim PHP language, a widely
used language to develop Web applications. These fungbi@mvede a general mecha-
nism to scan a string for matches to a given pattern (expiessa regular expression)
and to replace the matched text with a replacement stringanfexample of modeling

these functions, consider the following statement:

$username = ereg_replace("<script *>" "0 $ GET["'username']);

The expressionGET['username”]  returns the string entered by the user, the
ereg _replace call replaces all matches of the search pattésactipt *>" ) with
the empty string"( ), and the result is assigned to the varialdername . This state-
ment can be modeled by our language-based replacementiopevenere)/; accepts
arbitrary strings)\/; accepts the set of strings that start watleript ~ followed by zero
or more spaces and terminated by the charagtandM/; accepts the empty string.

We believe that we are the first to extend the MONA automat&age to ana-
lyze these complex string operations on real programs. ditiad to computing the
language-based replacement operation, another diffizultgplementing these string

operations without using the standard constructions baseithe e-transitions, since
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1 foreach ($_POST as $name => $value) {

2 if ($name != ’process’ && $name != 'password?’) {
3 $count++;

4: $result .= "$name' = '$value™;

5: if ($count <= $numofparts)

6: $result .= "

7

8

9

1

}

}
$query = "UPDATE ‘pblguestbook config® SET S$result";

0: mysql_query($query);
Figure 1.2: A Vulnerability Example

the MBDD-based automata representation used by MONA ddeslow e-transitions.
We model non-determinism by extending the alphabet withagxits and then project
them away using the on-the-fly subset construction algorfphovided by MONA. We
apply the projection one bit at a time, and after projectiaghebit away, we use the
MBDD-based automata minimization to reduce the size oféiselting automaton.

Consider the PHP program fragment in Figure 1.2 which detnates a vulnerabil-
ity from a guestbook application call@BLguestbook-1.32 . This program fragment
traverses the input strings entered by the user (which aredsin the POSTarray) in a
loop (lines 1-8) and constructs a query string by accurmugeatiem (by concatenating
them to theresult  variable). This query is then sent to the back-end databiase (
10).

This program has an SQL injection vulnerability. Inputrsgjs are concatenated

in the loop at lines 1-8 to form the string used to query theliaption’s database.
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foreach ($_POST as $name => $value) {
1 $name = preg_replace("/["'a-zA-Z0-9]/", ™
2: $value = preg_replace("/'/", ™, $value);
if ($name != ’process’ && $name != ’password?’) {
$count++;
$result .= "$name' = ’'$value™;
if ($count <= $numofparts)

$result .= "

, $name);

}

}
$query = "UPDATE ‘pblguestbook_config® SET $result";

0:  mysql_query($query);

BOooNoORONRE PR

Figure 1.3: A Sanitization Example

Since no sanitization is performed, an attacker can modigé/ duery, for example,
by injecting a parameter with value DROP DATABASE # In this case, the SQL
string sent to the database will B®DATE ‘pblguestbook _config’ SET ‘name*
= ”; DROP DATABASE # . Note that the;’ character separates distinct queries
and the #’ character starts a comment. Therefore, if the databaseslihe execution
of multiple queries, it will execute the legitimate queryended by the developer and
the injected query that drops the entire database. The nalditiéy can be fixed by
adding a sanitization step on the input parameters beferqubry string is formed.

A properly sanitized version of this program fragment isvghan Figure 1.3. The
sanitization is achieved in lines 1.1 and 1.2 by deletingptélly problematic charac-
ters in the variable$name and$value , hence preventing the presented SQL com-

mand injection attack.
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We analyzed both the vulnerable and the sanitized versibttssoprogram frag-
ment using our string analysis tool. Our string analysid tmmstructed a DFA that
gives an over-approximation of the string values that th@atsée query can take at
line 10. We wrote a regular expression characterizinggsrthat can be used for SQL
command injection and converted it to a DFA. (Note that thgpes of attack DFAs
can be constructed once and stored in a library. They do nat teebe specified sep-
arately for each program that is being analyzed). Then, weldd if the intersection
of the language recognized by the DFA for theery variable at line 10, and the DFA
characterizing the SQL command injection attack is emptiyeiive applied our anal-
ysis to the vulnerable program fragment shown above, oungsanalysis tool reported
that the intersection is not empty, i.e., the program fragimaght be vulnerable. How-
ever, when we applied our analysis to the sanitized versiontool reported that the
intersection is empty, showing that the variables are ptpganitized.

It is worthwhile to note some of the challenges in analyzing éxample given
above. First, in order to prove that the variables are plgEamitized, we need to
statically interpret the replacement functipreg _replace  with reasonable preci-
sion. Second, our fixpoint computation has to converge elwveugh the above pro-
gram fragment contains a loop. We are able to handle bothesfetlthallenges by
1) proposing and implementing a novel language-basedaemlant operation and 2)

using an automata widening operator. Note that, for thetigadi program fragment,

10
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the fixpoint computation without widening will not convergdoreover, a naive over-
approximation, that sets the values of the variables traupdated in a loop to all
possible strings, will not be a tight enough approximatiowerify the sanitized pro-
gram fragment. To tackle this challenge, we use the automgtaning technique

proposed by Bartzis and Bultan [4] to compute an over-appration of the least fix-

point. Briefly, we merge those states belonging to the samwagnce class identified
by certain conditions. This widening operator was originaroposed for automata
representation of arithmetic constraints but the intaitbehind it is applicable to any
symbolic fixpoint computation that uses automata.

We present automata construction and manipulation opasafor the string anal-
ysis described above in Chapter 3. The main contributionshis part of our work
are: (1) pre- and post- image computations of common striagipulation functions,
including a novel language-based replacement automatsraction, and (2) use of
an automata based widening operation that acceleratesif>qmmputations for string
analysis. In the following section we discuss our vulndigbanalysis technique and
demonstrate how we perform symbolic reachability analysiag basic automata op-

erations mentioned above to formally verify Web applicasio

11
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1.2 Symbolic Vulnerability Analysis

We use automata-based string analysis techniques that nigomed above for vul-
nerability analysis and vulnerability signature genematiOur analysis takes an attack
pattern specified as a regular expression and a PHP programpuwsand 1) identi-
fies if there is any vulnerability based on the given attadkepa, 2) generates a DFA
characterizing the set of all user inputs that may expl@thinerability.

As we have stated earlier, our string analysis frameworls asBFA to represent
values that string expressions can take. At each progrant,peach string variable
is associated with a DFA. To determine if a program has angerabilities, we use
a forward reachability analysis that computes an overappration of all possible
values that string variables can take at each program plitgrsecting the results of
the forward analysis with the attack pattern gives us themg@l attack strings if the
program is vulnerable.

The backward analysis computes an over-approximation pakible inputs that
can generate those attack strings. The result is a DFA fdr eser input that corre-
sponds to the vulnerability signature. We will discuss howse vulnerability signa-
tures to generate effective sanitization routines in the section. Here we focus on
how to conduct forward and backward symbolic reachabiliiglgses with summariza-

tion techniques.

12



Chapter 1. Introduction

<?php
Swww = $_GET["www"];
$l_otherinfo = "URL";
$www = preg_replace( "/['A-Za-z0-9 .-@:/N/", ", $www)
echo $l_otherinfo . ": " . $www ;
7>

oukhwbr

Figure 1.4: A Small Example

Consider another simple PHP script shown in Figure 1.4. 3¢t is a simplified
version of code from a real Web application that contains laarability. The script
starts with assigning the user input provided in ti&Tarray to thevwwvariable in
line 2. Then, in line 3, it assigns a string constant toltlherinfo variable. Next,
in line 4, the user input is sanitized using {iveg_replace command. This replace
command gets three arguments: the match pattern, the egpédtern and the target.
The goal is to find all the substrings of the target that makehrhatch pattern and
replace them with the replace pattern. In the replace cordrshown in line 4, the
match pattern is the regular expressignza-z0-9 .-@://] , the replace pattern is
the empty string (which corresponds to deleting all the Buigs that match the match
pattern), and the target is the variatew After the sanitization step, the PHP program
outputs the concatenation of the variabletherinfo , the string constarit " , and
the variablevww

Theecho statement in line 5 is a sink statement since it can contairoa<CSite

Scripting (XSS) vulnerability. For example, a maliciougusay provide an input that

13
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contains the string constandcript and execute a command leading to a XSS attack.
The goal of the replace statement in line 4 is to remove angiapeharacters from the
input to prevent such attacks.

Using string replace operations to sanitize user input mmon practice in Web
applications. However, this type of sanitization is erroone due to the complex syn-
tax and semantics of regular expressions. In fact, the cepdperation in line 4 in
Figure 1.4 contains an error that leads to a XSS vulnergbilite error is in the match
pattern of the replace operatiofiA-Za-z0-9 .-@://] . The goal of the program-
mer was to eliminate all the characters that should not appeaURL. The program-
mer implements this by deleting all the characters that damaich the characters in
the regular expressidA-Za-z0-9 .-@://] , 1.e., eliminating everything other than
alpha-numeric characters, and the ASCIl symbols, @: , and/ . However, the regu-
lar expression is not correct. First, there is a harmless.efihe subexpressidh can
be replaced witht since repeating the symbbltwice is unnecessary. A more serious
error is the following: The expressior@ is the union of all the ASCII symbols that
are between the symboland the symboiin the ASCII ordering. The programmer
intended to specify the union of the symbols , and@but forgot that symbol has a
special meaning in regular expressions when it is encloseédsymbols] and] . The
correct expression should have bee@ . This error leads to a vulnerability because

the symbok (which can be used to start a script to launch a XSS attadk)datween

14
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the symbol. and the symbo@in the ASCII ordering. So, the sanitization operation

fails to delete th& symbol from the input, leading to a XSS vulnerability.

["A-Za-20-9 -@://],
4

Forward = [*A-Za-z0-9 .-@/]

Forward = URL

Backward = Do not care Backward = Do not care

|_otherinfo, 3
B cllieniin Forward = :

Forward = URL Backward = Do not care

Backward = Do not care

str_concat,

Forward = URL:

Backward = Do not care

str_concat,
5

Y

Forward = X*

Backward = [A<]*<X*

| $_GET[www], 2 |

k.

| Swww, 2 |—

Forward = X*

Forward = ¢
Backward = Do not care Backward = [*<]*<Z*

k.

pregirepl%
5 f/

Forward = [A-Za-z0-9 .-@/]*

Backward =
[A-Za-20-9 .-=-@/]*<[A-Za-20-9 .-@/]*

| Swww, 4
Forward = [A-Za-z0-9 .-@/]*

Backward =
[A-Za-20-9 -=-@/]*<[A-Za-20-9 -@/]*

Forward = URL: [A-Za-z0-9 .-@/]*

Backward =
URL: [A-Za-z0-9 .-;=-@/]*<[A-Za-z0-9 .-@/]*

| echo, 5

Forward = URL: [A-Za-z0-9 .-@/]*

Backward =

URL: [A-Za-20-9 -=-@/]"*<[A-Za-20-9 -@/]*

Figure 1.5: Results of Forward and Backward Analyses

Now, we will explain how our approach automatically detetiis vulnerability.

First, the attack pattern for the XSS attacks can be spe@igd <script

>* (where

Y. denotes any ASCII character), i.e., any string that costtlie substringscript

matches the attack pattern. If, during the program exeepéictring that matches the

attack pattern reaches a sink statement, then we say thardgeam is vulnerable.
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For our small example, we simplify the attack patternyds< ¥*. Our analysis first
generates the dependency graph for the input PHP prograjureFL.5 shows the de-
pendency graph for the PHP script in Figure 1.4 (the progegment that corresponds
to a node and the corresponding line number are shown insédedde). Nodes 1 and
2 correspond to the assignment statement in line 2, nodesd &,acorrespond to the
assignment statement in line 3, nodes 5, 6, 7 and 8 corregpdhd replace statement
in line 4, and nodes 9, 10, 11, and 12 correspond to the corataia operations and
the echo statement in line 5. Under each node we show the cégtie forward and
backward symbolic analyses as a regular expression.

During forward analysis we characterize all the user ingut?g i.e., the user can
provide any string as input. Then, using our automata-btm®drd symbolic reach-
ability analysis, we compute all the possible values thahesiring expression in the
program can take. For example, during forward analysiserfydhat corresponds to
the value of the string variablewwafter the execution of the assignment statement in
line 2, is correctly identified a&*. More interestingly, node 8, the value of the string
variablewwwatfter the execution of the replace statement in line 4, isectly identi-
fied as[A-Za-z0-9 .-@:/] * since any character that does not match the characters
in the regular expressidgA-Za-z0-9 .-@://] has been deleted.

Node 12 is the sink node. The result of the forward analysatifies the value of

the sink node at/RL:[A-Za-z0-9 .-@:/] *. Next, we take the intersection of the
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result of the forward analysis with the attack pattern tatde if the program contains
a vulnerability. If the intersection is empty then the progris not vulnerable with
respect to the given attack pattern. Since our analysisuisdsdhis means that there is
no user input that can generate a string that matches ttok gié#tern at the sink node.
However, in our example, the intersection of the attackegpatand the result of the
forward analysis for the sink node is not empty and is char&etd by the following
regular expressionJRL:[A-Za-z0-9 .-;=-@:/] * <[A-Za-z0-9 .-@:/] *,

The backward analysis starts from this intersection ancetss the dependency
graph backwards to find out what input values can lead togsttatues at the sink node
that fall into this intersection. Note that during backwarthlysis we do not need to
compute any value for the nodes that are not on a path betweampat node and a
sink node. This means that during backward analysis we doampute values for the
nodes 3, 4, 5, 6, 9 and 10. The final result of the backward aisaly the result for
the input node 1, which is characterized with the regularesgion:[’<] *<X*, i.e.,
any input string that contains the symbatan lead to a string value at a sink node that
matches the attack pattern.

This characterization of potentially harmful user inpigalled thevulnerability
signaturefor a given attack pattern. It is an over-approximation éfalssible inputs
that can generate an attack string that matches the attétekrpaBased on the vulner-

ability signature our analysis computes for the progranmsag shown in Figure 1.4,
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the programmer can eliminate the vulnerability either bynfixthe erroneous replace
statement in line 4 or by adding another replace statemantémoves th& symbol
from the input.

We present our vulnerability analysis in Chapter 4. The ncamtributions for this
part of our work are: (1) a symbolic reachability analysasnfiework that combines
forward and backward analyses, including a novel algoritbrgenerate vulnerability
signatures, and (2) a summarization technique for integatoral analysis. In the next
section we discuss how to generate effective patches foevaible applications based

on vulnerability signatures.

1.3 Sanitization Synthesis

We present techniques for automatically generating patdhat eliminate string
vulnerabilities in Web applications. We use two types oflgsia: One based on string
analysis with single-track automata that can be used torgenpatches for vulnerabil-
ities that depend on a single input, and another one basettiog analysis with multi-
track automata that can be used to generate patches forahilitees that depend on
multiple inputs. We present and implement two strategiesafibomatically generating
patches based on vulnerability signatures: match-anckbdmd match-and-sanitize.

We give an automata-theoretic characterization of the Iratl-sanitize strategy and
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1. <?php

2 $name = $ _GET['name"];

3: $out = "NAME : " . $name;
4 echo $out;

5. 7>

Figure 1.6: A Simple Example

prove that generating optimum modifications is an intrdetplboblem. We instead give
a heuristic approach based on a min-cut algorithm.

Once we compute a vulnerability signature using the teclesqgve discussed in the
previous section, we automatically synthesize patchedsethminate the vulnerability.

We use two strategies for patching:

e Match-and-block: We insert match statements in vulnerable Web applications
and halt the execution when an input that matches the viiligyssignature is

detected.

e Match-and-sanitizeWe insert both match and replace statements in vulnerable
Web applications. When an input that matches the vulnétabkignature is de-
tected, instead of halting the execution, the replace reté is executed. The
replace statement deletes a small set of characters fromphesuch that the

modified string no longer matches the vulnerability signatu

Consider the PHP script shown in Figure 1.6. This scriptstaith assigning the

user input provided in theGETarray to the variableame in line 2. It concatenates
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a constant string with variableame and assigns it to another varialdet in line 3.
Then it simply outputs the variabteit using theecho statement in line 4.

Theecho statement in line 4 is a sink statement since it can containoa<CSite
Scripting (XSS) vulnerability. For example, a maliciougusay provide an input that
contains the string constasdcript  and execute a command leading to a XSS attack.
In order to prevent this vulnerability, it is necessarystmitizethe user inputs before
using them in archo statement. In the rest of this section we give an overviewoof h
we use the results of our vulnerability analysis to gendfaesanitization statements.

Let us again use the simplified attack pattern for XSS vulmgtias character-
ized with the regular expression® < Y*. After the vulnerability analysis, we de-
tect the segment is vulnerable and generate the vulnayabiginature for the input
_GET['name"] as a DFA that accepts the language< X*.

The vulnerability signature gives an over-approximatibalbpossible input values
that can exploit the vulnerability. Hence, if we do not allowput values that match
the vulnerability signature then we can remove the vulnénabIn our match-and-
block strategy we generate a patch that simply checks if the inpagsmatches the
vulnerability signature. If it does, it halts the executithout executing the rest
of the script. The patch generated for the small example gurei 1.6 based on the

vulnerability signatureé* < * and using the match-and-block strategy is shown in
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1 <?php
1.1: if (preg_match(
'I([=-\xfd]|[\x00-;]) * <([\x00-\xfd])
1.2 die("Invalid input™);
2: $name = $ _GET['name"];
3: $out = "NAME : " . $name;
4: echo $out;
5: ?>

(a) Patch 1 using match-and-block strategy

1 <?php
1.1 if (preg_match(
'I([=-\xfd]|[\x00-;]) * <([\x00-\xfd])
1.2 $ GET['name"] =
preg_replace(’/</',"",$_GET['name"]);
2: $name = $ _GET['name"];
3: $out = "NAME : " . $name;
4: echo $out;
5: ?>

(b) Patch 2 using match-and-sanitize strategy

Figure 1.7: Patches for the example in Figure 1.6

*[''$ GET["'name"]))

*[',$_GET["'name"]))

Figure 1.7(a). Note that the patched script will block arunstring that contains the

symbol<.

In ourmatch-and-sanitizstrategy, instead of blocking the execution, we modify the

input in a minimal way to guarantee that the modified inputncddead to any attack

strings. We do this by analyzing the DFA of the vulnerabiitgnature. Consider the

DFA for the vulnerability signatur&* < >* shown in Figure 1.8 (we use — < to

indicate any symbol other than). Our goal is to find a minimal set of characters, such

that if we remove those characters from a given string, teeltiag string will not be
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Y-< )X

min cut

Figure 1.8: A Vulnerability Signature

accepted by the DFA. As we discuss in Section 5.1, this cooreds to finding a cut
in the graph defined by the states and the transitions of ti#g D&, finding a set of
edges such that when we remove them, there are no paths tef graph from the
initial state of the DFA to a final state. Note that each edgi#meDFA is labeled with
a symbol. After we find a cut, if we take the union of the symludlthe edges in the
cut, we obtain a set of symbols such that any string acceptéldebDFA must include
at least one of the symbols in that set.

If we pick any cut, we may end up modifying the input more thacessary. For
example, deleting all the characters from the input (whiglresponds to including
all the edges of the automata in the cut) will sanitize thesinpiowever, deleting all
the user input is not a very useful sanitization. What we wardo is to generate a
patch that does not modify the input too much but guarantessitt will not lead to
an attack string at the sink statement. Hence we use a mialgitithm to compute a
cut that contains minimum number of edges. Then we genengatcha that deletes all
the characters from the input that appear on the edges extlindthe cut set. For the

DFA shown in Figure 1.8, the min-cut algorithm returns thegte edge labeled with
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<?php
$title = $_GET["title"];
$name = $_GET['name"];
$out = "NAME : " . S$title . $name;

echo $out;
>

oukhwbr

Figure 1.9: Another Simple Example

the symbol<. So we know that deleting the symbalfrom the input is sufficient for
preventing attacks and we generate a patch that deletég allsymbols from the input
as shown in Figure 1.7(b). Note that, unlike the patch shawFigure 1.7(a), the patch
generated based on the match-and-sanitize strategy aestio execute the script after

the sanitization.

Relational Vulnerability Signature Generation: Consider the simple example shown
in Figure 1.9. This example is similar to the one shown in Fegli6 with one signifi-
cant difference: there are two input variables that botfrdaurte to the string expres-
sion used at the sink statement at line 5.

Assume that we use our single-track automata based andlstsibed above to
analyze this script. The set of attack strings generatethisink statement at line 5
will again be:NAME : ¥* < ¥*. However, the result of the backward analysis will be
different. The crucial step is the pre-condition compuatafior the statement in line 4.
The input to this pre-condition computation will be a DFAtthacepts the attack strings

characterized by the regular expression given above. Thdtref the precondition
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$ GET['title"] @ $ GET[*name’] @
S$title _., $name .
(iine 2) (D 1=l (nes) (12)n2=i2
“NAME : “ @ $title . $name

(line 4) (line 4)

“NAME : “. $title . $name

@ ns = “NAME: “.il.i2
(line 4)

$out

{ines 4, 5) @ n6= “NAME: “.il.i2

Figure 1.10: Dependency graph

computation will generate two DFAs, one for the variaidene and one for the variable
tite , and these DFAs will characterize all possible values thesevariables can
take just before the execution of statement in line 4 thatlead to generation of an
attack string at the sink statementin line 5. When we do ttésgondition computation
we get two DFAs that accept the same languagei.e., any value of either variable
can lead to an attack string. Although this is a sound appration it fails to capture
the information thatt least one of these variables should contain the character
Note that this condition cannot be expressed as a constraiah individual variable,
it identifies arelation between the two string variables.

We developed a string analysis technique based on mutk-atomata (MDFA)

that computes relational vulnerability signatures. Odudatrenal analysis uses one
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multi-track automaton for each program point to capturerétationship between the
input values and possible values of string expressionsipthgram. We use a forward
analysis that operates on the dependency graph. We showpkeadency graph for the
example from Figure 1.9 in Figure 1.10. We write the stringression in the program
that corresponds to each node in the dependency graph tefttsede of the node and
also give the line number. Our analysis starts from the inpdes and traverses the de-
pendency graph while generating one MDFA for each interndkrof the dependency
graph. Each MDFA has one track for each input variable andti@o& for the string
expression that corresponds to that node, and representsi#tion between them. In
Figure 1.10 we show a string constraint on the right side oheaternal node. That
string constraint characterizes the set of strings acddptehe MDFA for that node.
For example, for node3, the string constraint is3 = i1.:2 which indicates that the
string expression that corresponds to nedes equal to the concatenation of input
and input;2.

When the analysis reaches a sink node, we intersect thettratkorresponds to
the string expression for the sink node (in our example thosld/ be the track that
corresponds to node6) with the attack pattern DFA (by extending the attack patter
DFA to an MDFA by adding extra tracks that accept all stringd}er the intersection,
we project away the track for the sink node, leaving only theks for the input nodes.

The resulting MDFA represents the relational vulnerapsgignature. For our example,
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-<N min cut TN

AZ-<) i

AZ-<) LT

Figure 1.11: A Relational Vulnerability Signature

the vulnerability signature MDFA is shown in Figure 1.11 @wh each transition is
marked with two symbols, one for each track, and if a trackaskad with the symbol
A then that means that no symbol from that track is consumedh wieg transition is
taken). Note that this automaton accepts tuples of strimgsre either the first string
in the tuple or the second string in the tuple contains at l@as< symbol.

Once we compute the MDFA for the vulnerability signature, meed to generate
the match and replace statements. For the match statem#rd Bingle-track case,
one option is to convert the standard DFA representationragalar expression and
then use the PHiBreg_match function. Although this is not very efficient (as we
discuss in Chapter 5), the patches shown in Figure 1.7 useofition. However, if
we try to generate two regular expressions, one for each,ifipm the automaton
shown in Figure 1.11, we again gét for both inputs, so all inputs match. This could
be OK if we use the match-and-sanitize strategy since, adthall the input strings

will be considered potentially vulnerable, only a smallskesymbols that relate to the
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vulnerability will be replaced. For example, the patch gatedd using this approach
for the example in Figure 1.9 is shown in Figure 1.12.

However, if we use the match-and-block approach using tipelae expressioi*
will block all the inputs which is not acceptable. We will disss how to generate more
precise match statements from MDFA based vulnerabilityatigres in Chapter 5.

In order to generate the sanitization statements fromioglalt vulnerability signa-
tures, we find a min-cut in the vulnerability signature MDFAwe did for the single-
track case. Then, for each track, we take the union of the eigmin that track for
all the edges in the min-cut. In order to sanitize the inpuneed to remove the sym-
bols for each track from the input that corresponds to tleatktr For example, based
on the min-cut shown in Figure 1.11, we need to delete the symlboth from the
inputs_GET["name"] and_GET]["title"] . The automatically generated replace
statements for this example are shown in Figure 1.12.

The main contributions for this part of our work include (1) automated saniti-
zation generation technique based on DFA-based vulndyadiginatures, (2) an algo-
rithm for sanitization generation that sanitizes the inppimodifying it in a minimal
way, and (3) novel relational vulnerability signature gertien and sanitization synthe-

sis techniques based on MDFAs.
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1. <?php
1.1: if (preg_match(’/([\x00-\xfd]) =, $_GET["title"])
and preg_match(’/([\x00-\xfd]) [, $_GET["'name"])) {
1.2 $ GET['itle"] =
preg_replace(/</,",$_GET["title"]);
1.3: $ GET['name"] =
preg_replace(’/</,",$_GET['name"]); }
2: $title = $_GET["title"];
3: $name = $ _GET['name"];
4: $out = "NAME : " . $title . $name;
5: echo $out;
6: 7>

Figure 1.12: Patch for the example from Figure 1.9

1.4 Composite Analysis

We extend our automata-based static analysis to systentsghiaeth unbounded
string and integer variables. We present a composite symbetification technique
that combines string [1, 15,52, 58] and size [20, 22, 46] ys&d with the goal of im-
proving the precision of both. We use a forward fixpoint cotagion to compute the
possible values of string and integer variables and to @ercihe relationships among
the lengths of the string variables and integer variables.

Below, we present two motivating examples to demonstraeativantages of the
proposed composite string and size analysis techniquesi@enthe PHP program seg-
ment shown in Figure 1.13, which secures an identified vablerpoint [58]. This vul-

nerability appeared at line 218trans.php , distributed withMyEasyMarket-4.1
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1. <?php

2: Swww = $_GET["www"];

3: $l_otherinfo = "URL";

4: $www = ereg_replace("['A-Za-z0-9 \-@://]","",$www);
5: if(strlen($www)<$limit)

6: echo "<td>" . $l otherinfo . " " . $www . "</td>";
7. 7>

Figure 1.13: A Sanitization Example with a Length Condition

Without proper sanitization and protection (lines 4 and 6)}he user-controlled
variable Swwwy an attacker can inject the string
<script src=http://evil.com/attack.js> and perform a XSS attack at line
6. The above code prevents such attacks by: (1) removingradah@haracters from
$wwwat line 4, and (2) limiting the length giwwwat line 5. Our analysis shows that
this code segment is free from the specified attacks (withe@do the attack pattern)
by showing that at line 6 (1) the length of the striwwwis less than the allowed limit,
and (2) under that limit the string variab$svwwcannot contain a value that matches
the attack pattern. Note that if one performs solely sizdyaig without knowing the
contents owww the length offwwwcan not be determined precisely after line 3. On
the other hand, if one performs solely string analysis, tta&h condition at line 4
must be ignored. Both of these approximations may lead e fallarms.

Now, consider a standartrlen  routine in C (Figure 1.14) that returns the length

of a given string by traversing each character until hittilgend character, i.e\Q’

29



Chapter 1. Introduction

unsinged int strlen(char * SH
char =ptr = s;
unsigned int cnt =0;
while( *ptr = 0’|
++ptr;
++cnt;

}

return cnt;

TNoaRARONE

Figure 1.14: A String Length Routine

This kind of standard string routine is widely used in leg@cgystems, e.g., Apache,
Samba, Sendmail, and WuFTP.

Let * s.lengthdenote the size of the string pointed todayAn essential property of
this routine is that at line %nt = *s.length which can be used as the summary of
this routine and significantly alleviates size analysisrbead [20, 53], however, hone
of the size analysis tools prove this property before udinQur composite analysis is
capable of proving this property. We first construct an dsse(arithmetic) automaton
that accepts the values that satisfy = *s.length We then conduct our composite
analysis by computing the forward fixpoint with widening. dfpreaching the fixpoint,
at line 7, (1) the arithmetic automaton actually catchesréation that+s.length=
«ptr .length+ cnt , and (2) the string automaton eptr only acceptge}. We prove
the property by showing that the intersection of the languaig(1) and the length of

the language of (2) is included in the language of the asseatitomaton.
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In sum, we extend our automata-based symbolic analysisitpofito systems hav-
ing both string variables and integer variables. This esitemis designed for statically
analyzing string and integer variables in programs. Wegmes simple imperative lan-
guage and perform the composite analysis on this languagaddition to the string
operations supported in [58] and the arithmetic operatsnsgported in [3, 4] , this
language supports two new string operations: prefix andksuffi

The contributions of this part consist of: (1) a novel algfun to construct length
automata, (2) a composite analysis that combines stringsisand size analysis, (3) a
prototype tool that integrates previous techniques, akagatew features that include
length automata construction, string operations (prefii9 and boundary operations

(min and max).

1.5 Relational String Analysis

We present a new relational string analysis technique baseaulti-track automata
and abstraction. Our approach is capable of verifying ptegsethat depend on rela-
tions among string variables. We present and implementvaaiar symbolic reacha-
bility analysis technique that computes an over-approkoneof the reachable states
of a string system using widening and summarization. We uski-tnack determin-

istic finite automata (MDFAS) as a symbolic representatmaricode the set of possi-
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ble values that string variables can take at a given prograimt.pUnlike prior string
analysis techniques, the analysigetational, i.e., it is able to keep track of the rela-
tionships among the string variables, improving the prenisf the string analysis and
enabling verification of invariants such &5 = X, whereX; and X, are string vari-
ables. We describe the precise construction of MDFAs fadirword equations, such
asc Xicy = ¢, Xod, and show that non-linear word equations (suchXas= X, X3)
cannot be characterized precisely as a MDFA. We proposeudaregpproximation for
non-linear equations and show how these constructions eamséd to compute the
post-condition of branch conditions and assignment staesithat involve concatena-
tion. We use summarization for inter-procedural analygigénerating a multi-track
automaton (transducer) characterizing the relationshipvéen the input parameters
and the return values of each procedure. To be able to useqarasummaries during
our reachability analysis walign multi-track automata so that normalized automata
are closed under intersection.

To improve the efficiency of our approach, we propose twagtabstraction tech-
niques: alphabet and relation abstractions. In alphalstaadtion, we identify a set
of characters that we are interested in and use a specialaymbepresent the rest
of the characters. In relation abstraction, we identifyvuhgables that are related and
encode them as a single multi-track automata. For thoseatkatot related, we use

multiple single-track automata to encode their values,re/helations among them are
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input X1;

input X2;

if (X1 = X2) goto 6;
X1:=X2.c;

goto 7;

X1:=X1.c;

assert (X1 = X2.c);

Figure 1.15: A Branch Example

abstracted away. We define an abstraction lattice that coalthese abstractions un-
der one framework and show that earlier results on strindyaisacan be mapped to
several points in this abstraction lattice.

Consider an example shown in Figure 1.15. Existing autofbased string analysis
techniques are not able to prove the assertion at the endsgirtbgram segment since
they use single-track automata. Consider a symbolic aisaigshnique that uses one
automaton for each variable at each program point to reptélke set of values that
the variables can take at that program point. Using this fimbepresentation we
can do a forward fixpoint computation to compute the reachaldte space of the
program. For example, the automaton for varialileat the beginning of statement 2,
call it Mx, », will recognize the seL.(My, ») = X£* to indicate that the input can be
any string. Similarly, the automaton for variablg at the beginning of statement 3,
call it My, 5, will recognize the sef.(My, ;) = £*. The question is how to handle
the branch condition in statement 3. If we are using singlekirautomata, all we

can do at the beginning of statement 6 is the followidg:Mx, ) = L(Mx,s) =
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L(Mx, 3) N L(Mx, 3). The situation with the else branch is even worse. All we can
do atline 4 is to sef.(Mx, 4) = L(Mx, 3) andL(Mx, 4) = L(Mx, 3). Both branches
will resultin L(My, 7) = ¥*.candL(Mx, 7) = ¥*, which is clearly not strong enough
to prove the assertion.

Using the presented techniques, we can verify the assertithre above program.
In our approach, we use a single multi-track automaton foh geogram point, where
each track of the automaton corresponds to one string Varigbr the above example,
the multi-track automaton at the beginning of statementBaatcept any pairs of strings
X1, X, where X, Xy € ¥*. However, the multi-track automaton at the beginning of
statement 6 will only accept pairs of strings, X, whereX;, X; € ¥* andX; = X,.
Let [X/X'] denote replacind’ with X. We compute the post-conditiga.X;.(X; =
Xo) A (X] = X1.0))[X:1/X]], and generate the multi-track automaton that only accepts
pairs of stringsX;, X where X;, X, € ¥* and X; = Xs.c. Similarly, the multi-
track automaton at the beginning of statement 4 will onlyeatpairs of strings(;, X,
where X1, X, € ¥* and X; # X,, and after the assignment, we will generate the
multi-track automaton that only accepts pairs of stridgs X, where X, X, € >*
andX; = X,.c. Hence, we are able to prove the assertion in statement 7.

Consider another simple example shown in Figure 1.16. Tae¥eseveral chal-
lenges in proving that the assertion at line 5 holds. Fifg§ program contains an

infinite loop and does not terminate. If we try to compute #chable configurations
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1: X1 = a;

2: X2 = a;

3: X1 = X1.b;

4: X2 = X2.b;

5: assert (X1=X2);
6: goto 3;

Figure 1.16: A Loop Example

of this program by iteratively adding configurations thah ¢ reached after a single
step of execution, our analysis will never terminate. Hosvethere exists a fixpoint
characterizing the reachable configurations at each prog@nt. We incorporate a
widening operator to accelerate our symbolic reachalibtyputation and compute an
over-approximation of the fixpoint that characterizes trechable configurations. Sec-
ond, the assertion is an implicit property, i.e., there iagsignment, such a§, := X5,
or branch condition, such a8, = X, that implies that this assertion holds. Finally,
the assertion specifies the equality among two string vi@sabAnalysis techniques
that encode reachable states using multiple single-tr&eéksDvill raise a false alarm,
since, individually,X; can beubb and X, can beab at program point 5, but they cannot
take these values at the same time. It is not possible to xpinés constraint using
single-track automata.

For this example, our multi-track, automata-based strimgyesis technique termi-
nates in three iterations and computes the precise reshi. multi-track automaton

that characterizes the values of string variabfgsand X, at program point 5, call it
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Ms, recognizes the languagé{Ms) = (a,a)(b,b)*. SinceL(Ms) C L(X; = X,),
we conclude that the assertion holds. Although in this casedsult of our analysis
is precise, it is not guaranteed to be precise in general.edexyit is guaranteed to be
an over-approximation of the reachable configurations. ddeour analysis is sound
and if we conclude that an assertion holds, the assertiamaisagteed to hold for every
program execution.

Furthermore, instead of using the full alphabet, e.g. A8CII encoding, using our
abstraction technique, the above example can be verifiedesiffiy with an abstract
alphabet{a, b, x}, wherex represents all characters other thaor b.

In Chapter 7 we present our contributions on relationahgtainalysis which include
(1) a sound symbolic analysis technique for string veriftcathat over-approximates
the reachable states of a given string system using mattkimutomata and summariza-
tion and (2) alphabet and relation abstractions to adjespthcision and performance
of our symbolic string analysis technique. We evaluate tlesgnted techniques with

respect to several string analysis benchmarks extraatedreal Web applications.

1.6 Summary of Contributions

The main contributions of this dissertation can be summdras follows:
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1. We formally characterize the string verification problasthe reachability anal-
ysis of string systems and show decidability/undecidgbiiesults for several

string analysis problems.

2. We develop a sound symbolic analysis technique for stémgication that over-

approximates the reachable states of a given string systemg automata.

3. We propose the first composite approach that combineg srialysis with size
analysis and show how the precision of both analyses can j@ired by using

length automata.

4. We develop the first relational string analysis technigsimg multi-track au-
tomata which is capable of proving properties that depernti®nelations among

string variables.

5. We propose alphabet and relation abstractions that casdzkto adjust the pre-

cision and performance of our symbolic string analysis héglnes.

6. We propose a novel algorithm for language-based replaseto model string
replace functions that are commonly used to modify usert;puwWeb applica-

tions.

7. We adopt a symbolic automata encoding and leverage itsegifimanipulations.
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8. We incorporate an automata-based widening operatorcelerate the fixpoint
computations and develop a novel summarization technigueter-procedural

analysis.

9. We combine symbolic forward and backward reachabilitglgses to generate
vulnerability signatures that characterize all malicioymits that can exploit vul-

nerable Web applications.

10. We present techniques for automatically synthesizangization statements from

vulnerability signatures.

11. We implemensTtrANGER, the first public automata-based string analysis tool.
STRANGER can automatically detect XSS, SQL Injection, and MFE vidbdities
in PHP Web applications, as well as generate the vulnetgbifinatures for each

detected vulnerability.

38



Chapter 2

String Systems

We start with defining string systems. Figure 2.1 presemdé#sic syntax for string
systems. We only consider string variables and hence Varddzlarations need not
specify a type. All statements are labeled. We only considerstring operation (con-
catenation) at this point (which is enough to prove some ciddéility results). Func-
tion calls use call-by-value parameter passing. We allow gtatements to be non-
deterministic (if a goto statement has multiple target lsldaen one of them is chosen
non-deterministically). If a string system contains a m@terministic goto statement it
is called a non-deterministic string system, otherwises, ¢alled a deterministic string

system.
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prog ::= decl func
decl::=decl idT;
func::=id (id*) begin decl Istmt" end
Istmt::= l:stmt
stmt::= seqstmt
| if expthen goto |I;
| goto L; whereL is a set of labels
| input id;
| output exp
| assert exp
seqstmt=id := sexp
|id :=call id (sexp®);
exp::= bexp| expA exp| — exp
bexp::= atom= sexp
sexp::= sexpatom| atom
atom::=id |c, wherecis a string constant

Figure 2.1: The Syntax of String Manipulating Programs

2.1 Decidability and Undecidability Results

Before discussing our symbolic string analysis technigagrove that string anal-
ysis is an undecidable problem and, therefore, any soumdjstnalysis technique has
to use conservative approximations in order to guaranteescgence.

Let S(Xy, Xo,. .., X,) denote a string system with string variableg X, ..., X,
and a finite set of labeled instructions. There are sevdréaties we can use to classify
string systems. For example, as mentioned above, a strétgmycan be deterministic
or non-deterministic. We can also classify a string systaeseld on the alphabet used
by the string variables, such as a string system with a uriphabet or a string system

with a binary alphabet, etc. Additionally, we can restricd humber of variables in the
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string systems, such as a string system with only 2 varigbles,, X,)) or 3 variables
(S(X1, Xs, X3)), etc. Finally, we can restrict the set of string expressithrat can be
used in the assignment and conditional branch instructions

In order to identify different classes of string systems wiewse the following no-
tation. We will use the letter® and N to denote deterministic and non-deterministic
string systems, respectively. We will use the lettBrandU to denote if the alphabet
used by the string variables is the binary alphapet} or the unary alphabefa},
respectively. We will usé{ to denote an alphabet of arbitrary size. For example,
DUS(Xy, Xy, X3) denotes a deterministic string system with three variabiesthe
unary alphabet whereagBS(X;, X,) denotes a nondeterministic string system with
two variables and the binary alphabet. We will denote thekassignment instructions
allowed in a string system as a superscript and the set oésgjons involved in condi-
tional branch instructions as subscript. Henbé]S (X, Xs, Xg)ﬁjjg;f&:)(g denotes
a deterministic string system with three variablég X5, and X3, and the unary al-
phabet{a} where the assignment instructions are of the fofm= Xa, X5 := Xsa,
or X3 := Xsa (i.e., we only allow concatenation of one symbol to a striagable in
each assignment instruction) and the conditional branetnuations can only be of the
form: if X5 = X; goto L orif X3 = X, goto L (i.e., we only allow equality checks

and do not allow comparison df; and X,.)
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The halting problemfor string systems is the problem of deciding, given a string
systemsS, where initially the string variables are initialized tethull string,¢, whether
S will halt on some execution. More generally, theachability problem for string
systemgwhich need not halt) is the problem of deciding, given angtisystemS and
a configuratiorC' (i.e., the instruction label and the values of the varighl@bether at
some point during a computatio@, will be reached. Note that we define the halting
and the reachability conditions using existential quasdtfon over the execution paths,
i.e., the halting and the reachability conditions hold driexists an execution path that
halts or reaches the target configuration, respectivelncklgf the halting problem is

undecidable, then the reachability problem is undecidable
Theorem 1 The halting problem foDUS(X1, X5, X5) % =%%,_y, is undecidable.

Proof 1 It is well-known that the halting problem for two-counter chanes, where
initially both counters are 0, is undecidable [39]. Duringe execution of a counter
machine, at each step, a counter can be incremented by lemeated by 1, and tested
for zero. The counters can only assume nonnegative values.

We will show that a two-counter machifné can be simulated with a string system
S(X1, X3, X3) in DUS(X1, Xa, X3)¥'23:%,_y, The states o/ can be represented
as labels in the string systes\ The states where the counter-machiviehalts will
be represented with the halt instruction in string systémWe will use the lengths

of the stringsX;, X, and X3 to simulate the values of the count&rs and C5. The
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value ofC; will be simulated by X, | — | X3/, and the value of’; will be simulated by
| Xo| — [ X].

The counter maching/ starts from the initial configuratiofq, 0, 0) whereg, de-
notes the initial state and the two integer values repregleatinitial values of coun-
ters C; and Cs, respectively. The initial configuration of the string gyatS will be
(qo, €, €, €) Whereqy is the label of the first instruction, and the strings;, ¢ are the
initial values of the string variableX(;, X, and X3, respectively. The instructions of
the counter-machiné€’ will be simulated as follows (where each statement is fabw

by a goto statement that transitions to the next state orucsbn):

Counter machine String system

inc C4 X1 = Xqa

inc Cy X9 := Xoa

decCy Xo := Xoa; X3 := X3a
dec(y X1 :=Xq1a; X3 := X3a
if (C1=0) if (X1 =X3)

if (Cy=0) if (Xo = X3)

Note that although this transformation will allow the siratdd counter values to
possibly take negative values, this can be fixed by addingdittonal branch instruc-

tion before each decrement that checks that the simulatadteo value is not zero
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before the instructions simulating the decrement instamcts executed. The string
systemS constructed fromV/ based on these rules will simulalé¢. Hence, halting

problem is undecidable for the string systemsitl S (X1, Xa, X5) % =%, _y, -

In fact, Theorem 1 can be strengthened: Therdiisaistring systend' (X, Xs, X3)
in DUS(X7, Xo, X3)§i:::§;ix2zxg such that it is undecidable to determine, given an ar-
bitrary nonnegative integet, whetherS (X, X,, X3) will halt when X, is initially set
to stringa? and X, and X5 are initially set toe. This follows from the fact that there
exists a fixed universal 2-counter machibkthat can simulate a universal single-tape
deterministic Turing machine. Given a description of a mgnmachin€l’ M as input,

M halts if and only ifT’M halts on blank tape. Since it is undecidable to determine
if a Turing machine halts on blank tape, it is undecidabledtednine if A/ will halt

on some input. Since, we can construct a fixed string systexn, X», X3) simulating

M, as in Theorem 1, it is undecidable to determing(if;, X, X3) will halt starting
from some initial configuration.

Next, we show that the three variables in Theorem 1 are nagessthe sense that
when there are only two variables, reachability is decidabhis result does not hold
when the system is nondetereministic, as we shall see inréhe8.

Consider the class of deterministic 2-variable string eyt where the constants
are over an alphabet with arbitrary cardinality, and we dmwvad to use conditional

branch instructions of the fornif X; = X, goto L. (Note that because the alphabet is
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not necessarily unary, thit statement is not equivalent | X;| = | X,| goto L as in
the case of the unary alphabet.) Assignment statementg #re form: X; := X,a or
X; := aX; , wherea is a single symbol. And, there is a halt instruction, whichmazy

assume occurs at the end of the program.
; Xi:=X;a,X;:=aX; ; :
Theorem 2 The halting problem foD K'S (X, X») i Zx. is decidable.

Proof 2 Let S be a string system i K S(X;, Xo)y —x. ¥ and k be its length
(i.e., number of instructions), including the assignmeatsl the conditional and un-
conditional branch statements.

Label the instructions of by 1, ..., k. We can think of each assignmeit, A as
equivalent to the instruction,: A; gotoi+ 1. Hence, every instruction except the halt
instruction and thef statements has goto.

By an “execution of a positivié statement”, we mean that when tiiestatement is
executedX; = Xs.

During the computation of), if it is not in an infinite loop, then the interval (i.e.,
number of steps) between the executions of any two congeqasitivaf statements
is at mostk. The reason for this is that during the interval executes onlgoto's and
assignment statements wibto's (note that a non-positivé statement leads directly
to the instruction following théf). Hence, the number of steps would be at nigst

since there are at mostgoto's and assignments withoto's.
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Now, an execution of a positivestatement leads to goto label, and there are at
mostk different labels. It follows that if' is not in an infinite loop, it cannot run more

thank.k = k? steps.

The above theorem can be generalized to show the decigatdilieachability for
multi-variable string systems as long as in a conditionahbh statement we allow
equality check between only two specific variables, i.e otihe@r variables can be com-
pared for equality.

In contrast to Theorem 2, we can show that the halting prolidemmdecidable for
nondeterministic 2-variable string systems with constaver the alphabsia, b}, by

a reduction from the Post Correspondence Problem (PCPhvgimndecidable.
Theorem 3 The halting problem foV BS (X1, X5) "= is undecidable.

Proof 3 Given aninstancéeC, D) of PCP, wher& = (cy, ...,c,) andD = (dy, ..., d,),
define constant string§-y, ..., ¢, di, ..., d,, }, wherec;, d; are non-null strings over al-
phabet{a, b}, we construct a string systefin NBS(X;, X,)y =3 as follows:
O:gotolor2or...orn

1: X; := Xj¢; and X5 := Xydy; goto O or n+1

2: X = X0 andX2 = ngg; goto Oorn+l

n: X; := Xy¢, and X, := Xyd,; goto 0 or n+1
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n+1:if X; = X, goton+2elsegotol
n+2: halt
Clearly, there is a computation that will reach the halt ingttion if and only if the PCP

instance(C, D) has a solution. The theorem follows.

Theorem 2 demonstrates that there are non-trivial striladyais problems that are
decidable. Theorems 1 and 3, on the other hand, show thatrihg analysis problem
can be undecidable even when we restrict a deterministigsslystem to three vari-
ables or a non-deterministic string system to two variablesce the general string
analysis problem is undecidable, it is necessary to deeapervative approximation
techniques for verification of string systems. In this dits@n, we present several
symbolic verification techniques that conservatively agpnate the reachable states
of a string system. We can also analyze (extended) strirtgrsygsthat have complex
string operations, e.g., replacement, prefix and suffix. Weuds these operations in

the next Chapter.
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Chapter 3

Automata-based String Analysis

Unsanitized string variables are a common cause of seawiterabilities in Web
applications. In typical interactive Web applicationsemuprovided input strings are
often used to query back-end databases. If the user inpuot israperly checked and
filtered (i.e., sanitized), the input strings that contdolden destructive commands can
be sent to back-end databases and cause damage. Usingrnesalysis techniques
proposed in this work, it is possible to automatically wetifiat a string variable is
properly sanitized at a program point, showing that suadctks are not possible.

We present a string analysis technique that computes arappeoximation of pos-
sible values that a string expression can take at a giverrgrmogoint. We use a de-
terministic finite automaton (DFA) to represent the set dfiga string expressions can

take. At each program point, each string variable is assatiith a DFA. The lan-
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guage accepted by the DFA corresponds to the values thabthesponding string

variable can take at that program point.

3.1 String Manipulation Operations

Most of the string manipulation operations performed if-vearld applications can

be reduced to the following four operations:

e assignmentassigns the current string value of a variable to anotheabig (the

assignment operator in PHP ™),

e concatenation concatenates two string variables and/or constants (theate-

nation operation in PHP is *);

e replacement replaces the parts of a string that match the given pattetim w
the given replacement string (there are several stringacephent functions in
PHP such a&tmispecialchars , tolower , toupper , str _replace ,trim

preg _replace andereg _replace ,and they can all be converted to this form).

e restriction restricts the value of a string variable based on a branotition.

Automata Operations. In order to implement the automata-based string analyss, w

implement the following operations:
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CoNSTRuUCT(regexpe): Returns a DFAV/, L(M) = {w | w € L(e)}.

o CLOSURHDFA M;): Returns a DFAV/, L(M) = {wywsy ... wg | k > 0,Vi, 1 <

1 S k:,w,- c L(Ml)}

e CONCAT(DFA M, DFA M,): Returns a DFAM, L(M) = {wjws | wy €

L(Ml), Wo € L(MQ)}

e REPLACE(DFA M,, DFA M,, DFA M;): Returns a DFAM, L(M) =
{wicrwacy . . wpcpwisy | k> 0, wizqwexs . .. wirpwrrr € L(M),V;, x; €

L(M,), w; does not contain any substring acceptediby c¢; € L(Ms)}.

e UNION(DFA M, DFA M,) : Returns a DFAV/, L(M) = L(M;) U L(M2).

e INTERSECTDFA M, DFA M,): Returns a DFAML(M) = L(M;) N L(M,).

e WIDENING(DFA M, DFA M,): Returns a DFAML(M) D L(My) U L(Ms).

e EQUCHECK(DFA M, DFA M,): Checks whetheL (M) = L(Ms).

e EMPCHECK(DFA M): Checks whethef (M) = ().

e EMPTY(): Returns a DFA which does not accept any string.

e UNIVERSAL(): Returns a DFA which accepts all the strings.
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Symbolic Automata Representation: We use the DFA library of MONA [5] to im-
plement the string operations listed above. In MONA, traoirelations of DFA are
symbolically represented using Multi-terminal Binary en Diagrams (MBDDs).
A MBDD is a BDD with multiple roots and multiple leaves. In M@¥$ DFA rep-
resentation, each state of the DFA is a root and points to a BBd®, and each leaf
value is a state of the DFA. Given the current state and a symboB*, whereB* is
alphabet of bit vectors of length k, one can find the next digtéollowing the BDD
nodes according to the bit vector @from the BDD node pointed by the current state.
We use a 7-bit vector, i.eR7, as our alphabet representing the binary value of ASCI|
symbols, e.g., for the ASCIl symbol ‘a’, the ASCII code is 9fieh is represented as
1100001’ in our encoding.

The MONA DFA library provides efficient implementations dgasdard automata
operations. These operations include product, projectiatetminize, and minimize [5].
The product operation takes the Cartesian product of thesstd the two input au-
tomata. We use the product operation to implement the itéms and union op-
erations. The project and determinize operation, denoteBRaJECT(M, i), where
1 < i < k, converts a DFAM recognizing a languagg over the alphabeB*, to a
DFA M’ recognizing a languagg’ over the alphabeB*~!, wherel’ is the language

that results from applying the tuple projection on iHebit to each symbol of the al-
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phabet. The process consists of removingithé&rack of the MBDD and determinizing

the resulting MBDD via on-the-fly subset construction.

3.2 String Operations on Automata

In this section, we describe how to implement the closurecatenate and replace
operations. Since we use MBDD representation for DFA, wenateble to introduce
e-transitions. Instead, to avoid the non-determinism uohticeed by these operations, we
extend the alphabet by adding extra bits, and then use pimjeo map the resulting
DFA to the original alphabet.

A DFA M is a tuple(Q, q0, %, 6, F') where( is a finite set of statesy, is the
initial state,> C B* is the alphabet, where each symbol is encoded/abiastring.
F :Q — {—,+} is amapping function from a state to its status. Given a gtate),

q is an accepting state #(q) = +. 0 : @ x ¥ — (@ is the transition relation. A
stateq of M is asinkstate ifVa € X,0(q,«) = g andF'(¢) = —. In the following

sections, we assume that for all unspecified p@ira), é(q, o) goes to asink state. In

the constructions below, we also ignore the transitionsléaal to a sink state.

Givena € B*, we usen0 or al € B**! to denote the bit string that is appended

with ‘O’ or ‘1’. For instance, ifa is ‘110011’ them0 is ‘1100110’.
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Closure: The DFA M is a closure-DFA of the DFAVy, if L(M) = { wiw,. .. wy
| 3k > 0,V1 <i < k,w; € L(M)}.
Given M; = (Q1,q10, 2, 01, F1), its closureM can be constructed by first con-

structing an intermediate DFA’ = (Q1, q10, Y, 8 , F}) as:
e Y ={a0|acX}u{al|acX}
* Yg,q' € Q1,6 (g,00) = ¢, if di(q. @) = ¢
e Vg€ Q1,0 (q,al) =, if Fi(q) =+ andd(qu, ) = ¢

Then,M = PROJECT(M ', k + 1) is the closure of\/;.
SincelM, is a DFA, the project operation requires the subset corstruonly when
there existyy € Q1, Fi(q) = +,and3a,¢. ¢ ,a € £.¢,¢" € Q1.d # ¢ ,01(q, ) =

q,7 51(Q107 Oé) = q".

Concatenation: The DFA M is a concatenation-DFA of the DFA/; and M., if
L(M) = {wyws | wy € L(M;),wy € L(Ms)}.

Given M; = (Q1,q0,%,01,F1) and My, = (Qs2, ¢, 2,0, F,), the
concatenation-DFA/ can be constructed as follows. Without loss of generaligyag-
sume tha);NQ, is empty. We first construct an intermediate DFA = (Q', q10, X', 0, '),

where

e Q' =Q1UQ
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e Y ={a0|aeX}U{al|aecX}

Vg,q' € Q1,6 (q,00) = ¢, if &1(q,a) = ¢

Vq,q' € Q2,6 (q,00) = ¢, if &2(q, ) = ¢

vq S Qla(S’(anfl) = q/) If Fl(Q) =+ andzlq/ € Q2752(Q20705) = q/

Vg € Q1,F'(q) =+, if Fi(q) = + andFy(g) = +; F'(q) = —, 0.W.

Vq € Q2,F,(Q) = F>(q).

Then, M = PROJECT(M', k + 1). Again, since both\/; and M, are DFA, the
subset construction happens only when there exists @)1, F1(q) = + such that

E'Oé,q,,q”,Oé € qu/ € th” € Q2751(q7a> = q,752(Q20704) = q”'

Replacement: A DFA M is areplaced-DFA of a DFA tupl@\/;, M-, Ms3), if and only
if  L(M) = {w | k > 0, W1 T W3 . . . WpTpWr1 € L(My),
W = WCLWs.. WrCpWit1, V1 < i < k,x; € L(Ms),c; € L(M3),V1 <i<k+1,w; &
{wiz'wy | 2" € L(Ms), w), w) € £*}}.

This definition requires that all occurrences of matchinig-stiings in a word are
replaced. The intuition of the implementation of this laage-based replacement is
that we first insert marks into automata, then identify maiglsub-strings by intersec-
tion of automata, and finally construct the final automatondpyacing these matching

sub-strings.
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We consider a new alphabet= {a|a € X}, and letz denote a new string in which
we add bar to each characteniinAssume thaf\/;, M, M3 have the same alphabet
wheret;, t, ¢ ¥, andva € X, a ¢ . We definel;, M,’ andM as follows, and claim

that M accepts the same language as the replaced-DFA of the(tuplé\/,, M3).

e M, whereL(M,) = {w' | k > 0,w = wiz1w; . .. wpTpwiyy € L(M;),w' =

w1 Traws . . Wi T oWy }-

o M,, whereL(M,) = {w' | k > 0,w' = witiZ1fowy . . . Wit Tpfowpy1, V1 <4 <
k,x; € L(My),V1 <1 <k+1,w; € L(My)},whereL(M,) is the set of strings
which do not contain any substring Ir{ M>). The languagé.();,) is defined as
the complement set dfw,zw, | © € L(M,), wy, we € X%}

o M, WhereL(M) = {’LU | k > O,ZUlﬂlflﬂg'LUg...wkﬁlfkﬁgwk+1 S L(M{) N

!

L(M,),w = wicqws ... wrcgwi41, V1 <@ < k,¢; € L(Ms)}.

To distinguish the original and bar alphabets, we appendxtia bit to o so that
ais a0 anda is al. Givean = <Q1, qd10, Z, 51, F1>, My = <Q2, G20, Z, 52, F2>, and
Ms = (Qs, q30, 2, I3, F3), the process to construct a replaced-DHAcan be decoupled

into the following steps:
1. ConstructV/,’ from M,
2. Construct\, from M,
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3. Generaté/ as the intersection ¥/, and M,,

4. Constructd” from M  where the strings that appear betweemndt, are re-

placed by words irl.(M3), and

5. Generatél/ from M" by projection.

We formally describe the implementation of these stepsieds a running exam-
ple, we usd.(M;) = {baab}, L(M;) = a™ (M, accepts the languade, aa, aaa, . . .})
and L(Ms) = {c} or L(M3) = {e}. Let|M| denote the number of states bf. An
upper bound for each intermediate automaton before projeeind minimization is
also described.

Step 1: M, = (Q}, qu0, ¥, 0;, F,) is constructed frond/;, where

e Q) = Q1 UQy, Qy is the duplicate of),. For allg € Qy, there is a one to one

mappingg’ € Q1.
e ¥ —{a0|ac S} U{al|acS}U{t, b}
o 5,(q1,a0) = gz andé; (qu, 1) = qo, if 61(q1, @) = g
o Vg1 € Q1,0,(q1, 1) = qv andé, (qu, f2) = @1
o Vg € Qi, Fi(q) = Fi(q) and¥g € Qu, Fi(q) = 0.

An example for constructing/, from M;, where L(M,) = {baab}, is given in

Fig 3.1.|M, | is bounded by|M,|.
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D020

(@) My : {baab}

Figure 3.1: Constructing)/; from M,

Step 2: To constructM,, we first construct\Z;, which accepts the complement set
of {wizws | wy,wy € X* & € L(M,)}. For instance, as shown in Fig 3.2(b), for
L(M,) = a™, M, is the DFA that accept§® \ {a})*. Let M, be the DFA accepting
¥*. M, can be constructed byt ATE(CONCAT(CONCAT(M.,, M,), M.)). We obtain
the DFA in Fig 3.2(b) by applying this construction with mrmmgation.

Assume M, = (Qn,qno, 2,0, Fp), and My = (Qa, G0, %, 02, F3).

M, = (Q5, qno, ¥, 05, F,) can then be constructed as:

Qy=QnU Qs

Y ={a0|Va e S} U{al | Vo € B} U {t, )}

Vq,q € Qn,05(g,a0) = ¢, if 5,(q,a) = ¢

Vq,q € Q2. 05(q,al) = ¢, if 85(¢,a) = ¢

Vq € Qn, 65(q. 1) = qoo if Fi(q) = +

Vg € Q2,05(q, t2) = qno if Fa(q) =+
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o Vg € Qn, Fy(q) = Fi(q) andVq € Q,, Fy(q) = —.

The corresponding/, for our example is shown in Fig 3.2(d)}/,| is bounded by

| My| + | Ms|, where|M,,| is bounded byMs| + 2.

# a1l
N et
i

() My (b) M, (c) M,

Figure 3.2: Constructing[\/[é from M, and M,

Step 3: M' = (Q',q,, % ,5, F') is generated as the intersectiondf and M,
based on production. The examplé is shown in Fig 3.3 (a).|M'| is bounded by
|My] % | My).

Step 4: Before we construch/” from M’, we first introduce a functioneach :
Q — 2Ql, which maps a state to all ifsreachable states il¥". We sayy’ is f-reachable
from ¢ if there exists a sequengeq,, . . ., q,, ¢ So that (Ln > 1, (2) 6 (¢, 41) = ¢,
(3) 8 (qn, #2) = ¢/s and (4)V0 < i < n,8 (¢;,7) = ¢ir1, Wherez € {al | Va € 2},
For instance, in Fig 3.3 (a), one can find thatch(i) = {j, k} andreach(j) = {k}.
Intuitively, one can think that each pdi, ¢'), whereq’ € reach(q), identifies a word
in L(My).

Our goal is, for eacly’ € reach(q), inserting paths betweepandq’ that recog-

nize all words inL(Ms). If there existy’,q" € reach(q) andq’ # ¢, this insertion
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will cause nondeterminism. To tackle this problem, as weinlithe construction of
closure and concatenation, we add extra bits to the alphaizbiater project them
away. Assume is the maximum size ofeach(q) for all ¢ € Q". We need at most
[log(n + 1)] bits to be added to the alphabet so that the constructionesaritrin a
DFA. Let P = {q| ¢ € Q',reach(q) > 0}. Letm = [log(n + 1)], wheren is the
maximum size ofreach(q) for all ¢ € P. Letm, be an m-bit string. For € B*,
am, € B*™ is a string in whichn, is appended ta.. Letm, be an m-bit string of Os.
We assume/q, m, # mo, and for anyy € P, m; # m; if ¢, ¢" € reach(q).

The construction of\/” depends orl.(Ms3). We consider the following three cases:
(1) M5 only accepts single characters, i.6(M3) C 3, (2) M; only accepts words
with more than one character, i.&(M3) C X7\ X, (3) M3 only accepts the empty
string, i.e.,L(M;) = {¢}.

Case 1:Vw € L(Ms),|w| =1. M" =(Q',q,,%",§ , F') is constructed as:
o 3 C Bhtm

o Vg Q5" (q,amo) = ¢, if §(q,a0) = ¢

e Vg € P,Yq € reach(p),VYa € L(Ms),§ (q,amy) = ¢

In Fig 3.3(a),P = {i,j}, reach(i) = {j, k} andreach(j) = k. Let L(M;3) = {c}.
M" of our example is shown in Fig 3.3(b). Each symbol is apperidéu two extra

bits, e.9.4(4, c01) = j andé (i, c10) = k. |M"| is bounded byM'|.

59



Chapter 3. Automata-based String Analysis

b00 b00

(@) M’ (b) M": case 1 (c) M": case 3

Figure 3.3: Constructingd/” from M. M is the Intersection of/,’ and M,

Case 2:Vw € L(Ms3), |lw| > 2. For eachp € P, we construct a copy af/; as
M, = {(Qyp, 40, %, 6, F,). M is constructed by insertinyy/, betweerp andreach(p).

M =(Q",q,,%", 6", F"), where
° Q” _ Q/ Upep Qp
o ' C Bktm

Vg e Q'8 (¢,amo) = ¢, if §(¢q,00) = ¢

Vp € PNq € Q,,8 (q,amg) = ¢, if 6,(q, ) = ¢.

Vp € P, 5”(p, amy) = q, if 6,(qp0, @) = q.

Vp € P,VYq € reach(p), 5”((]’, amyg) = q, if 6,(¢', ) = q ande(q") = +.

VgeQ F'(q)=F(q)

VpEPqeQ,F'(q)=—.
In this case|M" | is bounded byM'| + |M'| x |M'| x | Ms].
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Case 3:Vw € L(Ms),|w| = 0. We consider this case dgletion Before we start
the construction, it is worth to know that for deletion, onayrthange the argument
M, to N, whereL(N) = L(M,)+ (Kleene plus closure) , and get the same result. We
specify this property as follows.

Property 1 Let M/=RePLACE(M,, M,, M), and M =ReEPLACE(M,, N, Ms),
whereL(N) = L(My)+. L(M) = L(M") if L(Ms) = {¢}.

The correctness comes from the fact that, by construcfitmeiie existsv € L(N),
then there exists > 0, w = wyw, ... wg, WhereVl < i < k,w; € L(M,). Sincew
or anyw; will be deleted after the replacement, usiNgnstead of)M; yields the same
result.

Note that thei-reachable states @ff’ using N is actually the set of reachable clo-
sure of thef-reachable states df/’ using M,. This facilitates our construction by
taking all deleted pairs into account in one step. In theofwihg construction, without
loss of the generality, we assume that the matching strirga@epted byw. NV can
be constructed from the origina¥; by our closure operation.

M" can then be constructed &39', ¢,, X", 0", '), where
. E// g Bk+m
e Vg Q.5 (q,amg) =¢,if 6 (¢q,a0) =¢

e Vp € P,¥q € reach(p),d (p,amy) = ¢, if 6 (¢,a0) = ¢.
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o Vpe P, F"(p) =+,ifdg e reach(p),F'(q) = +.

!

e [ (q) =F(q),0.w.

Let L(M;) = {e}. The result ofd/” is shown in Fig 3.3(c). Note that ¥/, = {a},
we would get the same resulf\/” | is bounded byM'|.
Finally, consider\/; as a general DFA. R°LACE(M,, M-, M3) can be constructed

as the union of the results of the following three operations

e REPLACE(M;, My, Ms,), whereL(Ms;,) = L(M;)NE
e REPLACE(M;, My, Ms,), whereL(Ms,) = L(M;3) N LT\ X

e REPLACE(M;, My, Ms,), whereL(Ms;,) = L(M;) N {e}

Our replacement operation is defined in a general case irstefm/;. For all
replacement statements in PHP programs, suelr agseplace , preg _replace ,and
ereg replace , L(Mj3) is a constant string. In our implementation, we determine
which type of construction to apply based on the length &f $tiing.

Step 5: Finally, we getM overX: by iteratively projecting away the extra bits. The
subset construction is only applied when needed.

The final DFAM =REPLACE(M,, My, M), whereL(M;) = {baab}, L(Ms) =
a®,andL(Ms) = {c}, is shown in Fig 3.4M accepts beb, beeb}.

Lemma 4 shows that a potential exponential blow-up of thebmmof states of the

final DFA is inevitable in a replacement operation.
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(b) M

Figure 3.4: M, is PROJECTM", k + 2), M is PROJECT(M, , k + 1)

Lemma 4 For everyn > 1, there exists a DFAV/ with O(n) states accepting a lan-
guageL C {0,1}*#{0,1}* such that any DFA accepting the languafeobtained

from L by replacing# with 1 requires Og") states.

Proof 4 Letn > 1. LetL = {z#y | x,y € {0,1}*,|y| = n — 1}. Clearly, L can be
accepted by a DFA/ with O(n) states. Now.' = {zly | z,y € {0,1}*,|y| =n — 1}.
Below we show that any DFA acceptiig requires Og") states. Assume a DFA
acceptingl’. Letw be any binary string of length, i.e.,|w| = n. Lets(w) denote the
state that4 enters after processing. The proof is based on the fact that for anyand
w' st |w| = |w'| =nandw # W', s(w) # s(w’). Since there ar@™ distinct strings of

lengthn, there are2™ distincts(w)’s. Hence,A has at leasp” states.

In PHP programs, replacement operations sucheas replace can use different
replacement semantics suchlaasgest matctor first match Our replacement oper-
ation provides an over approximation of such more restticeplace semantics. For
the example above, in the longest match semantitenly acceptdch, in which the

longest matcla is replaced by:. In the first match semantics/ only accept$cch, in

63



Chapter 3. Automata-based String Analysis

which two matches anda are replaced with. Both of these are included in the result
obtained by our replacement operation. This over appratkimavorks well for our
benchmarks, and does not raise false alarms. Indeed, wehageved that most state-
ments we encountered yield the same result in the first argekirmatch semantics,
e.g.ereg _replace("<script *>"" ¢ _GET["'username")); , Which are

precisely modelled by our language-based replacemenatqer

3.3 Pre-image Computation

In this section, we discuss how to compute the pre-imagegriofysmanipulation
operations. We introduce three automata operati®r&CoNCATPREFIX( M, M.),
PRECONCATSUFFIX( M., M,), andPREREPLACE( M, M,,, M,). These automata oper-

ations are used to perform our backward analysis in Chapter 4

3.3.1 Concatenation

To compute the pre-image obncatenationwe first introduceoncatenation trans-
ducerthat specifies the relation among the values of the outpet@ncatenation-DFA
of M; and M) and the two inputs: prefixA(;) and suffix (/) of the concatenation

operation.
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A concatenation transducer is a DFA over the alphabet thedtists of 3 tracks. The
3-track alphabet is defined &8 = ¥ x (X U {\}) x (X U {\}), where) ¢ ¥ is a
special symbol for padding. We uséi] (1 < i < 3) to denote thé'" track ofw € 3.
All tracks are aligned.w[l] € X*, w[2] € X*\* is left justified, andw(3] € A*X*
is right justified. We useuv'[1],w'[2] € ¥* to denote the\-free prefix ofw][1] and
the \-free suffix ofw[2]. We sayw is accepted by a concatenation transduceif
w[l] = w'[2].w'[3]. Note that a concatenation transducer binds the valuedfefetit
tracks character by character and hence is able to idehgfgriefix and suffix relations
precisely.

Below we show two examples of concatenation transducers.«alindicate any
character irt. In Figure 3.5, the third track a¥/ can be used to identify all suffixes of
X that follow any string in(ab)™. In Figure 3.6, the second track of can be used to

identify all prefixes ofX that are followed by any string ifub)*.

[V]
V]
>Q

> Q

.> ©
.

@f
.

Figure 3.5: A TransduceiV/ for X = (ab)™.Z
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a
a A
A a
)
b
a A
a b
A
Figure 3.6: A TransduceiV/ for X = Y.(ab)™

In the following, we describe how to construct these traosdsiin general, how
to remove), and how to compute the pre-images of a concatenation epenasing
concatenation transducers.

Prefix: We first consider how to compute the pre-image of the prefex, Y. in
X =Y Z, given regular sets characterizing possible values of titeud nodeX and
the suffix nodeZ. Let M, = (Q.,%, 0., .0, Fy), M, = (Q., %, 6., ¢.0, F,) accept

values ofX andZ respectivelypRECONCATPREFIX(M,,, M) returnsM,,.
e Extend)M, to a 3-track DFAM’, so thatM" acceptw | w[l] € L(M,)}.

e Construct the concatenation transdutéthat accept§w | w[l] = w'[2].w'[3],

w'[3] € L(M,)}. M = (Q,%3,0, q, F), where:
- Q = {QO} U QZ!
— Va € ¥,(qo, (a,a,\)) = qo,
- VCL S 27 5(q07 (CL, )\7 CL)) = q, If 5Z(q207 a) = q,'
- Vq,¢ € Q.,Va € 2,0(q, (a,\,a)) = ¢ if 0.(¢q,a) =¢.
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— F={q@}UF.if g0 € F,. F = F,, otherwise.

e IntersectM’ with M. The result acceptau | w(l] = w'[2].w'[3], w[1] € L(M,),w'[3] €
L(M,)}. We then project away the first and the third tracks. Let tisaltebe

Mg// = <va XU {)‘}7 57 qgl/Ou ng)

e Remove) tails if any. We construcd/, = (Q,, X, 6y, g,0, F,) as below.

—Vq,q € Qy,Va € X,5,(q,a) = ¢'if 6,(q,a) = ¢
— F, = F, U F\,whereF\ = {q| 3¢ # sink,d,(q,\) = ¢'}.
Suffix: We next consider how to compute the pre-image of the sufex, X in
X := Y Z, given regular sets characterizing possible value& @nd the prefix node

Y. Again, letM, = (Q, X, 0z, ¢,0, Fy), My = (Qy, X, 0y, g0, F,) accept values ak’

andY” respectivelypPRECONCATSUFFIX( M, M,) returnsi/,.

e Extend)M, to a 3-track DFAM’, so thatM’ acceptw | w[l] € L(M,)}.

e Construct the concatenation transdukéthat accept$w | w[l] = w'[2].w’'[3], w'[2] €
L(M,)}. M ={(Q,>3,0, g0, F'), where:
- Q=0QyU{gs}
—Vg.q' € Qy,Va € £,0(q, (a,a, ) = ¢ if 5,(q,a) = ¢".
—Vqe F,,Va € X,0(q,(a,\ a)) =qs.
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- va’ S 275(Qf7 (av )\7a)) = Qf

_F:{Qf}UFy-

e Intersect)M’ with M. The result acceptau | w(l] = w'[2].w'[3], w[l] € L(M,),w'[2] €
L(M,)}. We then project away the first and the second tracks. Letethdtrbe

M; = < /Z,Z U {)‘}v(s;vq;Osz/>'

e Remove)\ heads if any. This final step can be done by construclihg =

<Q27 27 527 q:0, Fz) as beIOW

- Q.=qUQ..

—Vqe @, ,Ya€X,0,(q,a) = ifthere existsy € Q,d.(q,a) = ¢'.

— Vg € Q,,Va € ¥,0.(q,a) = ¢ ifthere existsy', ¢" € Q., 0.(¢",\) = ¢
andd’ (q,a) = 4.

— F, ={q}UF],if 3¢ € F andthere existg, ¢" € @), sothat’(¢", \) = ¢

andd’(¢,a) = ¢'. F, = I, otherwise.

3.3.2 Replacement

Recall that aeplace operation has three inputs: target, match, and replacement
We only consider the pre-image of the target given regular cearacterizing possible

values of the output, the match, and the replacement. Rhedst M, = REPLACH M,
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M,,, M,). We are interested in computinyg,, given M., M,,, and M,. An intuitive
solution ofPREREPLACE(M,,, M,,,, M,.) is REPLACH M., M,, M,,). However, since not
all matches ofM, that appear inV/, are due to the replacement operation, this may
break the soundness of our approach. Consider a simple é&xamp, M,, and M,
accept{aab}, {b}, and{a}, respectivelyM, = REPLACHM,, M,,, M,) acceptaaa}.

. = REPLACHM,., M,, M,,) accepts{bbb}. Since{bbb} does not includdaab}, this
intuitive approach is not sound. Instead, we conservatinedel PREREPLACE(M,,
M,,, M,) asrRepLACHM,, M,, M,, U M,). The result is an over approximation of
the pre-image of the target node. For the simple exampler= RePLACHM,,, M,,
M,, U M,) acceptsal|b)(a|b)(a|b), which includes allL(A/;) such thaRepPLACH M,
M,,, M,) acceptsaaa}.

DeletionrepLAcCHM,, M,,, M,) performs deletion if\/,, accepts the empty string.
That is, it will delete all the matches ib(1;). In this case, to compute the pre-image
of the target, we would not be able to find a matchiéf (an empty string in this
case) to replace witld/,,. In this caseRrepLACHM,, M,, M,, U M,) will return
M,. To deal with deletion, we conservatively generate a DWA,..,; that accepts
L(M,,) to be repeated many times between any charactés bf,). Formally speak-
iNg, Mipsert aCCEPtY wocowiCy - . . Wy Crwa i1 |Cocy - . . ¢ € L(M,), Vi, w; € L*(M,,)},
whereL*(M,,) denotes the closure @f(M,,). To constructM = (Q, ¥, 9, qo, F'), the

basic idea is insertingy/,, to each state af/,.. |@| is bounded byQ®,,| x |Q.|. Depend-
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ing on M,,, we consider two cases to insétt,,. First, lets,, = L(M,,) N X be the set

of accepted single characters.dlf, # (), we insert a self loop for each € ¢, for all

q € Qy ie, Vg e Qa € on,,0(q,a) =q. Second, letV], = (Q,,%,9.., ¢os Fr)

acceptL(M,,)\on,. If L(M]) # 0 (i.e., M, accepts some words that are not single

character), we insett// for all ¢ € Q., which can be done by setting (d)q, @) = ¢’

if there existsy’ € Q.,,0,.(q..0,a) = ¢, and (2)6(¢',a) = q if there existsy/, ¢" €
Lo (¢ a) =q"andq” € F),.

In sum,PREREPLACE(M,,, M,,, M,) returns:
e REPLACHM,, M,, M,, U M,) if M, accepts non empty strings, and

o M.t If M, accepts an empty string.

3.4 Widening Automata

In this section, we describe a widening operator on autothatawve use to accel-
erate the fixpoint computations in Chapter 4. This automptation was originally
proposed for arithmetic automata by Bartzis and Bultan [4].

Given two finite automatd/ = (Q, g0, X,0, F) and M’ = (@', ¢}, %, ', F'), we

first define the binary relatiory onQ U Q' as follows. Givery € (Q andq’ € @', we
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say thaly =y ¢’ andq’ =y ¢ if and only if

Vw € ¥ F(§*(q,w)) =+ < F(§"(¢,w)) = +. (3.1)

or q,q # sink A Jw € X*. §*(qo, w) = g AN 6" (qp, w) = ¢, (3.2)

whered* (¢, w) is defined as the state thaf reaches after consumingstarting from
stateq. In other words, condition 3.1 states thaty ¢ if Vw € ¥*, w is accepted by
M from ¢ thenw is accepted by’ from ¢/, and vice versa. Condition 3.2 states that
q =v ¢ if Jw € o, M reaches statgand M’ reaches stat¢ after consumingv from

its initial state. For; € @ andg, € @ we say that, =v ¢ if and only if

e . a=vdNp=vqd V geQ.q1=veAhgp=vq (3.3)

Similarly we can defing] =v ¢, for ¢; € Q" andg, € Q'.
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It can be seen thaty is an equivalence relation. Lét be the set of equivalence

classes ofEy. We defineM VM’ = (Q", qf, %, 0", F") by:

Q//:C

!

@G = cStg€Echq€Ec
§"(ci,o0) = ¢j st. (Vgee;nNQ.0(q,0) € ¢; V(g o) =sink) A
V¢ €e;in@Q.0(¢,0)€c;Vv((, o) =sink)

F'(¢) = +st.3ge FUF . qec. F'(c)=— o.w.

In other words, the set of states &fV M’ is the setC of equivalence classes &fy.
Transitions are defined from the transitionsidfand M’. The initial state is the class
containing the initial stateg andgq;. The set of final states is the set of classes that
contain some of the final states fhand /”. It can be shown that, given two automata
M andM’, L(M) U L(M') C L(MVM') [4].

In Fig 3.7, we give an example for the widening operatidni)) = {¢, ab} and
L(M'") = {e,ab,abab}. The set of equivalence classes’s= {q], ¢}}, whereq| =
{90, 4> 42, 45, 44} @ndq = {q1, ¢}, ¢4} L(MVM') = (ab)*,

As shown in our symbolic reachability analysis, we use thidening operator it-
eratively to compute an over-approximation of the leastdigpthat corresponds to

the reachable values of string expressions. To simplifydibeussion, let us assume a
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(@M (b) M’ (c) MV M’

Figure 3.7: Widening Automata
program with a single string variable represented with arteraaton) . Let M; rep-
resent the automaton computed at tttdteration and letl denote the initial value of
the string variable. The fixpoint computation will computsesjuencé/,, M, ..., M;,
..., WwhereM, = I andM; = M;_; U post(M;_1) where the post-condition for different
statements is computed accordingly (We will discuss in @drad). We reach the least
fixpoint M if at some iteration)/; = M;_,. Since we are dealing with an infinite state
system, the computation may not converge. In the followivgusel/,, to denote the
least fixpoint.

Given the widening operator, we actually compute a sequéfjcel/;, ..., M, ...,
that over-approximates the fixpoint computation whafeis defined as:V = M,,
and fori > 0, M = M/_,V(M]_, Upost(M/_,)). Let M denote the least fixpoint of

this approximate sequence. Then we have the followingtrggul

Definition 5 M, = <Q1, qdo1, X, 51, F1> is simulated byM2 = <Q2, qo2, X, 52, F2> iff
there exists a total functioff : @ \ {sink} — @2 such thatd,(q,0) = sink or
f(61(q,0)) = 62(f(k), o) forall g € Q1 \ {sink} ando € X. Furthermore,f(qo1) =

qo2 and for allqg € Fi, f(q) € Fo.
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Definition 6 M = (Q, ¢0, %, 6, F') is state-disjoint iff there is no statec () such that

there existv € ¥ and¢’,¢" € Q, ¢ # ¢", andd(¢', o) = gandd(¢”, o) = q.

Theorem 7 If (1) M, exists, (2)M,, is a state-disjoint automaton, and (3), is

simulated byM ., then (1)M/ exists and (2M. = M.

Consider a simple example where we start from an empty séigsimply con-
catenate a substring at each iteration. The exact sequendg M, ..., M;, ... will
never converge to the least fixpoint, wher@\ly) = {e} and L(M;) = {(ab)* | 1 <
k < i} U {e}. However,M,, exists andL(M,) = (ab)*. In addition, M, is a state-
disjoint automaton, andl/, is simulated by\/,,. Based on Theorem 7, these conditions
imply that once the computation of the approximate sequezaehes the fixpoint, the
fixpoint is equal toM,, and the analysis is precise. Computation of the approximate
sequence is shown in Fig 3.8/] = M, |V (M]_, U post(M]_,, R)), wherepost(M)
returns an automaton that accegisab | w € L(M)}. In this case, we reach the

fixpoint at the3" iteration andM! = M, = Mj.

@M, (b)M; (c) M (d) M;

Figure 3.8: An Approximation Sequence

A more general case that we commonly encounter in real pnogis that we start

from a set of initial strings (accepted By;,;;), and concatenate an arbitrary but fixed
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set of strings (accepted h\,,;;) at each iteration. Based on Theorem 7 one can con-
clude that if the DFAV that acceptd.(M;,;;) L(M,;)* is state-disjoint, then our anal-

ysis via widening will reach the precise least fixpoint whieteiminates.
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Symbolic Vulnerability Analysis

In this chapter, we describe how to perform symbolic reatinalnalyses on de-

pendency graphs. We are interested in answering two guestio

1. Can a node have an attack string as its value (with respecgiven attack pat-

tern)?
2. If it can, what values of its predecessors can generatattaek string?

If a node represents a sensitive sink in the program, thdaip@sinswer of the first
guestion identifies a vulnerable point of the program. I8 tase, the answer of the
second question characterizes the values of its predesdesxploit this vulnerability.
If a predecessor represents a user input, these valuedfydertiinerability signature;

i.e., a characterization of all possible inputs that candseluo exploit this vulnerability.

76



Chapter 4. Symbolic Vulnerability Analysis

We first define the dependency graphs that specify how inmvtsdl sensitive func-
tions. We then describe how to perform forward and backwamtbelic string analyses
on dependency graphs. These analyses are based on autonsitaations and oper-
ations in the previous chapter. Last, we propose a new suizettian technique to

tackle the interprocedural analysis.

4.1 Dependency Graph

A dependency graph specifies the data flow in the program. &byrispeaking, a
dependency grapty = (N, FE) is a directed graph, wher® is a finite set of nodes
andE C N x N is afinite set of directed edges. An edgg, n;) € E identifies that
the value ofn; depends on the value of. Each node: € N can be (1) anormal

node includingnput , constant , variable , or (2) anoperation node including

concat andreplace .Aninput node identifies the data from untrusted parties, e.g.,

an input from web forms. Aonstant node is associated with a constant value. Both
nodes have no predecessors.céhcat noden has two predecessors labeled as the
prefix node 4.p) and the suffix noder( s), and stores the concatenation of any value of
the prefix node and any value of the suffix node:inA replace node has three pre-
decessors labeled as the target nodé) (the match noden(m), and the replacement

node (u.r). It performs the following operations for each valuerof: (1) identifies
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all the matches (any value afm) that appear im.t, (2) replaces all these matches
in n.t with any value ofn.r, and (3) stores the replaced resultrin We define the
following: Forn € N, Succ(n) = {n’ | (n,n’) € E} is the set of successors of
n. Pred(n) = {n’ | (n’,n) € E} is the set of predecessorsf If n is aconcat
node, Pred(n) = {n.p,n.s}. If nis areplace node,Pred(n) = {n.t,n.m,n.r}.
For a dependency grapH, we also defineRoot(G) = {n | Pred(n) = 0} and

Leaf(G) = {n | Succ(n) = 0}.

4.2 \Vulnerability Analysis

Our vulnerability analysis takes the following inputs: gdedency graph (denoted
as(), a set of sink nodes (denoted &#&:k), and an attack pattern (denotedA&sk).
An attack pattern can be either taken from an attack patfeecifcation library or
written by the web application develope¥ink denotes the nodes that are associated
with sensitive functions that might lead to vulnerabibltigltt% is a regular expression
represented as a DFA that accepts the set of attack strings .

Our vulnerability analysis is shown in Algorithm 1. The ays$ consists of two
phases. In the first phase, we perform a forward symbolichadaitity analysis from
root nodes to compute all possible values that each nodeakar(lby calling forward

analysis at line 3). We use this information to collect vuaide program points, as well
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orithm 1 VULANALYSIS(G, Sink, Attk)

Alg
1

eoNO RN

P PR R RERRRRR
NPT ®®NREO

Init(POST PRE);
setVul := {};
FWDANALYSIS(G, POST);
for eachn € Sink do
tmp: = POSTn] N Attk;
if L(tmp) # () then
Vul :=Vul U{n};
PREn| := tmp;
end if
end for

2 if Vul # () then

BWDANALYSIS(G, POST PRE Vul);
for eachinput n do
Report the vulnerability signatufeREn];
end for
return "Vulnerable”;

: else

return "Secure”;

cend if

as the reachable attack strings of those vulnerable progoants (at line 4-10). If the

pro

to the second phase (by calling backward analysis at linelhZhe second phase, we
perform a backward symbolic reachability analysis fromvhimerable program points

to compute all possible values of their predecessors tHhatesult in attack strings at

gram is vulnerable; i.e., there exists some vulnerafgram points, we proceed

these vulnerable program points.

as a regular language and represented symbolically as alifEAdcepts the language.

To associate each node with its automata, we create two ataormctorOSTand

PR

Our analysis is an automata-based analysis. The set af staloes is approximated

E The size of both is bounded by |. POSTr| is the DFA accepting all possible
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values that node can take PREn| is the DFA accepting all possible values that node
n can take to exploit the vulnerability. Initially, all theaatomata accept nothing; i.e.,
their language is emptyVul C Sink is the set of vulnerable program points and
initially is set to an empty set.

At line 3, we first computd®OSTby calling the forward analysis. At line 4, for
each nodex € Sink, we generate a DF&mnp by intersecting the attack pattern and the
possible values of. If L(tmp) is not empty, we identify that is a vulnerable program
point and add it td/«!/ at line 7. In fact{mp accepts the set of reachable attack strings
at noden that can be used to exploit the vulnerability. Hence, wegssip to PRER|
atline 8. IfVul is not empty, we computeREby calling our backward analysis at line
12. (We will discuss the backward analysis later.) Note fbat. € Vul, PREn| has
been assigned. We report vulnerability signatures for @gzh node based oRRE
at line 13-15. IfVul is an empty set, we report that the program is secure witrectsp

to the attack pattern.

4.2.1 Forward Analysis

The forward symbolic reachability analysis is based oniadgted work queue algo-
rithm (Algorithm 2). We iteratively update the automatatee®OSTuntil a fixpoint is
reached. At line 6consTRucT(n) returns a DFA that: (1) accepts arbitrary strings if

is aninput node, (2) accepts an empty stringnifs avariable  node, or (3) accepts
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Algorithm 2 FWDANALYSIS(G, POST)
1: queueW @ := NULL;
2: WQ.enqueueRoot(G));
3: while W@ # NULL do

4: n:=WQ.dequeue();
5. if n € Root(G) then
6: tmp ;= CONSTRUCT(n);
7: elseifnisconcat then
8: tmp : = CONCAT(POSTn.p], POSTn.s));
9: elseifnisreplace then
10: tmp : = REPLACEPOSTn.t], POSTn.m], POSTn.r));
11:  else
12: tmp © =Uyepredmn) POST];
13:  endif

14:  tmp = (tmp UPOSTn])VPOSTn];
15:  if tmp € POSTn] then

16: POSTn] = tmp;
17: WQ.enqueuefucc(n));
18: endif

19: end while

the constant value if is aconstant node. At line 8 and line 10, we incorporate two

automata-based string manipulation operations [58]:

e concaT(DFA M;, DFA M,) returns a DFA M that accepts

{w1w2 | wy € L(Ml),wg € L(Mg)}

e RePLACHDFA M;, DFA M,, DFA M;) returns a DFAV that accept§w;ciwsaco
o WECE W41 | k > 0, w1 T1wexy . . CWETEWE41 € L(Ml), Vi, x; € L(Mg), W;

does not contain any substring acceptediby ¢; € L(Ms)}.

At line 14, we incorporate the automata widening oper&tdo accelerate the fixpoint

computation [4]. Upon terminatioROSTn| records the DFA whose language includes
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all possible values that can take. This information is then passed to our backward

analysis.

4.2.2 Backward Analysis

Backward analysis uses the results of the forward analyReticularly, we are
interested in computing all possible values of each notlet can exploit the identified
vulnerability. We need the pre-image computations on gtnranipulating functions
for backward analysis. We use the following automata-bagestations defined in

Chapter 3 for pre-image computation.

e PRECONCATPREFIX(DFA M, DFA M,) returns a DFA M; so that

M = coNcCAT(M;, Ms).

e PRECONCATSUFFIX(DFA M, DFA M;) returns a DFA M, so that

M = coNCAT(M;, Ms).

e PREREPLACE(DFA M, M,, Ms) returns a DFA M; so that

M = RePLACE(M{, My, M3).

The backward analysis is shown in Algorithm 3. Forc Vul, PREn| is set to
the intersection oPOSTn| and Attk before the backward analysis starts. The prede-
cessors ofi € Vul are the starting points of the backward analysis. Similaheo

forward analysis, the computation is based on a standark quezue algorithm. We
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Algorithm 3 BWDANALYSIS(G, POST PRE Vul)

1: queuelW @ = NULL;

2: for eachn € Vul do

3. WQ.enqueuePred(n));
4: end for

5: while W@ # NULL do

6: n:=WQ.dequeue();

7. tmp/ =NULL,

8: for eachn’ € Succ(n) do
9 if n’isconcat then

10: if nisn'.lthen

11: tmp := PRECONCATPREFIX(PREr'], POSTn'.r));
12: else

13: tmp := PRECONCATSUFFIX(PREnR/], POSTn'.1));
14: end if

15: else ifn’ isreplace then

16: if nisn'.tthen

17: tmp = PREREPLACE(PRE/], POSTrn'.m|, POSTn/'.r));
18: end if

19: else

20: tmp := PRER/];

21: end if

22: tmp' = tmp’ U tmp;

23:  end for

24:  tmp' :=tmp' N POSTn|;

25:  tmp' = (tmp’ U PREnN])VPREnR];
26:  tmp’ :=tmp' N POSTn|;

27 if tmp’ € PRHEn] then

28: PREn] := tmyp/;

29: WQ.enqueuelred(n));
30:  endif

31: end while
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first put the predecessors ofc Vul into the work queue as shown at line 2-4. We it-
eratively update th@RE array (by adding pre-images) until we reach a fixpointhéf t
successor of. is an operation node, the pre-image:p) of n is computed by calling
the defined automata-based functions. (line 11, 13, 17)e@ike, the pre-image of

is directly derived from the successorofline 20). Note thaPOSTn| records all pos-
sible values that can take. We use this information during the pre-image cdatioun

by restricting the arguments of operations such as repl&eunion the pre-images
of n astmyp’ at line 22. Since we are interested only in reachable valfies (ce.,
PREn|] C POSTn] by definition), we intersedtmp’ with POSTn| at line 24. Similar
to the forward analysis, we widen the result at line 25 to kcaée the fixpoint compu-
tation. At line 26, we intersecinp’ with POSTn| again to remove unreachable values
(that might have been introduced due to widening) at neddf ¢tmp’ accepts more
values tharPREn|, we updatéd®REn] at line 28 and add the predecessors @b the
working queue at line 29. Upon terminatidPREn]| records the DFA that accepts alll

possible values af that may exploit the identified vulnerability.

4.3 Inter-procedural Analysis

In this section, we propose a conservative summarizatichmigque to proceed the

inter-procedural analysis. During the forward fixpoint qartation if we encounter
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a call to a function that has not been summarized, we go totemia phase of the
analysis, which is summarization. Each function is sumpearivhen needed, and once
a function is summarized, the summary DFA is used to combetegturn values at the
call sites without going through the body of the function. ridg the summarization
phase, (recursive) functions are summarized as unalignéidtrack DFAS that specify
the relations among their inputs and return values. We fusd ljcyclic) dependency
graphs to specify how the inputs flow to the return values ajfonctions. Each node
in the dependency graph is associated with an unaligned-tradk DFA that traces the
relation among inputs and the value of that node. We itegbtisompute post images
of reachable relations and join the results until we reackoint. Upon termination,

the summary is the union of the unaligned DFAs associatdativé return nodes.

4.3.1 Summarization

In this section, we discuss how to compute function sumraawée assume parameter-
passing with call-by-value semantics and we are able tolaaedursion. Each function
f is summarized as a multi-track DFA, denoted\és that captures the relation among
its input variables and return values. Return values of atfan are represented with
an auxiliary output track. Given a functigiwith n parameters)/; is an(n + 1)-track
DFA, wheren tracks represent the input parameters and one tradk is the output

track representing the return values. We also use a spgodia \ ¢ X for padding.
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The alphabet of an-track DFA is a subset af U {A} x ... x XU {\} (n times). Once
M; has been computed, it is not necessary to reanalyze the Hofly lnstead, one
can intersect the values of input parameters withto obtain the return values. Our
approach consists of two steps: (1) Build a call dependeregyigand (2) Generate its

summary accordingly.

4.3.2 Call Dependency Graph

In addition to the dependency graph that we defined in Sedtibpnwe addcall
nodes to specify function calls incall dependency graph. Formally speaking, a call
dependency grapfi = (N, E) is a directed graph, wher¥ is a finite set of nodes and
E C N x N is afinite set of directed edges. An edgg, n;) € £ identifies that the

value ofn; depends on the value of. Each node: € N can be
e anormal node includingeturn ,input ,constant ,variable
e anoperation node includingconcat andcall

Similarly, areturn node is a sink node (no successors) that corresponds tora retu
statement. Aimput node corresponds to a parameter of the funcfidabeled ag .p;,
where: indicates the” parameter. Aconstant node is associated with a constant
value. Bothinput andconstant nodes have no predecessorscohcat noden has

two predecessors labeled as the prefix nadg) (@and the suffix noder( s), and stores
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the concatenation of any value of the prefix node and any \@lthee suffix node im.
A call node is associated with a functiem/ee. If callee hasm parameters, there are
m predecessors of@ll node as its arguments (labeledras,, . . ., n.a,,).

Given a functionf, the call dependency gragh; specifies how the inputs flow
to the return values irf. Assume that we want to compute the summary of a given
functionmain. Let F' denote the set of related functions that includein and its
callees (including nested function calls). Our first step is gernarathe dependency
graph for eactf € F', which is done by a bottom-up dependency analysis stantamg f
the return statements.

Let the call dependency graph pbe G, = (N, Ef). To simplify the description,
we uselnput(Gy) to denote the set of itaput nodes('all(G) to denote the set of its
call nodes, andReturn(Gy) to denote the set of iteturn  nodes. For each function
f (callee), we us&'aller(f) to denote the set afall nodes that are associated with
f.

Our second step is generating a composed dependency Grafriom {G; | f €

F}. Gr = (Np, EF) is constructed as follows:

° NF = UfeFNf.

e Fr=FE,ULE;UE,, where

— By ={(n,n) | f € F, (n,n) € Ep, 1’ & Call(G)}.
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f(X)

begin

1. goto 2, 3;

2: X: = call f(X.a);
3. return X;

end

Figure 4.1: A Simple Function

— E; = {(n.a;,callee.p;) | f € F,n € Call(Gy)}. callee.p; is theinput
node that identifies thg, parameter of the functiotullee associated with

n.

— E, ={(n,n') | f € F,n € Return(Gy),n" € Caller(f)}.

Briefly, G connects the set &f; by (1) redirecting the predecessorsall nodes
to theinput nodes of their callees, and (2) adding edges that dietotn  nodes of
callees to thecall nodes of their callers. For € Np, Succ(n) = {n'| (n,n’) €
Er} is the set of successors afand Pred(n) = {n’ | (n/,n) € Er} is the set of
predecessors af. We also defindnput(Gr) = {n | Pred(n) = 0}. Note that
after composition, aeturn  node may have successors andrt  node may have
predecessors.

Consider a simple example given in Figure 4.1. Functidms one paramete¥,
which non-deterministically returns its input (goto 3) oakes a self call (goto 2) by
concatenation its input and the constantLet ' = {f}. G; andGp are shown in

Figure 4.2.
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const

return return

Figure 4.2: The Dependency Graph&:; andG g
4.3.3 Generating Function Summaries

In this section, we describe how to compute a summarggngiven two sets of
nodes/n andOwut. If we aim to summarize functiori (f € F), In C Ny is the set
of itsinput nodes andut C N; is the set of itgeturn  nodes inGy. Eachn € In
recognizes one input variable, denoted\as and the summary diG , In, Out) is an
unaligned |In|+ 1)-track DFA. The firstIn| tracks are labeled as,, for eachn € In.
The extra track, labeled as,, is used to record the output values.

The algorithm to generate the summary is shown in AlgorithnhW use a DFA
vector S to record the reachable summary at each node. We initigliz¢ line 1.
Initially, for eachn € In, S[n| is a 2-track (associated with,, and X,) DFA that
accepts the identity relation oX,, and X,,. For eachm € Input(Gg)\In, S[n]is a 1-
track (associated witl',) DFA that accept&* if n is avariable  node, or a constant
value if n is aconstant node. For the restn( ¢ In), S[n] accepts an empty set.

Similar to Algorithm 2, the algorithm is a standard work geelgorithm incorporating
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the automata widening operator. We iteratively update timersary at each node until

reaching a fixpoint.

Algorithm 4 GENERATESUMMARY (Gf, In, Out)
1. INIT(S, Input(GFr), In);

2: queuelW @ := NULL;

3: for n € InU Input(Gr) do

4:  WQ.enqueuefucc(n));

5: end for

6: while WQ # NULL do

7:  n:=WQ.dequeue();

8: if nisconcat then

9 tmp : = CONCATSUMMARY (S[n.p], S[n.s]);
10: else
11: tmp : = Upepredm) SIT;
12:  endif
13:  tmp = (tmp U S[n])VS|n|;
14:  if tmp Z S[n] then
15: S[n] == tmp;
16: WQ.enqueuefucc(n));
17:  endif

18: end while
19: return {J,,cou: SNl

Below we only consider one string operation: concatenate.cev extend our ap-
proach to other string operations, e.g., replacement, mgusansducers [38]. Note
that summaries may have tracks that are associated witreliff variables. Below
we discuss how to computBoNCATSUMMARY (57, Ss2) whereS; represents the sum-
mary at the prefix node ansl, represents the summary at the suffix node. fet=
(@1, %1, 01, I1, F1) be a multi-track DFA whose tracks are associated with theket
input variablesy; and X, whereX; = (UMl x 2. Let Sy = (Qq, X, 62, I, ) be

a multi-track DFA whose tracks are associated with the setpaft variablesy, and X,
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whereX; = (X U A2l x 3. We first extends; andS, to the DFAs that have common
tracks, so that both are associated withJ y, and X,.

The extension of}, denoted as}, is (Qy, ¥4, 07, I1, Fy), where
o ¥} = (D uNhal x Abe=al x % and

o 5(q,0) = ¢ if 61(q, B) = ¢ anda[X] = B[X]if X € x1 UX,, anda[X] = A,

otherwise.
The extension of,, denoted as?, is (Q2, 3, 03, I», L), where

o 13 = Al x (Suheal x %, and

o 0)(q,) = ¢ if 53(q,3) = ¢ anda[X] = Nif X € x;, anda[X] = 3[X],

otherwise.

Intuitively, we extendsS; (prefix) by allowing only\ in the added tracks, while we
extendS; (suffix) by allowing only\ in both the added tracks and the common tracks
that are also associated with. CONCATSUMMARY (S, Ss) returns theg|x; U xo| + 1)-
track DFA that accepts the concatenatiortgfandS;.

To deal with the union or widening operator 6 and.S, that are associated with
different variables, we extend both tracks o U x» and X, by allowing arbitrary
symbols in the added tracks (i.e., the value of an unspediféedk is not restricted).
We then perform union or widening on these extension DFAsalFi, the summary of

(GF, In,Out) is the union of the DFAs that are associated with nodé&gun
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(2, %) (A, a)

B!

Figure 4.3: M;: The Summary DFA

In sum, to summarize a specific functignwe first find the set of related functions
F. The summary of , denoted ad/;, is the result ofSENERATESUMMARY (G, In, Out),
whereln = {n | n € Input(Gy), wheren is not aconstant node}, andOut =
{n|n € Return(Gy)}. The alphabet of/; is (X U \)//"l x ¥. Letwli] be the value

of thei’” track ofw. For anyw € L(M;), we have the following:

e 1 <i<|In

, wli] € A*X*A*, and
o w[|In|+1] € ¥*.

Consider the previous simple example. The generated sunmahown in Fig-
ure 4.3. My is a2-track DFA, where the first track is associated with its pagam
ter X,,, and the second track is associated wih representing the return values.
The edge(, X)) represents a set of identity edges; i.e.y(f, (X,X)) = ¢ then
Va € ¥,0(q,(a,a)) = ¢'. The summary DFAVM; precisely captures the relation

X, = X,,.a" between the input variable and the return values.
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4.3.4 Composing Function Summaries

In this subsection, we describe how to use a function sumnmagompute the
pre-image and the post-image of a function call. Note thatshmmary DFAs are
multi-track DFAs. To bridge the gap between single-traclABFaccepting the values
of one variable) and multi-track DFAs (accepting the relasiamong many variables),
we implemented two mapping functions between a single«matomaton and a multi-
track automatonExtract()M, i) takes a multi-track DFAV/ and returns a single-track
DFA that accepts the values of thé track; i.e.,L(M’) = {wli] | w € L(M)}. Ex-
tend(M, i, n) takes a single-track DFA/, an index;, and returns an-track DFA that
acceptsw | w[i] € L(M),V1 < k < n,wlk] € N*3*\*}.

To compute the post-image of a function call, we (1) complugesingle-track DFA
that accepts the values of each argument, (2) extend thiegnagk automata to the
multi-track automata accordingly, (3) intersect the mtriick automata with the sum-
mary automaton, (4) extract the output-track from the tesitthe intersection.

Consider our simple example and a function gdlX). Let M, be the DFA ac-
cepting the values oK. posT(f(X)) returnsExtract(M’, 2), whereM!’ is M ;N Ex-
tend(M,, 1,2). AssumingL(M,) = {b}, posT(f(X)) returns)M’ such thatL(M') =
ba*. In this case, using the summary to compute the post imagesegise as travers-

ing the function body and iteratively adding the post imaggl hitting the fixpoint.
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4.4 Experiments

To evaluate our approach, we first performed forward anslgsd compared the
results with another string analysis tool: Saner, devaldpeBalzarotti et al. [1] (we
discuss this tool in related work). We then performed foohand backward analyses

and reported the vulnerability signatures that we gendrate

4.4.1 Forward Analysis

We experimented with our string analysis tool on a numbeesf tases extracted
from a set of real-world, open source applicationtyEasyMarket-4.1  (a shopping
cart program), PBLguestbook-1.32 (a guestbook application),
Aphpkb-0.71  (a knowledge base management systeBigggIT-1.0  (a blog en-
gine), andoroManager-0.72  (a project management system). We believe that these
programs are representative of how web applications usdaregxpression based re-
placement functions to modify their input (in particulara security context, to perform
input sanitization), and, thus, are good test cases foremlmique. These vulnerable
functions were identified and sanitized by Balzarotti eira[l, 2].

Table 4.1 shows the results of applying our string analysi$tb these programs.
The first column of Table 4.1 identifies the application, tivedtion that was analyzed

and the line number for the vulnerable operation. Al: MyHBéasket-4.1, trans.php
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App. | Version | Result| Final DFA | Peak DFA Time Mem
state(bdd)| state(bdd) | user+sys(sec) (kb)
Al 0 y 17(133) 17(148) | 0.010+0.002] 444
m n 17(132) 17(147) | 0.009+0.001| 451
A2 0 y 42(329) 42(376) 0.019+0.001| 490
m(5) n 77(649) 77(725) 0.065+0.060| 1532
m(20) n 182(1609)| 182(1790) | 1.082+0.015| 12047
m(100) n 742(6729)| 742(7470) | 101.2+0.305| 395921
m(widen)| n 49(329) 42(376) 0.016+0.002| 626
A3 0 y 842(6749)| 842(7589) | 2.57+0.061 | 13310
m n 774(6192)| 740(6674) | 1.221+0.007| 8184
A4 0 y 27(219) | 289(2637) | 0.045+0.003| 2436
m n 18(157) | 1324(15435) 0.177+0.009| 11388
A5 0 y 79(633) 79(710) 0.499+0.002| 3569
0 y 126(999) | 126(1123)
0 y 138(1095)| 138(1231)
m n 79(637) 93(1026) | 0.391+0.006| 5820
m n 115(919) | 127(1140)
m n 127(1015)| 220(2000)
A6 0 y 387(3166)| 2697(29907) 1.771+0.042| 13900
m n 423(3470)| 2697(29907) 2.091+0.051| 19353

Table 4.1: The Forward Experimental Results of Stranger.
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(218). A2: PBLguestbook-1.32, pblguestbook.php (12103: RBLguestbook-1.32,
pblguestbook.php (182). A4: Aphpkb-0.71, saa.php (87).BlbggIT 1.0, admin.php

(23,25,27). A6: proManager-0.72, message.php (91). Tier amformation about the
table is listed as below: Version: o-original, m-modifieded8lt: y-the intersection
of attack strings is not empty (vulnerable), n-the intetisecof attack strings is empty
(secure). Final DFA is the minimized DFA at the checked paagpoint, and Peak DFA
is the largest DFA observed during the fixpoint iteratiortats” denotes the number of
states of a DFA. "bdd” denotes the number of bdd nodes thaised to symbolically

encode the transitions of a DFA.

For each test case we analyzed the original version of thgramo (that contained
the vulnerability) and a modified version which was modifiedhvthe intention of
fixing the vulnerability. Our analysis is quite efficient atattes less than three seconds
for all benchmarks. Since our string analysis tool is soundientifies the existing
vulnerabilities correctly in each case. However, sincecaunservative approximations
can lead to false positives, the fact that our tool identdig®ssible vulnerability does
not mean that it is guaranteed to be a vulnerability.

The impressive part of our results is that for all the modifsedgram segments
our approach is able to prove that the sanitization is ctrrébis indicates that the

approximations we use work quite well in real-world appiicas.
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We also experimented with Saner [1] to check these benctendike results are
shown in table 4.2. "n” denotes the number of warnings ratse&aner; for "type”,
"xss” denotes cross site scripting vulnerability, "sql’miges SQL injection vulnera-
bility, and "reg” denotes regular expression error. Coregdato Table 4.1, our tool
performs slightly better than Saner in terms of time. It iterasting to note that
there are some conflicts on the verification results. Sandonpes bounded verifi-
cation and approximates the value of out of bound computat®arbitrary strings.
This rough approximation raises a false alarm while cherkire sanitized version of
PBLguestbook-1.32  (1210). While checkin®loggIT-1.0 , Saner, in the default
configuration, assumes that data from the database aresdnivhile we assume that
these data may be tainted and model them the same as datadess $aner raises
an error for the sanitization routine PBLguestbook-1.32 (182) since it does not

support the syntax of the replace operator used in thatmeuti

4.4.2 Forward+Backward Analysis

We selected four vulnerable web applications: NiyEasyMarket-4.1  (a shop-
ping cart program), (2)PBLguestbook-1.32 (a guestbook application), (3)
BlogglT-1.0  (a blog engine), and (4roManager-0.72  (a project management
system) to generate their vulnerability signatures. Inld&@h3, we show some basic

data about these dependency graphs: #sinks indicates thieenwf sensitive sinks,

97



Chapter 4. Symbolic Vulnerability Analysis

| Application | Version| n(type) | Time(sec)|

Al o] 1(xss) 1.173
m 0 1.139
A2 o] 1(sql) 1.264
m 1(sql) 1.665
A3 0] 1(req) 4.618
m 1(reQ) 4.331
A4 o] 1(xss) 1.220
m 0 1.622
A5 o] 0 0.558
m 0 0.559
A6 o] 1(xss) 6.980
m 0 7.201

Table 4.2: The Experimental Results of Saner.

#inputs indicates the number ofput nodes. Since the application is identified as
vulnerable by taint analysis, both values are at least otiterais is the sum of the
length of constant strings that are used in the graph. Natellese dependency graphs
are built for sensitive sinks where unrelated parts have Baeunk. Hence, their sizes

are much smaller than the original programs.

| | n(type) | #nodes| #edges| #sinks| #inputs| #literals |

1| 1(xss) 21 20 1 1 51
2| 1(sql) 41 44 1 2 99
3| 1(xss) 32 31 1 1 142
4| 3(xss) | 119 117 3 3 450

Table 4.3: The Basic Data of Dependency Graphs

In our experiments, we used an Intel machine with 3.0 GHzgssor and 4 GB

of memory running Ubuntu Linux 8.04. We use 8 bits to encodshezharacter in
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ASCII. The performance of our vulnerability analysis iswsiman Table 4.4. The back-
ward analysis dominates the execution time from 77% to 96&&ing a closer look,
Table 4.5 shows the frequency and execution time of eacheo$titng manipulating
functions.PRECONCAT (including prefix and suffix) consumes a large portion, jgarti
larly for (4) proManager-0.72  that has a large size of constant literals involved. One
reason is generating concatenation transducers duringpthputation. Note that the
transducer has 3-tracks and uses 24 bits to encode its alplb the other hand, our
computation does not suffer exponential blow-up as expeftteexplicit DFA repre-
sentation. This shows the advantage of using symbolic Digfesentation (provided

by the MONA DFA library), in which transition relations oféhtDFA are represented

as Multi-terminal Binary Decision Diagrams (MBDDS).

| | Total time(s)| Fwd time(s)| Bwd time(s)| Mem(kb) |

1 0.569 0.093 0.474 2700
2 3.449 0.124 3.317 5728
3 1.087 0.248 0.836 18890
4 16.931 0.462 16.374 116097

Table 4.4: Total Performance

CONCAT \ REPLACE‘ PRECONCAT \ PREREPLACE
#operations/time(s)

1| 6/0.015| 1/0.004 | 2/0.411 1/0.004
2| 19/0.082| 1/0.004 | 11/3.166 1/0.0
3| 22/0.038| 4/0.112 2/0.081 4/0.54
4| 14/0.014| 12/0.058| 26/11.892 | 24/3.458

Table 4.5: String Function Performance
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Finally, Table 4.6 shows the data about the DFAs that Straggeerated. Reach-
able Attack is the DFA that accepts all possible attack gttt the sink node. Vulnera-
bility Signature is the DFA that accepts all possible malis inputs that can exploit the
vulnerability. We closely look at the vulnerability signet of (1)MyEasyMarket-4.1
The signature actually accept$ <a* sa* ca* ra* i a* pa* t o* with respect to the
attack patterrc* <script  X*. «is the set of characters, e.g,,that are deleted in the
program. An input such adscript ~ can bypass the filter that rejec¢fs$ <script >*
and exploit the vulnerability. This shows that simply fiitey out the attack pattern
can not prevent its exploits. On the other hand, the expémitlze prevented using our
vulnerability signature instead.

It is also worth noting that both vulnerability signaturé$2) PBLguestbook-1.32
accept arbitrary strings. By manually tracing the program find that both inputs are
concatenated to an SQL query string without proper satibizaSince an input can be
any string, the pre-image of one input is the prefix 6fOR '1'='1" Y* that is equal
to X*, while the pre-image of another input is the suffix>6f OR '1'="1"  >* that is
also equal ta2*. This case shows a limitation in our approach. Since we donoatel
the relations among inputs, we can not specify the conditiahone of the inputs must
containOR '1'="1" . In the next Chapter, we will propose a novel algorithm to-gen

eraterelational vulnerability signatureso tackle this issue. We will also describe how
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to generate effective patches for vulnerable web apptinatfrom these vulnerability

signatures.
Reachable Attack (Sink}) Vulnerability Signature (Input
#states #bdd nodes | #states #bdd nodes
1] 24 225 10 222
2| 66 593 2 9
2 9
3| 29 267 92 983
4| 131 1221 57 634
136 1234 174 1854
147 1333 174 1854

Table 4.6: Attack and Vulnerability Signatures
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Sanitization Synthesis

We use the presented automata-based static string an@glkigsques to automati-
cally generate sanitization statements for patching valvle Web applications. Given
the vulnerability signatures, we construct sanitizatiatesnents that 1) check if a given
input matches the vulnerability signature and 2) modifyitipt in a minimal way so
that the modified input does not match the vulnerability atgre. Our approach is ca-
pable of generatingelational vulnerability signatures (and corresponding sanitizatio
statements) for vulnerabilities that are due to more thanioput.

Our approach works as follows. We start with a set of attadtepas (regular ex-
pressions) that characterize possible attacks (eithentikm an attack pattern speci-
fication library or written by the web application develope&iven an attack pattern,

our string analysis approach works in three phases:
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Phase 1: Vulnerability Analysis: First, we perform the presented symbolic for-
ward analysis on single-track automata to determine if tb application is vulnera-
ble to attacks characterized by the given attack patterrgandrate a characterization
of the potential attack strings if the application is vubige.

Phase 2: Vulnerability Signature Generation:We then project these attack strings
to user inputs by computing an over-approximation of allgilwle inputs that can gen-
erate those attack strings. This characterization of pieignharmful user inputs is
called thevulnerability signatureor a given attack pattern. We use two different vul-
nerability signature generation techniques: (1) for a grability that is caused by a
single user input, we apply the presented backward anaypssgle-track automata to
generate the corresponding vulnerability signature;d2afvulnerability that is caused
by multiple user inputs, we propose a novel forward analgsisnulti-track automata
to generate the relational vulnerability signature.

Phase 3: Sanitization Generation:Once we have the vulnerability signature, we
automatically synthesize patches that eliminate the valrikty. We use two strategies

for patching:

e Match-and-block: We insert match statements to vulnerable web applications
and halt the execution when an input that matches a vulriyasignature is

detected.
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e Match-and-sanitizeWe insert both match and replace statements to vulnerable
web applications. When an input that matches a vulnerglsignature is de-
tected, instead of halting the execution, the replace reaté is executed. The
replace statement deletes a small set of characters frompghéesuch that the

modified string no longer matches the vulnerability signatu

We use two different techniques for vulnerability signatgeneration. In the first
one, we adopt the vulnerability analysis presented in Graptwhere we start with the
DFA that represents the intersection of the the forward limlbeachability analysis
at the sink and the attack pattern. Then we use a backwardadigméachability anal-
ysis to compute an over-approximation of all possible isghtt can generate those
attack strings. The result is a DFA that characterizes thge&i@us user inputs, i.e., the
vulnerability signature.

However, this approach is not effective for vulnerabisittbat are due to more than
one input. For example, if an attack string is generated mcatenating two input
strings, it may not be possible to prevent the attack by biarknly one of the inputs.
Since our automata-based vulnerability signature geiearggchnique is sound, in such
cases the generated vulnerability signature will inclutieassible input strings, mean-
ing that any string coming from one input can lead to an atifatks concatenated with
a suitably constructed string coming from another inputingsuch a vulnerability

signature for automated patch generation would mean bigaii erasing all the user
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input, which would make the web application unusable. Haxaéwe do an analysis
that keeps track of the relationships among different gtviariables, then we may be
able to block only the combinations of input strings thatlleman attack string.

We use multi-track deterministic finite automata (MDFA) taplement a relational
vulnerability signature generation algorithm. A mulitk automaton has multiple
tracks and reads one symbol for each track in each transitgoyna multi-track automa-
ton recognizesuples of stringsather than a single string. We use a forward symbolic
reachability analysis using MDFA to compute if any possihjgut values can lead to
an attack string at a sink. During the forward analysis, egaterated MDFA has one
track for each input variable and represents the relatitwdzen the inputs and the pro-
gram variable at that program point. Intersecting the MDFEA aink with the attack
pattern and projecting the resulting MDFA to the input tiagkves us the vulnerability
signature. The vulnerability signature MDFA accepts alhbinations of inputs that
can exploit the vulnerability.

Once we generate the vulnerability signature we generatetnaad replace state-
ments based on the vulnerability signature. The matchra&iebasically simulates
the vulnerability signature automaton and reports a méattieiinput string is accepted
by the automaton. In the match-and-block strategy thid iwalneed, and we halt the
execution if there is a match. In the match-and-sanitiztexy, however, we also need

to generate a replace statement that will modify the inpuhabit does not match the
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vulnerability signature. Since inputs that match the vidbdity signature may come
from normal, non-malicious users (who, for example, mayehascidentally typed a
suspicious character), it would be preferable to changenth in a minimal way. We

present an automata theoretic characterization oftimigmalityand show that solving
it precisely is intractable. We show that we can generatepkace statement that is

close to optimal in practice by adopting a polynomial-timi@+out algorithm.

5.1 Sanitization Generation

In this section we describe how we generate sanitizatidarsints given a vulner-
ability signature that is characterized either as a stahsiagle-track automaton (DFA)
or a multi-track automaton (MDFA). We discuss the detailswaherability signature
generation in later sections.

In order to implement the match-and-block and match-amitiga strategies we

need to generate code for theatchandreplacestatements.

Match Generation: There are two ways of doing matching: Regular-expression-
based matching:Generate a regular expression from the vulnerability sigeaau-
tomaton and then use the PHP functimeg_match to check if the input matches
the generated regular expression, oARfomata-simulation-based matchinGener-

ate code that, given an input string, simulates the vulnksabignature automaton to
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determine if the input string is accepted by the vulnergbdignature automaton, i.e.,
if the input string matches the vulnerability signature.

We first tried the regular-expression-based matching ambroHowever, this ap-
proach ends up being very inefficient due to the implemeamatif preg_match in
PHP. The alphabet of the vulnerability signature automatesists of the 256 ASCII
characters and the vulnerability signature automata caee adarge number of states
if there are a lot of complex string manipulation operationthe code. In one of the
examples we analyzed the vulnerability signature autometasists of 811 states. The
size of the regular expression generated from the vulné@sefignature automaton can
be exponential in the number of states of the automaton [BBnce, we may end
up with very large regular expressions. Moreover, gheg_match function in PHP
does not only check if a given input matches the given regetgression but it also
computes all the substrings that match the parenthesizeekgressions of the given
regular expression. Since the DFA to regular expressiomersion algorithm can gen-
erate a lot of parenthesized subexpressions, this mearthéymeg_match function
will do a lot of unnecessary extra work during the match, ltesy in an inefficient
match implementation.

In order to do efficient matching we use the DFA simulatioroalkpm which has
linear time complexity [29]. Given the vulnerability signee DFA, we generate a func-

tion that takes a string as input, simulates the DFA, andmsttrue if the DFA accepts
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the string or false otherwise. We insert the match functimtgad of thepreg_match
statements shown in the patches in Figures 1.7 and 1.12.

Relational vulnerability signatures are characterizesali-track automata (MDFA).
Given a vulnerability signature MDFA, one approach coulddogenerate one DFA for
each input (by erasing the other tracks using homomorphésmd)then use the DFA
simulation algorithm on each track. However, as we mentlanesection 1.3, a rela-
tional vulnerability signature characterizes a relatiomoag multiple inputs and may
not be characterizable as constraints on individual traEks the vulnerability signa-
ture MDFA shown in Figure 1.11 projecting to each track leadsiatching all inputs.

To address this problem, we can try to generate a DFA from tBéMthat rec-
ognizes the concatenation of the inputs, i.e., given an MBfa recognizes tuples of
strings(z, y) we can try to generate a DFA that recognizes the strings ifotine x.y.
Unfortunately, this type of MDFA to DFA conversion cannot d@ne precisely since
the language recognized by MDFA may not be regular when irigem as concatena-
tion of its tracks. For example, it is easy to construct a traek MDFA that accepts
the set of tupleg(z,y)|x = y}. If we write the same constraint in single-track form
by concatenating the strings for two tracks we get thg set|x = y}. This set is not
regular, and, hence, cannot be represented as a DFA. Hgi@vany given bound on

the length of the strings, we can generate a DFA that is prdoisthe strings within
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that bound but may accept more strings than the correspoMiidFA for strings that
are longer than that bound.

The most precise solution for match generation from vulbiéta signature MDFA
is to generate code that simulates the MDFA directly andisitise option we use. The
MDFA simulation algorithm is similar to the DFA simulatiomgarithm, it just keeps
a separate pointer for each input string to keep track of hawhrof each track is
processed at any given time and advances the state of the NdB$&d on the tuples of
input symbols and the transition relation of the MDFA. Thaugiation time for MDFA

is linear in the total length of the input strings.

Replace Generation:For the match-and-sanitize strategy, our automated satidn
generation algorithm takes the vulnerability signaturaiaton as input, and it gen-
erates a replace statement that modifies a given input strisgch a way that the
modified string is not accepted by the vulnerability signa@mutomaton (meaning that
the modified string cannot cause an attack). We modify thatisipings by just deleting

a set of characters using theeg_replace  function (our approach can be extended so
that escape characters can be inserted in front of a set idatbes rather than deleting
them). In order to prevent extensive modification to the tnghe set of characters to
be deleted should be as small as possible. The question,ithérow do we identify

the set of characters to be deleted.
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First, we will formalize this problem in automata-theocetterms. Let
M = (Q,%,6,q, F) denote a DFA wheré) is the set of states; is the alphabet,
0 C @ x X x @Q is the transition relationy, € @ is the initial state, and” C @ is the
set of accepting stated.(M) denotes the language acceptedMly We sayS C X
is analphabet-cutof M, if L(M) N Ls = (), whereLg = (X \ S)* is the set of all
strings that do not contain any charactesinThemin-alphabet-cuproblem is finding
the alphabet-cuf,,;,, such that for any other alphabet-ctit |S,.;,| < |S|. For the
example automaton in Figure 1.8 the min-alphabet-c{ti%.

The min-alphabet-cut problem can also be stated in grapbréiic terms. Given a
DFA M, anedge-cubf M is a set of transitiong’ C ¢ such that if the set of transitions
in £/ are removed from the the transition relatiorthen none of the states il are
reachable from the initial statg. Let S denote the set of symbols of the transitions in
E. If E'is anedge-cubf M thenSy is analphabet-cubf M. Hence, finding the min-
alphabet-cut is equivalent to finding an edge-cut with mummset of distinct symbols.
For the example automaton in Figure 1.8 the min-edge-citlis<, 2)}, which also
corresponds to the min-alphabet-cut.

Note that, if the vulnerability signature DFA accepts thegnstring then there will
not be any edge (or alphabet) cut since the initial state evbalan accepting state. For
the rest of our discussion we will assume that the DFA for thieerability signature

does not accept the empty string (we can easily handle tles easere it accepts the
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empty string by first testing if the input string is empty am@n inserting a single

character to the input if it is).

Theorem: The min-alphabet-cut problem is NP-hard.

We prove this by a reduction from the vertex cover problemefex cover of a graph
G = (V, E) is a set of vertices such that each edge of the graph is indidest least
one vertex of the set. The problem of finding a minimum verwec is known to be
NP-complete. Vertex cover problem can be reduced tartimealphabet-cuproblem
as follows. GiverG = (V, F') we build an automaton/ = (Q, ¥, 9, qo, F') with the set
of states) = F U {qo, qr}, the initial statey,, set of final state¢” = {qr}, alphabet
¥, =V, and the transition relatiohdefined as followse = (v,v’) € E = (qo,v,€) €

d N (e, v, qr) € §. Themin-alphabet-cufor the automatord/ is the minimum vertex
cover for the grapld.

Since the min-alphabet-cut problem is intractable, rathan trying to find the
optimum solution we can consider using efficient heurigtie$ give a reasonably small
cut that is not necessarily the optimum solution. In factyéhis a very good candidate
for a heuristic solution. Given a DFA/, amin-edge-cubf M is an edge-cuk,,;, such

that for any other edge-cut,

Ein| < |E|. Note that the min-edge-cut minimizes the
number of edges in the edge-cut whereas the min-alphabetioimizes the set of
symbols on the edges in the edge-cut. Interestingly, evangtinthe min-alphabet-cut

problem is intractable, there is an efficient algorithm fomputing the min-edge-cut.
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We use the Ford-Fulkerson’s max-flow min-cut algorithm [ifind a min-edge-cut
E,.. where the complexity of the algorithm @3(|5]?). Note that|S,.in| < [Eminl;
i.e., the min-edge-cut provides an upper bound for the nphabet-cut. So if the min-
edge-cut is small then the set of distinct symbols on the £dfthe min-edge-cut will
give us a good approximation of thg,;,. In our experiments this heuristic has been
very effective and we typically obtained alphabet-cutswaitly one to three symbols.

Once we compute an alphabet-gutising our heuristic, we generatereg_replace
statement that deletes the symbolsSifrom the input, making sure that the resulting
string does not match the vulnerability signature.

The definition of the min-alphabet-cut problem is slightlffetent for multi-track
automata. Given an-track DFA M over(X U \)", we say am-tupleS = (5,...5,),
whereS; C ¥, is an alphabet-cut o7, if L(M) N Lg = (), whereLg = (((X\ S1) U
A) x ... ((Z\ S,) UN)))*is the set of all strings whos#" track does not contain
any character irp;. Let|S| = |Si|+ ...+ |S,|. Themin-alphabet-cuproblem for a
MDFA M is finding the alphabet cui,,;, of M, such that for any alphabet cttof
M, |Spin| < |5].

Since min-alphabet-cut is intractable for single-track®Di is also intractable for
multi-track DFA. We use min-edge-cut also as an approxiomafior min-alphabet-cut
for MDFA. When we find a min-edge-cut, we compute the corraspay multi-track

alphabet-cut by computing a set of symbols for each track dleating the set of
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distinct symbols (other thai) on each track on the edges in the min-edge-cut. The
resulting alphabet cut is an-tuple S = (Si,...,5,), where eachs; is the set of
symbols for track, i.e., inputi. For the example automaton in Figure 1.11, the min-
edge-cut is{(1, (<, A),3), (1, (A, <),4),(2, (A, <),4)}, which also corresponds to the
min-alphabet-cut{<}, {<}).

Once we compute the alphabet-cuts, we generatepmtg replace  statement
for each input variable, that deletes every symbol %} from the inputi making sure

that the resulting input strings do not match the vulneiigtsignature.

5.2 Relational Signatures

In this section, we discuss how to genenaiational vulnerability signaturewhere
the vulnerability signature involves multiple input vdsies with respect to one sink.
Formally speaking, a relational vulnerability signatdreof » inputs is a MDFA over
then-track alphabek™, defined agX x {A}) x... x (X x{A}) (ntimes), where\ ¢ ¥
is the special symbol for padding. We further resti¢tf so that all tracks are aligned
and for anyw € L(M), w[i] € NX*3<*A* (1 < ¢ < n). Letw'[;] denote the longest-free
substring ofw|i].

Given a dependency graph, a set of input node$n, a sink nodesink, and an

attack pattermit¢tk, we aim to generate a relational vulnerability signatifehat sat-
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isfies the following conditions: (1)/ is a|In|-track MDFA. Each track is associated
with an input variableX,,, n € In. (2) For any wordw (w[i] € \*¥*\*), we have
w € L(M) if the following condition holds: if we set/[i] as the initial value of the
input nodei and propagate the values of the nodes along witiccordingly, the value
of the nodesink matches the patterAz¢tk. That is,w identifies the malicious inputs
whose combination may exploit the vulnerability.

The algorithm to generate a relational vulnerability sigin@ is shown in Algo-
rithm 5. We performforward fixpoint computation on the dependency graph where
replace nodes are ignored. Our relational vulnerability signatlgerithm is not ca-
pable of handling replace statements. However, since wihawulnerability signature
generation after a vulnerability is detected, we argueithatreasonable to ignore the
sanitization statements in the code (which is the typicalfasthe replace statements).
After we generate the relational vulnerability signatuhe, existing sanitization state-
ments can be commented out and replaced with the autonhatiealerated sanitization
statements. However, in cases where the replace statearenised to manipulate in-
put for purposes other than sanitization, our relation&exability signature technique
will not be sound. In such cases, we can still use the singlgktvulnerability genera-
tion algorithm described earlier to obtain a sound result.

Similar to the other analyses we presented, we use a stawdekdjueue algorithm

incorporating the automata widening operator. Each noaessciated with a signature,
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ait1-track MDFA where the firsttracks are associated with some input variables, e.qg.,
X.,n € In, and the last track (output track) is associated withused to represent
the values of the current node. More specificallff) < i < |In|) is the number of the
input variables whose values have been used to construclies of the current node.
The signature of node specifies the relations among the values of the input vasabl

and the values of the current node.

Algorithm 5 RELSIGGEN(G, In, sink, Attk)
1: INIT(S, G, In);

2: queuelW @ := NULL;

3: for n € InU Root(G) do

4:  WQ.enqueuefucc(n));

5: end for

6: while WQ # NULL do

7:  n:=WQ.dequeue();

8: if nisconcat then

9: tmp : = CONCATSIGNATURE(S[n.p|, S[n.s]);
10: else
11 tmp : = Un’ePred(n) S[TL/],
12:  endif
13:  tmp = (tmp U S[n])VS[n];
14:  if tmp Z S[n] then
15: S[n] == tmp;
16: WQ.enqueuefucc(n));
17:  endif
18: end while
19: M= S[S’Lnk‘] N M aptr;

N
o

: Project the output track away fron?;
:return M;

N
iy

In Algorithm 5, we use a MDFA vectaf to record the updated signature at each
node.S[n] is the signature associated with naddnitially, for each input node € In,

S[n| is a 2-track DFA (associated witki,, and X)) that accepts the identity relation on
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X,, andX,, i.e., the value of the current node is equal to the value®frtput variable
X,. Foranode: € Root(G) \ In, S[n| is a single-track DFA (associated wifly,)
that either accepts* if n is avariable  node, or accepts a constant valueifs a
constant node; i.e., the current value of the node is an arbitrarmgtor a constant.
In both cases, it is not related to any input variable. Forrése, i.e.,n ¢ Root(G),
S[n| accepts an empty set.

After we initialize S at line 1, we perform our fixpoint computation using the work
gueue algorithm. Between lines 6 and 18, we iteratively tgptize signature at each
node until the queue is empty (reaching a fixpoint). To de#t #ie union or widening
operator onS; andS; that may be associated with the different sets of input éem
sayX,; andX,, we extend both tracks t§; U X, and X, by padding\s in the added
tracks. We then apply standard union or widening to thesenebetd MDFA.

Below we describe how to concatenate two signatutesiCATSIGNATURE(ST, Ss),
where$; is the signature of the prefix node afglis the signature of the suffix node.
Let S = (Q1,%1,61, I1, F1) be a MDFA whose tracks are associated with the set of
input variablesX; and X, whereX; = (SUN)IXi x 3. Let Sy = (Qq, X9, 65, Ir, Fy) be
a MDFA whose tracks are associated with the set of input bkesX, and X, where
Yy = (XU N)Xel x . We first extendS; and S, to two MDFA that are associated
with X; U X, and X,. We extendS; (prefix) by adding\ in the added tracks, while

we extendS; (suffix) by adding\ in both the added tracks and the common tracks that
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are also associated wify. Formally speaking, the extension 8f, denoted as?, is

(Q1,%7, 00, 1, F1), where

e 07(q,) = ¢ if §,(q, B) = ¢ anda[X] = B[X] if X € X; U X,, anda[X] = ),

otherwise.
The extension of,, denoted asy, is (Qs, 333, 03, I», F»), where
o ) = MXilx (zu )X\l x ¥ and

o 07(q,) = ¢ if 62(q,8) = ¢ anda[X] = N if X € X;, anda[X] = 3[X],

otherwise.

CONCATSIGNATURE(S], S) returns the(|X; U X,| + 1)-track DFA that accepts the
concatenation of; andsS;.

The intuition of this implementation is to keep the valuestlod tracks that are
associated with input variables unchanged (except padding the front or end) and
concatenate the values of the output tracks without imgeany\. Since, during the
computation\s are only attached to tracks that are associated with irgrighles, for
the values of the current node, i.e., the values of the outpck, we havev[X,] € ¥*
for any w accepted by a signature at each node. This property enablas avoid

interference by\s while taking intersection on the output track.
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After reaching a fixpoint, at line 19, we intersect the signatof sink with the
attack pattern on the output track. Lfs,, accepts{w | w[X,] € Attk}. This is
done by the standard intersection ®fsink| and M 4,. After the intersection, the
output track identifies the reachable attack strings, aedirtput tracks identify all
the malicious inputs whose combination can yield an attagkgs At line 20, we
project away the output track frod/, and return the result at line 21 as the relational
vulnerability signature ofG, In, sink, Attk). Note thatV/ may have\s as prefix and

suffix which can be removed by the same approach presentsihfgie-track DFA.

5.3 Experiments

We evaluated our approach on five vulnerabilities from tlmeen source web ap-
plications (1)MyEasyMarket-4.1  (a shopping cart program), (BloggIT-1.0 (a
blog engine), and (3)roManager-0.72  (a project management system). We used
the following XSS attack patteri* < SCRIPTY*. The dependency graphs of these
benchmarks are built for sensitive sinks where unrelatet$ pave been removed us-
ing slicing. Hence, their sizes (approximately 20-30 npa@es much smaller than the

original programs.
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In our experiments, we used an Intel machine with 3.0 GHzgssar and 4 GB of

memory running Ubuntu Linux 8.04. We use 8 bits to encode ehamacter in ASCII.

Vulnerability Analysis: The performance of our vulnerability analysis is shown in
Table 5.1. We also show the number of states (#states) amdithber of BDD nodes
(#bdds) of the DFAM (the transition relation of the DFA is stored symbolically a
a multi-terminal decision diagram) that accepts all redtdhattack strings at the sink
node. For all five benchmarkd,(}) is not an empty set and we conclude that all
benchmarks are vulnerable. ("y” indicates that the benchisa/ulnerable and #inputs

indicates the number @fput nodes.)

| | Time(s) | Mem(kb) | Result| #states / #bdds #inputs|

1| 0.08 2599 y 23/219 1
2| 0.53 13633 y 48/495 1
3| 0.12 1955 y 125/1200 2
4| 0.12 4022 y 133/1222 1
5| 0.12 3387 y 125/1200 1

Table 5.1: Vulnerability Analysis Performance

Signature Generation: Table 5.2 summarizes the performance of vulnerabilityaign
ture generation. "S” indicates that we used backward arsalgggenerate single track
vulnerability signature, while "R” indicates that we geatead relational vulnerability
signature via forward analysis. The last column shows the sf the vulnerability
signature DFA or MDFA. Since only benchmark 3 contains twouits, we only use

relational vulnerability analysis for this benchmark. #incbe seen that most of them

119



Chapter 5. Sanitization Synthesis

are computed within seconds except for benchmark 2. Takioigser look, we found
that it consists of several nested replacement operati@sause the pre-image com-
putations to blow-up. Since the benchmark is vulneralde, the existing sanitization
routine is not good enough to eliminate the specified attamie may consider com-
menting out these replacement operations, which wouldorgthe performance of

our backward analysis.

| | Signature type Time(s)| Mem(kb) | #states /#bdds

1 S 0.46 2963 9/199

2 S 41.03 | 1859767 811/8389

3 S 2.35 5673 | 20/302, 20/302
3 R 0.66 6428 113/1682

4 S 2.33 32035 91/1127

5 S 5.02 14958 20/302

Table 5.2: Signature Generation Performance

Sanitization Synthesis:We use the vulnerability signature automata to automdyical
generate sanitization code. For matching, we generatetbatisimulates the vulnera-
bility signature automaton. We evaluated the overheadmiing this code on 10 sets
of randomly generated strings each containing 1000 stfigse same length. The
lengths started from 100 character per string for the firstaglling 100 more charac-
ters for each new set and going up to 1000 characters peg $tririthe last set. The
results are shown in Figure 5.1. The overhead of matchingl@ tBaracter string to

the vulnerability signature automaton is less than 0.3%sadonds.
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Figure 5.1: Input Matching Overhead

For the replace statements, we simply use the Bt¢B _replace that is based
on the minimum edge cut of the vulnerability signature awgton. Table 5.3 shows
the number of edges in the min-edge-cut for the vulnergtsignature automata we

computed earlier, and the alphabet-cuts that correspotie:é@ min-edge-cuts.

| Signature | 1 | 2 [ 3| 3R | 4 | 5 |
#edges 1 8 4 3 4 4
alphabet-cut {<} | {S/,7} | X, 2 | {<}, {5} | {</,"} | {<),”}

Table 5.3: Minimum Edge and Alphabet Cuts

Table 5.3 shows that the min-edge-cut results in a very safhatiabet-cut. Espe-
cially for the first benchmark, it is clear that we got the apim solution since we have
a single symbol in the cut. The result for benchmark 3 usinglsitrack DFA isX: for
both inputs (i.e., we need to delete all characters for bgpluts). This is due to the

fact that our analysis that uses single track automata cakeep the relation between
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the input and output and any of the two inputs can contriduteattack to the sink. In
this case the vulnerability signaturedis. But when we use the relational vulnerability
signature for this example, the min-edge-cut for the mudick automaton has 3 edges
corresponding to charactex” for input 1 and 'S’ for input 2 (i.e., we only need to

delete <’ for input 1 and delete 'S’ for input 2).
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Composite Analysis

We present a composite symbolic verification techniquefd&jcombines string [1,
15,52, 58] and size [20, 22, 46] analyses with the goal of owimg the precision of
both. We use a forward fixpoint computation to compute thesides values of string
and integer variables and to discover the relationshipswgntiee lengths of the string
variables and integer variables.

Similar to prior size analysis techniques [20, 22, 46] webeisde each string vari-
able with an auxiliary integer variable that representkeitgth. At each program point,
we symbolically compute all possible values of all integanables (including the aux-
iliary variables), as well as all possible values of allrggrivariables. The reachable
values of all integer variables are over-approximated agslRrger arithmetic (linear

arithmetic) formula and symbolically encoded ashmetic automatd3, 51]. Simi-
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lar to some prior string analysis techniques [1, 58], thei@slthat string variables can
take are over-approximated as regular languages and simalbokencoded astring
automata Our composite analysis is as a forward fixpoint computatigh widening
on these arithmetic and string automata.

There are two challenges we need to overcome to connectftiveniaition contained
in the string automata and the arithmetic automata (hengaroving the precision of
both) during our composite analysis: 1) Given a string awtiom, we need to derive the
arithmetic automaton that accepts the length of the langaagepted by the string au-
tomaton, and 2) Given an arithmetic automaton, we need toats string automaton
so that the length of the language is accepted by the aritb@gtiomaton.

To tackle the first challenge, we present techniques fortoacting alength au-
tomatafor a given regular language. Itis known that the length efléimguage accepted
by a DFA forms a semilinear set. Given an arbitrary DFA, wegdnle to construct DFAs
that accept either unary or binary representation of thgtkeof its accepted words. The
unary automaton can be used to identify the coefficientseofémilinear set, while the
binary automaton can be composed with other arithmeticaata on integer variables
to enforce or check length constraints.

To tackle the second challenge, we identify the boundarhefiéngths of string
variables from the arithmetic automaton. Precisely, we mate the lower and upper

bound of the values of the string lengths accepted by tharaetic automaton. We
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prove that, given a one-track arithmetic automaton, thestdwound forms a shortest
path to an accepting state while the upper bound (if it exietsns the longest loop-free
path. Both can be computed in linear complexity to the sizénefarithmetic automa-
ton. We can restrict the target string automaton by intéirsgt¢he string automaton
that accepts arbitrary strings within this boundary.

This chapter is organized as follows. We present the lenggtbnaata construction
in Section 6.1. We present our composite analysis techriltpteéntegrates string and
arithmetic analyses in Section 6.2. We present our expetsweith our prototype tool
in verifying small C routines, buffer-overflow benchmarksld®HP web applications

in Section 6.3.

6.1 Length Automata Construction

Given a string automaton/, we want to construct a DFA/, (over a binary al-
phabet) such that(M,) is the set of binary representations of the lengths of thelg/or
accepted by/. We tackle this problem in two steps. We first construct a DEA(over
a unary alphabet) such tha{),) is the set of unary representations of the lengths of
the words accepted hy/. It is known that this set is a semilinear set. We identify the

formula that represents the semilinear set frdfy). We then construcd/, from the

125



Chapter 6. Composite Analysis

formula, such thaty € L(M,) if and only if the binary value ofv satisfies the formula
(i.e., the unary representation of the binary valuea$ in L(M,)).

A DFA M is a tuple(@, qo, 2, 0, F') where@ is a finite set of stategy is the initial
state,X. is a finite set of symbolst’ : @ — {—, +} is a mapping function from a state
to its status. Given a statec @, ¢ is an accepting state f(¢g) = +. § : Q x X — Q
is the transition function. The cardinality of a finite séis denoted agA. The set of
arbitrary words over a finite alphabgtis denoted a&*. The length of a wordy € >*
is denoted agw|. A stateq of M is asinkstate ifYa € X, 6(q,«) = gandF(q) = —.
In the following sections, we assume that for all unspecifiais(q, ), d(¢q, @) goes
to asink state. In the constructions below, we also ignore the ttiansi that lead to a
sink state.

A string automaton/ is a DFA that consists of a tuple @€, qo, B*,6, F). M

accepts a set of words, where each symbol is encoded-dst string.

6.1.1 Length Constraints on String Automata

We are interested in characterizing lengths of the accepteds. We characterize
these lengths as a set of natural numbers leygth constraintFormally speaking, the
length constraint of a given string automatbhis a formulaf over a variabler, such
that f[c/z| evaluates to true if and only if there exists a wardsuch thatv € L(M)

andc = |w|.
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Regular language Length set
baaab {5}
(baaab)t {5+ 5k|k > 0}
(baaab)tab {7+ 5k|k > 0}
((baaab)*ab)* | {7,12, 14, 17, 19, 21, 22, 24, 25, 26, 27, 28} U {20 + k[k > 0}
(abb) ™ {3 + 3k|k > 0}
(abb)*|(baaab)Tab | {3 + 15k|k > 0} U {6 + 15k|k > 0} U {7 + 15k|k > 0}U
{9 + 15k|k > 0} U {12 + 15k|k > 0} U {15 + 15k|k > 0}U
{17 + 15k|k > 0}

Table 6.1: Regular Languages and Their Length Sets

Property 1: For any DFAM, {|w| | w € L(M)} forms a semilinear set.

Property 2: For any DFAM, fy is in the form that\/,z = ¢; vV V; k.o =
a;+b;xk, wherea;, b; andc; are constantsfy, can be written ay/; = = ¢;V\/, 3k.x =
C +r; + R x k, such that;, r;, C, R are constants, and;, ¢, < C, andVvj,r; < R.
We say that a semilinear set in this formwsll-formed

In the following, we give the algorithm to construct the autda that accept unary
or binary representation of the length of the language dedepy a given string au-
tomata. This construction shows that the length constrdiatDFA is a well formed
semilinear set, and hence gives a constructive proof ofd?tpd and Property 2.

Before delving into the construction details, in Table 8vé,give some examples of
a regular language and the set of lengths of its words. It eagebn that identifying the
length set of an arbitrary regular language is not trivialtigularly for those having
nested closure. The results in Table 6.1 are obtained atitaia by implementing

our construction.
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6.1.2 From String Automata to Unary Length Automata

It is known that the unary representation of the values ofrailggear set can be
uniquely identified by a unary automaton. In the followings first show how to con-
struct an automatof/,, (over a unary alphabet) from a given string automatbysuch
that L(M,) is the set of unary representations{¢i| | w € L(M)}. We sayM,, is the
unary length automaton aff.

Given a string automatoi/ = (Q, qo, B*, 6, F), a naive construction of the unary
length automaton i87, = (Q, qo, B, ¢, F), whered'(¢,1) = ¢ if 3a,0(q, ) = ¢'.
However,M,, constructed this way will be an NFA. The MBDD representaitrat we
use cannot encode NFAs. Instead, we use a construction whichines the projection
and determinization steps as follows.

Given a string automatohl = (Q, g, B*, 6, F'), we first construct an intermediate

automatonV!’ = (Q, qo, B¥*1, &', F), where
e Yq,q € Q, and both are not sink state8(q, al) = ¢, if §(¢, o) = ¢

M’ is a DFA that accepts the same wordslaxcept that each symbol in the word
is appended with ‘1'M,, can then be constructed froid’ by projecting the first k bits
away. This projection is done by iterative determinizatoa minimization. During

determinization, the subset construction is applied orilyhe
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6.1.3 From Unary Length Automata to Semilinear Set

Here we describe how to identify the well formed formula okandinear set from
a unary automaton.

Property 3: A finite deterministic unary automatal = (Q, qo, B, 4, F') can be
in two forms: a linear list of states that starts from theiahistate with finite length@,
or a linear list of states that starts from the initial stat#winite length,C', and ends in
a cycle with finite lengthR?, whereC' + R = 4@ (i.e., a lasso).

Given a deterministic unary automatdp can be labeled such that
o Q) =n+ 1.
o V0 <i< nva(Qia 1) = qi+1-

Cycle Case:If 30 < m < n,d(qn, 1) = gm, the well-formed formula of a unary

automatonis/; x = ¢; V'\/; Ik.x = C +r; + R x k, where
e (U=mR=n—m.
o Vi, dq,t <m, Fq) =+,¢ =t1.
o Vj, I, t >m, F(q) =+,r;, =t—m.

No Cycle Case: Otherwise, the well-formed formula of a unary automaton is

V. = ¢;, whereVi, 3g;,t <n, F(q) =+, ¢ =t.
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6.1.4 From Semilinear Set to Binary Length Automata

We propose a novel construction to derive a DHAsuch that. (M) is equal to the
set of binary representations (from the least significanbia well-formed semilinear
set. We sayM is a binary length automaton of the string automaton, thgtlef
whose accepted words forms the semilinear set.

Assume that we are given a well-formed semilinear\pet = ¢; v \/; Jk.x =
C+rj+Rxk. LetN bemax(C, R). ADFA M that accepts the binary representation

of the given semilinear set can be constructed as a tidpley, 3, J, F'), where:

e We assume that there exists a sink statg € @, S.t.,F (¢sink) = —, (qsink, 0) =
Gsink @NAO(qsink, 1) = qsink, @nd all transitions that are ignored in this construc-

tion are going tay;,x-

e Otherthan the sink state, each state () is a tuple(t, v, b), wheret € {val ,rem,,
rems}, v € {0,...,N},andb € {L} U{l,...,N}. ¢.tis the type of state,
which indicates the meaning of the valuegof andq.b. While ¢.t = val , q.vis
equal to the value of the binary word accepted from the irstate to the current
state, and.b is equal to the binary value of the previous bit in the word. a§e
sume2 L= 1. Whileq.t = rem, orremy, q.v is equal to the remainder of which
the dividend is the value of the binary word accepted frominiteal state to the

current state and the divisor i3, ¢.b is the remainder of which the dividend is
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the binary value of the previous bit in the accepted word &eddivisor isR.
g.t = rem, indicates the value of the binary word accepted from thézirstate
to the current state is greater or equaltoy.t = rem indicates the value is less

thanC.

e qois(val ,0,1).

o ¥ ={0,1} (i.e., BY).

e 0(q,1) = ¢ if and only if one of the following condition holds:

—qt=val ,qu+2¢b>C, ¢t =remy,qd.v=(qv+2¢b) mod R,
q.b=(2¢.b) mod R.
—qgt=val ,qv+2¢qb< C,¢t=val ,q¢.v=quv+2qb, ¢.b=2q.b.

—qt = remy, ¢.t = remy, ¢.v = (qv + 2¢.b) mod R, ¢.b = (2¢.b)

mod R.

—qt = remy, ¢t = remy, ¢d.v = (¢v+ 2¢.b) mod R, ¢'.b = (2¢.)

mod R.

e 0(q,0) = ¢ if and only if one of the following condition holds:

—qgt=val ,qv+2¢b>C,¢.t=remy,¢.v=qv mod R, ¢.b=(2¢.b)

mod R.
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—qgt=val ,quv+2¢qb< C,¢dt=val ,¢d.v=quv,q.b=2qb.
—qt=remy,¢.t=remy, ¢ .v=quv,q.b=(2¢.b) mod R.

— gt=remy, ¢t =remy, ¢ .v=quv,q¢.b=(2¢.b) mod R.

o ['(q) =+, forallg € {q| ¢t =val ,3i,qv=c}U{q]|qt=rem; 3jqv=

(C'+r;) mod R}; F(q) = —, 0.w.

By definition,#Q is O(IN?). Precisely, in our construction, the number of states that
q.t = val is bounded byC. The number of states thatt = rem, is bounded by??
and the number of states that = rem is bounded by’ x R. On the other hand, we

have observed that after minimizatign) is often reduced tov.

An Incremental Algorithm: Below we give an incremental algorithm to construct a
Binary Length Automaton (BLA)V/. The construction is achieved by calling the pro-
cedureCONSTRUCT.BLA . The input is given as a well-formed semilinear formula,
Vocicn® = ¢ V Vocjem Ikx = C 415+ R x k. At line 3, we first build@’, the
set of binary states that will be reached by calling the pilaceaDD _BSTATE. A bi-
nary state is actually the value of the tuptev, b) as described in the previous section.
Each binary state is further associated with an index, aldraech and a false branch,
which are used to construct the state graph. Brieftyp _BSTATE is a recursive func-
tion which incrementally adds the reached binary statehfag never been explored.

Initially, the binary state igval ,0, L). Note thataAbD_BSTATE is guaranteed to ter-
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minate since the number of binary states are bounded. Uponnttion, all reached
binary states will have been addedb. For each binary state i®, as line 4 to 9, we
iteratively generate a stateand set its transition relation and accepting status, which

are used to construct the final automaton at line 10.

Algorithm 6 ADD _BSTATE( @, C, R,t, v, b)
1: if 3¢ = (¢,v,b) € @ then
2:  return q.index;
else
Createg = (t,v,b);
g.index = 4Q);
q.true = —1,
q.false = —1;
Add ¢ to ©;
if t==val A(v+2xb>C)then
10: q.true =ADD _BSTATE( @, C, R,rem,, (v + 2 x b)%R, (2 x b)%R);
11: q.false =ADD_BSTATE( @, C, R,rem, v%R, (2 x b)%R);
12: elseift==val A(v+2xb<C)then
13: q.true =ADD _BSTATE( @), C, R,val ,v+2 x b, 2 x b);
14: q.false =ADD_BSTATE( @, C, R,val , v, 2 x b);
15: else ift == rem, then
16: q.true =ADD _BSTATE( @, C, R,remy, (v + 2 x b)%R, (2 x b)%R);
17: q.false =ADD _BSTATE( @, C, R,rem;, v%R, (2 x b)%R);
18: elseift == rem; then
19: q.true =ADD _BSTATE( @, C, R,rem,, (v + 2 x b)%R, (2 x b)%R);
20: q.false =ADD_BSTATE( @, C, R,rem ¢, v%R, (2 x b)%R);

Nk w

21: endif
22: return gq.index;
23: end if

We have implemented the above algorithms using the MONA D&é#kpge. Min-
imal unary and binary length automata for a regular langusageshown Figure 6.1

and Figure 6.2. It is interesting to note that in both cades,minimal unary length
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Algorithm 7 CONSTRUCTBLA(C, R,C ={c1, ¢, ...ch}, R={r1,7r2,..."m})

1: Q° = 0;

2: Q=10;

3: init =ADD_BSTATE( Q°, C, R,val , 0,L);

4: for eachg® € Q° do

3 Add q = {qq.index to Q!

6: 5((]7 1) (q drue 7& =17 qu true * QSmk)

7 ( ) (q fa'lse 7é _I?Qq false QSmk)

8: () (¢t == 0A3c e Cqbv==0c) Vgt == 1ANTr € Rgv ==

(r+C)%R) + +17'~");
9: end for
10: ConstructM = (Q U {qsink }, Ginit, B*, 6, F);

O OO

(a) Unary (b) Binary

Figure 6.1: The Length Automata ofbaaab)™

O OO OO

(a) Unary (b) Binary

Figure 6.2: The Length Automata ofbaaad)™ab
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automaton and binary length automaton have the same nurhétates. In Figure 6.1,
both automata accept the $6t+ 5k|k > 0}. Consider the numbé®g65735, whose bi-
nary encoding i§1100011110000000111. One can test that the bit string from the least
significant is accepted by the binary length automaton shavénl(b). In Figure 6.2,
both automata accept the 4&t+ 5k|k > 0}. Consider the numbé87, whose binary
encoding isl0000111111. The bit string from the least significant is also accepted by
the binary length automaton shown in 6.2(b).

We have presented the algorithms to construct length autonieom an arbitrary
string automaton. The construction of both unary and bidangth automaton has
been implemented using the MONA DFA package. We are ableewtiiy the pre-
cise semilinear set for arbitrary regular language, andtcoat both unary and binary
length automata which accept the unary and binary repraisemns$ of the semilinear set
respectively. In the following section, we preserdamposite analysithat integrates

length automata with string and arithmetic analyses.

6.2 Composite Verification

We first introduce a simple imperative language (the syrgaimilar to the one used
in [53]) as our target language. This language consists et afdabeled statements

[ : stat. Labels correspond to instruction addresses. Wesusedenote a string
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variable,i to denote an integer variable, ando denote a constant. Eaghe S is
associated with one auxiliary integer variable, denotesd/asgth. Let S denote the
set of string variables anfldenote the set of integer variables, dpdlenote the set of

auxiliary variables. A statement can be one of the following

e A termination statemerftalt or abort .

e A string assignment statement= strexp, wherestrexp is a string expression

that can be one of the following:

— input (z) which returns an arbitrary string value up to the length étua

the value ofi.

a string variables € S.

a regular expressioregexp oversS.

prefix (s, ) which returns the prefix of up to the first: characters where

c is equal to the value of

— suffix (s, 4) which returns the the suffix of starting from the-** charac-

ter, wherec is equal to the value of

— concat (si, s9) that returns the concatenation of the valuespfind the

value ofss.
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— replace (s, s2, s3) that returns the result of the following actions: (1)
scan the value of; and find the substrings that match to the valueof

and (2) replace the matched substrings with the valug.of

e An integer assignment statemeént intexp, whereintexp is an integer expres-
sion in the form)_, ¢, * i, that returns a value of the linear functidn, ¢, = i,

where each variablg € 1 U I;.

e A conditional statemenf (bexp) goto [, wherebexp is a binary expres-
sion (defined below)!’ is a program label which indicates the label of the next

statement whebexp evaluates to true.

e An assertion statemeassert (/\ bexp). An assertion holds if\ bexp evaluates

to true. A program is correct if all assertions hold on all@xens.
A bexp is either a string or an integer formula defined as follows:

e A string formula can be in two forms: (X) € regexp, or (2) s[c1, ca] € regexp,
which specifies that the value efor the value of the substring (from th# to
i character) of is within a constant regular language. Note that hegexp
is restricted to a constant set of string values& regexp is an abbreviation
of s € regexp’, whereregexp’ is the complement set okgerp. s = cis an
abbreviation ofs € {c} ands # c is an abbreviation of ¢ {c}, wherec is a

constant string.
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strlen(s1){

1: cnt = O;

2. s2:=s1;

3: if(s2="\0") goto 7;

4: s2:=suffix(s2, 1);

5: cnt = cnt +1;

6: if(s2 !'= "\0’) goto 4;
7. assert(sl.length = cnt);
8: halt;

}

Figure 6.3: The Rewritten String Length Routine

¢ An integer formula can be in the forn}_, ¢; * i, ~ ¢, wherei, € I U I, and

Ne {:7 <7 S? 27 >}'

We assume that for eaéh stmt, [ + 1 is a valid label ifstmt is not a termination

statement. For each conditional staternient (bexzp) goto [, !’ is a valid label.

Modeling a C Example: To analyze normal’ programs, one can consider each deref-
erence of a pointer, e.g«p, as a string variable. A sequence value from the address
pointed by the pointer is a string value of the string vagablhe pointer arithmetic
operation, e.gp, := p2 + 4, can be considered as a string suffix statement that assigns
the suffix of the dereference pf to the dereference of;.

The string length routine shown in Figure 1.14 can be reanitising this simple

language as shown in Figure 6.3.
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6.2.1 \Verification Framework

Assume thatS = {si,...,s,} andl = {iy,...,i,} denote the set of string and
integer variables in our target program, respectively. Unanalysis, each string vari-
ables,, 1 < k < m, is associated with an auxiliary integer variabjg, as its
length s;.length. Hence, we also have the set of auxiliary integer variaBjes=
{ins1,.--intm}. A state for each program label consists of a string-autameactor
a={a,...,qn,) and am + m-track arithmetic automaton

Each string variable,, is associated with the string automatenin &, which ac-
cepts an over approximation of the set of all possible vatbass, can take at the
corresponding program label. Each track of the arithmetiormaator: is a binary en-
coding starting from the least significant bit of the valuaofinteger variable (the first
n tracks) or the value of the length of a string variable (tistdatracks).

A word accepted by the arithmetic automaton correspondsv/adia valuation for
the integer variables and the lengths of string variabléheatorresponding program
point during the execution of the program. The arithmetimamaton accepts an over
approximation of the set of possible words at the correspgnprogram label. Each
word w is an assignment of the integer variables and the lengtheeddtting variables;
and each track ob is actually the value thate I U I, can take at the corresponding
program label. We use k] to denote thé:'" track of the wordw. For1l < k < n, w[k]

is the value of the integer variablg Forn + 1 < k£ < n+m, w[k] is the length of the
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string variables,. We say a string is the value of a string variable, if w € L(ay),
and3w’ € L(a) such that'[k] is equal to the binary encoding pb| starting from the

least significant bit.

Forward Fixpoint Computation: Our analysis is based on a standard forward fixpoint
computation o’ anda for all program labels. For simplicity, we us€] to denote¥[l]
andall], whered][l] is the string-automaton vector anfl| is the arithmetic automaton
at the program labél The algorithm is a standard work-queue algorithm as shown i
table 11.

For sequential operations (string/integer assignments)are continuously com-
puting the post image of](] against : stmt, and join the result to[l + 1] wherel + 1
is the label of the next statement. For branch statereift (bexp) goto [, if the
intersection of the language ofl] andbezp is not an empty set, we add the result to
v[l']. If the intersection of the language ofi| and the complement set bfzp is not
an empty set, we add the resultitpp + 1|. For checking statement assert (¢), if
the language of[(] is not included inp, we raise an alarm.

Upon joining the results, we check whether a fixpoint of thadgpam point is
reached. If it is not, we update at that program point and push its labeled state-
ment into the queue. Since we target infinite state systdmdiixpoint computation

may not terminate. We incorporate an automata wideningadperdenoted a¥ 4,
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Algorithm 8 CoOMPOSITEANALYSIS(ly)

1: Init(v);

2. queuelV @,

3: WQ.enqueud| : stmty);
4: while W@ # NULL do

5. e:=W(Q.dequeue(); Let bel : stmt;
6: if stmt is sequential operatiahen
7 tmp = post|[l], stmt);
8: tmp = (tmp U v[l + 1])Vr[l + 1];
o: if tmp Z v[l + 1] then
10: V[l 4 1] :=tmp;
11: WQ.enqueud(+ 1);
12: end if
13:  endif
14: if stmtisif bexp goto I’ then
15: if ChecklIntersection((], bexp) then
16: tmp = v[l] A bexp;
17: tmp = (tmp U v[l'])Vr[l'];
18: if tmp & v[l'] then
19: v[l'] = tmp;
20: WQ.enqueud();
21: end if
22: end if
23: if Checklntersectiom(!], —bexp) then
24: tmp = v[l] A —bexp;
25: tmp = (tmp Uv[l 4+ 1]))Vv[l + 1];
26: if tmp  v[l + 1] then
27: V[l + 1] :=tmp;
28: WQ.enqueud(+ 1);
29: end if
30: end if
31:  endif
32: if stmtisassert (¢)then
33: if = CheckInclusiong[l], ¢) then
34: Assertion violated!
35: end if
36: endif
37: end while
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proposed by Bartzis and Bultan in [4] to accelerate the fix@dtcomputation»Vv/
is implemented ag;, V 4o, ..., a,,Vaal, [58] andaV 4a’ [4].
Finally, we detail how to compute post and restrict compaitet(i.e., posty, stmt)

andv A bexp) in the following paragraphs.

Basic Operations: Before we detail the algorithms of post and restrict comipana,

we first define some notations and basic operations to synqlif presentation. We
usea to denote the arithmetic automaton, andto denote the one-track arithmetic
automaton that accepts the values of tetrack of the arithmetic automatan We
usea to denote a string automaton andio denote a vector of string automata;,

is the k' string automaton ofi. bla («) returns the binary length automaton of the
string automatorv. The binary length automaton can be considered as an atle-tra
arithmetic automaton. We us€, wherec is an integer constant, to denote the string
automaton which accepts arbitrary words having length leigua That isL(a¢) =

{w | w € ¥* |w| = ¢}. This notation is also extended to a range {,], where
c1, ¢, are integer constants. We say that 2 is the string automaton that accepts

{w|weX* ¢ <|wl <c}.

e Extraction:a |, returns an one-track arithmetic automatqrso thatw € L(ay)
if Jw’ € L(a) andw'[k] = w. a4 is constructed by projecting away all tracks

except thek'" track of the arithmetic automatan
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e Projection:a 1, returns a new arithmetic automatahwhich acceptdw|w’ €
L(a),V1 <t <m+n,t# k,w'[t] = w[t]}. a’ is constructed by projecting away

the trackk of the arithmetic automatomn

e Composition: a o oy, returns a new arithmetic automatahso thatL(a') =
{w|w e L(a),w[k] € L(bla (a))}. ¢ is constructed by intersectingwith an
arithmetic automaton that the trakks accepted by the binary length automaton
of the string automaton,,, and other tracks are unrestricted. This composition
restrictsL(a) to a smaller set where the lengthgf(the value of the track) is

accepted by the binary length automatongf

e Boundary:min (ay) returns the lower bound of the set of integer values whose
binary encodings from the least significant bit are acceptethe one-track au-

tomatona,. max(ay) returns the upper bound.

Post Images: Recall that there are: string variables and integer variables. Given
stmt and the state that consists ofi = (a4, ..., a,,) and the arithmetic automatan
we want to compute’ = (o, ...,/ ) anda’ as the result of the post image against
stmt. We assume that the automata that are not specified remasamhe. Letstmt

be one of the following:

e 5, = input (i,). «) = ol wherec; = min(a,) andc, = max(a,).

a' := CONSTRUCT(@, iy 1) = ip).
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P /L /A ; — g
® Sk, 1= Sky. QU 1= Q. @' 1= CONSTRUCT(@, ipip, := lntky)-
o s 1= regex. o) := CONSTRUCT(regexp). a' := a |p1p 0.

o sp, = prefix  (sp,,ip). o, = PREFIX(,, [c1, ¢2]), Wherec; = min (a,) and

co = mMax(ay). a’ := CONSTRUCT(@, ipn+k, := %) ACONSTRUCT(4p 1k, —%p > 0).

e 5. := Suffix Sky. 1p). O 1= SUFFIX(a,, [c1, cs]), wherec; = min (a,) and
k1 ko tp k1 kos [C15 €2 1 D

co = max(ay,). @’ := CONSTRUCT(a, 4k, := i) N\CONSTRUCT (4 4+k, —ip > 0).

e s, :=strcat (s, Sk,). @) := CONCAT(ag,, g,). @’ := CONSTRUCT(a, iy 1p :=

Ingky T+ ingky)-

o 5, := replace (sk,, Sky, Sks). ) = REPLACE(Qg,, Gy, Qky). @' := a 1pik

Naimp, Wheream, accepts{w | wlk| € L(bla (a},))}.

e i, := intexp. a’ := CONSTRUCT(a, i, := intexp).

Restriction: Here we describe the result ofA bexp, wherev is the state consists af
anda. Letbexp be one of the following:

o s € regexp. a, = o A CONSTRUCT(regexp). @’ = a o a.

o splc1,ca] € regexp. o) = o A amp Where amp is constructed by

CONCAT(CONCAT(al2) CONSTRUCT(regeap)), a*). @’ = a o o,
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o>  cxiy ~c Vt>na = oA alevel wherec, = min(d’ |;) ande, =

max(a’ |;). a’ = a A CONSTRUCT(D , ¢; * iy ~ ).

6.2.2 Implementation

Automaton Construction: Here we describe how to construct the corresponding arith-
metic and string automata used in our composite analysis.cohstructions of arith-
metic automata includingONSTRUCT() _, ¢;*i; ~ ¢) andCONSTRUCT(a, i := ), ¢;*

i;) are detailed in [3]. The latter returns an arithmetic auttmmavhich accepts the re-
sult of the postimage computation eagainst the integer assignment= > , ¢, xi;+c.

This construction is implemented by quantifier eliminatéoml variable renaming; i.e.,
(3, ®(a) N = Y, ¢ *14,)[I'/I]. For some special cases, the time complexity of
this construction is linear to the size of[3]. The constructions of string automata
including CONSTRUCT(regexp), CONCAT (v, , ik, ), ANAREPLACE(av, , (v, , (i, ) have
been detailed in [58]. We describe the implementatiorREFIX(, [c1, ¢2]) and the

implementation oBUFFIX(«, [c1, ¢o]) below.

Prefix: Formally speakingy’ is a prefix-DFA ofa regarding to the rangg:;, c;], if
L) = {w | w € Yleved Ju' ww' € Lia)}. Givena = (Q,q,%, 6, F) and
[c1, ¢2], we first constructy’ = (Q.qo, 3,6, F'), whereYg € Q,F'(q) =' +. o

accepts the prefix of(«). The next step is restricting its length to the rafhgec,|.
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PREFIX(q, [c1, ¢o]) returns the the result of the intersectionadfand a2, which is

exactly the prefix-DFA ofy regarding to the rangde;, c|.

Suffix: Formally speakingg’ is a suffix-DFA of o regarding to the rangg;, ], if
L) = {w | Fuw € 2=l ww € L(a)}. We first introduce the function
REACH(q, [c1, ¢a]). REACH(«, [c1, co]) returns the set of alle;, co]-reachable states.
We say a state i, c]-reachable if it is reachable from the initial state byteps
andc; < k < . Givena = (Q,qo, %, 6, F) and|[cy, c2], we first computeR =
REACH(q, [c1, ¢o]) Vvia a breadth-first search. We then construct the followingefi

automatony = (Q’, ¢y, 2,9, F'), where

Q =QU{q}

Vg,q' € Q.6 (¢.a) =¢,if §(g.a) = ¢

Vg€ R, ¢ €Q,5 (¢, ) =¢,if 0(q,a) = ¢

o Fl(g)='+,if3g € R, F(q) = +.

Vg € Q,F'(q) = F(q).
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Note thata’ constructed by the above construction may be a nondetestiaifii
nite automaton. We add auxiliary bits to resolve nondeteism as proposed in [58].

SUFFIX(a, [c1, c2]) returns the result of the minimization and determinizatibn’.

Boundary: Below we describe how to identify the boundary of a one-tracthmetic
automaton, which accepts the binary encodings of a setejéntvalues from the least
significant bit.

Property 4: For an one-track minimized DFA = (Q, qo, B, 0, F): Vq,q € Q, if
d(q,0) = ¢, thenF(q) = F(¢).

Property 4 states that transitions labelledlmannot change accepting status, which
holds due to the fact that by definition, the arithmetic awdtom accepts a word and any
number of 0 in its higher significant bits. It follows that fany accepted integer value
(except 0), the word from the least significant bit up to thestmmn-zero significant
bit of its binary encoding forms a unique path (ended by linfiibe initial state to
an accepting state. Furthermore, an accepted non-zeronalimteger value forms
the shortest path from the initial state to an acceptingstan the other hand, if there
exists an accepted non-zero maximal integer value, themaxialue forms the longest
loop-free path from the initial state to an accepting stdete that if there exists an
accepted path containing a loapaccepts an infinite set and the maximal value does

not exist. In this case, we ug® to denote the maximal value.
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Formin (a) andmax(a), we have implemented two functionsN (a) andMAX (a).
Let m, be the length of the shortest path that ends with 1:aptde the length of the
longest loop-free path that ends with 1. Bath andm, can be determined by a breadth
first search up taQ steps. In our implementation, we first check whethaccepts any
non-zero integer value. If this is the casen (a) returns2™~1, which is a lower
bound for the shortest path. If there exists a path contgiailoop,MAX (a) returnsinf.
OtherwiseMAX (a) returns2™+1 — 1, which is an upper bound for the longest path.
Note that our implementation is a conservative approxiomatiThese bounds can be

tightened by tracing the values along paths.

6.3 Experiments

We experimented with our composite analysis tool on a nurobégst cases ex-
tracted from C string library, buffer overflow benchmark§][and web vulnerability
benchmarks [58]. These test cases are rather small buvengointer arithmetic, string
content constraints, length constraints, loops, and cepl@nt operations. We manu-
ally convert them to our simple imperative language.

Forint strlen(char *s) , we verify the invariant that the return value is equal
to the length of the input string. Fahar *strrchr(char *s, int  ¢), we verify

whether the language accepted by the return string is iedli{cx | x € X*} U {¢}
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| Test caseliad/ok) | Result] Time (s) | Memory (kb)]
int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T | 0.014/0.018 216/252
samba (CVE-2007-0453) F/T | 0.015/0.021 218/252

MyEasyMarket-4.1 (trans.php:218) F/T | 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210F/T | 0.021/0.022  496/662
BloggIT 1.0 (admin.php:27) F/T | 0.719/0.721f 5857/7067

Table 6.2: The Experimental Results of Composite Analysis.

upon reaching the fixpoint. For buffer overflow benchmarks, check whether the
identified memory may overflow its buffer upon reaching th@dixt for both buggy
(bad) and modified ¢k) cases. For web vulnerability benchmarks, we check whether
the identified sensitive function may take any attack stasgts input beforel@ad)
and after ¢K) inserting limit constraints and sanitization routinesit does not, the
sensitive function is SQL attack free with respect to thackpatterr*<script  X*.
Limit constraints are written as new statements that lietlength of string variables
using a$limit  variable. The experimental results are shown in Table 6h2re/"T"
indicates buffer overflow free or SQL attack free. The ressittow that our composite
analysis works well in these test cases in terms of both acguand performance. As
a final remark, for web vulnerability benchmarks, one mayrigslimit constraints,
e.g., sedlimit  less than 7, to prevent the specified attacks without adatiodifying

sanitization routines. In this case, pure string analyss$ ill raise false alarms.
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Relational String Analysis

Verification of string manipulation operations is a crugabblem in computer se-
curity. In this part, we present a new relational string gsial technique based on
multi-track automata and abstraction. Our approach isldeps verifying properties
that depend on relations among string variables. This esald to prove that vulnera-
bilities that result from improper string manipulation dat exist in a given program.

In Chapter 2, we have formalized the string verification fpgobas reachability
analysis ofstring systemsind demonstrated that the string analysis problem is unde-
cidable even for two binary variables or three unary vagalith comparisons. In
this chapter, we use multi-track deterministic finite audten(DFAsS) as a symbolic
representation to encode the set of possible values thiag) stariables can take at a

given program point. We apply the forward symbolic reacligbanalysis technique
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that computes an over-approximation of the reachablesstdta string system using
widening and summarization. Unlike prior string analysishiniques, our analysis is
relational; i.e., it is able to keep track of the relationships amongstneg variables,
improving the precision of the string analysis and enabliagfication of invariants
such asX; = X, whereX; and X, are string variables. We describe the precise con-
struction of multi-track DFAs for linear word equationschuasc; X ¢, = ¢ X»c, and
show that non-linear word equations (suchXas = X,X3) cannot be characterized
precisely as a multi-track DFA (Section 7.1). We proposegalla approximation for
non-linear equations and show how these constructions eamséd to compute the
post-condition of branch conditions and assignment statésnthat involve concate-
nation. We use summarization for inter-procedural analysiesented in Chapter 4)
by generating a multi-track automaton (transducer) charaig the relationship be-
tween the input parameters and the return values of eackeguoe. To be able to use
procedure summaries during our reachability analysiahgs multi-track automata so
that normalized automata are closed under intersection.

To improve the efficiency of our approach, we propose twagtabstraction tech-
niques: alphabet and relation abstractions (Section 1r8Balphabet abstraction, we
identify a set of characters that we are interested in andausgeecial symbol to rep-
resent the rest of the characters. In relation abstracteridentify the variables that

are related and encode them as a single multi-track autorkatathose that are not
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related, we use multiple single-track automata to encoeie tlalues, where relations
among them are abstracted away. We define an abstractime ldtht combines these
abstractions under one framework and show that earlieltsasustring analysis can be
mapped to several points in this abstraction lattice. We ekéend our symbolic anal-
ysis technique by presenting algorithms for computing thst gondition of complex

string manipulation operations such as replacement. Weemmgnted these algorithms
using the MONA automata package [27] and analyzed severBl ftbigrams demon-

strating the effectiveness of our string analysis techesqu

7.1 Regular Approximation of Word Equations

To analyze string systems, we approximate configuratioasstving variables as a
regular language accepted by a multi-track determinigtitefiautomaton (DFA). Our
analysis is based on the facts that: (1) The transitionstaddnfigurations of a string
system can be symbolically represented using word equsatiith existential quantifi-
cation, (2) Word equations can be represented/approximetimg multi-track DFAs,
which are closed under intersection, complement, praactnd (3) the operations re-
quired during reachability analysis (such as equivaleheeking) can be computed on

DFAs.
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Before we discuss how to perform symbolic reachability gsialon string systems,
we introduce the multi-track DFAs and word equations in igistion. We characterize
word equations that can be expressed using multi-track DBAsvell as detail the
construction of these multi-track DFAs. Using these carddions, in the next section,

we show how to perform symbolic reachability analysis omgtsystems.

7.1.1 Aligned Multi-track DFAs

A multi-track DFA is a DFA over an alphabet that consists ohsn&racks. Ann-
track alphabet is defined a8 = (X U {\}) x (B U{A}) x ... x (X U{A}) (ntimes),
where) ¢ Y is a special symbol for padding. We us@] (1 < i < n) to denote the""
track ofw € ¥X". An alignedmulti-track DFA is a multi-track DFA where all tracks are
left justified (i.e.,\’s are right justified). That is, ifv is accepted by an alignedtrack
DFA M, then forl < i < n, w[i] € £*A\*. We sayL(M) is ann-track language.
We also usen|i] € ¥* to denote the longest-free prefix ofw|i]. For the following
descriptions, a multi-track DFA is an aligned multi-trackMdunless we explicitly state
otherwise.

Multi-track DFAs are closed under intersection, disjuasticomplementation, and
homomorphism. Precisely: Given twotrack DFAsM;, Ms, there exists am-track
DFA M that acceptd.(M;) U L(M,), or acceptd.(M;) N L(Ms). Given ann-track

DFA M, there exists am-track DFA M that accepts the complement set/gf\/; ),
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and also there exists an (- 1)-track DFA M’ that acceptd.(M; |;), whereM; |;

denotes the result of erasing thetrack (by homomorphism) af/;.

7.1.2 Word Equations

A word equation is an equality relation of two words that cateoate a finite set
of variablesX and a finite set of constan€s. The general form of word equations is
defined as); ... v, = v} ...v,,, whereVi, v;, v, € X U C.

Let f be a word equation oveK= {X;, Xs,...,X,}, flc/X]| denotes a new
equation whereX is replaced with: for all X that appears irf. We say that am-
track DFA M under-approximateg if for all w € L(M), flw[l]/X,...,w[n]/X,]
holds. We say that an-track DFA M over-approximateg if for any sq,...,s, € X*
where f[s1/X1, ..., s,/ X, holds, there exista& € L(M) such that for alll < i <
n,w(i] = s;. We call M precise with respect tg if M both under-approximates and

over-approximates.

Definition 8 A word equatiory is regular expressible if and only if there exists a multi-

track DFA M such thatM is precise with respect tgd.

Linear Word Equations: A linear word equation is a word equation where either side
of the equation contains at most one variable. A general fafrimear word equation

is c; X1co = di1 Xads. Any linear word equation is equivalent to one of the follogi
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C/1X16/2 =X, if ¢ = dlc’l andc, = C/ng,

Clle = nglz if c1 = d10/1 andd’202 = dg,

Xich=d\ X, if c1dy = dy ande, = chds,

X1 = dllXQdé if Cldll = d1 andd’202 = dg,

falseotherwise.

It follows that all linear equations can be reduced into temfs: (1) X; = ¢X,d or
(2) cX; = X,d, which are equivalent td X . X; = cX; A X = Xod and3dX,.cX; =

X N X = Xad.

Theorem 9 Linear word equations and Boolean combinations of thesaisgyus can
be expressed using equations of the fofin= X,c and X; = c¢X5,, Boolean combina-

tions of such equations and existential quantification.

Non-linear Word Equations: A non-linear word equation is a word equation where at
least one side of the equation has at least two variablegeTdre two basic forms of

non-linear equations: = X; X, and X; = X,.Xj;.

Theorem 10 Non-linear word equations and Boolean combinations ofdtesgiations
can be expressed using equations of the form X; X, and X; = X, X3, Boolean

combinations of such equations and existential quantiticat
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For example X; = Xy,dX;X, is equivalent tad Xy, , Xi, . X1 = Xo Xk, A Xi, =
dXp, N X, = X3X.

In the following, we show how to construct the correspondmgti-track DFAs for
the basic forms of linear and non-linear word equationsXil}= Xsc, (2) X; = c¢Xo,
(3) c = X1 X5, and (4)X; = X3 X3. Note that, based on the fact that multi-track DFAs
are closed under intersection, disjunction, complememtaand homomorphism, we
can construct the corresponding multi-track DFAs for altdwequations both linear and
non-linear, as well as their Boolean combinations basedheronstructions for these
basic forms. Note that the boolean operations conjuncti@junction and negation
can be handled with intersection, disjunction, and complatation of the multi-track
automata, respectively. Existential quantification on dkiger hand, can be handled
using homomorphism, where given a word equatfaand a multi-track automatah/
such that)/ is precise with respect tf, then the multi-track automataW |; is precise
with respect tal.X;. f.

Before delving into these constructions, we summarize esults in the following

theorem:

Theorem 11 (1) Linear word equations are regular expressible, as welleeir Boolean
combinations. (2)X; = cX5 is regular expressible but the correspondihfhas expo-

nential number of states in the lengthof(3) X; = X, X3 is not regular expressible.
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7.1.3 Construction of Multi-track DFAs for Word Equations

Given a DFAM = (Q,%,6,1, F), Q is the set of states; is the alphabety :

Q@ x X — (@ is the transition function] € @ is the initial state, and” C ( is the
set of final (accepting) states. We say a state () is a sink state ifq ¢ F and

Va € ¥,0(q,a) = q. Thesink states are also extended to multi-track DFAs. In the
following constructions, we ignore transitions that goittkstates, and assume that all
unspecified transitions go to sink states.

Before we give the constructions, we generalize the prolofleconstructing multi-
track DFAs for word equations as follows. We assume that eactable in X=
{Xy, Xs,...,X,} is associated with an automatdd;, = (Q;,%,d;, I;, F;), where
L(M;) denotes the set of values that the variak)ecan take. Then, given a word equa-
tion f overX= {X;, Xs, ..., X, }, we say thainn-track DFA M under-approximates
f within My, ... M,, ifforall w € L(M), flw[l]/X;,...,w[n]/X,] holds and for all
1 <1 < n,w[i] € L(M;). We say thaann-track DFA M over-approximateg within
My, ... M,, ifforany si,...,s, € ¥* wheref[s;/Xi,...,s,/X,] holds and for all
1 <i<mn,s; € L(M,;), there existsw € L(M) such that for alll < i < n,w[i] = s;.

Note that, for either case, for any worde L(M), forall 1 < i < n,w[i] € L(M;).

The Construction 0fX1 = Xyc: LetM;, = <Q1, 27(51, 1, F1>, My = <Q2, Z,(SQ,IQ,F2>

be two DFAs that accept possible values of variablgsand X, respectively. We
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present the construction of a 2-track DBA = (@, 3,0, I, I'), such that)/ is precise
with respect taX; = X,c within My, M,.

Let sink; be the sink state of/;, andsinky, be the sink state of/,. Letc =
aias . ..a,, WhereVl < ¢ < n,a; € X andn is the length of the constant string

M ={Q,X2,6,qo, F') is constructed as:

(] QgQ1XQ2X{O,...,n},

I — (Il,lg, O),

Ya € X,6((r,p,0),(a,a)) = (d1(r,a),d(p,a),0), if 51(r,a) # sink; and

52(]9, a) % Sinkg

vaiup € F275(<T7p7 Z)? (aw)\)) = (51(T7 ai)7p7i + 1)!

b F:{<Tap7i)‘T€F17PEF27i:n}'

Note thatM simulates); and M, making sure that both tracks are the same until
a final state of\/; is reached. Then, the second track reads the symidiile the first
track reads the constantand the automaton goes to a final state whenconsumed.
|Q]is O(|Q1]x|Q2|+n) since in the worst case will contain all possible combinations
of states in); and @, followed with a tail ofn states for recognizing the constant

For the automaton/ resulting from the above construction we hawes L(M) if and
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only if w[1] = w[2]c, w[1] € L(M;) andw[2] € L(M>), i.e., M is precise with respect

to X; = Xsc (within My, Ms), hence X; = X,c is regular expressible.

The Construction of X; = ¢Xy: Let My = (Q1, %, 01, [1, F1), My = (Q2, X, 09, I3, Fy)
be two DFAs that accept possible values of variablgsand X, respectively. Below
we present the construction of a 2-track DFA such that)/ is precise with respect to
Xy = cXy within My, Ms. Letc = aqa,. . . a,, WhereVl < i <n,a; € ¥ andn is the
length of the constant string

The intuition behind the construction 8f is as follows. In the initial stage (denoted
asinit below), M makes sure that the first track matches the constavitile recording
the string that is read in the second track in a buffer (a veat@ymbols) stored in
its state. Afterc is consumed)/ goes to the next stage (denotechaatchbelow) and
matches the symbols read in the first track with the next syrstooed in the buffer
while continuing to store the symbols read in the secondtiathe buffer. Note that,
thekth symbol read in track 2 has to be matched with(the n)th symbol read in track
1. So, the buffer stores the symbols read in track 2 until treesponding symbol in
track 1 is observed.

Let v be a sizen vector. Forl < i < n,9[i| € XU { L}. The vectow’ = v[i := d]
is defined as follows#[i] = a andVj # 4, ¢'[j] = 0[j]. M = (Q,%% 4,1, F) is

constructed as:
e QC Q1 xQyx{l,....;n} x (XU{L}H"™ x {init, match},
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o I = (I, I,,1,7,,init), whereVi, 7, [i] = L,

Va € 3,1 <i <n,6((r,p,i,0,init), (a;, a)) = (01(r, a:), 62(p, a),i + 1,0]i :=

al, init),

® Va € 272 =n, 5((Tap> 'éa 177 ZnZt)> (ai> a)) = (51(Ta ai)? 52(p7 a)a ]-7 17[2 = a]7 ma'tCh)’

1, 0fi := b, match),

Va,b € ¥,i = n,U[i] = a,d((r, p, i, 7, match), (a,b)) = (61(r,a),d(p,b), 1, 0fi :=

b], match),

Va € X,p € Fy,1 <i<n,di]| = a,d((r,p,i, U, match), (a, \)) = (61(r, a), p, i+

1,4i := L], match),

Va € ¥,p € Fy,i =n,ui] = a,d((r,p,i, U, match), (a, \)) = (01(r, a), p, 1, 0]i :=

L], match),

F= {(Tap%lﬂ,match) | re Fl,p S FQ}
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SinceM accepts the sétw | w[l] = cw[2],w[l] € L(M;), w[2] € L(My)}, X; =
cX, is regular expressible. However, the number of stated/ak exponential irc.

Below, we show that the exponential number of states is iakhég.

Intractability of X; = ¢X,: Consider the equatioX; = cX,, wherec is a constant
string of lengthn. Let L(M;) and L(M;) be regular languages. Define the 2-track

language:

L= {($1932,y1y2)\n) | T1X2 € L(Ml),y1y2 € L(M2)> k>mn, |$1932| =k, |$1| = |y1| =

n,r; =cC, Ty = ylyQ}

Note that any automatam that accepts the languadedefined above will be pre-

cise with respect to the the equatidh = cX, (within M; andM5).

Theorem 12 Any nondeterministic finite automaton (NFA) needs at leasl” states

to acceptL.

Proof 5 Let ¢ = 1™ and consider the regular languagdgM;) = (0 + 1) and
L(M;) = (04 1)*. SupposéV is an NFA accepting.. Consider any pair of dis-

tinct stringsy; andy) of lengthn. ThenM will accept the following 2-track strings:

(1"22, y1y2A"), Wherexy, y1,y2 € (0 + 1)7, k > n, [1"zs] = k, [y1| = n, 22 =

Y1Y2, and
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(1", yiyh\™), wherez), yi, y5 € (0+ 1), k > n,

1"zh| =k, |yi| = n,ah =
Y195

Suppose in processind ™z, y1y2A"), M enters statey after processing the initial 2-
track segment1™, y;), and in processingl™z), yiy,A"), M enters state/ after pro-
cessing the initial 2-track segmefit*, ;). Theng # ¢’; otherwise, M will also accept
(1™z9, yiy2A"). This is a contradiction, since, # y)ys.

Since there ar@™ distinct stringsy of lengthn, it follows thatA/ must have at least

2" states.

The Construction of c = X; X,: Below we briefly describe the construction of a 2-
track DFA M, such that\/ is precise with respect to= X; X, within the given regular
sets characterizing possible valuesXof and X;. Assume that = a; ...a,. We can
split ¢ to two stringsz; . . . ax andag,, . .. a, SOthatt = a; .. .agag.1 . .. a,. There are
n—+1 such splits. For each of themif ... ay € L(M;) andag.; . ..a, € L(M,), then

if k>n—k, (ar...ak apyy ... a, 2*7") should be accepted by and ifk < n — k,
(ay...axN""% a1 ... a,) should be accepted hy. We can construct an automaton

M with O(n?) states that accepts this language by explicitly checkim ed these
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n + 1 cases. Since we can construct this 2-track DFA, it follovat th= X, X, is

regular expressible.

Non-Regularity of X; = X, X3: We first show thatX; = X, X5 is not regular ex-
pressible, and later we give constructions of 3-track DHAe bver-approximate or
under-approximat&; = X, X5.

Given My, My, Ms, let L = {w | @[1] = w[2Jw[3],w[1] € L(M),w[2] €

L(Ms), w[3] € L(Ms)}

Theorem 13 L is not necessarily a regular language.

Proof 6 Let L(M;) = atb™, L(M;) = a™, and L(M3) = b*. Supposd. is regular
and is accepted by a 3-track DEW. ThenM when given a 3-track string consisting
of:

asbt

ai)\s—i—t—i

b \SHt—
accepts if and only if = 7 andt = j. Clearly, we can construct a 3-track DREN’
which accepts 3-track strings of the form:

asbt

ai)\s—i—t—i

bi}\s-ﬁ-t—i
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We can then construct another 3-track DBA” which acceptd.(M) N L(M'). But
L(M") consists of 3-track strings of the form:

a'b’

ai)\s—i—t—i

bi)\s—i—t—i
It follows that we can construct a 1-track NFA frald” which accepts the language
{a’b' | i > 1} (by erasing the second and third tracks by homomorphismighwik not

regular and leads to a contradiction.

The Approximation of X; = X, X3: Below we propose an over approximation con-
struction foer = X2X3. Let M, = <Q1, 2, (51, ]1, F1>, My = <Q2, 2, (52, IQ, F2>,
and M3 = (Qs, X, 33, I3, F3) accept values ofX;, X,, and X3 respectively. M =

(Q,%¥3,6,1, F) is constructed as follows.
e QC Q1 XQrxQ3x%xQ3,

[ ] I: (11712,13,13),

Va,b e X, 0((r,p,s,5), (a,a,b)) = (01(r,a), 92(p,a), d3(s,b), s"),

Va,b € X,p € Fy,s & F3,0((r,p,s,5), (a, A\, b)) = (81(r,a), p, d5(s, b), d3(s', a)),

Va € X, p € Fy,s € Fy,0((r,p,s,5), (a, A, X)) = (61(r, a),p, 5, 03(5', a)),

Va € Z, p g F27 S Fg,(;((’l",p, S, S/)v (a'7a7 )‘)) = (51(T7 CL), 52(p7 a)v S, S/)’
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i F:{(Tvaswsl)|T€F17p€F2,3€F3,S/EF3}.

|Qlis O(|Q1] x [Q2] x |Qs|+ Q1] x [Qs] x |Qs]). Forallw € L(M), the following

properties hold:

o W[l] € L(M,),w[2] € L(M,),w[3] € L(Ms),

e W[1] = w[2Jw’ andw’ € L(Ms3),

Note thatw’ may not be equal tav[3] (i.e., there existsv € L(M), w[l] #
w[2]w[3]), and hencel is not precise with respect t&; = X,X;. On the other
hand, for anyw such thato[1] = @w[2]w[3], we havew € L(M), henceM is a regular
overapproximation ofX; = X, Xj.

Below, we show a regulamderapproximation construction of; = X, .X3. Note
that if L(M,) is a finite set language, one can construct the DFAhat satisfies\; =
X, X3 by explicitly taking the union of the construction &% = ¢ X3 forall c € L(M,).
If L(M;) is an infinite set language, we can still use this idea to coost regular
underapproximation ofX; = X, X3 by considering a (finite) subset i M/;) where
the length is bounded. Formally speaking, for eackx 0 we can construci/,, so
thatw € L(My),w[1] = w[2]w[3], w[l] € L(M,), w[3] € L(Mj;), w[2] € L(M,) and
|w[2]| < k. It follows that M, is a regulamunderapproximation ofX; = X, X3. The

following lemma holds by construction.

Lemma 14 L(My,) € L(My,) if ky < ks.
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To sum up, ifL(M,) is a finite set language, there existéhe length of the longest
accepted word) so thdt(M,) is precise with respect t&; = X, X3. If L(Ms) is an
infinite set language, there does not exist skao thatZ (1} ) is precise with respect
to X; = X,.X3, as we have proven non-regularity 8f = X5 X3.

We say a regular under-approximatiof/, is tightest if L(M,) is an
under-approximation ok, = X, X3 and for allM/’ whereM’ is an under-approximation
of X; = X,X3 we haveL(M’) C L(M,). Since the precision of a regular under-
approximation can be always improved by adding new wordsddenguage, the tight-

est regular under-approximation does not exigt(i#/, ) is not finite.

7.2 Symbolic Reachability Analysis on Multi-track Au-

tomata

Our symbolic reachability analysis involves two main stépsward fixpoint com-

putation and summarization.

7.2.1 Forward Fixpoint Computation

The first phase of our analysis is a standard forward fixpantutation on multi-
tack DFAs. Each program point is associated with a singldistrack DFA, where

each track is associated with a single string variable X. We usel/|l] to denote
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the multi-track automaton at the program labelThe forward fixpoint computation
algorithm is a standard work-queue algorithm. Initially; &ll labelsl, L(M][l]) = 0.
We iteratively compute the post-images of the statemerdsj@n the results to the
corresponding automata. Fog#@ant in the form: X := sexp, the post-image is computed
as:

POST(M, stmt) = (3X.M N CoNsTRUCT X' = sexp, +))[X/X'].

ConsTRucT(exp, b) returns the DFA that accepts a regular approximatian:pf where

b € {+, —} indicates the directiono{er or under, respectively) of approximation if
needed. During the construction, we recursively push tgatnens ¢) (and flip the di-
rection) inside to the basic expressiohsifp), and use the corresponding construction
of multi-track DFAs discussed in the previous section. We fusiction summaries to
handle function calls. Each functighis summarized as a finite state transducer, de-
noted as\/;, which captures the relations among input variables (paters), denoted
as X,, and return values. The return values are tracked in theubtrick, denoted as
X,. We discuss the generation of the transduderbelow. For astmt in the form.X:=

call  f(ey,...,e,), the post-image is computed as:

POST(M, stmt) = (3X, X,,, ... X, .M 0 M; 0 M;)[X/X,],
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where M; = ConsTRUCT(/\; X,, = e;, +). The process terminates when we reach
a fixpoint. To accelerate the fixpoint computation, we extendautomata widening
operator [58], denoted &8, to multi-track automata. We identify equivalence classes
according to specific equivalence conditions and mergestatthe same equivalence
class [4, 7]. The following lemma shows that the equalitatiehs among tracks are

preserved while widening multi-track automata.

Lemma 15 if L(M) C L(z = y)andL(M') C L(x = y), LLMVM') C L(z = vy).

Algorithm 9 CoNSTRUCT(exp, b)

1: if expisexpi A exps then

2 return CONSTRUCT(exp1, b) N CONSTRUCTexp2, b);

3: else ifexpis —(exp; A exps) then

4 return CONSTRUCT(—exp1, b) U CONSTRUCT(—exps, b);
5: else ifexp is —(—exp;) then
6:
7
8
9

: return CONSTRUCT(exzp1, b);

. else ifexp is bexp then

: return CONSTRUCT(bexp, b);

. else ifexp is —bexp then
10:  return COMPLEMENT(CONSTRUCT(bexp, b));
11: end if

For astmt in the form: X := sexp, the post-image is computed as follows:

POST(M, stmt) = (3X.M N CoNsTRUCT X' = sexp, +))[X/X'].

We use function summaries to handle function calls. Eachtfon f is summarized

as a finite state transducer, denoted\as which captures the relations among input
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variables (parameters), denotedgs and return values. The return values are tracked
in the output track, denoted &§,. For astmt in the formX:=call f(ey,...,e,),
posT(M, stmt) returns the result of8.X, X,,,... X, .M N M; N My)[X/X,], where

M; = ConsTRUCTA,; X, = €;, +).

During the fixpoint computation, we report assertion fahuif M/[/] accepts some
string that violates the assertion labeled\ote that at line 21 we compute an under
approximation of the assertion expression to ensure thedsmss of our analysis. Fi-
nally, a program labdlis not reachable if.()[l]) is empty. Our analysis is sound but
incomplete due to the following approximations: (1) regwaproximation for non-

linear word equations, (2) the widening operation and (&) msarization.

Algorithm 10 PROPAGATE(m, ()
1 m' = (mUM[])VM][l];

if m’ ¢ M{[l] then
M) =m/;
W @Q.enqueud;

end if

7.2.2 Summarization

Similar to analysis on single track automata, we computeqmore summaries
in order to handle procedure calls. We assume parametsimgagith call-by-value

semantics and we are able to handle recursion. Each fungtisrsummarized as a
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Algorithm 11 FORWARDRECAHABILITY ANALYSIS(Iy)

1: Init(M);

2: queuelV Q;

3: WQ.enqueudy : stmty);
4: while W@ # NULL do

5.  e:=WA@Q.dequeue(); Let bel : stmt;
6 if stmt is seqstmt then
7 m = POST(M l], stmt);
8 PROPAGATHm, [ + 1);
9: endif
10:  if stmtisif expgoto [’ then
11 m := M[l]n CONSTRUCT(exp, +);
12: if L(m) # 0 then
13: PROPAGATHm, I');
14: end if
15: m := M[l]N CONSTRUCT(—exp, +);
16: if L(m) # 0 then
17: PROPAGATHm, [ + 1);
18: end if
19:  endif
20: if stmtisassert expthen
21: m := CONSTRUCT(exp, —);
22: if L(M]l]) £ L(m) then
23: ASSERTFAILED (I);
24: else
25: PROPAGATHM [I],l + 1);
26: end if
27:  endif
28: if stmtisgoto L then
29: for ' € L do
30: PROPAGATEM [I],l');
3L end for
32:  endif
33: end while
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multi-track DFA, denoted as/;, that captures the relation among its input variables
and return values.

During the summarization phase, (possibly recursive)tions are summarized as
unaligned multi-track DFAs that specify the relations agdheir inputs and return
values. The summarization approach has been discusse@pteZid. Briefly, we first
build (possibly cyclic) dependency graphs to specify howvitiputs flow to the return
values. Each node in the dependency graph is associatedmithaligned multi-track
DFA that traces the relation among inputs and the value dfrtbde. An unaligned
multi-track DFA is a multi-track DFA wheres might not be right justified. Return
values of a function are represented with an auxiliary outrack. Given a function
f with n parameters)/; is an unalignedn + 1)-track DFA, where: tracks represent
the n input parameters and one tragk, is the output track representing the return
values. We iteratively compute post images of reachab&iogls and join the results
until we reach a fixpoint. Upon termination, the summary euhion of the unaligned
DFAs associated with the return nodes. The main differesdkat to compose these
summaries at the call site, we also propose an alignmentitlgoto align (so that\’s
are right justified) an unaligned multi-track DFA. In Secti@.2.3, we discuss some
theoretical results about alignment problems and proposgproximate algorithm to

align unaligned multi-track automata.
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Once the summary DFA/; has been computed, it is not necessary to reanalyze
the body of f. To compute the post-image of a call fowe intersect the values of
input parameters with/; and use existential quantification to obtain the returneslu
Let M be a one-track DFA associated with where L(M) = {b}. posi(M, X :=
call  f(X)) returnsM’ whereL(M') = ba* for the example function shown above.
As another example, |6t/ be a2-track DFA associated witl(, Y that is precise with
respect toX = Y. ThenprosiM, X :=call f(X)) returns)M’ which is precise
with respect taX = Y.a* precisely capturing the relation betwe&nandY after the
execution of the function call. As discussed aba\&,is computed by3X, X, .M N

M N My)[X/X,], whereL(M;) = CoNSTRUCT(X,,, = X, +).

7.2.3 Alignment

In general,M; can be an unaligned multi-track DFAZ are not right justified)
and needed to balignedbefore composition. Theorem 16 shows that an unaligned

multi-track DFA may not be definable by an aligned multi-k&di-A.

Theorem 16 For anyn > 2, there exists a language accepted by an unaligned

track DFA M that cannot be converted to any aligned DFA.

Proof 7 Let L = {(a)\)i(ce)* | i,k > 1}. Clearly, L can be accepted by an unaligned

2-track DFAM. Suppose we can conveYt to an aligned 2-track DFAV/'. Let M’
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haves states. Consider the string = (ac)*(cA)®. Thenw is accepted by\/’. Then
there exist, K > 0 andj > 1 such thatw decomposes inte = (ac)(ac)?(ac)*(c\)?,
wherei +j+k = s, and(ac)’(ac)™ (ac)*(c)\)* is accepted by’ for everym > 0. Let
m = 2. Thenw' = (ac)*(ac)¥(ac)k(c))? is accepted by/’. But now, the first track of
w’ contains the string*™¢*, and the second track contains™. Sincej > 1, thisis a
contradiction since the number &6 in the first track is less than the number«d in

the second track.

Given an unaligned multi-track DFA! and a bound, we construcfl/’ that accepts
an over or underapproximation ofL(M) based ork. The construction is shown in
Appendix. The basic idea is to associate a bounded FIFO gugu® sizek) with
the states ofl/’ to record the symbols seen on the track that is being aligrieshw
a transition that contains the symbblfor that track is taken. Later, when a nan-
symbol is seen on that track, it has to match the symbol thattise head of the queue
if the queue is not empty. During the construction, if no quedceeds sizg, then
we sayM is k-alignable and the construction returns the precise aligh€duch that
L(M") = L(M). If M is notk-alignable theunderapproximation construction rejects
all words that cause a queue to excéeshd returns ai/’ such thatZ.(AM') C L(M),

while theoverapproximation construction accepts those words thaigbgrinatch the
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contents of the queue (up to sizpand returns ad/’ such that.(AM) C L(M’). The

precision improves when we increase

Our approximate construction: We propose an approximakealignmentconstruc-
tion. Given an unaligned multi-track DFA/ and a bound:, we construct)M’ that
accepts amveror underapproximation of..( /) based ork.

Let M = (Q,¥", 0,1, F) andX™ C (X U{A}) x ... x (XU {\}). Fora € ¥,
ali] € ¥ U {\} denotes theé'" character ofv andali := a] denotesy’ € X" such that
'[i] = aandVi # j,o'[j] = a[j]. We align one track ofi/ at a time. To align\/
completely, we iteratively align each track. Given a bo#érahd a track, we construct
M’ such that the trackis aligned in)/’. We assume that there is a sink state and all
unspecified transitions go to the sink state. betoe an empty queue anddenote+

or —. We constructM/’ = (@', X", ¢, I’, F') as follows:
o Q' C QX Qqueue, WhereQuuewe C {+, —} x XF.
o I'=(I,(+,01))-
o F'={(q,(*,00)) | g € F)}
For each¥(q, a) = ¢,
o if afi] € 3,
= 0'((¢ (, 00)), @) = (¢, (=, 01)),
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— 8 ((q, (%,0)),ali :=A) = (¢, (—, ), if a[i] = p.head and’ = p.dequeue.

o if afi] = A,

- 5/((Q> (_7 QJ.))? Oé) = (qlv (_7 QJ—))’
- 5/((Q> (+7 Q))v Oé) = (q/v (_7 Q))’
—Va € %, ¢ = g.enqueue() and|¢| < k, §'((q, (+,0)), ali == a]) =

(¢, (+,0))-

¥, C X is the set of characters that can be reached in trafter seeing the sequence
of symbols stored in. Precisely, letVl; = (Q;, X, 9, I;, F;) accep{w[i] | w € L(M)},
thenX, = {a | ¢ # sink,d;(I,0a) = ¢'}. Usingl, (instead of¥) prevents the
construction from adding useless states that will end upstti@ning to the sink state.

The above construction returns anderapproximation ifA/ is notk-alignable To
return anoverapproximation, we make the following modifications. Wetfadd two
extra states to the queug, €'}, to denote that the queue capacity has been exceeded.
After the queue capacity is exceeded, we will stop enquesymgbols to the queue
when we seé.. We continue to match and dequeue when wessee: until the queue
is empty. In both cases, we can output arbitrary characteX: or A (e), but once we
output\, we can only outpuh thereafter ¢').

For each¥(q, a) = ¢/,
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= '((q, ({e, €'}, 01))s afi == A]) = (¢, (¢, 01)),
—Va € 3,8((q, (e, 01)),ali :==a]) = (¢, (e, 01)),
— if afi] = p.head and’ = o.dequeue.
* 0'((q, ({e, €'}, 0), afi = A)) = (¢, (¢, @),
* Va € X,0((q, (e, 0)), ali == a]) = (¢, (e, 0)),
o if ali] = A,
—if o] = &,
* Va € X,0'((q, (+, 0)), afi :==a]) = (¢, (e, 0)),
* 0'((q, (+,0), ) = (¢, (¢, 0)),
— (g, ({e, €'}, 00)), @) = (¢, (¢, 01)),

— Va € %,0'((q, (¢, 0), ali := a]) = (¢, (e, 0))-

7.3 String Abstractions

We present two string abstraction techniqueghabet abstractioandrelation ab-
straction and show that they can be combined to form different abstraclasses with

different levels of precision.
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7.3.1 Alphabet Abstraction

Let X2, a finite alphabet, be the concrete alphabet,-agly. be a special symbol
to represent characters that are abstracted away. An etbaslpaabet ot is defined
asX’ U {x}, whereX’ C X. The concrete alphab&l and its abstract alphabets form
a complete lattice, denoted &s, of which the bottom, denoted as, is {x} and the
top, denoted as+, is X. The partial order of s, is defined as follows. Let;, o, be

two elements inLy,. We say

UlgUg,if (01\*)§(02\*), and 01 [Ug,if o1 & o9 andal#ag.

Let oo C o;. An alphabet abstraction function ovey, o,, denoted asgy,, ,, iS a
function fromo; to o3, such that for any. € o4, ay, ,(a) = aif a € 09 ; Oy 0,(a) =
*, otherwise. An alphabet concretization function owero,, denoted as,, ,,, is a
function fromo, to o4, such that for any: € o9, 75, 0,(a) = a if a # ; otherwise
there exists a wherev,, ,,(a) = candc € o1 \ (o2 \ {*}).

An alphabet transducer ovey ando, is a 2-track DFAM,,, ,, = (Q, 01X 02,9, qo, F),

where

e Q ={qo,sink}, F ={q}, and
L VCL S 0-275(QO7 (a,a)) = 4o,

[ ] VCL € 01 \0'2,5(610, (CL,*)) = (qo-
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Let M be a single track DFA oves, with track X. M, ,,(X, X’) denotes the
alphabet transducer over ando, whereX and X’ correspond to the input and output
tracks, respectively. We define the abstraction and camatitn functions on automata

as:
o 0y (M) = (3X.M N M,, ,,(X, X")[X/X], and
® Yor,00(M) = 3X.(M[X'/X] N Mo, 5, (X, X))

The definition can be extended to multi-track DFAs. Iétbe a multi-track DFA
over o} associated witH X;|1 < i < n}. a,, (M) returns a multi-track DFA over
oy. On the other hand, whil@/ is a multi-track DFA ovew?, vy, ,,(M) returns a
multi-track DFA overo?. We addi(qo, (A, A)) = ¢ to M,, ,, to deal with the padding
symbol\. We usel/,, ,,(X;, X!) to denote the alphabet transducer associated with
tracks.X; and.X;. The abstraction and concretization of a multi-track DFAis done

track by track as follows:

® Oy (M) =VX;.(3X:. M N My, ., (X, X]))[X;/X]], and

® Yor.oo (M) = VX, (3X]MX]/ Xi] N My, 0, (X5, X7)).

7.3.2 Relation Abstraction

LetX = {X,... X, } be afinite set of variables. LgtC 2% where() ¢ y. We say

x defines a relation oX if (1) for anyx, x’ € x, x € x/, and (Z)Uxexx = X. The set
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of x that defines the relations & form a complete lattice, denoted &g, of which

the bottom, denoted ag, , is {{ X1}, { X2}, { X5}, ... .{X,}} (which corresponds to
the case where, for each program poimtsingle-track automata are used and each
automaton represents the set of values for a single stringiole) and the top, denoted
asxT, is{{X1, Xo,..., X, }} (which corresponds to the case where, for each program
point, a single multi-track automaton is used to repredemset of values for all string
variables where each string variable corresponds to onk)tr&he partial order of.x

is defined as follows: Let, x» be two elements idx. We say

e o Ly, ifforanyx € x», there existx’ € x; such thatk C x'.

e x2 C x1if x2 E x1 @andy; # xa.

Let xo T xi. A relation abstraction function over, x», denoted asy,, ,,, is a
function from x; to x», such that for ank € x;, a(x) = x/, wherex’ C x and
x' € x2. Arelation concretization function ovef, x», denoted as,, .. i a function
from x» to x1, such that for ank’ € x2, 7y, 1. (X’) = x, wherex’ C x,x € x;.

For eachx € x, we use ax|-track DFA, denoted ad/,, where each track is
associated with a variable in Forx’ C x, My |, is defined as thé:'|-track DFA
that accept§w’ | w € L(My),VX; € x',w'[i] = w[i])}, andMy T is defined as the

|z|-track DFA that acceptéw | w' € L(My),VX; € X', w[i] = w'[i])}.
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Let M, = {Mx | x € x} be the set of DFAs of. The set of string values

represented b, is defined as:L((, ., Mx Tx.), wherex,, = {X;, Xs,..., X,,}.

xXEX
That is, we extend the language of every automataNlinto all string variables and
then take their intersection.

Let xo T x1. @y, x.(M,,) returns an instance of the set of DFAs ¥f, i.e.,
{My|x" € x2}, where for eachx’ € x5, My = (ﬂxeth,nxﬂ My Tx,) lx, Where
xg ={X; | Xi €x,x € x1, X Nx # D}

T (M, ) returns an instance of the set of DFAs\af i.e., { M|x € x1}, where
for eachx € x1, Mx = (Nyeypxnxzo(Mx Txa)) Ix, Wherex, = {X; | X; € X', x' €
X2, X' Nx # 0},

Both the alphabet and relation abstractions are conseevatithe sense that the
automata generated by the abstraction functions recognare possible values for
the string variables than the input automata. On the othed,hthe concretization
functions do not lose any precision, in the sense that, thenzata generated by the

concretization functions recognize the same possiblesgdior the string variables as

the input automata.

7.3.3 Heuristics for Abstraction Selection

An abstraction classs defined as a paify, o) wherey € Lx ando € Ly. The

abstraction classes & andY also form a complete lattice, of which the partial order
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is defined as:(x1,01) T (x2,02) if x1 C x2 ando; C o0y. GivenX and X =
{X1,...,X,}, we can adjust the precision and performance of our andlysielecting
different abstraction classes.

If we select the abstraction claégr, o1), we conduct our most precise relational
string analysis. All the relations amoigthat are regular expressible will be kept using
onen-track DFA at each program point. If we selégt, , o, ), we only keep track of the
lengthof each string variable individually. Though we abstracagwlmost all string
relations and contents, this kind of path-sensitive (Wength conditions on a single
variable) size analysis can be used to detect buffer ovexfidnerabilities [20, 47]. If
we select xr, 0, ), then we will be conducting relational size analysis. Hinaarlier
string analysis techniques that use DFA, e.g., our prewisr& [58], correspond to the
abstraction clasgy | , o1), where multiple single-track DFAs ov&rare used to encode
reachable states. As shown in [56, 58], this type of analgsiseful for detecting XSS
and SQLCI vulnerabilities.

Given a string system and a property we propose a heuristsefecting an abstrac-
tion class(, o). Letx, denote the set of variables involved in the property we wash t
check andC, denote the set of characters. If the cardinalitkgfis less than or equal
to one, we sef to y,. That is, we abstract away all the relations among the string
variables. If there are more than one variables involyer, selected as follows: For

eachX, € x,, we generate its dependency graph. X;adenote the set of variables and

181



Chapter 7. Relational String Analysis

C; be the set of characters that are associated with the nodles dependency graph
of X;. We selecty as the least element @k, such that there existse x, x, C x, as
well as for eachX; € x,, there existst’ € x, x; C x’. We select as the least element
of Ly, such thatC, U; C; C o.

Once an abstraction class is selected, we perform our riegithanalysis using the
corresponding abstraction/concretization functions tedoperations defined below.
Let o, denotea,. ,, andca, denotea,. ,. We uselog(|c| + 1) bits to encode the

selected alphabet (including the padding symYol

e ForM, bop M, bop € {U,N, V}, we return{ My bop M, | x € x}. The result
can be made more precise by refining the automata that havejppeg variable

sets so that their projections to the same set of variabéesqual.
e For CONSTRUCT(exp, +), we returna,(CONSTRUCT(exp, +)).

e For CONSTRUCT(exp, —), we returna, (CONSTRUCT(exp, +)) NMz, whereM;

accepts arbitrary now-words (i.e.,L(Mz) = {w | w € (o \ {x})*}).

e ForM, NM,,,, letx.,, denote the set of variables that are associated With.
Xu = Uxeyxnxe,201Xi | Xi € x}. We first generate g, |-track DFA M, =
Merp Txa Nicxg Mx Txa- We returnM] = {My, |x | x C xy,x € X} U

{My | x € xy4,x € x}.
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7.3.4 Handling Complex String Operations

We extend our analysis to other complex string operatiowgs, eeplacement, that
have been defined using single-track automata [58]. To deedirst extract the values
of each argument frorVI,, as a single track DFA. We compute the result of the string
operation using these single-track DFAs accordingly. Tbst pmage ofM, against
the operation can then be computed using the result. We alslifyrthese operations
to ensure the soundness of our approach while using an etbatphnabet. Consider
REPLACE(M;, M,, M3) [58] that returns the DFA accepts) ciwscs . . . wrcpwir1 | kB >
0, w1 T wWaky . .. WiTpwiry € L(My),VY;, x; € L(Ms), w; does not contain any sub-
string accepted b/, c; € L(Ms)}. Assumedll;, M,, Ms overo. We return
0o (REPLACE(y, (M1), 7o (Mz), 7 (Ms)) if L(My) ¢ L(M;) and L(My) & L(Ms),
so that all possible results in the concrete domain are dieclun the abstract domain

after abstraction. We returnBRLACE(M,, M,, Ms), otherwise.

7.4 EXperiments

We evaluate our approach against three kinds of benchmByBasic benchmarks,

2) MFE benchmarks, and 3) XSS benchmarks. These benchnepikesent typical
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string manipulating programs along with string propertiest address severe web vul-

nerabilities.

Basic benchmarks: These examples demonstrate that our approach can proveitmpl
equality properties of string systems. We wrote two smasigpams. CheckBranch
(B1) has if branch X; = X5) and else branchX; # X3). In the else branch, we
assign a constant stringto X; and then assign the same constant string(4o We
check at the merge point wheth&; = X,. CheckLoop (B2) is similar to the example
from Section 2, where we assigfy and X, the same constant string at the beginning,
and iteratively append another constant string to both imfamite loop. We check at
the end point of the loop whethéf; = X,. Let M accept the values of; and X,
upon termination. The equality assertion holds wiign/) C L(M,), whereM, is

CoNsTRUCT(X; = X5, —).

MFE benchmarks: This set of benchmarks show that the precision that is obdain
using multi-track DFAs can help us in removing false postigenerated by single-
track automata based string analysis. These benchmanesegpmalicious file ex-
ecution(MFE) attacks. Such vulnerabilities are caused becauselass directly
use or concatenate potentially hostile input with file oeain functions, or improp-
erly trust input files. We systematically searched web apfilbns for program points

that execute file functions (include, fopen, etc) whose @gnuts may be influenced
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by external inputs. At these program points, we check whdtteretrieved files and
the external inputs are consistent with what the developgesd. For instance, in
pblguestbook.php distributed with Pblguestbook-1.32 possible violation is that
$ GET[type’] is A but the retrieved file ipblguestbook _back _up_B.txt

We manually generate a multi-track DPA,,,; that accepts a set of possible violations
for each benchmark, and apply our analysis on the slicedranogegments. Upon
termination, we report that the file function is vulneratfle {M) N L(M,..) # 0.

M is the composed DFA of the listed single-track DFAs in thegkdrtrack analy-
sis. M1: PBLguestbook-1.32, pblguestbook.php (536). 5&Gotks the line hum-
ber of the sink function in the PHP script. M2: MyEasyMarletl; prod.php (94).
M3: MyEasyMarket-4.1, prod.php (189). M4: php-fusion-B.dh backup.php (111).
M5: php-fusion-6.01, forumgrune.php (28). These test applications are available at

http://www.cs.ucsb.edu/ ~vlab/application/test-apps.tar.gz

XSS benchmarks: In this set of benchmarks, we check the existence of Crass-Si
Scripting (XSS) vulnerabilities against known vulnerabl&eb applications.
S1:. MyEasyMarket-4.1, trans.php (218). S2: Aphpkb-0.7a.shp(87), and S3:
BloggIT 1.0, admin.php (23). We check whether at a specifotg@m point, a sen-
sitive function may take an attack string as its input. If e, say that the program
is vulnerable for the given attack pattern. To identify XSfeks, we check inter-

section emptiness against all possible values of the infptlteosensitive function at a
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(XL UT)
Result DFA Time Memory

state(bdd) | user+sys(sec) (kb)
B1 n 33(477) | 0.027 +0.006 410
B2 n 9(120) 0.022+0.008| 484
M1 n 56(801) 0.027+0.003| 621
M2 n 22(495) 0.013+0.004| 555
M3 n 5(113) 0.008+0.002| 417
M4 n 1201(25949) 0.226+0.025| 9495
M5 n 211(3195) | 0.049+0.008| 1676

Table 7.1: Experimental Results against Basic and MFE Benchmarksgusingle-
track Automata.

given program point and the attack strings specified as daetanguage. All three
benchmarks are vulnerable. We also modified/insertedizatiitn routines to these
benchmarks (denoted as S1’, S2’, and S3’). These test bemkbrare available at

http://www.cs.ucsb.edu/ ~vlab/stranger

Experimental Results: Table 7.1, 7.2, and 7.3 summarize the results for the first two
benchmarks where we check properties depending on théoredaif variables. The
notation is explained as the following: DFA: the final (corspd) DFA associated with
the checked program point, state: number of states, andrchdber of bdd nodes.

We start from(x ., o1) (the analysis proposed in [57,58]). As shown in Table 7.1,
for all these benchmarks, we fail to prove the propertieagisingle-track automata
("'n” indicates that the property does not hold). We refine #fvstraction class to

(x,071), wherey is selected for relation concretization by our heuristicpérform a
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(. o1)

Result DFA Time Memory
state(bdd)| user+sys(sec) (kb)
Bl y 14(193) | 0.070 + 0.009 918
B2 y 5(60) 0.025+0.006| 293
M1 y 50(3551) | 0.059+0.002| 1294
M2 y 21(604) | 0.040+0.004| 996
M3 y 3(276) | 0.018+0.001| 465

M4 y 181(9893)| 0.784+0.07 | 19322
M5 y 62(2423) | 0.097+0.005| 1756

Table 7.2: Experimental Results against Basic and MFE BenchmarksgUdinlti-
track Automata.
(x,0)

Result DFA Time Memory
state(bdd)| user+sys(sec) (kb)
Bl y 10(61) | 0.009 +0.002 382
B2 y 5(16) 0.001+0.002| 135
M1 y 54(556) | 0.015+0.004| 517
M2 y 22(179) | 0.007+0.003| 538
M3 y 3(49) 0.003+0.002| 298
M4 y 175(4137)| 0.218+0.13 | 5945
M5 y 66(1173) | 0.033+0.003| 782

Table 7.3: Experimental Results against Basic and MFE BenchmarksgUdinlti-

track Automata and Alphabet Abstraction.
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more precise analysis. As shown in Table 7.2, we prove afigntees using multi-track
automata ("y” indicates that the property holds). Finall use the abstraction class
(x,0), whereo is also selected for alphabet abstraction by our heurisscshown in
Table 7.3, we prove all properties with better performamceerms of both time and
memory using abstract alphabet. This result indicatesatiaheuristic picks a good
abstraction class that is precise enough to prove the grepavhile coarse enough
to be efficiently computed. Using the presented technigwesgcan prove properties
that we are not able to prove using multiple single-tracloau#ta, and by using our
abstraction techniques we can improve the performance.

Table 7.4 and Table 7.5 summarize the results for checkiag®S benchmarks.
The property holds if the benchmark is not vulnerable. Agai start from(y ., o).
We fail to prove the property for S1, S2, and S3, which mighdibe to false alarms. We
refine the abstraction class tg, o), wherey is manually selected so that all branch
conditions are precisely modeled. We still fail to prove greperty for S1, S2, and
S3. We identify that all these benchmarks include a realenalpility and, hence, both
analyses report correct results without false alarms. Weualdy insert/modify the
sanitization routines to remove the vulnerabilities in S2, and S3. Usingy,, o),
we are able to prove the property against the modified bendsn{&1’, S2’, S3’).
We change the abstraction class(ig,, ), whereo is selected by our heuristic, to

perform a more coarse analysis. We are still able to condbaeS1’, S2’, and S3’
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(legT)
Result DFA Time Memory
state(bdd)| user+sys(sec) (kb)
S1 n 17(148) | 0.010+0.002| 444
S2 n 27(229) | 0.035+0.002| 895
S3 n 79(633) | 0.062+0.005| 1696
(X1,07)
ST y 17(147) | 0.010+0.002| 382
S2 y 17(141) | 0.240+0.012| 5686
S3 y 127(1142)| 0.436+0.008| 6201

Table 7.4: Experimental Results against XSS Benchmarks.

<X7 UT)
Result] DFA Time Memory
state(bdd) user+sys(sec) (kb)
S1 n 65(1629) | 0.195+0.150{ 1231
S2 n 47(2714)| 0.153+0.008| 2684
S3 n 79(1900) | 0.226+0.003| 2826
(x1,0)
ST y 17(89) | 0.004+0.002| 287
S2' y 9(48) 0.036+0.005| 2155
S3 y 125(743)| 0.297+0.002| 3802

Table 7.5: Experimental Results against XSS Benchmarks Using Mratik Automata

and Alphabet Abstraction.

are not vulnerable but with better performance in terms dhkone and memory.
The experimental result shows that using the presentedagben techniques, we can
improve the performance of earlier string analysis techesg It also shows that for

this set of benchmarks, it is appropriate using multiplgksistrack automata, which

matches our heuristic.
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Stranger Tool

We present a new tool callextrancer (STRing AutomatoN GEneratoR) that can
be used to check the correctness of string manipulatioratipas in Web applications
with respect to known attacksrrancerimplements an automata-based approach [56,
58] for automatic verification of string manipulating pragrs based on symbolic string
analysis. String analysis is a static analysis technigaedétermines the values that a
string expression can take during program execution atengwogram point.

STRANGER encodes the set of string values that string variables danda deter-
ministic finite automata (DFAs)STRANGER implements both there- andpostimage
computations of common string functions on DFAs, includangovel algorithm for
languagebased replacement [58]. This replacement function tdiree tDFAs as argu-

ments and outputs a DFA and can be used to model PHP replaceomemands, e.g.,
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preg replace() andstr _replace() , as well as many PHP sanitization routines,
e.g.,addslashes() , htmispecialchars() andmysgl _real _escape _string()
STRANGER IMplements all string manipulation functions using a sytiteutomata rep-
resentation (MBDD representation from the MONA automatzkpge [9]) and lever-
ages efficient manipulations on MBDDs such as determimnaéind minimization.
This symbolic encoding also enablesancer to deal with large alphabets.

STRANGER combines forward and backward reachability analyses [B@]ia capa-
ble of (1) checking the correctness of sanitization roiaed proving that programs
are free from specified attacks (with respect to attack petjeand (2) identifying vul-
nerable programs, as well as generating non-trivial valbiity signatures. Using for-
ward reachability analysiSTRANGER computes an over-approximation of all possible
values that string variables can take at each program gbthis conservative approx-
imation does not include any attack pattesmancer concludes that the program does
not contain any vulnerabilities. Otherwise, intersectimgse with attack patterns yields
the potential attack strings. Using backward analgsigncer automatically generates
string-based vulnerability signatures, i.e., a charaaton that includes all malicious
inputs that can be used to generate attack strings. In addii identifying existing
vulnerabilities and their causes, these vulnerabilityatgres can be used to filter out

malicious inputs.
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8.1 Tool Description

STRANGER USes Pixy developed by Jovanovic et al. [31] as a front endthed
MONA [9] automata package developed by Klarlund et al. fdoenata manipulation.
STRANGER takes a PHP program and a set of attack patterns as input tordatically
analyzes it and outputs the possible XSS, SQL Injection, BEMulnerabilities (char-
acterized as attack patterns) in the program. For each ihatuleads to a vulnerability,
it also outputs the vulnerability signature, i.e., an awton (in a dot format) that char-
acterizes all possible string values for this input whichyreaploit the vulnerability.
The architecture ofrranceris shown in Figure 8.1. The tool consists of the following

parts.

PHP Applications (Attack Patterns)
1 String/Automata
Operations Automata Based DFAs (MBDDs)

P . -
Sl Tainted AStr:ng String Manipulation ™~
Dependency _ESSauEd Stranger Library MONA Automata
CFGs Graphs Automata Package

A:::n;er String Analysis Report
Y (Patch / Vulnerability Signatures)

Pixy: Stranger: MONA:
Front End Symbolic String Analysis DFA Manipulation

Figure 8.1: The Architecture of SRANGER
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8.1.1 PHP Parser and Taint Analyzer

The first step in our analysis is done by Pixy [31], a taint gsigltool for detecting
web application vulnerabilities. Pixy parses the PHP paogand constructs the con-
trol flow graph (CFG). PHP programs do not have a single erdigt@as in some other
languages such as C and Java, so we process each scriptlbgldsg with all files
included by that script. The CFG is passed to the taint aralyzwhich alias and de-
pendency analyses are performed to generate dependeptyg gladependency graph
specifies how the inputs flow to a sensitive sink with respestring operations The
number of its nodes is linear in the number of the string djpera in the program with
respect to a static single assignment representation. ktraptures generate cyclic
dependency relations. If no tainted data flow to the sinkittanalysis reports the de-
pendency graph to be secure; otherwise, the dependendy igreginted and passed to

the string analyzer for more inspection.

8.1.2 String Analyzer

The string analyzer implements our (forward and backwatdhperability analy-
sis [56] on the tainted dependency graphs found by the taalysis. The dependency
graphs are pre-processed to optimize the reachabilitysesl First, a new acyclic de-
pendency graph is built where all the nodes in a cycle (ifjgng cyclic dependency

relations) are replaced by a single strongly connected ocomut (SCC) node. The vul-
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nerability analysis is conducted on the acyclic graph sottienodes that are not in a
cycle are processed only once. In the forward analysis, agguate the postimages to
nodes in topological order, initializing input nodes to DF&ccepting arbitrary strings.
Upon termination, we intersect the language of the DFA okthk node with the attack
pattern. If the intersection is empty, we conclude that thk is not vulnerable with re-
spect to the attack pattern. Otherwise, we perform the backanalysis and propagate
the pre images to nodes in the reverse topological ordéigliring the sink node to a
DFA that accepts the intersection of the result of the fodnamalysis and the attack
pattern. Upon termination, the vulnerability signaturesthe results of the backward
analysis for each input node. For both analyses, when wa lSCC node, we switch to
a work queue fixpoint computation [56] on nodes that are fatie@SCC represented
by the SCC node. During the fixpoint computation we apply enat@ widening [4] on
reachable states to accelerate the convergence of therfixaomnputation. We added
the ability to choose when to apply the widening operators Diption enables compu-
tation of the precise fixpoint in cases where the fixpoint cotapons converges after a
certain number of iterations without widening. We also mpavate a coarse widening
operator [4] that guarantees the convergence to avoid patarfinite iterations of the

fixpoint computation.
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8.1.3 String Manipulation Library

The string manipulation library (SML) handles all core istriand automata opera-
tions such as replacement, concatenation, prefix, suffiexgaction, union, and widen.
During the vulnerability analysis, all string and automiadanipulation operations that
are needed to compute the values of a node in a dependendy @y&ajgent to SML
along with the string and/or automata parameters. SML,,tBgecutes the operation
and returns back the result as an automaton. A Java clasd Sallanger Automaton
has been used as the type of the parameters and results. aBsdalows a well de-
fined interface so that other automata packages can be plugged used with our
string analyzer instead of SML. SML is also decoupled from\hlnerability analysis
component so that it can be used with other string analysls.t8tranger Automaton
encapsulateBbstranger.so shared library that has the actual string manipulation code
implemented in C to get a faster computation and a tight obotr memory. We used
JNA (Java Native Access) to bridge the two languages. Amddature of Stranger is
an option to produce a C trace of all string and automatonadiogrs performed during
a run to allow us to debug the code directly in gdb. This candyegnlized to produce
a higher intermediate language that can be used with otfieg sinalysis backends that

can not be plugged directly into Stranger.
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8.2 Experiments and Discussions

We have experimented witranceEr ON several benchmarks extracted from known
vulnerable web applications [58]. For each vulnerable herark, we also generated
a modified version where string manipulation errors are fix@gancer analyzed all
benchmarks within a minute. It successfully reported athin vulnerabilities, gen-
erated the vulnerability signatures, and verified that tloelifred version is secure and
free from the previously reported vulnerabilities withpest to the attack patterns.

We have conducted a case studySohoolmate-1.5.4 - a PHP web applica-
tion for school administrationSchoolmate consists of 63 PHP files and 8181 lines
of code. Using a machine with Intel Core 2 Due 2.5GHz with 4 GBiemory running
Linux Ubuntu 8.04, it took 22 minutes to analyze the wholel@ation. During the
analysis we checked 898 XSS sinks and consumed 281 MB of nyerStnanger re-
ported 153 XSS vulnerabilities with respect to the attadkgpa>* < script>*. That
is, there are at most 153 sensitive sinks that may take aydtrat contains< script
as its input at run time. We manually inspected these vuhilras and identified 105
actual vulnerabilities (48 false alarms). The false pesitate ofSTRANGER iS around
31.3%. 39 of these false alarms are caused by infeasible f@m#xploit such vulnera-
bilities. We can eliminate all these false positives by periing path sensitive analysis

using multi-track automata. 6 of the false alarms are duentoadeled built-in PHP
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functions. Three of these functions, e.g., pdf converstan, be categorized as trusted
functions. The remaining unmodelled functions represesgtaof functions that may
cause a vulnerability but are hard to model using the stripgrations in our string
manipulation library. 3 of the false alarms were the restiliravailable user written
functions. These false alarms are caused by different &xecentries. Suppose that
a.php defines functionf, b.php uses the functiorf but does not include.php and
c.php includes botha.php andb.php. When we analyze.php andb.php as part of
c.php, we will not get a false alarm. However, when we analyzép by itself (since
a.php is not included, we were not able to find the definition of thechion f), we will
conservatively returly* as the return value of functigh On the other hand, while run-
ning b.php directly, the PHP interpreter will abort the execution da@n unavailable
function f.

We have also conducted another case studgiompGB-1.49.0 - a PHP guest-
book web applicationSimpGB consists of 153 php files containing 44000+ lines of
code. Using a machine with Intel Core 2 Due 2.5 GHz with 4GB efmory running
Linux Ubuntu 8.04 strancER tOOK 231 minutes to check XSS vulnerabilities for all en-
tries of executable PHP scripts and concluded 304 possilimherabilities out of 15115
sinks.STRANGER tOOK 175 minutes to reveal 172 possible SQL Injection vidbéities
from 1082 sinks, and 151 minutes to reveal 26 possible MFBerabilities from 236

sinks.
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In sum, we presented a string analysis tool for verificatibnveb applications,
focusing on SQLI, XSS and MFE attacks. In addition to idsfiij vulnerabilities
and generating vulnerability signatures of vulnerableliappons, STRANGER can also
verify the absence of vulnerabilities in applications (wrespect to attack patterns)
that use proper sanitization. Compared to grammar-based sinalysis tools [15, 38,
48], strancER features specific automata-based techniques includimgreata widen-
ing [4], language-based replacement [58] and symbolicaata encoding and manipu-
lation [9]. STRANGER and several benchmarks are available at

http://lwww.cs.ucsb.edu/ ~vlab/stranger
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Related Work

Static analysis of strings in programs has been an activearels area with the
goal of finding and eliminating security vulnerabilitiesusad by the misuse of string
variables. There have been two separate branches of regadtds area: 1)5tring
analysisthat focuses on statically identifying all possible valoéa string expression
at a program point in order to eliminate vulnerabilitieslsas SQL injection and cross-
site scripting (XSS) attacks [1,15,52,58], ands2)e analysithat focuses on statically
identifying all possible lengths of a string expression giragram point in order to
eliminate buffer overflow errors [20,22,46]. In this chaptee review the related work

on string analysis, size analysis, and composite analysis.
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9.1 String Analysis

Due to its importance in security, string analysis has beelelyw studied. Chris-
tensen, Mgller and Schwartzbach [15] propose a grammadbstsing analysis (im-
plemented in a tool called JSA) to statically determine thieies of string expressions
in Java programs. They convert the flow graph into a context grammar where each
string variable corresponds to a nonterminal, and eaamgstiperation corresponds to
a production rule. Then, they convert this grammar to a egahguage by computing
an over-approximation.

Kirkegaard et al. apply JSA to static analysis of XML tramgfations in Java pro-
grams [35] by using DTD schemas as types and modeling theteft XML transfor-
mation operations. Gould et al. [24] use the grammar-based sinalysis technique to
check for errors in dynamically generated SQL query stringava-based web applica-
tions [15]. Christodorescu et al. [16] present an impleragon of the grammar-based
string analysis technique for executable programs for 8&atchitecture.

Minamide [38] extends the grammar-based string analystmigue by providing
support for string-based replacement operations. He usis-$tate transducers to
model replace operations. He describes a string analysisitmilar to JSA to stati-

cally detect cross-site scripting vulnerabilities and &idate pages generated by Web

200



Chapter 9. Related Work

applications written in the PHP language. Instead of agprating the grammar as a
regular language, he performs his analysis directly on dmeext free grammar.

Wassermann et al. [48, 49] propose grammar-based statig sinalyses to detect
SQL injections and XSS, following Minamide’s approach [38here are some other
tools for string analysis [14,21,43,52]. Shannon et al] [#&2 forward bounded sym-
bolic execution to perform string analysis on Java progra8isiilar to our approach,
they use automata to represent path constraints and toetltedalues of string vari-
ables. They support trim and substring operations. Xie aikdm\[52] support string
assignment and validation operations. Fu et al. [21] and €tal. [14] support string-
based replacement (as opposed to language-based repfagerNene of the tools
mentioned above address language-based replacementiaperdhis is a shortcom-
ing that causes the approximations computed by these todde too coarse for the
analysis of some input sanitization routines.

Language-based replacement has been discussed in compaltihguistics [23,
32,40, 45]. These algorithms are based on the compositifinitd state transducers.
By composing specific transducers, constraints like longregch and first match can
be precisely modeled. However, each composition may r@saltquadratic increase
in the size of the non-deterministic automaton, and is nmikedito blow-up compared
to our construction. The transducer-based replacementi@um[40] has been imple-

mented in Finite State Automata utilities (FSA) [44], whengomata are stored and
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manipulated using an explicit representation. We use a siimbBFA representation
based on MBDDs. This symbolic encoding enabled us to perfmmplex automata
operations, such as closure, concatenation, replace, @etiwg, efficiently using the
MBDDs.

Balzarotti et al. [1] combine both dynamic and static analyschniques to verify
PHP programs. They support language-based replacementdmporating FSA [44],
but they only support bounded computation for loops and @pprate variables up-
dated in a loop as arbitrary strings once the computatiols doé converge within a
fixed bound. We incorporate the widening operator in [4] &kla this problem and
obtain a tighter approximation that enables us to verifyrgdaset of programs.

Choi et al. [14] also investigate a widening method to arabtzings. Their widen-
ing operator is defined on strings and the widening of a setrwfgs is achieved by
applying the widening operator pairwise to each string. gdie widening operator we
use is defined on automata, and was originally proposed itbinastic constraints [4].
The intuition behind this widening operator is applicald@iby symbolic fixpoint com-
putation that uses automata. In [4] it is shown that, for &ieted class of systems, the
widening operator computes the precise fixpoint. We extargdresult to our analy-
sis. In our experiments we demonstrate that the over-appeion computed by this
widening operator works well in proving the type of propestthat we are interested

in.
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There are several recent string analysis tools that useajastring analysis based
on DFA encodings [21,43,58]. Some of them are based on syoc#acution and use
a DFA representation to model and to verify the string malaipan operations in Java
programs [21,43].

None of the previous work we mentioned so far address vubiléyasignature and
sanitization generation. Wassermann et al. [50] use sanmadysis in test input gener-
ation for Web applications. Their approach is based on danerecution [42], where
results of a concrete execution is used to collect conssrain program execution.
These constraints are then used to generate new test caggaide an automata based
backward image computation based on transducers (whigmigsto our backward
analysis) to propagate constraints on string variablesweder, they do not discuss
replacement operations which are crucial for string mdaipan, and their approach
targets test generation rather than generating a soundapyation of all possible in-
puts that can exploit a vulnerability. Moreover, their aggarh does not provide a sound
approximation in the presence of loops.

Compared to recent work on attack generation (for exampl,[8ve propose a
sound static analysis approach that characterizes alilpp@ssputs that can exploit a
given attack pattern, rather than generating concreteksttasing dynamic analysis

techniques based on given exploits.
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There has been earlier work on vulnerability signature garan [10,11,18]. The
techniques discussed in [18] and [10] require an input thalbés a vulnerability (i.e.,
an exploit) in order to generate the vulnerability signesurFor example, in [18], this
is obtained by running an instrumented version of the pragrQur approach does not
need an exploit as input since we combine forward and backasanbolic analyses.

The approach presented in [11] is a backward analysis sitdlaur backward
analysis. However, they require loop invariants to be mtesliby the user in order to
handle loops, whereas we use an automated approach basedeming. Also, they
focus on weakest precondition computation for binary paiogg. None of the earlier
results on vulnerability signature generation [10, 11,fb8ls on string manipulation
operations. Instead, they use existing symbolic execetigines, which cannot handle
the string manipulation operations that we focus on in tigseftation. In order to an-
alyze vulnerabilities of PHP applications, it is necesgarigandle string manipulation
operations faithfully as we do in our work. We also generatatization statements
that repair the bad inputs which has not been done beforetoeast of our knowledge.

Furthermore, all of the results mentioned above use sitmgtd« DFAs and encode
the reachable configurations of each string variable seggraThis can cause two
problems: 1) Branch conditions that check relations amafigrent string variables
can lead to imprecision in the analysis, resulting in falssifves. 2) It is not possi-

ble to check invariants that refer to more than one stringasée using these earlier
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techniques. Our multi-track automata encoding not onlyroves the precision of the
string analysis but also enables verification of propethiascannot be verified with the
previous approaches. To the best of our knowledge, our appngs the first relational
string analysis technique.

We have also presented alphabet and relation abstractiahsriable us to adjust
the precision and performance of our analysis. Comparebddtraction techniques on
automata [7], our abstractions focus on the values of thegstariables and the rela-
tions among them. In the heuristic we propose, the selectfi@nsuitable abstraction
class can be guided by the constants and relations appearthg program and the
property.

The use of automata as a symbolic representation for verdichas been investi-
gated in other contexts (e.qg., [8]). In this dissertatioa facus on verification of string
manipulating programs.

There has been some recent work on solving string consgtraldboimeijer and
Weimer [28] present an automata-based decision proceduselving equations over
regular language variables. Our techniques can be usedvimgaheir string con-
straints. In addition, we can also (conservatively) dedhwomplex string operations,
e.g., replacement. Kiezun et al. [33] preseamMPI, a SAT-based solver for string con-
straints over bounded string variables. Given a set of caims$ (including membership

of regular languagesjAMPI outputs a string that satisfies all the constraints, or tspor
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that the constraints are unsatisfiable. Bjoner et al. [63gmea path feasibility analysis
based on solving bounded path conditions for string maatmd programs. Instead
of solving string constraints directly, they solve theindgh constraints using a SMT
solver. If the length constraints are unsatisfiable, it iegthat the string constraints are
unsatisfiable. If the length constraints are satisfiabby ttse the satisfying assignment
to bound the length of string variables and solve the strmgstraints over bounded
string variables.

Finally, we have investigated the boundary of decidabibiythe string verification
problem. Bjarner et al. [6] show an undecidability resulthihe replace operation. We
show that even when only the concatenation operation isatldhe string verification
problem is undecidable for deterministic string systemthwnly three unary string
variables and non-deterministic string systems with omlg string variables if the

comparison of two variables are allowed.

9.2 Size Analysis

Size analysis is a crucial problem in software security.iofes software defects,
such as array out of bound errors and memory overflow errarspe discovered by

tracing object sizes without knowing the contents of theeoty. Various techniques
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that use integer variables and integer constraints towsrife properties have been
proposed in the past [13, 30, 54,55, 60].

Hughes et al. [30] present a sound semantic model of size typeerify the prop-
erties of reactive systems. They show that various es$@mtigram properties, such
as function productivity, memory leaks, array bounds ardténmination of some re-
stricted functions, can be reduced to type checking problebhe advantages of type
analysis include a) the soundness proof and b) the efficygrat ¢hecking algorithm.
Hughes’ work was the first paper on using size types to angdyagrams.

Chin et al. [13] extend size types to the verification of ob@tented languages by
annotations. They annotate an abstract data type for egebtatith size invariants,
which could then be used to infer size properties among thjethey propose an
intermediate language, called OIMP, to capture the sizgnmétion of programs (such
as C++/Java programs) via an annotated type system. Onetageeof their approach
is that it can handle shared objects.

In our earlier work [60], we apply size analysis to a speciimalanguage: Object
Constraint Language (OCL), which is part of the Unified MaaglLanguage (UML).
Instead of annotating types on objects, we verify specibioatonsistency on size prop-
erties using automata-based symbolic analysis of integeales. We evaluate our

approach against the specification of JAVA card APIs andaleseveral unknown er-
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rors. \erifying invariants related to integer variables lzdso been applied to shape

analysis [54, 55].

9.3 Composite Analysis

In this dissertation, we present a composite symbolic watifon technique [12] that
combines string [1, 15,52, 58] and size [20, 22, 46] analyststhe goal of improving
the precision of both. We use a forward fixpoint computat@medmpute the possi-
ble values of string and integer variables and to discoveréhationships among the
lengths of the string variables and integer variables. I8m prior size analysis tech-
niques [20, 22, 46] we associate each string variable withuadliary integer variable
that represents its length. At each program point, we syitdiltt compute all possible
values of all integer variables (including the auxiliaryiahles), as well as all possible
values of all string variables. The reachable values ofraéiger variables are over-
approximated as a Presburger arithmetic (linear aritton&rmula and symbolically
encoded asrithmetic automatd3, 51]. Similar to some prior string analysis tech-
niques [1,58], the values that string variables can takeweeapproximated as regular
languages and symbolically encodedséring automata Our composite analysis is a
forward fixpoint computation with widening on these arithimand string automata.

In addition, we improve precision by restricting both regmetations using lengths of
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the values of string variables. To identify length constigione can also characterize
the Presburger arithmetic formula from the arithmetic endton by solving the Pres-

burger synthesis problem [37] and further restricting #rget string automaton. Our

approach is an over approximation that uses the bounddrgrrdtan the values of the

semilinear set, and it is efficient and simple to implement.

In addition to earlier work on string analysis [1, 15,52, 38 size analysis [20,
22, 46] that motivated our work [59], there has been somentewerk on analyzing
string and integer variables together during symbolic etien [21,43,53]. Unlike our
approach, these are unsound techniques that target tesiihpey do not try to com-
pute an over-approximation of the reachable states vianinde Hence, they cannot
prove properties of examples that we present in this dessent Compared to [25, 26]
that use abstract interpretation for reasoning aboutioalaltproperties among the con-
tents of symbolic intervals of arrays, our analysis traersoncrete values of string and
integer variables using automata and addresses languagerpes.

Finally, symbolic model checking on various variable types been investigated
in [12,55]. Bultan et al. [12] propose a sound composite &aork that combines
BDDs and arithmetic constraint representations to anadystems having boolean
(bounded) and integer (unbounded) variables. Leveragmgampactness of both rep-
resentations on their own domains, Bultan et al. show tlee®feness of the composite

framework on several applications. Yavuz-Kahveci and &u[65] apply the symbolic
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composite model checking framework to concurrent linkstspecifications. The anal-
ysis combines BDDs, linear arithmetic constraints, angslggaphs to represent values
of booleans, integers, and heap variables respectivelgy Tmpute both lower and
upper approximations of reachable states on this compegptesentation, and hence
their analysis is capable of falsifying or verifying invamits of target programs. Our
analysis extends the composite analysis framework tetireg domain and takes ad-
vantage of the fact that arithmetic automata provide a catmepresentation for Pres-
burger arithmetic constraints and string automata proaidempact representation for

regular languages.
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Conclusion

Many security vulnerabilities are caused by inadequatepoédation of string vari-
ables. In this dissertation, we presented a formal chaiaatmn of the string verifi-
cation problem and investigated the decidability boundargtring systems. We pro-
posed a conservative symbolic verification approach thapedes an over-approximation
of the reachable states. The approach features languagd-teplacement, fixpoint ac-
celeration, and symbolic automata encoding.

We presented a set of techniques that 1) given an attackmpaidentify vulnera-
bilities that are due to string manipulation, 2) generathaacterization of inputs that
can exploit the vulnerability, and 3) generate sanitizatatements that eliminate the
vulnerability. Our approach is based on automata-basedbaherforward and back-

ward reachability computations. We developed two techesgo generate vulnerabil-
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ity signatures that characterize all malicious inputs, praposed different strategies
to prevent attacks that match the given attack patterns tynaatically synthesizing
effective sanitization routines from the vulnerabilitgsatures.

We presented an automata-based approach for symbolicaéioh of infinite-state
systems with unbounded string and integer variables. Omposite approach that
combines string analysis with size analysis is able to ygbperties that cannot be
verified with either analysis alone. We proposed a novelrélgo to convert unary
automata to binary automata and vice versa, and showed roprétision of both
string and size analyses can be improved by using lengtmeitoand the conversion.

We proposed a novel relational string verification techaigsing multi-track au-
tomata, symbolic reachability analysis, summarizatiod abstraction. Compared to
earlier automata-based string analysis techniques, gsepted technique uses a single
multi-track DFA to represent all possible values of strimgiables at a given program
point, and enables us to check equality properties amoimgstariables and improves
the precision of the string analysis.

Finally, we have developesirraNGER, @ public automata-based string analysis tool
for verification of PHP web applications, focusing on SQLEX and MFE attacks.
In addition to identifying vulnerabilities and generatiuglnerability signatures and

effective patches of vulnerable applicatiossrancer can also verify the absence of
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vulnerabilities in applications that use proper sanit@at \We demonstrated the effec-

tiveness of our approach on several examples, as well aslaogeescale applications.
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