
UNIVERSITY OF CALIFORNIA
Santa Barbara

Automatic Verification of String Manipulating
Programs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Fang Yu

Committee in Charge:

Professor Tevfik Bultan, Chair

Professor Oscar H. Ibarra

Professor Richard Kemmerer

June 2010

The Dissertation of
Fang Yu is approved:

Professor Oscar H. Ibarra

Professor Richard Kemmerer

Professor Tevfik Bultan, Committee Chairperson

June 2010

Automatic Verification of String Manipulating Programs

Copyright c© 2010

by

Fang Yu

iii

To my wife, my parents, and my lovely kids.

iv

Acknowledgements

I am most grateful to my advisor Tevfik Bultan for his spiritual, technical and finan-

cial support that carried me through the doctoral program. Tevfik devotes considerable

time and energy to his students. Without the countless discussions with him, this disser-

tation would simply not be written and completed. I wish to express my deep gratitude

to Oscar H. Ibarra. His wisdom and knowledge have been a greatsource of inspiration

to me. He taught me how to conduct rigorous research and his insightful comments

on automata improved the content and presentation of this dissertation. I would like

to thank Richard Kemmerer for his detailed corrections and suggestions for this dis-

sertation. I would like to thank Marco Cova and Christopher Krugel for their valuable

comments on web application security. I would also like to thank Amr El Abbadi, the

department chair, for his encouragement, as well as Amanda Hoagland, Mandy Drasco,

and the other department staff for their non-technical and technical support throughout

my studies. Special thanks go to my colleague, Muath Alkhalaf, who worked closely

with me to build and release the string analysis tool to the public.

I am greatly grateful for having chances to work on other verification topics with

Chao Wang and Aarti Gupta at the NEC Laboratory America, FarnWang and Sy-Yen

Kuo at National Taiwan University, and Bow-Yaw Wang and Der-Tsai Lee at Academia

Sinica. These experiences have strengthened and broadenedmy research in this field.

v

Finally, I wish to express my deepest gratitude to my wife, Wang-Ping Chen, and

my parents, Tseng-Yi Yu and Mei-Yen Yu-Tseng, for all the love, help, and support that

they have given to me. They have given me far beyond what I can thank.

vi

Curriculum Vitæ

Fang Yu

Education

2000 Master of Business Administration in Information Management, Na-

tional Taiwan University.

1998 Bachelor of Business Administration, National TaiwanUniversity.

Experience

2006 – 2010 Graduate Student Researcher, University of California, Santa Barbara.

2007, 2008 Summer Intern, NEC Laboratories America, Princeton.

2005 – 2006 Teaching Assistant, University of California, Santa Barbara.

2001 – 2005 Research Assistant, Institute of Information Science, Academia Sinica,

Taiwan.

Publications

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. “Stranger: An Automata-

based String Analysis Tool for PHP.” In Proceedings of the16th In-

ternational Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2010),Paphos, Cyprus, March 2010.

(Tool paper)

vii

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. “Generating Vulnera-

bility Signatures for String Manipulating Programs Using Automata-

based Forward and Backward Symbolic Analyses.” In Proceedings of

the IEEE/ACM International Conference on Automated Software En-

gineering (ASE 2009),Auckland, New Zealand, 2009. (Short paper)

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. “Symbolic StringVeri-

fication: Combining String Analysis and Size Analysis.” In Proceed-

ings of the15th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS 2009),York, UK,

March 2009.

Fang Yu, Chao Wang, Aarti Gupta, and Tevfik Bultan. “Modular Veri-

fication of Web Services Using Efficient Symbolic Encoding and Sum-

marization.” In Proceedings of the 16thACM SIGSOFT Symposium

on Foundations of Software Engineering (FSE 2008),Atlanta, GA,

November 2008.

Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. “Symbolic

String Verification: An Automata-based Approach.” In Proceedings of

the 15thInternational SPIN Workshop on Model Checking of Software

(SPIN 2008),Los Angeles, CA, August 2008.

viii

Fang Yu, Tevfik Bultan, and Erik Peterson. “Automated Size Analysis

for OCL.” In Proceedings of the6th joint meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering (ESEC/FSE 2007), pp.

331-340, Dubrovnik, Croatia, September 2007.

Oscar H. Ibarra, Sara Woodworth, Fang Yu, and Andri Paun. “On

Spiking Neural P Systems and Partially Blind Counter Machines.”Nat-

ural Computing, Vol 7 (1), pp. 3-19, Springer Netherlands, 1572-9796,

March 2008.

Fang Yu and Bow-Yaw Wang. “SAT-based Model Checking for Re-

gion Automata.”International Journal of Foundations of Computer

Science, Vol. 17, No. 4, pp. 775-796, August 2006.

Farn Wang, Geng-Dian Huang, and Fang Yu. “TCTL Inevitability

Analysis of Dense-time Systems: from Theory to Engineering.” IEEE

Transactions on Software Engineering,Vol. 32, No. 7, pp.510-526.

July 2006.

Farn Wang, K. Schmidt, Fang Yu, Geng-Dian Huang, and Bow-Yaw

Wang. “BDD-based Safety Analysis of Concurrent Software with Pointer

Data Structures using Graph Automorphism Symmetry Reduction.”

ix

IEEE Transactions on Software Engineering,Vol. 30, No. 6, pp. 403-

417, 2004.

Farn Wang, Geng-Dian Huang, and Fang Yu. “Symbolic Simulation of

Industrial Real-Time and Embedded Systems - Experiments with the

Bluetooth baseband communication protocol.”Journal of Embedded

Computing, Vol. 1, pp. 39-56, 2004.

Oscar H. Ibarra, Sara Woodworth, Fang Yu, and Andri Paun. “On

Spiking Neural P Systems and Partially Blind Counter Machines.” In

Proceedings of the5th International Conference on Unconventional

Computation (UC 2006),York, UK, September 2006.

Fang Yu, Chung-Hung Tsai, Yao-Wen Huang, Hung-Yaw Lin, Der-

Tsai Lee, and Sy-Yen Kuo. “Efficient Exact Spare Allocation via

Boolean Satisfiability.” In Proceedings of the20th IEEE International

Symposium of Defect and Fault Tolerance in VLSI Systems (DFT2005),

pp. 361-370, Monterey, CA, October 2005.

Fang Yu and Bow-Yaw Wang. “Toward Unbounded Model Checking

for Region Automata.” In Proceedings of the2nd International Sym-

posium on Automated Technology for Verification and Analysis (ATVA

2004),LNCS 3299, pp. 20-33, Taipei, Taiwan, November 2004.

x

Fang Yu, Bow-Yaw Wang and Yaw-Wen Huang. “Bounded Model

Checking for Region Automata.” In Proceedings of theJoint Confer-

ence on Formal Modeling and Analysis of Timed Systems and For-

mal Techniques in Real-Time and Fault Tolerant System (FORMATS-

FTRTFT 2004),LNCS 3253, pages 246-262, Grenoble, France, Septem-

ber 2004.

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-

Tsai Lee, and Sy-Yen Kuo. “Verifying Web Applications UsingBounded

Model Checking.” In Proceedings of theInternational Conference on

Dependable Systems and Networks (DSN 2004),pages 199-208, Flo-

rence, Italy, Jun 28-Jul 1, 2004.

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-

Tsai Lee, and Sy-Yen Kuo. “Securing Web Application Code by Static

Analysis and Runtime Protection.” In Proceedings of the13th Interna-

tional World Wide Web Conference (WWW 2004),pages 40-52, New

York, May 17-22, 2004.

Farn Wang, Geng-Dian Huang, and Fang Yu. “Numerical Coverage

Estimation for the Symbolic Simulation of Real-Time Systems.” In

Proceedings of the23rd IFIP International Conference on Formal Tech-

xi

niques for Networked and Distributed Systems (FORTE 2003),LNCS

2767, pages 160-176, October 2003.

Farn Wang, Geng-Dian Huang, and Fang Yu. “TCTL Inevitability

Analysis of Dense-time Systems.” In Proceedings of the8th Inter-

national Conference on Implementation and Application of Automata

(CIAA 2003),LNCS 2759, pages 176-187, July 2003.

Farn Wang and Fang Yu. “OVL Assertion Checking of Embedded

Software with Dense-Time Semantics.” In Proceedings of the9th In-

ternational Conference on Real-Time and Embedded Computing Sys-

tems and Applications (RTCSA 2003),LNCS 2968, pages 254-278,

February 2003.

Farn Wang, Geng-Dian Huang, and Fang Yu. “Symbolic Simulation

of Real-Time Concurrent Systems.” In Proceedings of the9th Inter-

national Conference on Real-Time and Embedded Computing Systems

and Applications (RTCSA 2003),LNCS 2968, pages 595-617, Febru-

ary 2003.

xii

Abstract

Automatic Verification of String Manipulating Programs

Fang Yu

In this dissertation, we investigate thestring verification problem:Given a pro-

gram that manipulates strings, we want to verify assertionsabout string variables. We

formalize the string verification problem as reachability analysis ofstring systemsand

demonstrate that the string analysis problem is undecidable in general. We present

sound automata-based symbolic string analysis techniquesfor automatic verification of

string manipulating programs. String analysis is a static analysis technique that deter-

mines the values that a string expression can take during program execution at a given

program point. This information can be used to detect security vulnerabilities and pro-

gram errors, and to verify that program inputs are sanitizedproperly.

Most important Web application vulnerabilities, such as SQL Injection, Cross Site

Scripting and Malicious File Execution, are due to inadequate manipulation of string

variables. We use our automata-based string analysis techniques to detect and pre-

vent such vulnerabilities in web applications. Our approach consists of three phases:

Given an attack pattern, we first conduct a vulnerability analysis to identify if strings

that match the attack pattern can reach security-sensitivefunctions. Next, we com-

pute the vulnerability signature which characterizes all input strings that can exploit the

xiii

discovered vulnerability. Given the vulnerability signature, we then construct sanitiza-

tion statements that 1) check if a given input matches the vulnerability signature and

2) modify the input in a minimal way so that the modified input does not match the

vulnerability signature. Our approach is capable of generating relational vulnerability

signatures (and corresponding sanitization statements) for vulnerabilities that are due

to more than one input.

We extend our automata-based approach to analyze systems with both string and in-

teger variables. We present a composite symbolic verification technique that combines

string and size analyses with the goal of improving the precision of both. Our compos-

ite analysis automatically discovers the relationships among the integer variables and

the lengths of the string variables. Finally, we present a relational string verification

technique based on multi-track automata and abstraction. Our approach is capable of

verifying properties that depend on relations among stringvariables.

We have developed a tool calledSTRANGER that implements our automata-based

symbolic string analysis approach.STRANGER can be used to find and eliminate string-

related security vulnerabilities in PHP applications.

xiv

Contents

Acknowledgements v

Curriculum Vitæ vii

Abstract xiii

List of Figures xviii

List of Tables xx

1 Introduction 1
1.1 Automata-based String Analysis. 6
1.2 Symbolic Vulnerability Analysis. 12
1.3 Sanitization Synthesis. 18
1.4 Composite Analysis. 28
1.5 Relational String Analysis. 31
1.6 Summary of Contributions. 36

2 String Systems 39
2.1 Decidability and Undecidability Results. 40

3 Automata-based String Analysis 48
3.1 String Manipulation Operations. 49
3.2 String Operations on Automata. 52
3.3 Pre-image Computation. 64

3.3.1 Concatenation. 64
3.3.2 Replacement. 68

3.4 Widening Automata. 70

xv

4 Symbolic Vulnerability Analysis 76
4.1 Dependency Graph. 77
4.2 Vulnerability Analysis. 78

4.2.1 Forward Analysis. 80
4.2.2 Backward Analysis . 82

4.3 Inter-procedural Analysis. 84
4.3.1 Summarization . 85
4.3.2 Call Dependency Graph. 86
4.3.3 Generating Function Summaries. 89
4.3.4 Composing Function Summaries. 93

4.4 Experiments. 94
4.4.1 Forward Analysis. 94
4.4.2 Forward+Backward Analysis. 97

5 Sanitization Synthesis 102
5.1 Sanitization Generation. 106
5.2 Relational Signatures. 113
5.3 Experiments. 118

6 Composite Analysis 123
6.1 Length Automata Construction. 125

6.1.1 Length Constraints on String Automata. 126
6.1.2 From String Automata to Unary Length Automata. 128
6.1.3 From Unary Length Automata to Semilinear Set. 129
6.1.4 From Semilinear Set to Binary Length Automata. 130

6.2 Composite Verification . 135
6.2.1 Verification Framework. 139
6.2.2 Implementation. 145

6.3 Experiments. 148

7 Relational String Analysis 150
7.1 Regular Approximation of Word Equations. 152

7.1.1 Aligned Multi-track DFAs. 153
7.1.2 Word Equations. 154
7.1.3 Construction of Multi-track DFAs for Word Equations. . . . 157

7.2 Symbolic Reachability Analysis on Multi-track Automata 166
7.2.1 Forward Fixpoint Computation. 166
7.2.2 Summarization . 169
7.2.3 Alignment . 172

7.3 String Abstractions. 176

xvi

7.3.1 Alphabet Abstraction. 177
7.3.2 Relation Abstraction. 178
7.3.3 Heuristics for Abstraction Selection. 180
7.3.4 Handling Complex String Operations. 183

7.4 Experiments. 183

8 Stranger Tool 190
8.1 Tool Description. 192

8.1.1 PHP Parser and Taint Analyzer. 193
8.1.2 String Analyzer . 193
8.1.3 String Manipulation Library. 195

8.2 Experiments and Discussions. 196

9 Related Work 199
9.1 String Analysis. 200
9.2 Size Analysis . 206
9.3 Composite Analysis. 208

10 Conclusion 211

Bibliography 214

xvii

List of Figures

1.1 The Percentages of String-related Web Application Vulnerabilities [19] 2
1.2 A Vulnerability Example. 8
1.3 A Sanitization Example. 9
1.4 A Small Example . 13
1.5 Results of Forward and Backward Analyses. 15
1.6 A Simple Example. 19
1.7 Patches for the example in Figure 1.6. 21
1.8 A Vulnerability Signature . 22
1.9 Another Simple Example. 23
1.10 Dependency graph. 24
1.11 A Relational Vulnerability Signature. 26
1.12 Patch for the example from Figure 1.9. 28
1.13 A Sanitization Example with a Length Condition. 29
1.14 A String Length Routine. 30
1.15 A Branch Example. 33
1.16 A Loop Example. 35

2.1 The Syntax of String Manipulating Programs. 40

3.1 ConstructingM
′

1 from M1 . 57
3.2 ConstructingM

′

2 from M2 andMh 58
3.3 ConstructingM

′′

from M
′

. M
′

is the Intersection ofM1
′ andM

′

2 . . . 60
3.4 M

′′

1 is PROJECT(M
′′

, k + 2), M is PROJECT(M
′′

1 , k + 1) 63
3.5 A TransducerM for X = (ab)+.Z 65
3.6 A TransducerM for X = Y.(ab)+ 66
3.7 Widening Automata. 73
3.8 An Approximation Sequence. 74

xviii

4.1 A Simple Function . 88
4.2 The Dependency Graphs:Gf andGF 89
4.3 Mf : The Summary DFA . 92

5.1 Input Matching Overhead. 121

6.1 The Length Automata of(baaab)+ 134
6.2 The Length Automata of(baaab)+ab 134
6.3 The Rewritten String Length Routine. 138

8.1 The Architecture of STRANGER . 192

xix

List of Tables

4.1 The Forward Experimental Results of Stranger.. 95
4.2 The Experimental Results of Saner.. 98
4.3 The Basic Data of Dependency Graphs. 98
4.4 Total Performance. 99
4.5 String Function Performance. 99
4.6 Attack and Vulnerability Signatures. 101

5.1 Vulnerability Analysis Performance. 119
5.2 Signature Generation Performance. 120
5.3 Minimum Edge and Alphabet Cuts. 121

6.1 Regular Languages and Their Length Sets. 127
6.2 The Experimental Results of Composite Analysis.. 149

7.1 Experimental Results against Basic and MFE Benchmarks Using Single-
track Automata. 186
7.2 Experimental Results against Basic and MFE Benchmarks Using Multi-
track Automata. 187
7.3 Experimental Results against Basic and MFE Benchmarks Using Multi-
track Automata and Alphabet Abstraction.. 187
7.4 Experimental Results against XSS Benchmarks.. 189
7.5 Experimental Results against XSS Benchmarks Using Multi-track Au-
tomata and Alphabet Abstraction.. 189

xx

Chapter 1

Introduction

Web applications have become a crucial part of commerce, entertainment and so-

cial interaction. They are rapidly replacing desktop applications. And, in the near

future, they are likely to play critical roles in national infrastructures such as health-

care, national security, and the power grid. There is a largestumbling-block to this

ever increasing reliance on Web applications: Web applications are notorious for secu-

rity vulnerabilities that can be exploited by malicious users. The global accessibility

of Web applications makes this an extremely serious problem. In fact, in the Common

Vulnerabilities and Exposures (CVE) list [19] (which documents computer security

vulnerabilities and exposures) Web application vulnerabilities have occupied the first

three positions in recent years.

1

Chapter 1. Introduction

01 02 03 04 05 06

Commom Vulnerability and Exposure [CVE, 2007]

year

%

0

10

20

30

40

Cross.Site.Scripting
SQL.Injection
File.Inclusion

Figure 1.1: The Percentages of String-related Web Application Vulnerabilities [19]

2

Chapter 1. Introduction

Our motivation in this work is to eliminate string manipulation errors in Web ap-

plications. String variables play an essential role in Web applications. They are used

for getting user inputs, querying databases, and constructing responses that are sent to

users. In fact, the most important Web application vulnerabilities are due to inadequate

manipulation of string variables. As shown in Figure 1.1, the percentage of string-

related vulnerabilities over all reported vulnerabilities has increased from 3% in 2001

to 45% in 2006. According to the Open Web Application Security Project (OWASP)’s

top ten list that identifies the most serious Web applicationvulnerabilities [41], the top

three vulnerabilities reported in 2007 were: 1) Cross Site Scripting (XSS), 2) Injec-

tion Flaws (such as SQL injection) and 3) Malicious File Execution (MFE). After three

years, the top two vulnerabilities are still Injection Flaws and XSS in OWASP’s 2010

top ten list.

A XSS vulnerability results from the application insertingpart of the user’s input

in the next HTML page that it renders. Once the attacker convinces a victim to click

on a URL that contains malicious HTML/JavaScript code, the user’s browser will then

display HTML and execute JavaScript that can result in stealing of browser cookies

and other sensitive data. A SQL Injection vulnerability results from the application’s

use of user input in constructing database statements. The attacker can invoke the

application with a malicious input that is part of a SQL command that the application

executes. This permits the attacker to damage or get unauthorized access to data stored

3

Chapter 1. Introduction

in a database. MFE vulnerabilities occur when developers directly use or concatenate

potentially hostile input with file or stream functions, or improperly trust input files.

All these vulnerabilities involve string manipulation operations and they occur due to

inadequate sanitization and use of input strings provided by users.

Clearly, there is an urgent need for an automatic and sound approach to establishing

correctness of string manipulation operations in Web applications. In this dissertation

we present automata-based symbolic string analysis techniques that can be used to iden-

tify vulnerabilities related to string manipulation, generate characterization of user in-

puts that might exploit a discovered vulnerability, and generate sanitization statements

to patch a vulnerability.

This dissertation consists of six parts: (1) String Systems, (2) Automata-based

String Analysis, (3) Symbolic Vulnerability Analysis, (4)Sanitization Synthesis, (5)

Composite String Analysis, and (6) Relational String Analysis. In the first part of the

dissertation we formally define the string systems and present decidability and unde-

cidability results about the verification of several classes of string systems. Next, we

discuss how to use automata to represent values of string variables and how to model

string functions on automata. Based on these automata constructions, we present sym-

bolic forward and backward reachability analyses along with a novel summarization

technique for interprocedural analysis.

4

Chapter 1. Introduction

Vulnerabilities related to string manipulation can be characterized as attack patterns,

i.e., regular expressions that specify vulnerable values for sensitive operations (called

sinks). Given an application and an attack pattern, we conduct a symbolic forward

reachability analysis to identify if there are any input values that a user can provide

to the application that could lead to a vulnerable value to bepassed to a sensitive op-

eration. Once a vulnerability is identified, the next important question is to identify

what set of input values can exploit the given vulnerability. A vulnerability signature

is a characterization of all such input values. We use a symbolic backward reachability

analysis to generate the vulnerability signatures for the discovered vulnerabilities.

A vulnerability signature can be used to identify how to sanitize the user input to

eliminate the discovered vulnerability, or it can be used todynamically monitor the

user input and reject or modify the values that can lead to an exploit. We use the

vulnerability signatures to automatically generate sanitization statements for patching

vulnerable Web applications.

We extend our approach to the verification of systems with both string and integer

variables by combining size analysis with our string analysis. We use a forward fixpoint

computation based on a composite symbolic representation to compute the possible val-

ues of string and integer variables and to discover the relationships among the lengths

of the string variables and integer variables. This composite analysis improves the pre-

5

Chapter 1. Introduction

cision of both string and size analyses and can be applied to other security problems

such as buffer overflows.

Finally, we present a relational string analysis techniquebased on multi-track au-

tomata. Our approach is capable of verifying properties that depend on relations among

string variables. We further propose alphabet and relationabstractions to adjust the pre-

cision and performance of our symbolic string analysis techniques.

In the following sections, we present the motivation for different parts of our work

and illustrate our techniques on several examples.

1.1 Automata-based String Analysis

The string analysis technique we present utilizes forward and backward reachability

computations that use deterministic finite automaton (DFA)as a symbolic representa-

tion. We use the symbolic DFA representation provided by theMONA DFA library [5],

in which transition relations of the DFAs are represented asMulti-terminal Binary De-

cision Diagrams (MBDDs). We iteratively compute an over approximation of the least

fixpoint that corresponds to the reachable values of the string expressions. In each itera-

tion, given the current state DFAs for all the variables, we compute the next state DFAs.

We present algorithms for next state computation for stringoperations such as concate-

nation and language-based replacement. Particularly, we present an algorithm for the

6

Chapter 1. Introduction

language-based replacement operation that computes the DFA for REPLACE(M1 , M2,

M3) whereM1, M2, andM3 are DFAs that accept the set of original strings, the set of

match strings, and the set of replacement strings, respectively.

Our language-based replacement operation is essential formodeling various built-

in functions that can be used to perform input validation in the PHP language, a widely

used language to develop Web applications. These functionsprovide a general mecha-

nism to scan a string for matches to a given pattern (expressed as a regular expression)

and to replace the matched text with a replacement string. Asan example of modeling

these functions, consider the following statement:

$username = ereg_replace("<script * >", "", $_GET["username"]);

The expressionGET["username"] returns the string entered by the user, the

ereg replace call replaces all matches of the search pattern ("<script * >") with

the empty string (""), and the result is assigned to the variableusername . This state-

ment can be modeled by our language-based replacement operation, whereM1 accepts

arbitrary strings,M2 accepts the set of strings that start with<script followed by zero

or more spaces and terminated by the character>, andM3 accepts the empty string.

We believe that we are the first to extend the MONA automata package to ana-

lyze these complex string operations on real programs. In addition to computing the

language-based replacement operation, another difficultyis implementing these string

operations without using the standard constructions basedon theǫ-transitions, since

7

Chapter 1. Introduction

1: foreach ($_POST as $name => $value) {
2: if ($name != ’process’ && $name != ’password2’) {
3: $count++;
4: $result .= "‘$name‘ = ’$value’";
5: if ($count <= $numofparts)
6: $result .= ", ";
7: }
8: }
9: $query = "UPDATE ‘pblguestbook_config‘ SET $result";
10: mysql_query($query);

Figure 1.2: A Vulnerability Example

the MBDD-based automata representation used by MONA does not allow ǫ-transitions.

We model non-determinism by extending the alphabet with extra bits and then project

them away using the on-the-fly subset construction algorithm provided by MONA. We

apply the projection one bit at a time, and after projecting each bit away, we use the

MBDD-based automata minimization to reduce the size of the resulting automaton.

Consider the PHP program fragment in Figure 1.2 which demonstrates a vulnerabil-

ity from a guestbook application calledPBLguestbook-1.32 . This program fragment

traverses the input strings entered by the user (which are stored in the POSTarray) in a

loop (lines 1-8) and constructs a query string by accumulating them (by concatenating

them to theresult variable). This query is then sent to the back-end database (line

10).

This program has an SQL injection vulnerability. Input strings are concatenated

in the loop at lines 1-8 to form the string used to query the application’s database.

8

Chapter 1. Introduction

1: foreach ($_POST as $name => $value) {
1.1: $name = preg_replace("/[ˆa-zA-Z0-9]/", "", $name);
1.2: $value = preg_replace("/’/", "", $value);
2: if ($name != ’process’ && $name != ’password2’) {
3: $count++;
4: $result .= "‘$name‘ = ’$value’";
5: if ($count <= $numofparts)
6: $result .= ", ";
7: }
8: }
9: $query = "UPDATE ‘pblguestbook_config‘ SET $result";
10: mysql_query($query);

Figure 1.3: A Sanitization Example

Since no sanitization is performed, an attacker can modify the query, for example,

by injecting a parameter with value’; DROP DATABASE #. In this case, the SQL

string sent to the database will beUPDATE ‘pblguestbook config‘ SET ‘name‘

= ’’; DROP DATABASE #’ . Note that the ‘; ’ character separates distinct queries

and the ‘#’ character starts a comment. Therefore, if the database allows the execution

of multiple queries, it will execute the legitimate query intended by the developer and

the injected query that drops the entire database. The vulnerability can be fixed by

adding a sanitization step on the input parameters before the query string is formed.

A properly sanitized version of this program fragment is shown in Figure 1.3. The

sanitization is achieved in lines 1.1 and 1.2 by deleting potentially problematic charac-

ters in the variables$name and$value , hence preventing the presented SQL com-

mand injection attack.

9

Chapter 1. Introduction

We analyzed both the vulnerable and the sanitized versions of this program frag-

ment using our string analysis tool. Our string analysis tool constructed a DFA that

gives an over-approximation of the string values that the variable query can take at

line 10. We wrote a regular expression characterizing strings that can be used for SQL

command injection and converted it to a DFA. (Note that thesetypes of attack DFAs

can be constructed once and stored in a library. They do not have to be specified sep-

arately for each program that is being analyzed). Then, we checked if the intersection

of the language recognized by the DFA for thequery variable at line 10, and the DFA

characterizing the SQL command injection attack is empty. When we applied our anal-

ysis to the vulnerable program fragment shown above, our string analysis tool reported

that the intersection is not empty, i.e., the program fragment might be vulnerable. How-

ever, when we applied our analysis to the sanitized version,our tool reported that the

intersection is empty, showing that the variables are properly sanitized.

It is worthwhile to note some of the challenges in analyzing the example given

above. First, in order to prove that the variables are properly sanitized, we need to

statically interpret the replacement functionpreg replace with reasonable preci-

sion. Second, our fixpoint computation has to converge even though the above pro-

gram fragment contains a loop. We are able to handle both of these challenges by

1) proposing and implementing a novel language-based replacement operation and 2)

using an automata widening operator. Note that, for the sanitized program fragment,

10

Chapter 1. Introduction

the fixpoint computation without widening will not converge. Moreover, a naive over-

approximation, that sets the values of the variables that are updated in a loop to all

possible strings, will not be a tight enough approximation to verify the sanitized pro-

gram fragment. To tackle this challenge, we use the automatawidening technique

proposed by Bartzis and Bultan [4] to compute an over-approximation of the least fix-

point. Briefly, we merge those states belonging to the same equivalence class identified

by certain conditions. This widening operator was originally proposed for automata

representation of arithmetic constraints but the intuition behind it is applicable to any

symbolic fixpoint computation that uses automata.

We present automata construction and manipulation operations for the string anal-

ysis described above in Chapter 3. The main contributions for this part of our work

are: (1) pre- and post- image computations of common string manipulation functions,

including a novel language-based replacement automata construction, and (2) use of

an automata based widening operation that accelerates fixpoint computations for string

analysis. In the following section we discuss our vulnerability analysis technique and

demonstrate how we perform symbolic reachability analysisusing basic automata op-

erations mentioned above to formally verify Web applications.

11

Chapter 1. Introduction

1.2 Symbolic Vulnerability Analysis

We use automata-based string analysis techniques that we mentioned above for vul-

nerability analysis and vulnerability signature generation. Our analysis takes an attack

pattern specified as a regular expression and a PHP program asinput and 1) identi-

fies if there is any vulnerability based on the given attack pattern, 2) generates a DFA

characterizing the set of all user inputs that may exploit the vulnerability.

As we have stated earlier, our string analysis framework uses a DFA to represent

values that string expressions can take. At each program point, each string variable

is associated with a DFA. To determine if a program has any vulnerabilities, we use

a forward reachability analysis that computes an over-approximation of all possible

values that string variables can take at each program point.Intersecting the results of

the forward analysis with the attack pattern gives us the potential attack strings if the

program is vulnerable.

The backward analysis computes an over-approximation of all possible inputs that

can generate those attack strings. The result is a DFA for each user input that corre-

sponds to the vulnerability signature. We will discuss how to use vulnerability signa-

tures to generate effective sanitization routines in the next section. Here we focus on

how to conduct forward and backward symbolic reachability analyses with summariza-

tion techniques.

12

Chapter 1. Introduction

1: <?php
2: $www = $_GET["www"];
3: $l_otherinfo = "URL";
4: $www = preg_replace("/[ˆA-Za-z0-9 .-@://]/", "", $www) ;
5: echo $l_otherinfo . ": " . $www ;
6: ?>

Figure 1.4: A Small Example

Consider another simple PHP script shown in Figure 1.4. Thisscript is a simplified

version of code from a real Web application that contains a vulnerability. The script

starts with assigning the user input provided in the_GETarray to thewwwvariable in

line 2. Then, in line 3, it assigns a string constant to thel_otherinfo variable. Next,

in line 4, the user input is sanitized using thepreg_replace command. This replace

command gets three arguments: the match pattern, the replace pattern and the target.

The goal is to find all the substrings of the target that match the match pattern and

replace them with the replace pattern. In the replace command shown in line 4, the

match pattern is the regular expression[ˆA-Za-z0-9 .-@://] , the replace pattern is

the empty string (which corresponds to deleting all the substrings that match the match

pattern), and the target is the variablewww. After the sanitization step, the PHP program

outputs the concatenation of the variablel_otherinfo , the string constant": " , and

the variablewww.

The echo statement in line 5 is a sink statement since it can contain a Cross Site

Scripting (XSS) vulnerability. For example, a malicious user may provide an input that

13

Chapter 1. Introduction

contains the string constant<script and execute a command leading to a XSS attack.

The goal of the replace statement in line 4 is to remove any special characters from the

input to prevent such attacks.

Using string replace operations to sanitize user input is common practice in Web

applications. However, this type of sanitization is error prone due to the complex syn-

tax and semantics of regular expressions. In fact, the replace operation in line 4 in

Figure 1.4 contains an error that leads to a XSS vulnerability. The error is in the match

pattern of the replace operation:[ˆA-Za-z0-9 .-@://] . The goal of the program-

mer was to eliminate all the characters that should not appear in a URL. The program-

mer implements this by deleting all the characters that do not match the characters in

the regular expression[A-Za-z0-9 .-@://] , i.e., eliminating everything other than

alpha-numeric characters, and the ASCII symbols. , - , @, : , and/ . However, the regu-

lar expression is not correct. First, there is a harmless error. The subexpression// can

be replaced with/ since repeating the symbol/ twice is unnecessary. A more serious

error is the following: The expression.-@ is the union of all the ASCII symbols that

are between the symbol. and the symbol@in the ASCII ordering. The programmer

intended to specify the union of the symbols. , - , and@but forgot that symbol- has a

special meaning in regular expressions when it is enclosed with symbols[and] . The

correct expression should have been.\-@ . This error leads to a vulnerability because

the symbol< (which can be used to start a script to launch a XSS attack) falls between

14

Chapter 1. Introduction

the symbol. and the symbol@in the ASCII ordering. So, the sanitization operation

fails to delete the< symbol from the input, leading to a XSS vulnerability.

Figure 1.5: Results of Forward and Backward Analyses

Now, we will explain how our approach automatically detectsthis vulnerability.

First, the attack pattern for the XSS attacks can be specifiedasΣ∗ <script Σ∗ (where

Σ denotes any ASCII character), i.e., any string that contains the substring<script

matches the attack pattern. If, during the program execution, a string that matches the

attack pattern reaches a sink statement, then we say that theprogram is vulnerable.

15

Chapter 1. Introduction

For our small example, we simplify the attack pattern asΣ∗ < Σ∗. Our analysis first

generates the dependency graph for the input PHP program. Figure 1.5 shows the de-

pendency graph for the PHP script in Figure 1.4 (the program segment that corresponds

to a node and the corresponding line number are shown inside the node). Nodes 1 and

2 correspond to the assignment statement in line 2, nodes 3 and 4, correspond to the

assignment statement in line 3, nodes 5, 6, 7 and 8 correspondto the replace statement

in line 4, and nodes 9, 10, 11, and 12 correspond to the concatenation operations and

the echo statement in line 5. Under each node we show the result of the forward and

backward symbolic analyses as a regular expression.

During forward analysis we characterize all the user input as Σ∗, i.e., the user can

provide any string as input. Then, using our automata-basedforward symbolic reach-

ability analysis, we compute all the possible values that each string expression in the

program can take. For example, during forward analysis, node 2, that corresponds to

the value of the string variablewwwafter the execution of the assignment statement in

line 2, is correctly identified asΣ∗. More interestingly, node 8, the value of the string

variablewwwafter the execution of the replace statement in line 4, is correctly identi-

fied as[A-Za-z0-9 .-@:/] * since any character that does not match the characters

in the regular expression[A-Za-z0-9 .-@://] has been deleted.

Node 12 is the sink node. The result of the forward analysis identifies the value of

the sink node asURL:[A-Za-z0-9 .-@:/] * . Next, we take the intersection of the

16

Chapter 1. Introduction

result of the forward analysis with the attack pattern to identify if the program contains

a vulnerability. If the intersection is empty then the program is not vulnerable with

respect to the given attack pattern. Since our analysis is sound, this means that there is

no user input that can generate a string that matches the attack pattern at the sink node.

However, in our example, the intersection of the attack pattern and the result of the

forward analysis for the sink node is not empty and is characterized by the following

regular expression:URL:[A-Za-z0-9 .-;=-@:/] * <[A-Za-z0-9 .-@:/] * .

The backward analysis starts from this intersection and traverses the dependency

graph backwards to find out what input values can lead to string values at the sink node

that fall into this intersection. Note that during backwardanalysis we do not need to

compute any value for the nodes that are not on a path between an input node and a

sink node. This means that during backward analysis we do notcompute values for the

nodes 3, 4, 5, 6, 9 and 10. The final result of the backward analysis is the result for

the input node 1, which is characterized with the regular expression:[ˆ<] * <Σ∗, i.e.,

any input string that contains the symbol< can lead to a string value at a sink node that

matches the attack pattern.

This characterization of potentially harmful user inputs is called thevulnerability

signaturefor a given attack pattern. It is an over-approximation of all possible inputs

that can generate an attack string that matches the attack pattern. Based on the vulner-

ability signature our analysis computes for the program segment shown in Figure 1.4,

17

Chapter 1. Introduction

the programmer can eliminate the vulnerability either by fixing the erroneous replace

statement in line 4 or by adding another replace statement that removes the< symbol

from the input.

We present our vulnerability analysis in Chapter 4. The maincontributions for this

part of our work are: (1) a symbolic reachability analysis framework that combines

forward and backward analyses, including a novel algorithmto generate vulnerability

signatures, and (2) a summarization technique for interprocedural analysis. In the next

section we discuss how to generate effective patches for vulnerable applications based

on vulnerability signatures.

1.3 Sanitization Synthesis

We present techniques for automatically generating patches that eliminate string

vulnerabilities in Web applications. We use two types of analysis: One based on string

analysis with single-track automata that can be used to generate patches for vulnerabil-

ities that depend on a single input, and another one based on string analysis with multi-

track automata that can be used to generate patches for vulnerabilities that depend on

multiple inputs. We present and implement two strategies for automatically generating

patches based on vulnerability signatures: match-and-block and match-and-sanitize.

We give an automata-theoretic characterization of the match-and-sanitize strategy and

18

Chapter 1. Introduction

1: <?php
2: $name = $_GET["name"];
3: $out = "NAME : " . $name;
4: echo $out;
5: ?>

Figure 1.6: A Simple Example

prove that generating optimum modifications is an intractable problem. We instead give

a heuristic approach based on a min-cut algorithm.

Once we compute a vulnerability signature using the techniques we discussed in the

previous section, we automatically synthesize patches that eliminate the vulnerability.

We use two strategies for patching:

• Match-and-block:We insert match statements in vulnerable Web applications

and halt the execution when an input that matches the vulnerability signature is

detected.

• Match-and-sanitize:We insert both match and replace statements in vulnerable

Web applications. When an input that matches the vulnerability signature is de-

tected, instead of halting the execution, the replace statement is executed. The

replace statement deletes a small set of characters from theinput such that the

modified string no longer matches the vulnerability signature.

Consider the PHP script shown in Figure 1.6. This script starts with assigning the

user input provided in the_GETarray to the variablename in line 2. It concatenates

19

Chapter 1. Introduction

a constant string with variablename and assigns it to another variableout in line 3.

Then it simply outputs the variableout using theecho statement in line 4.

The echo statement in line 4 is a sink statement since it can contain a Cross Site

Scripting (XSS) vulnerability. For example, a malicious user may provide an input that

contains the string constant<script and execute a command leading to a XSS attack.

In order to prevent this vulnerability, it is necessary tosanitizethe user inputs before

using them in anecho statement. In the rest of this section we give an overview of how

we use the results of our vulnerability analysis to generatethe sanitization statements.

Let us again use the simplified attack pattern for XSS vulnerabilities character-

ized with the regular expressionΣ∗ < Σ∗. After the vulnerability analysis, we de-

tect the segment is vulnerable and generate the vulnerability signature for the input

_GET["name"] as a DFA that accepts the languageΣ∗ < Σ∗.

The vulnerability signature gives an over-approximation of all possible input values

that can exploit the vulnerability. Hence, if we do not allowinput values that match

the vulnerability signature then we can remove the vulnerability. In our match-and-

block strategy we generate a patch that simply checks if the input string matches the

vulnerability signature. If it does, it halts the executionwithout executing the rest

of the script. The patch generated for the small example in Figure 1.6 based on the

vulnerability signatureΣ∗ < Σ∗ and using the match-and-block strategy is shown in

20

Chapter 1. Introduction

1: <?php
1.1: if (preg_match(

’/([=-\xfd]|[\x00-;]) * <([\x00-\xfd]) * /’,$_GET["name"]))
1.2: die("Invalid input");
2: $name = $_GET["name"];
3: $out = "NAME : " . $name;
4: echo $out;
5: ?>

(a) Patch 1 using match-and-block strategy

1: <?php
1.1: if (preg_match(

’/([=-\xfd]|[\x00-;]) * <([\x00-\xfd]) * /’,$_GET["name"]))
1.2: $_GET["name"] =

preg_replace(’/</’,"",$_GET["name"]);
2: $name = $_GET["name"];
3: $out = "NAME : " . $name;
4: echo $out;
5: ?>

(b) Patch 2 using match-and-sanitize strategy

Figure 1.7: Patches for the example in Figure 1.6

Figure 1.7(a). Note that the patched script will block any input string that contains the

symbol<.

In ourmatch-and-sanitizestrategy, instead of blocking the execution, we modify the

input in a minimal way to guarantee that the modified input cannot lead to any attack

strings. We do this by analyzing the DFA of the vulnerabilitysignature. Consider the

DFA for the vulnerability signatureΣ∗ < Σ∗ shown in Figure 1.8 (we useΣ − < to

indicate any symbol other than<). Our goal is to find a minimal set of characters, such

that if we remove those characters from a given string, the resulting string will not be

21

Chapter 1. Introduction

1
<

- <

min cut

2

Figure 1.8: A Vulnerability Signature

accepted by the DFA. As we discuss in Section 5.1, this corresponds to finding a cut

in the graph defined by the states and the transitions of the DFA, i.e., finding a set of

edges such that when we remove them, there are no paths left inthe graph from the

initial state of the DFA to a final state. Note that each edge ofthe DFA is labeled with

a symbol. After we find a cut, if we take the union of the symbolsof the edges in the

cut, we obtain a set of symbols such that any string accepted by the DFA must include

at least one of the symbols in that set.

If we pick any cut, we may end up modifying the input more than necessary. For

example, deleting all the characters from the input (which corresponds to including

all the edges of the automata in the cut) will sanitize the input. However, deleting all

the user input is not a very useful sanitization. What we wantto do is to generate a

patch that does not modify the input too much but guarantees that it will not lead to

an attack string at the sink statement. Hence we use a min-cutalgorithm to compute a

cut that contains minimum number of edges. Then we generate apatch that deletes all

the characters from the input that appear on the edges included in the cut set. For the

DFA shown in Figure 1.8, the min-cut algorithm returns the single edge labeled with

22

Chapter 1. Introduction

1: <?php
2: $title = $_GET["title"];
3: $name = $_GET["name"];
4: $out = "NAME : " . $title . $name;
5: echo $out;
6: ?>

Figure 1.9: Another Simple Example

the symbol<. So we know that deleting the symbol< from the input is sufficient for

preventing attacks and we generate a patch that deletes all the< symbols from the input

as shown in Figure 1.7(b). Note that, unlike the patch shown in Figure 1.7(a), the patch

generated based on the match-and-sanitize strategy continues to execute the script after

the sanitization.

Relational Vulnerability Signature Generation: Consider the simple example shown

in Figure 1.9. This example is similar to the one shown in Figure 1.6 with one signifi-

cant difference: there are two input variables that both contribute to the string expres-

sion used at the sink statement at line 5.

Assume that we use our single-track automata based analysisdescribed above to

analyze this script. The set of attack strings generated forthe sink statement at line 5

will again be:NAME : Σ∗ < Σ∗. However, the result of the backward analysis will be

different. The crucial step is the pre-condition computation for the statement in line 4.

The input to this pre-condition computation will be a DFA that accepts the attack strings

characterized by the regular expression given above. The result of the precondition

23

Chapter 1. Introduction

i1 $_GET[“name”]$_GET[“title”]

$name
(line 3)

$title
(line 2)

i2

n1 n2n1 = i1 n2 = i2

n3 n3 = i1 . i2$title . $name
(line 4)

“NAME : “ . $title . $name
(line 4)

n5 n5 = “NAME : “ . i1 . i2

n4“NAME : “
(line 4)

n6 n6 = “NAME : “ . i1 . i2$out
(lines 4, 5)

Figure 1.10: Dependency graph

computation will generate two DFAs, one for the variablenameand one for the variable

title , and these DFAs will characterize all possible values thesetwo variables can

take just before the execution of statement in line 4 that canlead to generation of an

attack string at the sink statement in line 5. When we do this pre-condition computation

we get two DFAs that accept the same languageΣ∗, i.e., any value of either variable

can lead to an attack string. Although this is a sound approximation it fails to capture

the information thatat least one of these variables should contain the character<.

Note that this condition cannot be expressed as a constrainton an individual variable,

it identifies arelationbetween the two string variables.

We developed a string analysis technique based on multi-track automata (MDFA)

that computes relational vulnerability signatures. Our relational analysis uses one

24

Chapter 1. Introduction

multi-track automaton for each program point to capture therelationship between the

input values and possible values of string expressions in the program. We use a forward

analysis that operates on the dependency graph. We show the dependency graph for the

example from Figure 1.9 in Figure 1.10. We write the string expression in the program

that corresponds to each node in the dependency graph to the left side of the node and

also give the line number. Our analysis starts from the inputnodes and traverses the de-

pendency graph while generating one MDFA for each internal node of the dependency

graph. Each MDFA has one track for each input variable and onetrack for the string

expression that corresponds to that node, and represents the relation between them. In

Figure 1.10 we show a string constraint on the right side of each internal node. That

string constraint characterizes the set of strings accepted by the MDFA for that node.

For example, for noden3, the string constraint isn3 = i1.i2 which indicates that the

string expression that corresponds to noden3 is equal to the concatenation of inputi1

and inputi2.

When the analysis reaches a sink node, we intersect the trackthat corresponds to

the string expression for the sink node (in our example this would be the track that

corresponds to noden6) with the attack pattern DFA (by extending the attack pattern

DFA to an MDFA by adding extra tracks that accept all strings). After the intersection,

we project away the track for the sink node, leaving only the tracks for the input nodes.

The resulting MDFA represents the relational vulnerability signature. For our example,

25

Chapter 1. Introduction

1
(<,)

(,)(- <,) min cut

2

(,)

(, - <)

(, - <)

(,)(,<)

(,<)

3

4

Figure 1.11: A Relational Vulnerability Signature

the vulnerability signature MDFA is shown in Figure 1.11 (where each transition is

marked with two symbols, one for each track, and if a track is marked with the symbol

λ then that means that no symbol from that track is consumed when that transition is

taken). Note that this automaton accepts tuples of strings,where either the first string

in the tuple or the second string in the tuple contains at least one< symbol.

Once we compute the MDFA for the vulnerability signature, weneed to generate

the match and replace statements. For the match statement inthe single-track case,

one option is to convert the standard DFA representation to aregular expression and

then use the PHPpreg_match function. Although this is not very efficient (as we

discuss in Chapter 5), the patches shown in Figure 1.7 use this option. However, if

we try to generate two regular expressions, one for each input, from the automaton

shown in Figure 1.11, we again getΣ∗ for both inputs, so all inputs match. This could

be OK if we use the match-and-sanitize strategy since, although all the input strings

will be considered potentially vulnerable, only a small setof symbols that relate to the

26

Chapter 1. Introduction

vulnerability will be replaced. For example, the patch generated using this approach

for the example in Figure 1.9 is shown in Figure 1.12.

However, if we use the match-and-block approach using the regular expressionΣ∗

will block all the inputs which is not acceptable. We will discuss how to generate more

precise match statements from MDFA based vulnerability signatures in Chapter 5.

In order to generate the sanitization statements from relational vulnerability signa-

tures, we find a min-cut in the vulnerability signature MDFA as we did for the single-

track case. Then, for each track, we take the union of the symbols on that track for

all the edges in the min-cut. In order to sanitize the input weneed to remove the sym-

bols for each track from the input that corresponds to that track. For example, based

on the min-cut shown in Figure 1.11, we need to delete the symbol < both from the

inputs _GET["name"] and _GET["title"] . The automatically generated replace

statements for this example are shown in Figure 1.12.

The main contributions for this part of our work include (1) an automated saniti-

zation generation technique based on DFA-based vulnerability signatures, (2) an algo-

rithm for sanitization generation that sanitizes the inputby modifying it in a minimal

way, and (3) novel relational vulnerability signature generation and sanitization synthe-

sis techniques based on MDFAs.

27

Chapter 1. Introduction

1: <?php
1.1: if (preg_match(’/([\x00-\xfd]) * /’, $_GET["title"])

and preg_match(’/([\x00-\xfd]) * /’, $_GET["name"])) {
1.2: $_GET["title"] =

preg_replace(’/</’,"",$_GET["title"]);
1.3: $_GET["name"] =

preg_replace(’/</’,"",$_GET["name"]); }
2: $title = $_GET["title"];
3: $name = $_GET["name"];
4: $out = "NAME : " . $title . $name;
5: echo $out;
6: ?>

Figure 1.12: Patch for the example from Figure 1.9

1.4 Composite Analysis

We extend our automata-based static analysis to systems having both unbounded

string and integer variables. We present a composite symbolic verification technique

that combines string [1, 15, 52, 58] and size [20, 22, 46] analyses with the goal of im-

proving the precision of both. We use a forward fixpoint computation to compute the

possible values of string and integer variables and to discover the relationships among

the lengths of the string variables and integer variables.

Below, we present two motivating examples to demonstrate the advantages of the

proposed composite string and size analysis technique. Consider the PHP program seg-

ment shown in Figure 1.13, which secures an identified vulnerable point [58]. This vul-

nerability appeared at line 218 intrans.php , distributed withMyEasyMarket-4.1 .

28

Chapter 1. Introduction

1: <?php
2: $www = $_GET["www"];
3: $l_otherinfo = "URL";
4: $www = ereg_replace("[ˆA-Za-z0-9 .\-@://]","",$www);
5: if(strlen($www)<$limit)
6: echo "<td>" . $l_otherinfo . ": " . $www . "</td>";
7: ?>

Figure 1.13: A Sanitization Example with a Length Condition

Without proper sanitization and protection (lines 4 and 5) of the user-controlled

variable $www, an attacker can inject the string

<script src=http://evil.com/attack.js> and perform a XSS attack at line

6. The above code prevents such attacks by: (1) removing abnormal characters from

$wwwat line 4, and (2) limiting the length of$wwwat line 5. Our analysis shows that

this code segment is free from the specified attacks (with respect to the attack pattern)

by showing that at line 6 (1) the length of the string$wwwis less than the allowed limit,

and (2) under that limit the string variable$wwwcannot contain a value that matches

the attack pattern. Note that if one performs solely size analysis, without knowing the

contents of$www, the length of$wwwcan not be determined precisely after line 3. On

the other hand, if one performs solely string analysis, the branch condition at line 4

must be ignored. Both of these approximations may lead to false alarms.

Now, consider a standardstrlen routine in C (Figure 1.14) that returns the length

of a given string by traversing each character until hittingthe end character, i.e.,’\0’ .

29

Chapter 1. Introduction

unsinged int strlen(char * s){
1: char * ptr = s;
2: unsigned int cnt =0;
3: while(* ptr != ’\0’){
4: ++ptr;
5: ++cnt;
6: }
7: return cnt;
}

Figure 1.14: A String Length Routine

This kind of standard string routine is widely used in legacyC systems, e.g., Apache,

Samba, Sendmail, and WuFTP.

Let * s .lengthdenote the size of the string pointed to bys . An essential property of

this routine is that at line 7,cnt = * s .length, which can be used as the summary of

this routine and significantly alleviates size analysis overhead [20, 53], however, none

of the size analysis tools prove this property before using it. Our composite analysis is

capable of proving this property. We first construct an assertion (arithmetic) automaton

that accepts the values that satisfycnt = * s .length. We then conduct our composite

analysis by computing the forward fixpoint with widening. Upon reaching the fixpoint,

at line 7, (1) the arithmetic automaton actually catches therelation that* s .length=

* ptr .length+ cnt , and (2) the string automaton of* ptr only accepts{ǫ}. We prove

the property by showing that the intersection of the language of (1) and the length of

the language of (2) is included in the language of the assertion automaton.

30

Chapter 1. Introduction

In sum, we extend our automata-based symbolic analysis technique to systems hav-

ing both string variables and integer variables. This extension is designed for statically

analyzing string and integer variables in programs. We present a simple imperative lan-

guage and perform the composite analysis on this language. In addition to the string

operations supported in [58] and the arithmetic operationssupported in [3, 4] , this

language supports two new string operations: prefix and suffix.

The contributions of this part consist of: (1) a novel algorithm to construct length

automata, (2) a composite analysis that combines string analysis and size analysis, (3) a

prototype tool that integrates previous techniques, as well as new features that include

length automata construction, string operations (prefix, suffix) and boundary operations

(min and max).

1.5 Relational String Analysis

We present a new relational string analysis technique basedon multi-track automata

and abstraction. Our approach is capable of verifying properties that depend on rela-

tions among string variables. We present and implement a forward symbolic reacha-

bility analysis technique that computes an over-approximation of the reachable states

of a string system using widening and summarization. We use multi-track determin-

istic finite automata (MDFAs) as a symbolic representation to encode the set of possi-

31

Chapter 1. Introduction

ble values that string variables can take at a given program point. Unlike prior string

analysis techniques, the analysis isrelational, i.e., it is able to keep track of the rela-

tionships among the string variables, improving the precision of the string analysis and

enabling verification of invariants such asX1 = X2 whereX1 andX2 are string vari-

ables. We describe the precise construction of MDFAs for linear word equations, such

asc1X1c2 = c′1X2c
′
2 and show that non-linear word equations (such asX1 = X2X3)

cannot be characterized precisely as a MDFA. We propose a regular approximation for

non-linear equations and show how these constructions can be used to compute the

post-condition of branch conditions and assignment statements that involve concatena-

tion. We use summarization for inter-procedural analysis by generating a multi-track

automaton (transducer) characterizing the relationship between the input parameters

and the return values of each procedure. To be able to use procedure summaries during

our reachability analysis wealign multi-track automata so that normalized automata

are closed under intersection.

To improve the efficiency of our approach, we propose two string abstraction tech-

niques: alphabet and relation abstractions. In alphabet abstraction, we identify a set

of characters that we are interested in and use a special symbol to represent the rest

of the characters. In relation abstraction, we identify thevariables that are related and

encode them as a single multi-track automata. For those thatare not related, we use

multiple single-track automata to encode their values, where relations among them are

32

Chapter 1. Introduction

1: input X1;
2: input X2;
3: if (X1 = X2) goto 6;
4: X1:=X2.c;
5: goto 7;
6: X1:=X1.c;
7: assert (X1 = X2.c);

Figure 1.15: A Branch Example

abstracted away. We define an abstraction lattice that combines these abstractions un-

der one framework and show that earlier results on string analysis can be mapped to

several points in this abstraction lattice.

Consider an example shown in Figure 1.15. Existing automata-based string analysis

techniques are not able to prove the assertion at the end of this program segment since

they use single-track automata. Consider a symbolic analysis technique that uses one

automaton for each variable at each program point to represent the set of values that

the variables can take at that program point. Using this symbolic representation we

can do a forward fixpoint computation to compute the reachable state space of the

program. For example, the automaton for variableX1 at the beginning of statement 2,

call it MX1,2, will recognize the setL(MX1,2) = Σ∗ to indicate that the input can be

any string. Similarly, the automaton for variableX2 at the beginning of statement 3,

call it MX2,3, will recognize the setL(MX2,3) = Σ∗. The question is how to handle

the branch condition in statement 3. If we are using single track automata, all we

can do at the beginning of statement 6 is the following:L(MX1,6) = L(MX2,6) =

33

Chapter 1. Introduction

L(MX1,3) ∩ L(MX2,3). The situation with the else branch is even worse. All we can

do at line 4 is to setL(MX1,4) = L(MX1,3) andL(MX2,4) = L(MX2,3). Both branches

will result in L(MX1,7) = Σ∗.c andL(MX2,7) = Σ∗, which is clearly not strong enough

to prove the assertion.

Using the presented techniques, we can verify the assertionin the above program.

In our approach, we use a single multi-track automaton for each program point, where

each track of the automaton corresponds to one string variable. For the above example,

the multi-track automaton at the beginning of statement 3 will accept any pairs of strings

X1, X2 whereX1, X2 ∈ Σ∗. However, the multi-track automaton at the beginning of

statement 6 will only accept pairs of stringsX1, X2 whereX1, X2 ∈ Σ∗ andX1 = X2.

Let [X/X ′] denote replacingX ′ with X. We compute the post-condition(∃X1.(X1 =

X2)∧ (X ′
1 = X1.c))[X1/X

′
1], and generate the multi-track automaton that only accepts

pairs of stringsX1, X2 whereX1, X2 ∈ Σ∗ andX1 = X2.c. Similarly, the multi-

track automaton at the beginning of statement 4 will only accept pairs of stringsX1, X2

whereX1, X2 ∈ Σ∗ andX1 6= X2, and after the assignment, we will generate the

multi-track automaton that only accepts pairs of stringsX1, X2 whereX1, X2 ∈ Σ∗

andX1 = X2.c. Hence, we are able to prove the assertion in statement 7.

Consider another simple example shown in Figure 1.16. Thereare several chal-

lenges in proving that the assertion at line 5 holds. First, this program contains an

infinite loop and does not terminate. If we try to compute the reachable configurations

34

Chapter 1. Introduction

1: X1 := a;
2: X2 := a;
3: X1 := X1.b;
4: X2 := X2.b;
5: assert (X1=X2);
6: goto 3;

Figure 1.16: A Loop Example

of this program by iteratively adding configurations that can be reached after a single

step of execution, our analysis will never terminate. However, there exists a fixpoint

characterizing the reachable configurations at each program point. We incorporate a

widening operator to accelerate our symbolic reachabilitycomputation and compute an

over-approximation of the fixpoint that characterizes the reachable configurations. Sec-

ond, the assertion is an implicit property, i.e., there is noassignment, such asX1 := X2,

or branch condition, such asX1 = X2, that implies that this assertion holds. Finally,

the assertion specifies the equality among two string variables. Analysis techniques

that encode reachable states using multiple single-track DFAs will raise a false alarm,

since, individually,X1 can beabb andX2 can beab at program point 5, but they cannot

take these values at the same time. It is not possible to express this constraint using

single-track automata.

For this example, our multi-track, automata-based string analysis technique termi-

nates in three iterations and computes the precise result. The multi-track automaton

that characterizes the values of string variablesX1 andX2 at program point 5, call it

35

Chapter 1. Introduction

M5, recognizes the language:L(M5) = (a, a)(b, b)+. SinceL(M5) ⊆ L(X1 = X2),

we conclude that the assertion holds. Although in this case the result of our analysis

is precise, it is not guaranteed to be precise in general. However, it is guaranteed to be

an over-approximation of the reachable configurations. Hence, our analysis is sound

and if we conclude that an assertion holds, the assertion is guaranteed to hold for every

program execution.

Furthermore, instead of using the full alphabet, e.g., fullASCII encoding, using our

abstraction technique, the above example can be verified efficiently with an abstract

alphabet{a, b, ⋆}, where⋆ represents all characters other thana or b.

In Chapter 7 we present our contributions on relational string analysis which include

(1) a sound symbolic analysis technique for string verification that over-approximates

the reachable states of a given string system using multi-track automata and summariza-

tion and (2) alphabet and relation abstractions to adjust the precision and performance

of our symbolic string analysis technique. We evaluate the presented techniques with

respect to several string analysis benchmarks extracted from real Web applications.

1.6 Summary of Contributions

The main contributions of this dissertation can be summarized as follows:

36

Chapter 1. Introduction

1. We formally characterize the string verification problemas the reachability anal-

ysis of string systems and show decidability/undecidability results for several

string analysis problems.

2. We develop a sound symbolic analysis technique for stringverification that over-

approximates the reachable states of a given string system using automata.

3. We propose the first composite approach that combines string analysis with size

analysis and show how the precision of both analyses can be improved by using

length automata.

4. We develop the first relational string analysis techniqueusing multi-track au-

tomata which is capable of proving properties that depend onthe relations among

string variables.

5. We propose alphabet and relation abstractions that can beused to adjust the pre-

cision and performance of our symbolic string analysis techniques.

6. We propose a novel algorithm for language-based replacement to model string

replace functions that are commonly used to modify user inputs in Web applica-

tions.

7. We adopt a symbolic automata encoding and leverage its efficient manipulations.

37

Chapter 1. Introduction

8. We incorporate an automata-based widening operator to accelerate the fixpoint

computations and develop a novel summarization technique for inter-procedural

analysis.

9. We combine symbolic forward and backward reachability analyses to generate

vulnerability signatures that characterize all maliciousinputs that can exploit vul-

nerable Web applications.

10. We present techniques for automatically synthesizing sanitization statements from

vulnerability signatures.

11. We implementSTRANGER, the first public automata-based string analysis tool.

STRANGER can automatically detect XSS, SQL Injection, and MFE vulnerabilities

in PHP Web applications, as well as generate the vulnerability signatures for each

detected vulnerability.

38

Chapter 2

String Systems

We start with defining string systems. Figure 2.1 presents the basic syntax for string

systems. We only consider string variables and hence variable declarations need not

specify a type. All statements are labeled. We only considerone string operation (con-

catenation) at this point (which is enough to prove some undecidability results). Func-

tion calls use call-by-value parameter passing. We allow goto statements to be non-

deterministic (if a goto statement has multiple target labels, then one of them is chosen

non-deterministically). If a string system contains a non-deterministic goto statement it

is called a non-deterministic string system, otherwise, itis called a deterministic string

system.

39

Chapter 2. String Systems

prog ::= decl∗ func∗

decl ::= decl id+;
func ::= id (id∗) begin decl∗ lstmt+ end
lstmt ::= l:stmt
stmt::= seqstmt

| if expthen goto l;
| goto L; whereL is a set of labels
| input id;
| output exp;
| assert exp;

seqstmt::=id := sexp;
| id := call id (sexp∗);

exp::= bexp| exp∧ exp| ¬ exp
bexp::= atom= sexp
sexp::= sexp.atom| atom
atom::= id | c, wherec is a string constant

Figure 2.1: The Syntax of String Manipulating Programs

2.1 Decidability and Undecidability Results

Before discussing our symbolic string analysis technique we prove that string anal-

ysis is an undecidable problem and, therefore, any sound string analysis technique has

to use conservative approximations in order to guarantee convergence.

Let S(X1, X2, . . . , Xn) denote a string system with string variablesX1, X2, . . ., Xn

and a finite set of labeled instructions. There are several attributes we can use to classify

string systems. For example, as mentioned above, a string system can be deterministic

or non-deterministic. We can also classify a string system based on the alphabet used

by the string variables, such as a string system with a unary alphabet or a string system

with a binary alphabet, etc. Additionally, we can restrict the number of variables in the

40

Chapter 2. String Systems

string systems, such as a string system with only 2 variables(S(X1, X2)) or 3 variables

(S(X1, X2, X3)), etc. Finally, we can restrict the set of string expressions that can be

used in the assignment and conditional branch instructions.

In order to identify different classes of string systems we will use the following no-

tation. We will use the lettersD andN to denote deterministic and non-deterministic

string systems, respectively. We will use the lettersB andU to denote if the alphabet

used by the string variables is the binary alphabet{a, b} or the unary alphabet{a},

respectively. We will useK to denote an alphabet of arbitrary size. For example,

DUS(X1, X2, X3) denotes a deterministic string system with three variablesand the

unary alphabet whereasNBS(X1, X2) denotes a nondeterministic string system with

two variables and the binary alphabet. We will denote the setof assignment instructions

allowed in a string system as a superscript and the set of expressions involved in condi-

tional branch instructions as subscript. Hence,DUS(X1, X2, X3)
Xi:=Xia
X1=X3,X2=X3

denotes

a deterministic string system with three variablesX1, X2, andX3, and the unary al-

phabet{a} where the assignment instructions are of the formX1 := X1a, X2 := X2a,

or X3 := X3a (i.e., we only allow concatenation of one symbol to a string variable in

each assignment instruction) and the conditional branch instructions can only be of the

form: if X3 = X1 goto L or if X3 = X2 goto L (i.e., we only allow equality checks

and do not allow comparison ofX1 andX2.)

41

Chapter 2. String Systems

The halting problemfor string systems is the problem of deciding, given a string

systemS, where initially the string variables are initialized to the null string,ǫ, whether

S will halt on some execution. More generally, thereachability problem for string

systems(which need not halt) is the problem of deciding, given a string systemS and

a configurationC (i.e., the instruction label and the values of the variables), whether at

some point during a computation,C will be reached. Note that we define the halting

and the reachability conditions using existential quantification over the execution paths,

i.e., the halting and the reachability conditions hold if there exists an execution path that

halts or reaches the target configuration, respectively. Hence, if the halting problem is

undecidable, then the reachability problem is undecidable.

Theorem 1 The halting problem forDUS(X1, X2, X3)
Xi:=Xia
X1=X3,X2=X3

is undecidable.

Proof 1 It is well-known that the halting problem for two-counter machines, where

initially both counters are 0, is undecidable [39]. During the execution of a counter

machine, at each step, a counter can be incremented by 1, decremented by 1, and tested

for zero. The counters can only assume nonnegative values.

We will show that a two-counter machineM can be simulated with a string system

S(X1, X2, X3) in DUS(X1, X2, X3)
Xi:=Xia
X1=X3,X2=X3

. The states ofM can be represented

as labels in the string systemS. The states where the counter-machineM halts will

be represented with the halt instruction in string systemS. We will use the lengths

of the stringsX1, X2 andX3 to simulate the values of the countersC1 and C2. The

42

Chapter 2. String Systems

value ofC1 will be simulated by|X1| − |X3|, and the value ofC2 will be simulated by

|X2| − |X3|.

The counter machineM starts from the initial configuration(q0, 0, 0) whereq0 de-

notes the initial state and the two integer values representthe initial values of coun-

ters C1 and C2, respectively. The initial configuration of the string systemS will be

(q0, ǫ, ǫ, ǫ) whereq0 is the label of the first instruction, and the stringsǫ, ǫ, ǫ are the

initial values of the string variablesX1, X2 andX3, respectively. The instructions of

the counter-machineC will be simulated as follows (where each statement is followed

by a goto statement that transitions to the next state or instruction):

Counter machine String system

inc C1 X1 := X1a

inc C2 X2 := X2a

decC1 X2 := X2a;X3 := X3a

decC2 X1 := X1a;X3 := X3a

if (C1 = 0) if (X1 = X3)

if (C2 = 0) if (X2 = X3)

Note that although this transformation will allow the simulated counter values to

possibly take negative values, this can be fixed by adding a conditional branch instruc-

tion before each decrement that checks that the simulated counter value is not zero

43

Chapter 2. String Systems

before the instructions simulating the decrement instruction is executed. The string

systemS constructed fromM based on these rules will simulateM . Hence, halting

problem is undecidable for the string systems inDUS(X1, X2, X3)
Xi:=Xia
X1=X3,X2=X3

.

In fact, Theorem 1 can be strengthened: There is afixedstring systemS(X1, X2, X3)

in DUS(X1, X2, X3)
Xi:=Xia
X1=X3,X2=X3

such that it is undecidable to determine, given an ar-

bitrary nonnegative integerd, whetherS(X1, X2, X3) will halt whenX1 is initially set

to stringad andX2 andX3 are initially set toǫ. This follows from the fact that there

exists a fixed universal 2-counter machineM that can simulate a universal single-tape

deterministic Turing machine. Given a description of a Turing machineTM as input,

M halts if and only ifTM halts on blank tape. Since it is undecidable to determine

if a Turing machine halts on blank tape, it is undecidable to determine ifM will halt

on some input. Since, we can construct a fixed string systemS(X1, X2, X3) simulating

M , as in Theorem 1, it is undecidable to determine ifS(X1, X2, X3) will halt starting

from some initial configuration.

Next, we show that the three variables in Theorem 1 are necessary in the sense that

when there are only two variables, reachability is decidable. This result does not hold

when the system is nondetereministic, as we shall see in Theorem 3.

Consider the class of deterministic 2-variable string systems where the constants

are over an alphabet with arbitrary cardinality, and we are allowed to use conditional

branch instructions of the form:if X1 = X2 gotoL. (Note that because the alphabet is

44

Chapter 2. String Systems

not necessarily unary, thisif statement is not equivalent toif |X1| = |X2| goto L as in

the case of the unary alphabet.) Assignment statements are of the form: Xi := Xia or

Xi := aXi , wherea is a single symbol. And, there is a halt instruction, which wemay

assume occurs at the end of the program.

Theorem 2 The halting problem forDKS(X1, X2)
Xi:=Xia,Xi:=aXi

X1=X2
is decidable.

Proof 2 Let S be a string system inDKS(X1, X2)
Xi:=Xia,Xi:=aXi

X1=X2
andk be its length

(i.e., number of instructions), including the assignments, and the conditional and un-

conditional branch statements.

Label the instructions ofS by 1, ..., k. We can think of each assignment,i : A as

equivalent to the instruction,i : A; goto i+1. Hence, every instruction except the halt

instruction and theif statements has agoto.

By an “execution of a positiveif statement”, we mean that when theif statement is

executed,X1 = X2.

During the computation ofS, if it is not in an infinite loop, then the interval (i.e.,

number of steps) between the executions of any two consecutive positiveif statements

is at mostk. The reason for this is that during the interval,S executes onlygoto’s and

assignment statements withgoto’s (note that a non-positiveif statement leads directly

to the instruction following theif). Hence, the number of steps would be at mostk,

since there are at mostk goto’s and assignments withgoto’s.

45

Chapter 2. String Systems

Now, an execution of a positiveif statement leads to agoto label, and there are at

mostk different labels. It follows that ifS is not in an infinite loop, it cannot run more

thank.k = k2 steps.

The above theorem can be generalized to show the decidability of reachability for

multi-variable string systems as long as in a conditional branch statement we allow

equality check between only two specific variables, i.e., noother variables can be com-

pared for equality.

In contrast to Theorem 2, we can show that the halting problemis undecidable for

nondeterministic 2-variable string systems with constants over the alphabet{a, b}, by

a reduction from the Post Correspondence Problem (PCP) which is undecidable.

Theorem 3 The halting problem forNBS(X1, X2)
Xi:=Xic
X1=X2

is undecidable.

Proof 3 Given an instance(C, D) of PCP, whereC = (c1, ..., cn) andD = (d1, ..., dn),

define constant strings{c1, ..., cn, d1, ..., dn}, whereci, di are non-null strings over al-

phabet{a, b}, we construct a string systemS in NBS(X1, X2)
Xi:=Xic
X1=X2

as follows:

0: goto 1 or 2 or ... or n

1: X1 := X1c1 andX2 := X2d1; goto 0 or n+1

2: X1 := X1c2 andX2 := X2d2; goto 0 or n+1

. . .

n: X1 := X1cn andX2 := X2dn; goto 0 or n+1

46

Chapter 2. String Systems

n+1: if X1 = X2 goto n+2 else go to 1

n+2: halt

Clearly, there is a computation that will reach the halt instruction if and only if the PCP

instance(C, D) has a solution. The theorem follows.

Theorem 2 demonstrates that there are non-trivial string analysis problems that are

decidable. Theorems 1 and 3, on the other hand, show that the string analysis problem

can be undecidable even when we restrict a deterministic string system to three vari-

ables or a non-deterministic string system to two variables. Since the general string

analysis problem is undecidable, it is necessary to developconservative approximation

techniques for verification of string systems. In this dissertation, we present several

symbolic verification techniques that conservatively approximate the reachable states

of a string system. We can also analyze (extended) string systems that have complex

string operations, e.g., replacement, prefix and suffix. We discuss these operations in

the next Chapter.

47

Chapter 3

Automata-based String Analysis

Unsanitized string variables are a common cause of securityvulnerabilities in Web

applications. In typical interactive Web applications, user-provided input strings are

often used to query back-end databases. If the user input is not properly checked and

filtered (i.e., sanitized), the input strings that contain hidden destructive commands can

be sent to back-end databases and cause damage. Using the string analysis techniques

proposed in this work, it is possible to automatically verify that a string variable is

properly sanitized at a program point, showing that such attacks are not possible.

We present a string analysis technique that computes an overapproximation of pos-

sible values that a string expression can take at a given program point. We use a de-

terministic finite automaton (DFA) to represent the set of values string expressions can

take. At each program point, each string variable is associated with a DFA. The lan-

48

Chapter 3. Automata-based String Analysis

guage accepted by the DFA corresponds to the values that the corresponding string

variable can take at that program point.

3.1 String Manipulation Operations

Most of the string manipulation operations performed in real-world applications can

be reduced to the following four operations:

• assignment: assigns the current string value of a variable to another variable (the

assignment operator in PHP is “=”);

• concatenation: concatenates two string variables and/or constants (the concate-

nation operation in PHP is “. ”);

• replacement: replaces the parts of a string that match the given pattern with

the given replacement string (there are several string replacement functions in

PHP such ashtmlspecialchars , tolower , toupper , str replace , trim ,

preg replace andereg replace , and they can all be converted to this form).

• restriction: restricts the value of a string variable based on a branch condition.

Automata Operations: In order to implement the automata-based string analysis, we

implement the following operations:

49

Chapter 3. Automata-based String Analysis

• CONSTRUCT(regexpe): Returns a DFAM , L(M) = {w | w ∈ L(e)}.

• CLOSURE(DFA M1): Returns a DFAM , L(M) = {w1w2 . . . wk | k > 0, ∀i, 1 ≤

i ≤ k, wi ∈ L(M1)}.

• CONCAT(DFA M1, DFA M2): Returns a DFAM , L(M) = {w1w2 | w1 ∈

L(M1), w2 ∈ L(M2)}.

• REPLACE(DFA M1, DFA M2, DFA M3): Returns a DFAM , L(M) =

{w1c1w2c2 . . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈

L(M2), wi does not contain any substring accepted byM2, ci ∈ L(M3)}.

• UNION(DFA M1, DFA M2) : Returns a DFAM , L(M) = L(M1) ∪ L(M2).

• INTERSECT(DFA M1, DFA M2): Returns a DFA M,L(M) = L(M1) ∩ L(M2).

• WIDENING(DFA M1, DFA M2): Returns a DFA M,L(M) ⊇ L(M1) ∪ L(M2).

• EQUCHECK(DFA M1, DFA M2): Checks whetherL(M1) = L(M2).

• EMPCHECK(DFA M): Checks whetherL(M) = ∅.

• EMPTY(): Returns a DFA which does not accept any string.

• UNIVERSAL(): Returns a DFA which accepts all the strings.

50

Chapter 3. Automata-based String Analysis

Symbolic Automata Representation: We use the DFA library of MONA [5] to im-

plement the string operations listed above. In MONA, transition relations of DFA are

symbolically represented using Multi-terminal Binary Decision Diagrams (MBDDs).

A MBDD is a BDD with multiple roots and multiple leaves. In MONA’s DFA rep-

resentation, each state of the DFA is a root and points to a BDDnode, and each leaf

value is a state of the DFA. Given the current state and a symbol a ∈ Bk, whereBk is

alphabet of bit vectors of length k, one can find the next stateby following the BDD

nodes according to the bit vector ofa from the BDD node pointed by the current state.

We use a 7-bit vector, i.e.,B7, as our alphabet representing the binary value of ASCII

symbols, e.g., for the ASCII symbol ‘a’, the ASCII code is 97 which is represented as

‘1100001’ in our encoding.

The MONA DFA library provides efficient implementations of standard automata

operations. These operations include product, project anddeterminize, and minimize [5].

The product operation takes the Cartesian product of the states of the two input au-

tomata. We use the product operation to implement the intersection and union op-

erations. The project and determinize operation, denoted as PROJECT(M, i), where

1 ≤ i ≤ k, converts a DFAM recognizing a languageL over the alphabetBk, to a

DFA M ′ recognizing a languageL′ over the alphabetBk−1, whereL′ is the language

that results from applying the tuple projection on theith bit to each symbol of the al-

51

Chapter 3. Automata-based String Analysis

phabet. The process consists of removing theith track of the MBDD and determinizing

the resulting MBDD via on-the-fly subset construction.

3.2 String Operations on Automata

In this section, we describe how to implement the closure, concatenate and replace

operations. Since we use MBDD representation for DFA, we arenot able to introduce

ǫ-transitions. Instead, to avoid the non-determinism introduced by these operations, we

extend the alphabet by adding extra bits, and then use projection to map the resulting

DFA to the original alphabet.

A DFA M is a tuple〈Q, q0, Σ, δ, F 〉 whereQ is a finite set of states,q0 is the

initial state,Σ ⊆ Bk is the alphabet, where each symbol is encoded as ak-bit string.

F : Q → {−, +} is a mapping function from a state to its status. Given a stateq ∈ Q,

q is an accepting state ifF (q) = +. δ : Q × Σ → Q is the transition relation. A

stateq of M is a sink state if∀α ∈ Σ, δ(q, α) = q andF (q) = −. In the following

sections, we assume that for all unspecified pairs(q, α), δ(q, α) goes to asink state. In

the constructions below, we also ignore the transitions that lead to a sink state.

Givenα ∈ Bk, we useα0 or α1 ∈ Bk+1 to denote the bit string that isα appended

with ‘0’ or ‘1’. For instance, ifα is ‘110011’ thenα0 is ‘1100110’.

52

Chapter 3. Automata-based String Analysis

Closure: The DFA M is a closure-DFA of the DFAM1, if L(M) = { w1w2 . . . wk

| ∃k > 0, ∀1 ≤ i ≤ k, wi ∈ L(M1)}.

Given M1 = 〈Q1, q10, Σ, δ1, F1〉, its closureM can be constructed by first con-

structing an intermediate DFAM
′

= 〈Q1, q10, Σ
′

, δ
′

, F1〉 as:

• Σ
′

= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

• ∀q, q′ ∈ Q1, δ
′

(q, α0) = q′, if δ1(q, α) = q′.

• ∀q ∈ Q1, δ
′

(q, α1) = q′, if F1(q) = + andδ1(q10, α) = q′.

Then,M = PROJECT(M
′

, k + 1) is the closure ofM1.

SinceM1 is a DFA, the project operation requires the subset construction only when

there existsq ∈ Q1, F1(q) = +, and∃α, q′, q
′′

, α ∈ Σ, q′, q
′′

∈ Q1, q
′ 6= q

′′

, δ1(q, α) =

q′, δ1(q10, α) = q
′′

.

Concatenation: The DFA M is a concatenation-DFA of the DFAM1 and M2, if

L(M) = {w1w2 | w1 ∈ L(M1), w2 ∈ L(M2)}.

Given M1 = 〈Q1, q10, Σ, δ1, F1〉 and M2 = 〈Q2, q20, Σ, δ2, F2〉, the

concatenation-DFAM can be constructed as follows. Without loss of generality, we as-

sume thatQ1∩Q2 is empty. We first construct an intermediate DFAM
′

= 〈Q
′

, q10, Σ
′

, δ
′

, F
′

〉,

where

• Q
′

= Q1 ∪ Q2

53

Chapter 3. Automata-based String Analysis

• Σ
′

= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

• ∀q, q′ ∈ Q1, δ
′

(q, α0) = q′, if δ1(q, α) = q′

• ∀q, q′ ∈ Q2, δ
′

(q, α0) = q′, if δ2(q, α) = q′

• ∀q ∈ Q1, δ
′

(q, α1) = q′, if F1(q) = + and∃q′ ∈ Q2, δ2(q20, α) = q′

• ∀q ∈ Q1, F
′

(q) = +, if F1(q) = + andF2(q20) = +; F
′

(q) = −, o.w.

• ∀q ∈ Q2, F
′

(q) = F2(q).

Then,M = PROJECT(M
′

, k + 1). Again, since bothM1 andM2 are DFA, the

subset construction happens only when there existsq ∈ Q1, F1(q) = + such that

∃α, q′, q
′′

, α ∈ Σ, q′ ∈ Q1, q
′′

∈ Q2, δ1(q, α) = q′, δ2(q20, α) = q
′′

.

Replacement: A DFA M is a replaced-DFA of a DFA tuple(M1, M2, M3), if and only

if L(M) = {w | k > 0, w1x1w2 . . . wkxkwk+1 ∈ L(M1),

w = w1c1w2...wkckwk+1, ∀1 ≤ i ≤ k, xi ∈ L(M2), ci ∈ L(M3), ∀1 ≤ i ≤ k + 1, wi 6∈

{w′
1x

′w′
2 | x

′ ∈ L(M2), w
′
1, w

′
2 ∈ Σ∗}}.

This definition requires that all occurrences of matching sub-strings in a word are

replaced. The intuition of the implementation of this language-based replacement is

that we first insert marks into automata, then identify matching sub-strings by intersec-

tion of automata, and finally construct the final automaton byreplacing these matching

sub-strings.

54

Chapter 3. Automata-based String Analysis

We consider a new alphabetΣ̄ = {ᾱ|α ∈ Σ}, and letx̄ denote a new string in which

we add bar to each character inx. Assume thatM1, M2, M3 have the same alphabetΣ,

where♯1, ♯2 6∈ Σ, and∀α ∈ Σ, ᾱ 6∈ Σ. We defineM
′

1, M2
′ andM as follows, and claim

thatM accepts the same language as the replaced-DFA of the tuple(M1, M2, M3).

• M
′

1, whereL(M
′

1) = {w′ | k > 0, w = w1x1w2 . . . wkxkwk+1 ∈ L(M1), w
′ =

w1♯1x̄1♯2w2 . . . wk♯1x̄k♯2wk+1}.

• M
′

2, whereL(M
′

2) = {w′ | k > 0, w′ = w1♯1x̄1♯2w2 . . . wk♯1x̄k♯2wk+1, ∀1 ≤ i ≤

k, xi ∈ L(M2), ∀1 ≤ i ≤ k +1, wi ∈ L(Mh)} , whereL(Mh) is the set of strings

which do not contain any substring inL(M2). The languageL(Mh) is defined as

the complement set of{w1xw2 | x ∈ L(M2), w1, w2 ∈ Σ∗}.

• M , whereL(M) = {w | k > 0, w1♯1x̄1♯2w2 . . . wk♯1x̄k♯2wk+1 ∈ L(M
′

1) ∩

L(M
′

2), w = w1c1w2 . . . wkckwk+1, ∀1 ≤ i ≤ k, ci ∈ L(M3)}.

To distinguish the original and bar alphabets, we append an extra bit toα so that

α is α0 andᾱ is α1. GivenM1 = 〈Q1, q10, Σ, δ1, F1〉, M2 = 〈Q2, q20, Σ, δ2, F2〉, and

M3 = 〈Q3, q30, Σ, δ3, F3〉, the process to construct a replaced-DFAM can be decoupled

into the following steps:

1. ConstructM1
′ from M1,

2. ConstructM
′

2 from M2,

55

Chapter 3. Automata-based String Analysis

3. GenerateM
′

as the intersection ofM
′

1 andM
′

2,

4. ConstructM
′′

from M
′

where the strings that appear between♯1 and♯2 are re-

placed by words inL(M3), and

5. GenerateM from M
′′

by projection.

We formally describe the implementation of these steps below. As a running exam-

ple, we useL(M1) = {baab}, L(M2) = a+ (M2 accepts the language{a, aa, aaa, . . .})

andL(M3) = {c} or L(M3) = {ǫ}. Let |M | denote the number of states ofM . An

upper bound for each intermediate automaton before projection and minimization is

also described.

Step 1:M
′

1 = 〈Q
′

1, q10, Σ
′

, δ
′

1, F
′

1〉 is constructed fromM1, where

• Q
′

1 = Q1 ∪ Q1′ , Q1′ is the duplicate ofQ1. For allq ∈ Q1, there is a one to one

mappingq′ ∈ Q1′ .

• Σ
′

= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ} ∪ {♯1, ♯2}

• δ
′

1(q1, α0) = q2 andδ
′

1(q1′ , α1) = q2′ , if δ1(q1, α) = q2

• ∀q1 ∈ Q1, δ
′

1(q1, ♯1) = q1′ andδ
′

1(q1′ , ♯2) = q1

• ∀q ∈ Q1, F
′

1(q) = F1(q) and∀q ∈ Q1′ , F
′

1(q) = 0.

An example for constructingM
′

1 from M1, whereL(M1) = {baab}, is given in

Fig 3.1.|M
′

1| is bounded by2|M1|.

56

Chapter 3. Automata-based String Analysis

(a) M1 : {baab} (b) M
′

1

Figure 3.1: ConstructingM
′

1 from M1

Step 2: To constructM
′

2, we first constructMh which accepts the complement set

of {w1xw2 | w1, w2 ∈ Σ∗, x ∈ L(M2)}. For instance, as shown in Fig 3.2(b), for

L(M2) = a+, Mh is the DFA that accepts(Σ \ {a})∗. Let M∗ be the DFA accepting

Σ∗. Mh can be constructed by NEGATE(CONCAT(CONCAT(M∗ , M2), M∗)). We obtain

the DFA in Fig 3.2(b) by applying this construction with minimization.

Assume Mh = 〈Qh, qh0, Σ, δh, Fh〉, and M2 = 〈Q2, q20, Σ, δ2, F2〉.

M
′

2 = 〈Q
′

2, qh0, Σ
′

, δ
′

2, F
′

2〉 can then be constructed as:

• Q
′

2 = Qh ∪ Q2

• Σ
′

= {α0 | ∀α ∈ Σ} ∪ {α1 | ∀α ∈ Σ} ∪ {♯1, ♯2}

• ∀q, q′ ∈ Qh, δ
′

2(q, α0) = q′, if δh(q, α) = q′

• ∀q, q′ ∈ Q2, δ
′

2(q, α1) = q′, if δ2(q, α) = q′

• ∀q ∈ Qh, δ
′

2(q, ♯1) = q20 if Fh(q) = +

• ∀q ∈ Q2, δ
′

2(q, ♯2) = qh0 if F2(q) = +

57

Chapter 3. Automata-based String Analysis

• ∀q ∈ Qh, F
′

2(q) = Fh(q) and∀q ∈ Q2, F
′

2(q) = −.

The correspondingM
′

2 for our example is shown in Fig 3.2(c).|M
′

2| is bounded by

|Mh| + |M2|, where|Mh| is bounded by|M2| + 2.

(a) M2 (b) Mh (c) M
′

2

Figure 3.2: ConstructingM
′

2 from M2 andMh

Step 3: M
′

= 〈Q
′

, q
′

0, Σ
′

, δ
′

, F
′

〉 is generated as the intersection ofM
′

1 andM
′

2

based on production. The exampleM
′

is shown in Fig 3.3 (a).|M
′

| is bounded by

|M
′

1| × |M
′

2|.

Step 4: Before we constructM
′′

from M
′

, we first introduce a functionreach :

Q
′

→ 2Q
′

, which maps a state to all its♯-reachable states inM
′

. We sayq′ is ♯-reachable

from q if there exists a sequenceq, q1, . . . , qn, q
′ so that (1)n ≥ 1, (2) δ

′

(q, ♯1) = q1,

(3) δ
′

(qn, ♯2) = q′, and (4)∀0 < i < n, δ
′

(qi, x) = qi+1, wherex ∈ {α1 | ∀α ∈ Σ}.

For instance, in Fig 3.3 (a), one can find thatreach(i) = {j, k} andreach(j) = {k}.

Intuitively, one can think that each pair(q, q′), whereq′ ∈ reach(q), identifies a word

in L(M2).

Our goal is, for eachq′ ∈ reach(q), inserting paths betweenq andq′ that recog-

nize all words inL(M3). If there existq′, q
′′

∈ reach(q) andq′ 6= q
′′

, this insertion

58

Chapter 3. Automata-based String Analysis

will cause nondeterminism. To tackle this problem, as we didin the construction of

closure and concatenation, we add extra bits to the alphabetand later project them

away. Assumen is the maximum size ofreach(q) for all q ∈ Q
′

. We need at most

⌈log(n + 1)⌉ bits to be added to the alphabet so that the construction can result in a

DFA. Let P = {q | q ∈ Q
′

, reach(q) > 0}. Let m = ⌈log(n + 1)⌉, wheren is the

maximum size ofreach(q) for all q ∈ P . Let mq be an m-bit string. Forα ∈ Bk,

αmq ∈ Bk+m is a string in whichmq is appended toα. Letm0 be an m-bit string of 0s.

We assume∀q, mq 6= m0, and for anyq ∈ P , m′
q 6= m′′

q if q′, q′′ ∈ reach(q).

The construction ofM
′′

depends onL(M3). We consider the following three cases:

(1) M3 only accepts single characters, i.e.,L(M3) ⊆ Σ, (2) M3 only accepts words

with more than one character, i.e.,L(M3) ⊆ Σ+ \ Σ, (3) M3 only accepts the empty

string, i.e.,L(M3) = {ǫ}.

Case 1:∀w ∈ L(M3), |w| = 1. M
′′

= 〈Q
′

, q
′

0, Σ
′′

, δ
′′

, F
′

〉 is constructed as:

• Σ
′′

⊆ Bk+m

• ∀q ∈ Q
′

, δ
′′

(q, αm0) = q′, if δ
′

(q, α0) = q′

• ∀q ∈ P, ∀q′ ∈ reach(p), ∀α ∈ L(M3), δ
′′

(q, αmq′) = q′.

In Fig 3.3(a),P = {i, j}, reach(i) = {j, k} andreach(j) = k. Let L(M3) = {c}.

M
′′

of our example is shown in Fig 3.3(b). Each symbol is appendedwith two extra

bits, e.g.,δ(i, c01) = j andδ(i, c10) = k. |M
′′

| is bounded by|M
′

|.

59

Chapter 3. Automata-based String Analysis

(a) M
′

(b) M
′′

: case 1 (c) M
′′

: case 3

Figure 3.3: ConstructingM
′′

from M
′

. M
′

is the Intersection ofM1
′ andM

′

2

Case 2: ∀w ∈ L(M3), |w| ≥ 2. For eachp ∈ P , we construct a copy ofM3 as

Mp = 〈Qp, qp0, Σ, δp, Fp〉. M
′′

is constructed by insertingMp betweenp andreach(p).

M
′′

= 〈Q
′′

, q
′

0, Σ
′′

, δ
′′

, F
′′

〉, where

• Q
′′

= Q
′ ⋃

p∈P Qp

• Σ
′′

⊆ Bk+m

• ∀q ∈ Q
′

, δ
′′

(q, αm0) = q′, if δ
′

(q, α0) = q′

• ∀p ∈ P, ∀q ∈ Qp, δ
′′

(q, αm0) = q′, if δp(q, α) = q′.

• ∀p ∈ P, δ
′′

(p, αmq) = q, if δp(qp0, α) = q.

• ∀p ∈ P, ∀q ∈ reach(p), δ
′′

(q′, αm0) = q, if δp(q
′, α) = q

′′

andFp(q
′′

) = +.

• ∀q ∈ Q
′

, F
′′

(q) = F
′

(q)

• ∀p ∈ P, q ∈ Qp, F
′′

(q) = −.

In this case,|M
′′

| is bounded by|M
′

| + |M
′

| × |M
′

| × |M3|.

60

Chapter 3. Automata-based String Analysis

Case 3:∀w ∈ L(M3), |w| = 0. We consider this case asdeletion. Before we start

the construction, it is worth to know that for deletion, one may change the argument

M2 to N , whereL(N) = L(M2)+ (Kleene plus closure) , and get the same result. We

specify this property as follows.

Property 1 Let M=REPLACE(M1 , M2, M3), and M
′

=REPLACE(M1 , N , M3),

whereL(N) = L(M2)+. L(M) = L(M
′

) if L(M3) = {ǫ}.

The correctness comes from the fact that, by construction, if there existsw ∈ L(N),

then there existsk > 0, w = w1w2 . . . wk, where∀1 ≤ i ≤ k, wi ∈ L(M2). Sincew

or anywi will be deleted after the replacement, usingN instead ofM2 yields the same

result.

Note that the♯-reachable states ofM ′ usingN is actually the set of reachable clo-

sure of the♯-reachable states ofM ′ usingM2. This facilitates our construction by

taking all deleted pairs into account in one step. In the following construction, without

loss of the generality, we assume that the matching strings are accepted byN . N can

be constructed from the originalM2 by our closure operation.

M
′′

can then be constructed as〈Q
′

, q
′

0, Σ
′′

, δ
′′

, F
′′

〉, where

• Σ
′′

⊆ Bk+m

• ∀q ∈ Q
′

, δ
′′

(q, αm0) = q′, if δ
′

(q, α0) = q′

• ∀p ∈ P, ∀q ∈ reach(p), δ
′′

(p, αmq′) = q′, if δ
′

(q, α0) = q′.

61

Chapter 3. Automata-based String Analysis

• ∀p ∈ P, F
′′

(p) = +, if ∃q ∈ reach(p), F
′

(q) = +.

• F
′′

(q) = F
′

(q), o.w.

Let L(M3) = {ǫ}. The result ofM
′′

is shown in Fig 3.3(c). Note that ifM2 = {a},

we would get the same result.|M
′′

| is bounded by|M
′

|.

Finally, considerM3 as a general DFA. REPLACE(M1 , M2, M3) can be constructed

as the union of the results of the following three operations:

• REPLACE(M1 , M2, M31
), whereL(M31

) = L(M3) ∩ Σ

• REPLACE(M1 , M2, M32
), whereL(M32

) = L(M3) ∩ Σ+ \ Σ

• REPLACE(M1 , M2, M33
), whereL(M33

) = L(M3) ∩ {ǫ}

Our replacement operation is defined in a general case in terms of M3. For all

replacement statements in PHP programs, such asstr replace , preg replace , and

ereg replace , L(M3) is a constant string. In our implementation, we determine

which type of construction to apply based on the length of this string.

Step 5: Finally, we getM overΣ by iteratively projecting away the extra bits. The

subset construction is only applied when needed.

The final DFAM =REPLACE(M1 , M2, M3), whereL(M1) = {baab}, L(M2) =

a+, andL(M3) = {c}, is shown in Fig 3.4.M accepts{bcb, bccb}.

Lemma 4 shows that a potential exponential blow-up of the number of states of the

final DFA is inevitable in a replacement operation.

62

Chapter 3. Automata-based String Analysis

(a) M
′′

1
(b) M

Figure 3.4: M
′′

1 is PROJECT(M
′′

, k + 2), M is PROJECT(M
′′

1 , k + 1)

Lemma 4 For everyn ≥ 1, there exists a DFAM with O(n) states accepting a lan-

guageL ⊆ {0, 1}∗#{0, 1}∗ such that any DFA accepting the languageL′ obtained

fromL by replacing# with 1 requires O(2n) states.

Proof 4 Let n ≥ 1. Let L = {x#y | x, y ∈ {0, 1}∗, |y| = n − 1}. Clearly,L can be

accepted by a DFAM with O(n) states. NowL′ = {x1y | x, y ∈ {0, 1}∗, |y| = n − 1}.

Below we show that any DFA acceptingL′ requires O(2n) states. Assume a DFAA

acceptingL′. Letw be any binary string of lengthn, i.e.,|w| = n. Lets(w) denote the

state thatA enters after processingw. The proof is based on the fact that for anyw and

w′ s.t. |w| = |w′| = n andw 6= w′, s(w) 6= s(w′). Since there are2n distinct strings of

lengthn, there are2n distincts(w)′s. Hence,A has at least2n states.

In PHP programs, replacement operations such asereg replace can use different

replacement semantics such aslongest matchor first match. Our replacement oper-

ation provides an over approximation of such more restricted replace semantics. For

the example above, in the longest match semantics,M only acceptsbcb, in which the

longest matchaa is replaced byc. In the first match semantics,M only acceptsbccb, in

63

Chapter 3. Automata-based String Analysis

which two matchesa anda are replaced withc. Both of these are included in the result

obtained by our replacement operation. This over approximation works well for our

benchmarks, and does not raise false alarms. Indeed, we haveobserved that most state-

ments we encountered yield the same result in the first and longest match semantics,

e.g.,ereg replace("<script * >","",$ GET["username"]); , which are

precisely modelled by our language-based replacement operation.

3.3 Pre-image Computation

In this section, we discuss how to compute the pre-images of string manipulation

operations. We introduce three automata operations:PRECONCATPREFIX(Mx, Mz),

PRECONCATSUFFIX(Mx, My), andPREREPLACE(Mx, Mm, Mr). These automata oper-

ations are used to perform our backward analysis in Chapter 4.

3.3.1 Concatenation

To compute the pre-image ofconcatenation, we first introduceconcatenation trans-

ducerthat specifies the relation among the values of the output (the concatenation-DFA

of M1 andM2) and the two inputs: prefix (M1) and suffix (M2) of the concatenation

operation.

64

Chapter 3. Automata-based String Analysis

A concatenation transducer is a DFA over the alphabet that consists of 3 tracks. The

3-track alphabet is defined asΣ3 = Σ × (Σ ∪ {λ}) × (Σ ∪ {λ}), whereλ 6∈ Σ is a

special symbol for padding. We usew[i] (1 ≤ i ≤ 3) to denote theith track ofw ∈ Σ3.

All tracks are aligned.w[1] ∈ Σ∗, w[2] ∈ Σ∗λ∗ is left justified, andw[3] ∈ λ∗Σ∗

is right justified. We usew′[1], w′[2] ∈ Σ∗ to denote theλ-free prefix ofw[1] and

the λ-free suffix ofw[2]. We sayw is accepted by a concatenation transducerM if

w[1] = w′[2].w′[3]. Note that a concatenation transducer binds the values of different

tracks character by character and hence is able to identify the prefix and suffix relations

precisely.

Below we show two examples of concatenation transducers. Let α indicate any

character inΣ. In Figure 3.5, the third track ofM can be used to identify all suffixes of

X that follow any string in(ab)+. In Figure 3.6, the second track ofM can be used to

identify all prefixes ofX that are followed by any string in(ab)+.

Figure 3.5: A TransducerM for X = (ab)+.Z

65

Chapter 3. Automata-based String Analysis

Figure 3.6: A TransducerM for X = Y.(ab)+

In the following, we describe how to construct these transducers in general, how

to removeλ, and how to compute the pre-images of a concatenation operation using

concatenation transducers.

Prefix: We first consider how to compute the pre-image of the prefix, i.e., Y in

X := Y Z, given regular sets characterizing possible values of the output nodeX and

the suffix nodeZ. Let Mx = 〈Qx, Σ, δx, qx0, Fx〉, Mz = 〈Qz, Σ, δz, qz0, Fz〉 accept

values ofX andZ respectively.PRECONCATPREFIX(Mx , Mz) returnsMy.

• ExtendMx to a 3-track DFAM ′, so thatM ′ accepts{w | w[1] ∈ L(Mx)}.

• Construct the concatenation transducerM that accepts{w | w[1] = w′[2].w′[3],

w′[3] ∈ L(Mz)}. M = 〈Q, Σ3, δ, q0, F 〉, where:

– Q = {q0} ∪ Qz,

– ∀a ∈ Σ, δ(q0, (a, a, λ)) = q0,

– ∀a ∈ Σ, δ(q0, (a, λ, a)) = q′ if δz(qz0, a) = q′.

– ∀q, q′ ∈ Qz, ∀a ∈ Σ, δ(q, (a, λ, a)) = q′ if δz(q, a) = q′.

66

Chapter 3. Automata-based String Analysis

– F = {q0} ∪ Fz if qz0 ∈ Fz. F = Fz, otherwise.

• IntersectM ′ with M . The result accepts{w |w[1] = w′[2].w′[3], w[1] ∈ L(Mx), w
′[3] ∈

L(Mz)}. We then project away the first and the third tracks. Let the result be

M ′
y = 〈Qy, Σ ∪ {λ}, δ, q′y0, F

′
y〉.

• Removeλ tails if any. We constructMy = 〈Qy, Σ, δy, qy0, Fy〉 as below.

– ∀q, q′ ∈ Qy, ∀a ∈ Σ, δy(q, a) = q′ if δ′y(q, a) = q′.

– Fy = F ′
y ∪ Fλ, whereFλ = {q | ∃q′ 6= sink, δ′y(q, λ) = q′}.

Suffix: We next consider how to compute the pre-image of the suffix, i.e., Z in

X := Y Z, given regular sets characterizing possible values ofX and the prefix node

Y . Again, letMx = 〈Qx, Σ, δx, qx0, Fx〉, My = 〈Qy, Σ, δy, qy0, Fy〉 accept values ofX

andY respectively.PRECONCATSUFFIX(Mx, My) returnsMz.

• ExtendMx to a 3-track DFAM ′, so thatM ′ accepts{w | w[1] ∈ L(Mx)}.

• Construct the concatenation transducerM that accepts{w |w[1] = w′[2].w′[3], w′[2] ∈

L(My)}. M = 〈Q, Σ3, δ, qy0, F 〉, where:

– Q = Qy ∪ {qf}

– ∀q, q′ ∈ Qy, ∀a ∈ Σ, δ(q, (a, a, λ)) = q′ if δy(q, a) = q′.

– ∀q ∈ Fy, ∀a ∈ Σ, δ(q, (a, λ, a)) = qf .

67

Chapter 3. Automata-based String Analysis

– ∀a ∈ Σ, δ(qf , (a, λ, a)) = qf .

– F = {qf} ∪ Fy.

• IntersectM ′ with M . The result accepts{w |w[1] = w′[2].w′[3], w[1] ∈ L(Mx), w
′[2] ∈

L(My)}. We then project away the first and the second tracks. Let the result be

M ′
z = 〈Q′

z, Σ ∪ {λ}, δ′z, q
′
z0, F

′
z〉.

• Removeλ heads if any. This final step can be done by constructingMz =

〈Qz, Σ, δz, qz0, Fz〉 as below.

– Qz = q0 ∪ Q′
z.

– ∀q ∈ Q′
z, ∀a ∈ Σ, δz(q, a) = q′ if there existsq′ ∈ Q′

z, δ
′
z(q, a) = q′.

– ∀q ∈ Q′
z, ∀a ∈ Σ, δz(q0, a) = q′ if there existsq′, q′′ ∈ Q′

z, δ′z(q
′′, λ) = q

andδ′z(q, a) = q′.

– Fz = {q0}∪F ′
z, if ∃q ∈ F ′

z and there existsq′, q′′ ∈ Q′
z, so thatδ′z(q

′′, λ) = q

andδ′z(q, a) = q′. Fz = F ′
z, otherwise.

3.3.2 Replacement

Recall that areplace operation has three inputs: target, match, and replacement.

We only consider the pre-image of the target given regular sets characterizing possible

values of the output, the match, and the replacement. Precisely, letMx = REPLACE(Mt ,

68

Chapter 3. Automata-based String Analysis

Mm, Mr). We are interested in computingMt, givenMx, Mm, andMr. An intuitive

solution ofPREREPLACE(Mx , Mm, Mr) is REPLACE(Mx, Mr, Mm). However, since not

all matches ofMr that appear inMx are due to the replacement operation, this may

break the soundness of our approach. Consider a simple example. Mt, Mm andMr

accept{aab}, {b}, and{a}, respectively.Mx = REPLACE(Mt , Mm, Mr) accepts{aaa}.

M ′
t = REPLACE(Mx, Mr, Mm) accepts{bbb}. Since{bbb} does not include{aab}, this

intuitive approach is not sound. Instead, we conservatively model PREREPLACE(Mx ,

Mm, Mr) as REPLACE(Mx, Mr, Mm ∪ Mr). The result is an over approximation of

the pre-image of the target node. For the simple example,M ′
t = REPLACE(Mx, Mr,

Mm ∪ Mr) accepts(a|b)(a|b)(a|b), which includes allL(Mt) such thatREPLACE(Mt ,

Mm, Mr) accepts{aaa}.

Deletion REPLACE(Mt , Mm, Mr) performs deletion ifMr accepts the empty string.

That is, it will delete all the matches inL(Mt). In this case, to compute the pre-image

of the target, we would not be able to find a match ofMr (an empty string in this

case) to replace withMm. In this case,REPLACE(Mx, Mr, Mm ∪ Mr) will return

Mx. To deal with deletion, we conservatively generate a DFAMinsert that accepts

L(Mm) to be repeated many times between any character ofL(Mx). Formally speak-

ing,Minsert accepts{w0c0w1c1 . . . wncnwn+1 |c0c1 . . . cn ∈ L(Mx), ∀i, wi ∈ L∗(Mm)},

whereL∗(Mm) denotes the closure ofL(Mm). To constructM = 〈Q, Σ, δ, q0, F 〉, the

basic idea is insertingMm to each state ofMx. |Q| is bounded by|Qm|×|Qx|. Depend-

69

Chapter 3. Automata-based String Analysis

ing onMm, we consider two cases to insertMm. First, letσm = L(Mm) ∩Σ be the set

of accepted single characters. Ifσm 6= ∅, we insert a self loop for eacha ∈ σm for all

q ∈ Qx, i.e.,∀q ∈ Qx, a ∈ σm, δ(q, a) = q. Second, letM ′
m = 〈Q′

m, Σ, δ′m, q′m0, F
′
m〉

acceptL(Mm)\σm. If L(M ′
m) 6= ∅ (i.e., Mm accepts some words that are not single

character), we insertM ′
m for all q ∈ Qx, which can be done by setting (1)δ(q, a) = q′

if there existsq′ ∈ Q′
m, δ′m(q′m0, a) = q′, and (2)δ(q′, a) = q if there existsq′, q′′ ∈

Q′
m, δ′m(q′, a) = q′′ andq′′ ∈ F ′

m.

In sum,PREREPLACE(Mx , Mm, Mr) returns:

• REPLACE(Mx, Mr, Mm ∪ Mr) if Mr accepts non empty strings, and

• Minsert if Mr accepts an empty string.

3.4 Widening Automata

In this section, we describe a widening operator on automatathat we use to accel-

erate the fixpoint computations in Chapter 4. This automata operation was originally

proposed for arithmetic automata by Bartzis and Bultan [4].

Given two finite automataM = 〈Q, q0, Σ, δ, F 〉 andM ′ = 〈Q′, q′0, Σ, δ′, F ′〉, we

first define the binary relation≡∇ onQ ∪ Q′ as follows. Givenq ∈ Q andq′ ∈ Q′, we

70

Chapter 3. Automata-based String Analysis

say thatq ≡∇ q′ andq′ ≡∇ q if and only if

∀w ∈ Σ∗. F (δ∗(q, w)) = + ⇔ F (δ′∗(q′, w)) = +. (3.1)

or q, q′ 6= sink ∧ ∃w ∈ Σ∗. δ∗(q0, w) = q ∧ δ′∗(q′0, w) = q′, (3.2)

whereδ∗(q, w) is defined as the state thatM reaches after consumingw starting from

stateq. In other words, condition 3.1 states thatq ≡∇ q′ if ∀w ∈ Σ∗, w is accepted by

M from q thenw is accepted byM ′ from q′, and vice versa. Condition 3.2 states that

q ≡∇ q′ if ∃w ∈ σ, M reaches stateq andM ′ reaches stateq′ after consumingw from

its initial state. Forq1 ∈ Q andq2 ∈ Q we say thatq1 ≡∇ q2 if and only if

∃q′ ∈ Q′. q1 ≡∇ q′ ∧ q2 ≡∇ q′ ∨ ∃q ∈ Q. q1 ≡∇ q ∧ q2 ≡∇ q (3.3)

Similarly we can defineq′1 ≡∇ q′2 for q′1 ∈ Q′ andq′2 ∈ Q′.

71

Chapter 3. Automata-based String Analysis

It can be seen that≡∇ is an equivalence relation. LetC be the set of equivalence

classes of≡∇. We defineM∇M ′ = 〈Q′′, q′′0 , Σ, δ′′, F ′′〉 by:

Q′′ = C

q′′0 = c s.t. q0 ∈ c ∧ q′0 ∈ c

δ′′(ci, σ) = cj s.t. (∀q ∈ ci ∩ Q. δ(q, σ) ∈ cj ∨ δ(q, σ) = sink) ∧

(∀q′ ∈ ci ∩ Q′. δ′(q′, σ) ∈ cj ∨ δ′(q′, σ) = sink)

F ′′(c) = + s.t. ∃q ∈ F ∪ F ′. q ∈ c. F ′′(c) = − o.w.

In other words, the set of states ofM∇M ′ is the setC of equivalence classes of≡∇.

Transitions are defined from the transitions ofM andM ′. The initial state is the class

containing the initial statesq0 andq′0. The set of final states is the set of classes that

contain some of the final states inF andF ′. It can be shown that, given two automata

M andM ′, L(M) ∪ L(M ′) ⊆ L(M∇M ′) [4].

In Fig 3.7, we give an example for the widening operation.L(M) = {ǫ, ab} and

L(M ′) = {ǫ, ab, abab}. The set of equivalence classes isC = {q′′0 , q
′′
1}, whereq′′0 =

{q0, q
′
0, q2, q

′
2, q

′
4} andq′′1 = {q1, q

′
1, q

′
3}. L(M∇M

′

) = (ab)∗.

As shown in our symbolic reachability analysis, we use this widening operator it-

eratively to compute an over-approximation of the least fixpoint that corresponds to

the reachable values of string expressions. To simplify thediscussion, let us assume a

72

Chapter 3. Automata-based String Analysis

(a)M (b) M ′ (c) M∇M ′

Figure 3.7: Widening Automata

program with a single string variable represented with one automatonM . Let Mi rep-

resent the automaton computed at theith iteration and letI denote the initial value of

the string variable. The fixpoint computation will compute asequenceM0, M1, ...,Mi,

..., whereM0 = I andMi = Mi−1 ∪ post(Mi−1) where the post-condition for different

statements is computed accordingly (We will discuss in Chapter 4). We reach the least

fixpoint Mj if at some iteration,Mj = Mj−1. Since we are dealing with an infinite state

system, the computation may not converge. In the following,we useM∞ to denote the

least fixpoint.

Given the widening operator, we actually compute a sequenceM ′
0, M ′

1, ...,M ′
i , ...,

that over-approximates the fixpoint computation whereM ′
i is defined as:M ′

0 = M0,

and fori > 0, M ′
i = M ′

i−1∇(M ′
i−1 ∪ post(M ′

i−1)). Let M ′
∞ denote the least fixpoint of

this approximate sequence. Then we have the following result [4]:

Definition 5 M1 = 〈Q1, q01, Σ, δ1, F1〉 is simulated byM2 = 〈Q2, q02, Σ, δ2, F2〉 iff

there exists a total functionf : Q1 \ {sink} → Q2 such thatδ1(q, σ) = sink or

f(δ1(q, σ)) = δ2(f(k), σ) for all q ∈ Q1 \ {sink} andσ ∈ Σ. Furthermore,f(q01) =

q02 and for all q ∈ F1, f(q) ∈ F2.

73

Chapter 3. Automata-based String Analysis

Definition 6 M = 〈Q, q0, Σ, δ, F 〉 is state-disjoint iff there is no stateq ∈ Q such that

there existα ∈ Σ andq′, q′′ ∈ Q, q′ 6= q′′, andδ(q′, α) = q andδ(q′′, α) = q.

Theorem 7 If (1) M∞ exists, (2)M∞ is a state-disjoint automaton, and (3)M0 is

simulated byM∞, then (1)M ′
∞ exists and (2)M ′

∞ = M∞.

Consider a simple example where we start from an empty stringand simply con-

catenate a substringab at each iteration. The exact sequenceM0, M1, ..., Mi, ... will

never converge to the least fixpoint, whereL(M0) = {ǫ} andL(Mi) = {(ab)k | 1 ≤

k ≤ i} ∪ {ǫ}. However,M∞ exists andL(M∞) = (ab)∗. In addition,M∞ is a state-

disjoint automaton, andM0 is simulated byM∞. Based on Theorem 7, these conditions

imply that once the computation of the approximate sequencereaches the fixpoint, the

fixpoint is equal toM∞ and the analysis is precise. Computation of the approximate

sequence is shown in Fig 3.8.M ′
i = M ′

i−1∇(M ′
i−1 ∪ post(M ′

i−1, R)), wherepost(M)

returns an automaton that accepts{wab | w ∈ L(M)}. In this case, we reach the

fixpoint at the3rd iteration andM ′
∞ = M∞ = M ′

3.

(a)M ′
0 (b) M ′

1 (c) M ′
2 (d) M ′

3

Figure 3.8: An Approximation Sequence

A more general case that we commonly encounter in real programs is that we start

from a set of initial strings (accepted byMinit), and concatenate an arbitrary but fixed

74

Chapter 3. Automata-based String Analysis

set of strings (accepted byMtail) at each iteration. Based on Theorem 7 one can con-

clude that if the DFAM that acceptsL(Minit)L(Mtail)
∗ is state-disjoint, then our anal-

ysis via widening will reach the precise least fixpoint when it terminates.

75

Chapter 4

Symbolic Vulnerability Analysis

In this chapter, we describe how to perform symbolic reachability analyses on de-

pendency graphs. We are interested in answering two questions:

1. Can a node have an attack string as its value (with respect to a given attack pat-

tern)?

2. If it can, what values of its predecessors can generate theattack string?

If a node represents a sensitive sink in the program, the positive answer of the first

question identifies a vulnerable point of the program. In this case, the answer of the

second question characterizes the values of its predecessors to exploit this vulnerability.

If a predecessor represents a user input, these values identify a vulnerability signature;

i.e., a characterization of all possible inputs that can be used to exploit this vulnerability.

76

Chapter 4. Symbolic Vulnerability Analysis

We first define the dependency graphs that specify how inputs flow to sensitive func-

tions. We then describe how to perform forward and backward symbolic string analyses

on dependency graphs. These analyses are based on automata constructions and oper-

ations in the previous chapter. Last, we propose a new summarization technique to

tackle the interprocedural analysis.

4.1 Dependency Graph

A dependency graph specifies the data flow in the program. Formally speaking, a

dependency graphG = 〈N, E〉 is a directed graph, whereN is a finite set of nodes

andE ⊆ N × N is a finite set of directed edges. An edge(ni, nj) ∈ E identifies that

the value ofnj depends on the value ofni. Each noden ∈ N can be (1) anormal

node includinginput , constant , variable , or (2) anoperation node including

concat andreplace . An input node identifies the data from untrusted parties, e.g.,

an input from web forms. Aconstant node is associated with a constant value. Both

nodes have no predecessors. Aconcat noden has two predecessors labeled as the

prefix node (n.p) and the suffix node (n.s), and stores the concatenation of any value of

the prefix node and any value of the suffix node inn. A replace node has three pre-

decessors labeled as the target node (n.t), the match node (n.m), and the replacement

node (n.r). It performs the following operations for each value ofn.t: (1) identifies

77

Chapter 4. Symbolic Vulnerability Analysis

all the matches (any value ofn.m) that appear inn.t, (2) replaces all these matches

in n.t with any value ofn.r, and (3) stores the replaced result inn. We define the

following: For n ∈ N , Succ(n) = {n′ | (n, n′) ∈ E} is the set of successors of

n. Pred(n) = {n′ | (n′, n) ∈ E} is the set of predecessors ofn. If n is a concat

node,Pred(n) = {n.p, n.s}. If n is a replace node,Pred(n) = {n.t, n.m, n.r}.

For a dependency graphG, we also defineRoot(G) = {n | Pred(n) = ∅} and

Leaf(G) = {n | Succ(n) = ∅}.

4.2 Vulnerability Analysis

Our vulnerability analysis takes the following inputs: a dependency graph (denoted

asG), a set of sink nodes (denoted asSink), and an attack pattern (denoted asAttk).

An attack pattern can be either taken from an attack pattern specification library or

written by the web application developer.Sink denotes the nodes that are associated

with sensitive functions that might lead to vulnerabilities. Attk is a regular expression

represented as a DFA that accepts the set of attack strings .

Our vulnerability analysis is shown in Algorithm 1. The analysis consists of two

phases. In the first phase, we perform a forward symbolic reachability analysis from

root nodes to compute all possible values that each node can take (by calling forward

analysis at line 3). We use this information to collect vulnerable program points, as well

78

Chapter 4. Symbolic Vulnerability Analysis

Algorithm 1 VUL ANALYSIS(G, Sink, Attk)
1: Init(POST, PRE);
2: setV ul := {};
3: FWDANALYSIS(G, POST);
4: for eachn ∈ Sink do
5: tmp: = POST[n] ∩ Attk;
6: if L(tmp) 6= ∅ then
7: V ul := V ul ∪ {n};
8: PRE[n] := tmp;
9: end if

10: end for
11: if V ul 6= ∅ then
12: BWDANALYSIS(G, POST, PRE, V ul);
13: for eachinput n do
14: Report the vulnerability signaturePRE[n];
15: end for
16: return ”Vulnerable”;
17: else
18: return ”Secure”;
19: end if

as the reachable attack strings of those vulnerable programpoints (at line 4-10). If the

program is vulnerable; i.e., there exists some vulnerable program points, we proceed

to the second phase (by calling backward analysis at line 12). In the second phase, we

perform a backward symbolic reachability analysis from thevulnerable program points

to compute all possible values of their predecessors that will result in attack strings at

these vulnerable program points.

Our analysis is an automata-based analysis. The set of string values is approximated

as a regular language and represented symbolically as a DFA that accepts the language.

To associate each node with its automata, we create two automata vectorsPOSTand

PRE. The size of both is bounded by|N |. POST[n] is the DFA accepting all possible

79

Chapter 4. Symbolic Vulnerability Analysis

values that noden can take.PRE[n] is the DFA accepting all possible values that node

n can take to exploit the vulnerability. Initially, all theseautomata accept nothing; i.e.,

their language is empty.V ul ⊆ Sink is the set of vulnerable program points and

initially is set to an empty set.

At line 3, we first computePOSTby calling the forward analysis. At line 4, for

each noden ∈ Sink, we generate a DFAtmp by intersecting the attack pattern and the

possible values ofn. If L(tmp) is not empty, we identify thatn is a vulnerable program

point and add it toV ul at line 7. In fact,tmp accepts the set of reachable attack strings

at noden that can be used to exploit the vulnerability. Hence, we assign tmp to PRE[n]

at line 8. IfV ul is not empty, we computePREby calling our backward analysis at line

12. (We will discuss the backward analysis later.) Note thatfor n ∈ V ul, PRE[n] has

been assigned. We report vulnerability signatures for eachinput node based onPRE

at line 13-15. IfV ul is an empty set, we report that the program is secure with respect

to the attack pattern.

4.2.1 Forward Analysis

The forward symbolic reachability analysis is based on a standard work queue algo-

rithm (Algorithm 2). We iteratively update the automata vector POSTuntil a fixpoint is

reached. At line 6,CONSTRUCT(n) returns a DFA that: (1) accepts arbitrary strings ifn

is aninput node, (2) accepts an empty string ifn is avariable node, or (3) accepts

80

Chapter 4. Symbolic Vulnerability Analysis

Algorithm 2 FWDANALYSIS(G, POST)
1: queueWQ := NULL;
2: WQ.enqueue(Root(G));
3: while WQ 6= NULL do
4: n := WQ.dequeue();
5: if n ∈ Root(G) then
6: tmp := CONSTRUCT(n);
7: else ifn is concat then
8: tmp : = CONCAT(POST[n.p], POST[n.s]);
9: else ifn is replace then

10: tmp : = REPLACE(POST[n.t], POST[n.m], POST[n.r]);
11: else
12: tmp : =

⋃
n′∈Pred(n) POST[n′];

13: end if
14: tmp := (tmp ∪ POST[n])∇POST[n];
15: if tmp 6⊆ POST[n] then
16: POST[n] := tmp;
17: WQ.enqueue(Succ(n));
18: end if
19: end while

the constant value ifn is aconstant node. At line 8 and line 10, we incorporate two

automata-based string manipulation operations [58]:

• CONCAT(DFA M1, DFA M2) returns a DFA M that accepts

{w1w2 | w1 ∈ L(M1), w2 ∈ L(M2)}.

• REPLACE(DFA M1, DFA M2, DFA M3) returns a DFAM that accepts{w1c1w2c2

. . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈ L(M2), wi

does not contain any substring accepted byM2, ci ∈ L(M3)}.

At line 14, we incorporate the automata widening operator∇ to accelerate the fixpoint

computation [4]. Upon termination,POST[n] records the DFA whose language includes

81

Chapter 4. Symbolic Vulnerability Analysis

all possible values thatn can take. This information is then passed to our backward

analysis.

4.2.2 Backward Analysis

Backward analysis uses the results of the forward analysis.Particularly, we are

interested in computing all possible values of each noden that can exploit the identified

vulnerability. We need the pre-image computations on string manipulating functions

for backward analysis. We use the following automata-basedoperations defined in

Chapter 3 for pre-image computation.

• PRECONCATPREFIX(DFA M , DFA M2) returns a DFA M1 so that

M = CONCAT(M1, M2).

• PRECONCATSUFFIX(DFA M , DFA M1) returns a DFA M2 so that

M = CONCAT(M1, M2).

• PREREPLACE(DFA M , M2, M3) returns a DFA M1 so that

M = REPLACE(M1, M2, M3).

The backward analysis is shown in Algorithm 3. Forn ∈ V ul, PRE[n] is set to

the intersection ofPOST[n] andAttk before the backward analysis starts. The prede-

cessors ofn ∈ V ul are the starting points of the backward analysis. Similar tothe

forward analysis, the computation is based on a standard work queue algorithm. We

82

Chapter 4. Symbolic Vulnerability Analysis

Algorithm 3 BWDANALYSIS(G, POST, PRE, V ul)
1: queueWQ = NULL;
2: for eachn ∈ V ul do
3: WQ.enqueue(Pred(n));
4: end for
5: while WQ 6= NULL do
6: n := WQ.dequeue();
7: tmp′ := NULL;
8: for eachn′ ∈ Succ(n) do
9: if n′ is concat then

10: if n is n′.l then
11: tmp := PRECONCATPREFIX(PRE[n′], POST[n′.r]);
12: else
13: tmp := PRECONCATSUFFIX(PRE[n′], POST[n′.l]);
14: end if
15: else ifn′ is replace then
16: if n is n′.t then
17: tmp := PREREPLACE(PRE[n′], POST[n′.m], POST[n′.r]);
18: end if
19: else
20: tmp := PRE[n′];
21: end if
22: tmp′ := tmp′ ∪ tmp;
23: end for
24: tmp′ := tmp′ ∩ POST[n];
25: tmp′ := (tmp′ ∪ PRE[n])∇PRE[n];
26: tmp′ := tmp′ ∩ POST[n];
27: if tmp′ 6⊆ PRE[n] then
28: PRE[n] := tmp′;
29: WQ.enqueue(Pred(n));
30: end if
31: end while

83

Chapter 4. Symbolic Vulnerability Analysis

first put the predecessors ofn ∈ V ul into the work queue as shown at line 2-4. We it-

eratively update thePRE array (by adding pre-images) until we reach a fixpoint. If the

successor ofn is an operation node, the pre-image (tmp) of n is computed by calling

the defined automata-based functions. (line 11, 13, 17). Otherwise, the pre-image ofn

is directly derived from the successor ofn (line 20). Note thatPOST[n] records all pos-

sible values thatn can take. We use this information during the pre-image computation

by restricting the arguments of operations such as replace.We union the pre-images

of n as tmp′ at line 22. Since we are interested only in reachable values of n (i.e.,

PRE[n] ⊆ POST[n] by definition), we intersecttmp′ with POST[n] at line 24. Similar

to the forward analysis, we widen the result at line 25 to accelerate the fixpoint compu-

tation. At line 26, we intersecttmp′ with POST[n] again to remove unreachable values

(that might have been introduced due to widening) at noden. If tmp′ accepts more

values thanPRE[n], we updatePRE[n] at line 28 and add the predecessors ofn to the

working queue at line 29. Upon termination,PRE[n] records the DFA that accepts all

possible values ofn that may exploit the identified vulnerability.

4.3 Inter-procedural Analysis

In this section, we propose a conservative summarization technique to proceed the

inter-procedural analysis. During the forward fixpoint computation if we encounter

84

Chapter 4. Symbolic Vulnerability Analysis

a call to a function that has not been summarized, we go to an internal phase of the

analysis, which is summarization. Each function is summarized when needed, and once

a function is summarized, the summary DFA is used to compute the return values at the

call sites without going through the body of the function. During the summarization

phase, (recursive) functions are summarized as unaligned multi-track DFAs that specify

the relations among their inputs and return values. We first build (cyclic) dependency

graphs to specify how the inputs flow to the return values among functions. Each node

in the dependency graph is associated with an unaligned multi-track DFA that traces the

relation among inputs and the value of that node. We iteratively compute post images

of reachable relations and join the results until we reach a fixpoint. Upon termination,

the summary is the union of the unaligned DFAs associated with the return nodes.

4.3.1 Summarization

In this section, we discuss how to compute function summaries. We assume parameter-

passing with call-by-value semantics and we are able to handle recursion. Each function

f is summarized as a multi-track DFA, denoted asMf , that captures the relation among

its input variables and return values. Return values of a function are represented with

an auxiliary output track. Given a functionf with n parameters,Mf is an(n+1)-track

DFA, wheren tracks represent then input parameters and one trackXo is the output

track representing the return values. We also use a special symbolλ 6∈ Σ for padding.

85

Chapter 4. Symbolic Vulnerability Analysis

The alphabet of ann-track DFA is a subset ofΣ∪{λ}× . . .×Σ∪{λ} (n times). Once

Mf has been computed, it is not necessary to reanalyze the body of f . Instead, one

can intersect the values of input parameters withMf to obtain the return values. Our

approach consists of two steps: (1) Build a call dependency graph and (2) Generate its

summary accordingly.

4.3.2 Call Dependency Graph

In addition to the dependency graph that we defined in Section4.1, we addcall

nodes to specify function calls in acall dependency graph. Formally speaking, a call

dependency graphG = 〈N, E〉 is a directed graph, whereN is a finite set of nodes and

E ⊆ N × N is a finite set of directed edges. An edge(ni, nj) ∈ E identifies that the

value ofnj depends on the value ofni. Each noden ∈ N can be

• a normal node includingreturn , input , constant , variable ,

• anoperation node includingconcat andcall .

Similarly, a return node is a sink node (no successors) that corresponds to a return

statement. Aninput node corresponds to a parameter of the functionf , labeled asf.pi,

wherei indicates theith parameter. Aconstant node is associated with a constant

value. Bothinput andconstant nodes have no predecessors. Aconcat noden has

two predecessors labeled as the prefix node (n.p) and the suffix node (n.s), and stores

86

Chapter 4. Symbolic Vulnerability Analysis

the concatenation of any value of the prefix node and any valueof the suffix node inn.

A call node is associated with a functioncallee. If callee hasm parameters, there are

m predecessors of acall node as its arguments (labeled asn.a1, . . . , n.am).

Given a functionf , the call dependency graphGf specifies how the inputs flow

to the return values inf . Assume that we want to compute the summary of a given

function main. Let F denote the set of related functions that includemain and its

callees (including nested function calls). Our first step is generating the dependency

graph for eachf ∈ F , which is done by a bottom-up dependency analysis starting from

the return statements.

Let the call dependency graph off beGf = 〈Nf , Ef〉. To simplify the description,

we useInput(Gf) to denote the set of itsinput nodes,Call(Gf) to denote the set of its

call nodes, andReturn(Gf) to denote the set of itsreturn nodes. For each function

f (callee), we useCaller(f) to denote the set ofcall nodes that are associated with

f .

Our second step is generating a composed dependency graphGF from {Gf | f ∈

F}. GF = 〈NF , EF 〉 is constructed as follows:

• NF = ∪f∈F Nf .

• EF = En ∪ Ei ∪ Er, where

– En = {(n, n′) | f ∈ F, (n, n′) ∈ Ef , n
′ 6∈ Call(Gf)}.

87

Chapter 4. Symbolic Vulnerability Analysis

f(X)
begin
1: goto 2, 3;
2: X: = call f(X.a);
3: return X;
end

Figure 4.1: A Simple Function

– Ei = {(n.ai, callee.pi) | f ∈ F, n ∈ Call(Gf)}. callee.pi is the input

node that identifies theith parameter of the functioncallee associated with

n.

– Er = {(n, n′) | f ∈ F, n ∈ Return(Gf), n
′ ∈ Caller(f)}.

Briefly, GF connects the set ofGf by (1) redirecting the predecessors ofcall nodes

to theinput nodes of their callees, and (2) adding edges that directreturn nodes of

callees to thecall nodes of their callers. Forn ∈ NF , Succ(n) = {n′ | (n, n′) ∈

EF} is the set of successors ofn andPred(n) = {n′ | (n′, n) ∈ EF} is the set of

predecessors ofn. We also defineInput(GF) = {n | Pred(n) = ∅}. Note that

after composition, areturn node may have successors and aninput node may have

predecessors.

Consider a simple example given in Figure 4.1. Functionf has one parameterX,

which non-deterministically returns its input (goto 3) or makes a self call (goto 2) by

concatenation its input and the constanta. Let F = {f}. Gf andGF are shown in

Figure 4.2.

88

Chapter 4. Symbolic Vulnerability Analysis

Figure 4.2: The Dependency Graphs:Gf andGF

4.3.3 Generating Function Summaries

In this section, we describe how to compute a summary onGF , given two sets of

nodesIn andOut. If we aim to summarize functionf (f ∈ F), In ⊆ Nf is the set

of its input nodes andOut ⊆ Nf is the set of itsreturn nodes inGf . Eachn ∈ In

recognizes one input variable, denoted asXn, and the summary of〈GF , In, Out〉 is an

unaligned(|In|+1)-track DFA. The first|In| tracks are labeled asXn for eachn ∈ In.

The extra track, labeled asXo, is used to record the output values.

The algorithm to generate the summary is shown in Algorithm 4. We use a DFA

vector S to record the reachable summary at each node. We initializeS at line 1.

Initially, for eachn ∈ In, S[n] is a 2-track (associated withXn andXo) DFA that

accepts the identity relation onXn andXo. For eachn ∈ Input(GF)\In, S[n] is a 1-

track (associated withXo) DFA that acceptsΣ∗ if n is avariable node, or a constant

value if n is a constant node. For the rest (n 6∈ In), S[n] accepts an empty set.

Similar to Algorithm 2, the algorithm is a standard work queue algorithm incorporating

89

Chapter 4. Symbolic Vulnerability Analysis

the automata widening operator. We iteratively update the summary at each node until

reaching a fixpoint.

Algorithm 4 GENERATESUMMARY (GF , In, Out)
1: INIT(S, Input(GF), In);
2: queueWQ := NULL;
3: for n ∈ In ∪ Input(GF) do
4: WQ.enqueue(Succ(n));
5: end for
6: while WQ 6= NULL do
7: n := WQ.dequeue();
8: if n is concat then
9: tmp : = CONCATSUMMARY (S[n.p], S[n.s]);

10: else
11: tmp : =

⋃
n′∈Pred(n) S[n′];

12: end if
13: tmp := (tmp ∪ S[n])∇S[n];
14: if tmp 6⊆ S[n] then
15: S[n] := tmp;
16: WQ.enqueue(Succ(n));
17: end if
18: end while
19: return

⋃
n∈Out S[n];

Below we only consider one string operation: concatenate. We can extend our ap-

proach to other string operations, e.g., replacement, by using transducers [38]. Note

that summaries may have tracks that are associated with different variables. Below

we discuss how to computeCONCATSUMMARY (S1, S2) whereS1 represents the sum-

mary at the prefix node andS2 represents the summary at the suffix node. LetS1 =

〈Q1, Σ1, δ1, I1, F1〉 be a multi-track DFA whose tracks are associated with the setof

input variablesχ1 andXo whereΣ1 = (Σ∪λ)|χ1|×Σ. LetS2 = 〈Q2, Σ2, δ2, I2, F2〉 be

a multi-track DFA whose tracks are associated with the set ofinput variablesχ2 andXo

90

Chapter 4. Symbolic Vulnerability Analysis

whereΣ2 = (Σ∪ λ)|χ2| ×Σ. We first extendS1 andS2 to the DFAs that have common

tracks, so that both are associated withχ1 ∪ χ2 andXo.

The extension ofS1, denoted asSλ
1 , is 〈Q1, Σ

λ
1 , δ

λ
1 , I1, F1〉, where

• Σλ
1 = (Σ ∪ λ)|χ1| × λ|χ2−χ1| × Σ, and

• δλ
1 (q, α) = q′ if δ1(q, β) = q′ andα[X] = β[X] if X ∈ χ1 ∪ Xo, andα[X] = λ,

otherwise.

The extension ofS2, denoted asSλ
2 , is 〈Q2, Σ

λ
2 , δ

λ
2 , I2, F2〉, where

• Σλ
2 = λ|χ1| × (Σ ∪ λ)|χ2−χ1| × Σ, and

• δλ
2 (q, α) = q′ if δ2(q, β) = q′ andα[X] = λ if X ∈ χ1, andα[X] = β[X],

otherwise.

Intuitively, we extendS1 (prefix) by allowing onlyλ in the added tracks, while we

extendS2 (suffix) by allowing onlyλ in both the added tracks and the common tracks

that are also associated withS1. CONCATSUMMARY (S1, S2) returns the(|χ1 ∪ χ2|+ 1)-

track DFA that accepts the concatenation ofSλ
1 andSλ

2 .

To deal with the union or widening operator onS1 andS2 that are associated with

different variables, we extend both tracks toχ1 ∪ χ2 and Xo by allowing arbitrary

symbols in the added tracks (i.e., the value of an unspecifiedtrack is not restricted).

We then perform union or widening on these extension DFAs. Finally, the summary of

〈GF , In, Out〉 is the union of the DFAs that are associated with nodes inOut.

91

Chapter 4. Symbolic Vulnerability Analysis

Figure 4.3: Mf : The Summary DFA

In sum, to summarize a specific functionf , we first find the set of related functions

F . The summary off , denoted asMf , is the result ofGENERATESUMMARY (GF , In, Out),

whereIn = {n | n ∈ Input(Gf), wheren is not aconstant node}, andOut =

{n | n ∈ Return(Gf)}. The alphabet ofMf is (Σ ∪ λ)|In| × Σ. Let w[i] be the value

of theith track ofw. For anyw ∈ L(Mf), we have the following:

• 1 ≤ i ≤ |In|, w[i] ∈ λ∗Σ∗λ∗, and

• w[|In| + 1] ∈ Σ∗.

Consider the previous simple example. The generated summary is shown in Fig-

ure 4.3. Mf is a 2-track DFA, where the first track is associated with its parame-

ter Xp1
, and the second track is associated withXo representing the return values.

The edge(Σ, Σ) represents a set of identity edges; i.e., ifδ(q, (Σ, Σ)) = q′ then

∀a ∈ Σ, δ(q, (a, a)) = q′. The summary DFAMf precisely captures the relation

Xo = Xp1
.a∗ between the input variable and the return values.

92

Chapter 4. Symbolic Vulnerability Analysis

4.3.4 Composing Function Summaries

In this subsection, we describe how to use a function summaryto compute the

pre-image and the post-image of a function call. Note that the summary DFAs are

multi-track DFAs. To bridge the gap between single-track DFAs (accepting the values

of one variable) and multi-track DFAs (accepting the relations among many variables),

we implemented two mapping functions between a single-track automaton and a multi-

track automaton.Extract(M, i) takes a multi-track DFAM and returns a single-track

DFA that accepts the values of theith track; i.e.,L(M ′) = {w[i] | w ∈ L(M)}. Ex-

tend(M, i, n) takes a single-track DFAM , an indexi, and returns ann-track DFA that

accepts{w | ŵ[i] ∈ L(M), ∀1 ≤ k ≤ n, w[k] ∈ λ∗Σ∗λ∗}.

To compute the post-image of a function call, we (1) compute the single-track DFA

that accepts the values of each argument, (2) extend the single-track automata to the

multi-track automata accordingly, (3) intersect the multi-track automata with the sum-

mary automaton, (4) extract the output-track from the result of the intersection.

Consider our simple example and a function callf(X). Let Mx be the DFA ac-

cepting the values ofX. POST(f(X)) returnsExtract(M ′, 2), whereM ′ is Mf∩ Ex-

tend(Mx, 1, 2). AssumingL(Mx) = {b}, POST(f(X)) returnsM ′ such thatL(M ′) =

ba∗. In this case, using the summary to compute the post image is as precise as travers-

ing the function body and iteratively adding the post image until hitting the fixpoint.

93

Chapter 4. Symbolic Vulnerability Analysis

4.4 Experiments

To evaluate our approach, we first performed forward analysis and compared the

results with another string analysis tool: Saner, developed by Balzarotti et al. [1] (we

discuss this tool in related work). We then performed forward and backward analyses

and reported the vulnerability signatures that we generated.

4.4.1 Forward Analysis

We experimented with our string analysis tool on a number of test cases extracted

from a set of real-world, open source applications:MyEasyMarket-4.1 (a shopping

cart program), PBLguestbook-1.32 (a guestbook application),

Aphpkb-0.71 (a knowledge base management system),BloggIT-1.0 (a blog en-

gine), andproManager-0.72 (a project management system). We believe that these

programs are representative of how web applications use regular expression based re-

placement functions to modify their input (in particular, in a security context, to perform

input sanitization), and, thus, are good test cases for our technique. These vulnerable

functions were identified and sanitized by Balzarotti et al.in [1,2].

Table 4.1 shows the results of applying our string analysis tool to these programs.

The first column of Table 4.1 identifies the application, the function that was analyzed

and the line number for the vulnerable operation. A1: MyEasyMarket-4.1, trans.php

94

Chapter 4. Symbolic Vulnerability Analysis

App. Version Result Final DFA Peak DFA Time Mem
state(bdd) state(bdd) user+sys(sec) (kb)

A1 o y 17(133) 17(148) 0.010+0.002 444
m n 17(132) 17(147) 0.009+0.001 451

A2 o y 42(329) 42(376) 0.019+0.001 490
m(5) n 77(649) 77(725) 0.065+0.060 1532
m(20) n 182(1609) 182(1790) 1.082+0.015 12047
m(100) n 742(6729) 742(7470) 101.2+0.305 395921

m(widen) n 49(329) 42(376) 0.016+0.002 626
A3 o y 842(6749) 842(7589) 2.57+0.061 13310

m n 774(6192) 740(6674) 1.221+0.007 8184
A4 o y 27(219) 289(2637) 0.045+0.003 2436

m n 18(157) 1324(15435) 0.177+0.009 11388
A5 o y 79(633) 79(710) 0.499+0.002 3569

o y 126(999) 126(1123)
o y 138(1095) 138(1231)
m n 79(637) 93(1026) 0.391+0.006 5820
m n 115(919) 127(1140)
m n 127(1015) 220(2000)

A6 o y 387(3166) 2697(29907) 1.771+0.042 13900
m n 423(3470) 2697(29907) 2.091+0.051 19353

Table 4.1: The Forward Experimental Results of Stranger.

95

Chapter 4. Symbolic Vulnerability Analysis

(218). A2: PBLguestbook-1.32, pblguestbook.php (1210). A3: PBLguestbook-1.32,

pblguestbook.php (182). A4: Aphpkb-0.71, saa.php (87). A5: BloggIT 1.0, admin.php

(23,25,27). A6: proManager-0.72, message.php (91). The other information about the

table is listed as below: Version: o-original, m-modified. Result: y-the intersection

of attack strings is not empty (vulnerable), n-the intersection of attack strings is empty

(secure). Final DFA is the minimized DFA at the checked program point, and Peak DFA

is the largest DFA observed during the fixpoint iteration. ”state” denotes the number of

states of a DFA. ”bdd” denotes the number of bdd nodes that areused to symbolically

encode the transitions of a DFA.

For each test case we analyzed the original version of the program (that contained

the vulnerability) and a modified version which was modified with the intention of

fixing the vulnerability. Our analysis is quite efficient andtakes less than three seconds

for all benchmarks. Since our string analysis tool is sound,it identifies the existing

vulnerabilities correctly in each case. However, since ourconservative approximations

can lead to false positives, the fact that our tool identifiesa possible vulnerability does

not mean that it is guaranteed to be a vulnerability.

The impressive part of our results is that for all the modifiedprogram segments

our approach is able to prove that the sanitization is correct. This indicates that the

approximations we use work quite well in real-world applications.

96

Chapter 4. Symbolic Vulnerability Analysis

We also experimented with Saner [1] to check these benchmarks. The results are

shown in table 4.2. ”n” denotes the number of warnings raisedby Saner; for ”type”,

”xss” denotes cross site scripting vulnerability, ”sql” denotes SQL injection vulnera-

bility, and ”reg” denotes regular expression error. Compared to Table 4.1, our tool

performs slightly better than Saner in terms of time. It is interesting to note that

there are some conflicts on the verification results. Saner performs bounded verifi-

cation and approximates the value of out of bound computation as arbitrary strings.

This rough approximation raises a false alarm while checking the sanitized version of

PBLguestbook-1.32 (1210). While checkingBloggIT-1.0 , Saner, in the default

configuration, assumes that data from the database are sanitized; while we assume that

these data may be tainted and model them the same as data from users. Saner raises

an error for the sanitization routine inPBLguestbook-1.32 (182) since it does not

support the syntax of the replace operator used in that routine.

4.4.2 Forward+Backward Analysis

We selected four vulnerable web applications: (1)MyEasyMarket-4.1 (a shop-

ping cart program), (2)PBLguestbook-1.32 (a guestbook application), (3)

BloggIT-1.0 (a blog engine), and (4)proManager-0.72 (a project management

system) to generate their vulnerability signatures. In Table 4.3, we show some basic

data about these dependency graphs: #sinks indicates the number of sensitive sinks,

97

Chapter 4. Symbolic Vulnerability Analysis

Application Version n(type) Time(sec)

A1 o 1(xss) 1.173
m 0 1.139

A2 o 1(sql) 1.264
m 1(sql) 1.665

A3 o 1(reg) 4.618
m 1(reg) 4.331

A4 o 1(xss) 1.220
m 0 1.622

A5 o 0 0.558
m 0 0.559

A6 o 1(xss) 6.980
m 0 7.201

Table 4.2: The Experimental Results of Saner.

#inputs indicates the number ofinput nodes. Since the application is identified as

vulnerable by taint analysis, both values are at least one. #literals is the sum of the

length of constant strings that are used in the graph. Note that these dependency graphs

are built for sensitive sinks where unrelated parts have been shrunk. Hence, their sizes

are much smaller than the original programs.

n (type) #nodes #edges #sinks #inputs #literals

1 1(xss) 21 20 1 1 51
2 1(sql) 41 44 1 2 99
3 1(xss) 32 31 1 1 142
4 3(xss) 119 117 3 3 450

Table 4.3: The Basic Data of Dependency Graphs

In our experiments, we used an Intel machine with 3.0 GHz processor and 4 GB

of memory running Ubuntu Linux 8.04. We use 8 bits to encode each character in

98

Chapter 4. Symbolic Vulnerability Analysis

ASCII. The performance of our vulnerability analysis is shown in Table 4.4. The back-

ward analysis dominates the execution time from 77% to 96%. Taking a closer look,

Table 4.5 shows the frequency and execution time of each of the string manipulating

functions.PRECONCAT (including prefix and suffix) consumes a large portion, particu-

larly for (4) proManager-0.72 that has a large size of constant literals involved. One

reason is generating concatenation transducers during thecomputation. Note that the

transducer has 3-tracks and uses 24 bits to encode its alphabet. On the other hand, our

computation does not suffer exponential blow-up as expected for explicit DFA repre-

sentation. This shows the advantage of using symbolic DFA representation (provided

by the MONA DFA library), in which transition relations of the DFA are represented

as Multi-terminal Binary Decision Diagrams (MBDDs).

Total time(s) Fwd time(s) Bwd time(s) Mem(kb)

1 0.569 0.093 0.474 2700
2 3.449 0.124 3.317 5728
3 1.087 0.248 0.836 18890
4 16.931 0.462 16.374 116097

Table 4.4: Total Performance

CONCAT REPLACE PRECONCAT PREREPLACE

#operations/time(s)

1 6/0.015 1/0.004 2/0.411 1/0.004
2 19/0.082 1/0.004 11/3.166 1/0.0
3 22/0.038 4/0.112 2/0.081 4/0.54
4 14/0.014 12/0.058 26/11.892 24/3.458

Table 4.5: String Function Performance

99

Chapter 4. Symbolic Vulnerability Analysis

Finally, Table 4.6 shows the data about the DFAs that Stranger generated. Reach-

able Attack is the DFA that accepts all possible attack strings at the sink node. Vulnera-

bility Signature is the DFA that accepts all possible malicious inputs that can exploit the

vulnerability. We closely look at the vulnerability signature of (1)MyEasyMarket-4.1 .

The signature actually acceptsα∗ <α∗ sα∗ cα∗ r α∗ i α∗ pα∗ t α∗ with respect to the

attack patternΣ∗ <script Σ∗. α is the set of characters, e.g.,! , that are deleted in the

program. An input such as<!script can bypass the filter that rejectsΣ∗ <script Σ∗

and exploit the vulnerability. This shows that simply filtering out the attack pattern

can not prevent its exploits. On the other hand, the exploit can be prevented using our

vulnerability signature instead.

It is also worth noting that both vulnerability signatures of (2) PBLguestbook-1.32

accept arbitrary strings. By manually tracing the program,we find that both inputs are

concatenated to an SQL query string without proper sanitization. Since an input can be

any string, the pre-image of one input is the prefix ofΣ∗ OR ’1’=’1’ Σ∗ that is equal

to Σ∗, while the pre-image of another input is the suffix ofΣ∗ OR ’1’=’1’ Σ∗ that is

also equal toΣ∗. This case shows a limitation in our approach. Since we do notmodel

the relations among inputs, we can not specify the conditionthat one of the inputs must

containOR ’1’=’1’ . In the next Chapter, we will propose a novel algorithm to gen-

eraterelational vulnerability signaturesto tackle this issue. We will also describe how

100

Chapter 4. Symbolic Vulnerability Analysis

to generate effective patches for vulnerable web applications from these vulnerability

signatures.

Reachable Attack (Sink) Vulnerability Signature (Input)
#states #bdd nodes #states #bdd nodes

1 24 225 10 222
2 66 593 2 9

2 9
3 29 267 92 983
4 131 1221 57 634

136 1234 174 1854
147 1333 174 1854

Table 4.6: Attack and Vulnerability Signatures

101

Chapter 5

Sanitization Synthesis

We use the presented automata-based static string analysistechniques to automati-

cally generate sanitization statements for patching vulnerable Web applications. Given

the vulnerability signatures, we construct sanitization statements that 1) check if a given

input matches the vulnerability signature and 2) modify theinput in a minimal way so

that the modified input does not match the vulnerability signature. Our approach is ca-

pable of generatingrelational vulnerability signatures (and corresponding sanitization

statements) for vulnerabilities that are due to more than one input.

Our approach works as follows. We start with a set of attack patterns (regular ex-

pressions) that characterize possible attacks (either taken from an attack pattern speci-

fication library or written by the web application developer). Given an attack pattern,

our string analysis approach works in three phases:

102

Chapter 5. Sanitization Synthesis

Phase 1: Vulnerability Analysis: First, we perform the presented symbolic for-

ward analysis on single-track automata to determine if the web application is vulnera-

ble to attacks characterized by the given attack pattern andgenerate a characterization

of the potential attack strings if the application is vulnerable.

Phase 2: Vulnerability Signature Generation:We then project these attack strings

to user inputs by computing an over-approximation of all possible inputs that can gen-

erate those attack strings. This characterization of potentially harmful user inputs is

called thevulnerability signaturefor a given attack pattern. We use two different vul-

nerability signature generation techniques: (1) for a vulnerability that is caused by a

single user input, we apply the presented backward analysison single-track automata to

generate the corresponding vulnerability signature; (2) for a vulnerability that is caused

by multiple user inputs, we propose a novel forward analysison multi-track automata

to generate the relational vulnerability signature.

Phase 3: Sanitization Generation:Once we have the vulnerability signature, we

automatically synthesize patches that eliminate the vulnerability. We use two strategies

for patching:

• Match-and-block:We insert match statements to vulnerable web applications

and halt the execution when an input that matches a vulnerability signature is

detected.

103

Chapter 5. Sanitization Synthesis

• Match-and-sanitize:We insert both match and replace statements to vulnerable

web applications. When an input that matches a vulnerability signature is de-

tected, instead of halting the execution, the replace statement is executed. The

replace statement deletes a small set of characters from theinput such that the

modified string no longer matches the vulnerability signature.

We use two different techniques for vulnerability signature generation. In the first

one, we adopt the vulnerability analysis presented in Chapter 4, where we start with the

DFA that represents the intersection of the the forward symbolic reachability analysis

at the sink and the attack pattern. Then we use a backward symbolic reachability anal-

ysis to compute an over-approximation of all possible inputs that can generate those

attack strings. The result is a DFA that characterizes the dangerous user inputs, i.e., the

vulnerability signature.

However, this approach is not effective for vulnerabilities that are due to more than

one input. For example, if an attack string is generated by concatenating two input

strings, it may not be possible to prevent the attack by blocking only one of the inputs.

Since our automata-based vulnerability signature generation technique is sound, in such

cases the generated vulnerability signature will include all possible input strings, mean-

ing that any string coming from one input can lead to an attackif it is concatenated with

a suitably constructed string coming from another input. Using such a vulnerability

signature for automated patch generation would mean blocking or erasing all the user

104

Chapter 5. Sanitization Synthesis

input, which would make the web application unusable. However, if we do an analysis

that keeps track of the relationships among different string variables, then we may be

able to block only the combinations of input strings that lead to an attack string.

We use multi-track deterministic finite automata (MDFA) to implement a relational

vulnerability signature generation algorithm. A multi-track automaton has multiple

tracks and reads one symbol for each track in each transition; i.e., a multi-track automa-

ton recognizestuples of stringsrather than a single string. We use a forward symbolic

reachability analysis using MDFA to compute if any possibleinput values can lead to

an attack string at a sink. During the forward analysis, eachgenerated MDFA has one

track for each input variable and represents the relation between the inputs and the pro-

gram variable at that program point. Intersecting the MDFA at a sink with the attack

pattern and projecting the resulting MDFA to the input tracks gives us the vulnerability

signature. The vulnerability signature MDFA accepts all combinations of inputs that

can exploit the vulnerability.

Once we generate the vulnerability signature we generate match and replace state-

ments based on the vulnerability signature. The match statement basically simulates

the vulnerability signature automaton and reports a match if the input string is accepted

by the automaton. In the match-and-block strategy this is all we need, and we halt the

execution if there is a match. In the match-and-sanitize strategy, however, we also need

to generate a replace statement that will modify the input sothat it does not match the

105

Chapter 5. Sanitization Synthesis

vulnerability signature. Since inputs that match the vulnerability signature may come

from normal, non-malicious users (who, for example, may have accidentally typed a

suspicious character), it would be preferable to change theinput in a minimal way. We

present an automata theoretic characterization of thisminimalityand show that solving

it precisely is intractable. We show that we can generate a replace statement that is

close to optimal in practice by adopting a polynomial-time min-cut algorithm.

5.1 Sanitization Generation

In this section we describe how we generate sanitization statements given a vulner-

ability signature that is characterized either as a standard single-track automaton (DFA)

or a multi-track automaton (MDFA). We discuss the details ofvulnerability signature

generation in later sections.

In order to implement the match-and-block and match-and-sanitize strategies we

need to generate code for thematchandreplacestatements.

Match Generation: There are two ways of doing matching: 1)Regular-expression-

based matching:Generate a regular expression from the vulnerability signature au-

tomaton and then use the PHP functionpreg_match to check if the input matches

the generated regular expression, or 2)Automata-simulation-based matching:Gener-

ate code that, given an input string, simulates the vulnerability signature automaton to

106

Chapter 5. Sanitization Synthesis

determine if the input string is accepted by the vulnerability signature automaton, i.e.,

if the input string matches the vulnerability signature.

We first tried the regular-expression-based matching approach. However, this ap-

proach ends up being very inefficient due to the implementation of preg_match in

PHP. The alphabet of the vulnerability signature automata consists of the 256 ASCII

characters and the vulnerability signature automata can have a large number of states

if there are a lot of complex string manipulation operationsin the code. In one of the

examples we analyzed the vulnerability signature automaton consists of 811 states. The

size of the regular expression generated from the vulnerability signature automaton can

be exponential in the number of states of the automaton [29].Hence, we may end

up with very large regular expressions. Moreover, thepreg_match function in PHP

does not only check if a given input matches the given regularexpression but it also

computes all the substrings that match the parenthesized subexpressions of the given

regular expression. Since the DFA to regular expression conversion algorithm can gen-

erate a lot of parenthesized subexpressions, this means that thepreg_match function

will do a lot of unnecessary extra work during the match, resulting in an inefficient

match implementation.

In order to do efficient matching we use the DFA simulation algorithm which has

linear time complexity [29]. Given the vulnerability signature DFA, we generate a func-

tion that takes a string as input, simulates the DFA, and returns true if the DFA accepts

107

Chapter 5. Sanitization Synthesis

the string or false otherwise. We insert the match function instead of thepreg_match

statements shown in the patches in Figures 1.7 and 1.12.

Relational vulnerability signatures are characterized asmulti-track automata (MDFA).

Given a vulnerability signature MDFA, one approach could beto generate one DFA for

each input (by erasing the other tracks using homomorphism)and then use the DFA

simulation algorithm on each track. However, as we mentioned in Section 1.3, a rela-

tional vulnerability signature characterizes a relation among multiple inputs and may

not be characterizable as constraints on individual tracks. For the vulnerability signa-

ture MDFA shown in Figure 1.11 projecting to each track leadsto matching all inputs.

To address this problem, we can try to generate a DFA from the MDFA that rec-

ognizes the concatenation of the inputs, i.e., given an MDFAthat recognizes tuples of

strings(x, y) we can try to generate a DFA that recognizes the strings in theform x.y.

Unfortunately, this type of MDFA to DFA conversion cannot bedone precisely since

the language recognized by MDFA may not be regular when it is written as concatena-

tion of its tracks. For example, it is easy to construct a two-track MDFA that accepts

the set of tuples{(x, y)|x = y}. If we write the same constraint in single-track form

by concatenating the strings for two tracks we get the set{x.y|x = y}. This set is not

regular, and, hence, cannot be represented as a DFA. However, for any given bound on

the length of the strings, we can generate a DFA that is precise for the strings within

108

Chapter 5. Sanitization Synthesis

that bound but may accept more strings than the corresponding MDFA for strings that

are longer than that bound.

The most precise solution for match generation from vulnerability signature MDFA

is to generate code that simulates the MDFA directly and thisis the option we use. The

MDFA simulation algorithm is similar to the DFA simulation algorithm, it just keeps

a separate pointer for each input string to keep track of how much of each track is

processed at any given time and advances the state of the MDFAbased on the tuples of

input symbols and the transition relation of the MDFA. The simulation time for MDFA

is linear in the total length of the input strings.

Replace Generation:For the match-and-sanitize strategy, our automated sanitization

generation algorithm takes the vulnerability signature automaton as input, and it gen-

erates a replace statement that modifies a given input stringin such a way that the

modified string is not accepted by the vulnerability signature automaton (meaning that

the modified string cannot cause an attack). We modify the input strings by just deleting

a set of characters using thepreg_replace function (our approach can be extended so

that escape characters can be inserted in front of a set of characters rather than deleting

them). In order to prevent extensive modification to the input, the set of characters to

be deleted should be as small as possible. The question, then, is, how do we identify

the set of characters to be deleted.

109

Chapter 5. Sanitization Synthesis

First, we will formalize this problem in automata-theoretic terms. Let

M = 〈Q, Σ, δ, q0, F 〉 denote a DFA whereQ is the set of states,Σ is the alphabet,

δ ⊆ Q × Σ × Q is the transition relation,q0 ∈ Q is the initial state, andF ⊆ Q is the

set of accepting states.L(M) denotes the language accepted byM . We sayS ⊆ Σ

is analphabet-cutof M , if L(M) ∩ LS̄ = ∅, whereLS̄ = (Σ \ S)∗ is the set of all

strings that do not contain any character inS. Themin-alphabet-cutproblem is finding

the alphabet-cutSmin, such that for any other alphabet-cutS, |Smin| ≤ |S|. For the

example automaton in Figure 1.8 the min-alphabet-cut is{<}.

The min-alphabet-cut problem can also be stated in graph-theoretic terms. Given a

DFA M , anedge-cutof M is a set of transitionsE ⊆ δ such that if the set of transitions

in E are removed from the the transition relationδ then none of the states inF are

reachable from the initial stateq0. LetSE denote the set of symbols of the transitions in

E. If E is anedge-cutof M thenSE is analphabet-cutof M . Hence, finding the min-

alphabet-cut is equivalent to finding an edge-cut with minimum set of distinct symbols.

For the example automaton in Figure 1.8 the min-edge-cut is{(1, <, 2)}, which also

corresponds to the min-alphabet-cut.

Note that, if the vulnerability signature DFA accepts the empty string then there will

not be any edge (or alphabet) cut since the initial state would be an accepting state. For

the rest of our discussion we will assume that the DFA for the vulnerability signature

does not accept the empty string (we can easily handle the cases where it accepts the

110

Chapter 5. Sanitization Synthesis

empty string by first testing if the input string is empty and then inserting a single

character to the input if it is).

Theorem: The min-alphabet-cut problem is NP-hard.

We prove this by a reduction from the vertex cover problem. A vertex cover of a graph

G = (V, E) is a set of vertices such that each edge of the graph is incident to at least

one vertex of the set. The problem of finding a minimum vertex cover is known to be

NP-complete. Vertex cover problem can be reduced to themin-alphabet-cutproblem

as follows. GivenG = (V, E) we build an automatonM = 〈Q, Σ, δ, q0, F 〉 with the set

of statesQ = E ∪ {q0, qF}, the initial stateq0, set of final statesF = {qF}, alphabet

Σ = V , and the transition relationδ defined as follows:e = (v, v′) ∈ E ⇒ (q0, v, e) ∈

δ ∧ (e, v′, qF) ∈ δ. Themin-alphabet-cutfor the automatonM is the minimum vertex

cover for the graphG.

Since the min-alphabet-cut problem is intractable, ratherthan trying to find the

optimum solution we can consider using efficient heuristicsthat give a reasonably small

cut that is not necessarily the optimum solution. In fact, there is a very good candidate

for a heuristic solution. Given a DFAM , amin-edge-cutof M is an edge-cutEmin such

that for any other edge-cutE, |Emin| ≤ |E|. Note that the min-edge-cut minimizes the

number of edges in the edge-cut whereas the min-alphabet-cut minimizes the set of

symbols on the edges in the edge-cut. Interestingly, even though the min-alphabet-cut

problem is intractable, there is an efficient algorithm for computing the min-edge-cut.

111

Chapter 5. Sanitization Synthesis

We use the Ford-Fulkerson’s max-flow min-cut algorithm [17]to find a min-edge-cut

Emin where the complexity of the algorithm isO(|δ|2). Note that|Smin| ≤ |Emin|;

i.e., the min-edge-cut provides an upper bound for the min-alphabet-cut. So if the min-

edge-cut is small then the set of distinct symbols on the edges of the min-edge-cut will

give us a good approximation of theSmin. In our experiments this heuristic has been

very effective and we typically obtained alphabet-cuts with only one to three symbols.

Once we compute an alphabet-cutS using our heuristic, we generate apreg_replace

statement that deletes the symbols inS from the input, making sure that the resulting

string does not match the vulnerability signature.

The definition of the min-alphabet-cut problem is slightly different for multi-track

automata. Given ann-track DFAM over(Σ∪λ)n, we say ann-tupleS = (S1, . . . Sn),

whereSi ⊆ Σ, is an alphabet-cut ofM , if L(M) ∩ LS̄ = ∅, whereLS̄ = (((Σ \ S1) ∪

λ) × . . . ((Σ \ Sn) ∪ λ)))∗ is the set of all strings whoseith track does not contain

any character inSi. Let |S| = |S1| + . . . + |Sn|. Themin-alphabet-cutproblem for a

MDFA M is finding the alphabet cutSmin of M , such that for any alphabet cutS of

M , |Smin| ≤ |S|.

Since min-alphabet-cut is intractable for single-track DFA, it is also intractable for

multi-track DFA. We use min-edge-cut also as an approximation for min-alphabet-cut

for MDFA. When we find a min-edge-cut, we compute the corresponding multi-track

alphabet-cut by computing a set of symbols for each track by collecting the set of

112

Chapter 5. Sanitization Synthesis

distinct symbols (other thanλ) on each track on the edges in the min-edge-cut. The

resulting alphabet cut is ann-tuple S = (S1, . . . , Sn), where eachSi is the set of

symbols for tracki, i.e., inputi. For the example automaton in Figure 1.11, the min-

edge-cut is{(1, (<, λ), 3), (1, (λ, <), 4), (2, (λ, <), 4)}, which also corresponds to the

min-alphabet-cut({<}, {<}).

Once we compute the alphabet-cuts, we generate onepreg_replace statement

for each input variablei, that deletes every symbol inSi from the inputi making sure

that the resulting input strings do not match the vulnerability signature.

5.2 Relational Signatures

In this section, we discuss how to generaterelational vulnerability signatureswhere

the vulnerability signature involves multiple input variables with respect to one sink.

Formally speaking, a relational vulnerability signatureM of n inputs is a MDFA over

then-track alphabetΣn, defined as(Σ×{λ})× . . .×(Σ×{λ}) (n times), whereλ 6∈ Σ

is the special symbol for padding. We further restrictM , so that all tracks are aligned

and for anyw ∈ L(M), w[i] ∈ λ∗Σ∗λ∗ (1 ≤ i ≤ n). Letw′[i] denote the longestλ-free

substring ofw[i].

Given a dependency graphG, a set of input nodesIn, a sink nodesink, and an

attack patternAttk, we aim to generate a relational vulnerability signatureM that sat-

113

Chapter 5. Sanitization Synthesis

isfies the following conditions: (1)M is a |In|-track MDFA. Each track is associated

with an input variableXn, n ∈ In. (2) For any wordw (w[i] ∈ λ∗Σ∗λ∗), we have

w ∈ L(M) if the following condition holds: if we setw′[i] as the initial value of the

input nodei and propagate the values of the nodes along withG accordingly, the value

of the nodesink matches the patternAttk. That is,w identifies the malicious inputs

whose combination may exploit the vulnerability.

The algorithm to generate a relational vulnerability signature is shown in Algo-

rithm 5. We performforward fixpoint computation on the dependency graph where

replace nodes are ignored. Our relational vulnerability signaturealgorithm is not ca-

pable of handling replace statements. However, since we runthe vulnerability signature

generation after a vulnerability is detected, we argue thatit is reasonable to ignore the

sanitization statements in the code (which is the typical use for the replace statements).

After we generate the relational vulnerability signature,the existing sanitization state-

ments can be commented out and replaced with the automatically generated sanitization

statements. However, in cases where the replace statementsare used to manipulate in-

put for purposes other than sanitization, our relational vulnerability signature technique

will not be sound. In such cases, we can still use the single-track vulnerability genera-

tion algorithm described earlier to obtain a sound result.

Similar to the other analyses we presented, we use a standardwork queue algorithm

incorporating the automata widening operator. Each node isassociated with a signature,

114

Chapter 5. Sanitization Synthesis

ai+1-track MDFA where the firsti tracks are associated with some input variables, e.g.,

Xn, n ∈ In, and the last track (output track) is associated withXo used to represent

the values of the current node. More specifically,i (0 ≤ i ≤ |In|) is the number of the

input variables whose values have been used to construct thevalues of the current node.

The signature of noden specifies the relations among the values of the input variables

and the values of the current node.

Algorithm 5 RELSIGGEN(G, In, sink, Attk)
1: INIT(S,G, In);
2: queueWQ := NULL;
3: for n ∈ In ∪ Root(G) do
4: WQ.enqueue(Succ(n));
5: end for
6: while WQ 6= NULL do
7: n := WQ.dequeue();
8: if n is concat then
9: tmp : = CONCATSIGNATURE(S[n.p], S[n.s]);

10: else
11: tmp : =

⋃
n′∈Pred(n) S[n′];

12: end if
13: tmp := (tmp ∪ S[n])∇S[n];
14: if tmp 6⊆ S[n] then
15: S[n] := tmp;
16: WQ.enqueue(Succ(n));
17: end if
18: end while
19: M := S[sink] ∩ MAttk;
20: Project the output track away fromM ;
21: return M ;

In Algorithm 5, we use a MDFA vectorS to record the updated signature at each

node.S[n] is the signature associated with noden. Initially, for each input noden ∈ In,

S[n] is a 2-track DFA (associated withXn andXo) that accepts the identity relation on

115

Chapter 5. Sanitization Synthesis

Xn andXo, i.e., the value of the current node is equal to the value of the input variable

Xn. For a noden ∈ Root(G) \ In, S[n] is a single-track DFA (associated withXo)

that either acceptsΣ∗ if n is a variable node, or accepts a constant value ifn is a

constant node; i.e., the current value of the node is an arbitrary string or a constant.

In both cases, it is not related to any input variable. For therest, i.e.,n 6∈ Root(G),

S[n] accepts an empty set.

After we initializeS at line 1, we perform our fixpoint computation using the work

queue algorithm. Between lines 6 and 18, we iteratively update the signature at each

node until the queue is empty (reaching a fixpoint). To deal with the union or widening

operator onS1 andS2 that may be associated with the different sets of input variables,

sayX1 andX2, we extend both tracks toX1 ∪ X2 andXo by paddingλs in the added

tracks. We then apply standard union or widening to these extended MDFA.

Below we describe how to concatenate two signatures:CONCATSIGNATURE(S1, S2),

whereS1 is the signature of the prefix node andS2 is the signature of the suffix node.

Let S1 = 〈Q1, Σ1, δ1, I1, F1〉 be a MDFA whose tracks are associated with the set of

input variablesX1 andXo whereΣ1 = (Σ∪λ)|X1|×Σ. LetS2 = 〈Q2, Σ2, δ2, I2, F2〉 be

a MDFA whose tracks are associated with the set of input variablesX2 andXo where

Σ2 = (Σ ∪ λ)|X2| × Σ. We first extendS1 andS2 to two MDFA that are associated

with X1 ∪ X2 andXo. We extendS1 (prefix) by addingλ in the added tracks, while

we extendS2 (suffix) by addingλ in both the added tracks and the common tracks that

116

Chapter 5. Sanitization Synthesis

are also associated withS1. Formally speaking, the extension ofS1, denoted asSλ
1 , is

〈Q1, Σ
λ
1 , δ

λ
1 , I1, F1〉, where

• Σλ
1 = (Σ ∪ λ)|X1| × λ|X2\X1| × Σ, and

• δλ
1 (q, α) = q′ if δ1(q, β) = q′ andα[X] = β[X] if X ∈ X1 ∪ Xo, andα[X] = λ,

otherwise.

The extension ofS2, denoted asSλ
2 , is 〈Q2, Σ

λ
2 , δ

λ
2 , I2, F2〉, where

• Σλ
2 = λ|X1| × (Σ ∪ λ)|X2\X1| × Σ, and

• δλ
2 (q, α) = q′ if δ2(q, β) = q′ andα[X] = λ if X ∈ X1, andα[X] = β[X],

otherwise.

CONCATSIGNATURE(S1, S2) returns the(|X1 ∪ X2| + 1)-track DFA that accepts the

concatenation ofSλ
1 andSλ

2 .

The intuition of this implementation is to keep the values ofthe tracks that are

associated with input variables unchanged (except paddingλs in the front or end) and

concatenate the values of the output tracks without inserting anyλ. Since, during the

computationλs are only attached to tracks that are associated with input variables, for

the values of the current node, i.e., the values of the outputtrack, we havew[Xo] ∈ Σ∗

for any w accepted by a signature at each node. This property enables us to avoid

interference byλs while taking intersection on the output track.

117

Chapter 5. Sanitization Synthesis

After reaching a fixpoint, at line 19, we intersect the signature of sink with the

attack pattern on the output track. LetMAttk accepts{w | w[Xo] ∈ Attk}. This is

done by the standard intersection ofS[sink] andMAttk. After the intersection, the

output track identifies the reachable attack strings, and the input tracks identify all

the malicious inputs whose combination can yield an attack string. At line 20, we

project away the output track fromM , and return the result at line 21 as the relational

vulnerability signature of〈G, In, sink, Attk〉. Note thatM may haveλs as prefix and

suffix which can be removed by the same approach presented forsingle-track DFA.

5.3 Experiments

We evaluated our approach on five vulnerabilities from threeopen source web ap-

plications (1)MyEasyMarket-4.1 (a shopping cart program), (2)BloggIT-1.0 (a

blog engine), and (3)proManager-0.72 (a project management system). We used

the following XSS attack patternΣ∗ < SCRIPTΣ∗. The dependency graphs of these

benchmarks are built for sensitive sinks where unrelated parts have been removed us-

ing slicing. Hence, their sizes (approximately 20-30 nodes) are much smaller than the

original programs.

118

Chapter 5. Sanitization Synthesis

In our experiments, we used an Intel machine with 3.0 GHz processor and 4 GB of

memory running Ubuntu Linux 8.04. We use 8 bits to encode eachcharacter in ASCII.

Vulnerability Analysis: The performance of our vulnerability analysis is shown in

Table 5.1. We also show the number of states (#states) and thenumber of BDD nodes

(#bdds) of the DFAM (the transition relation of the DFA is stored symbolically as

a multi-terminal decision diagram) that accepts all reachable attack strings at the sink

node. For all five benchmarks,L(M) is not an empty set and we conclude that all

benchmarks are vulnerable. (”y” indicates that the benchmark is vulnerable and #inputs

indicates the number ofinput nodes.)

Time(s) Mem(kb) Result #states / #bdds #inputs

1 0.08 2599 y 23/219 1
2 0.53 13633 y 48/495 1
3 0.12 1955 y 125/1200 2
4 0.12 4022 y 133/1222 1
5 0.12 3387 y 125/1200 1

Table 5.1: Vulnerability Analysis Performance

Signature Generation: Table 5.2 summarizes the performance of vulnerability signa-

ture generation. ”S” indicates that we used backward analysis to generate single track

vulnerability signature, while ”R” indicates that we generated relational vulnerability

signature via forward analysis. The last column shows the size of the vulnerability

signature DFA or MDFA. Since only benchmark 3 contains two inputs, we only use

relational vulnerability analysis for this benchmark. It can be seen that most of them

119

Chapter 5. Sanitization Synthesis

are computed within seconds except for benchmark 2. Taking acloser look, we found

that it consists of several nested replacement operations that cause the pre-image com-

putations to blow-up. Since the benchmark is vulnerable, i.e., the existing sanitization

routine is not good enough to eliminate the specified attacks, one may consider com-

menting out these replacement operations, which would improve the performance of

our backward analysis.

Signature type Time(s) Mem(kb) #states /#bdds

1 S 0.46 2963 9/199
2 S 41.03 1859767 811/8389
3 S 2.35 5673 20/302, 20/302
3 R 0.66 6428 113/1682
4 S 2.33 32035 91/1127
5 S 5.02 14958 20/302

Table 5.2: Signature Generation Performance

Sanitization Synthesis:We use the vulnerability signature automata to automatically

generate sanitization code. For matching, we generate codethat simulates the vulnera-

bility signature automaton. We evaluated the overhead of running this code on 10 sets

of randomly generated strings each containing 1000 stringsof the same length. The

lengths started from 100 character per string for the first set, adding 100 more charac-

ters for each new set and going up to 1000 characters per string for the last set. The

results are shown in Figure 5.1. The overhead of matching a 1000 character string to

the vulnerability signature automaton is less than 0.35 milliseconds.

120

Chapter 5. Sanitization Synthesis

Figure 5.1: Input Matching Overhead

For the replace statements, we simply use the PHPpreg replace that is based

on the minimum edge cut of the vulnerability signature automaton. Table 5.3 shows

the number of edges in the min-edge-cut for the vulnerability signature automata we

computed earlier, and the alphabet-cuts that correspond tothese min-edge-cuts.

Signature 1 2 3S 3R 4 5

#edges 1 8 4 3 4 4
alphabet-cut {<} {S,′ , ”} Σ, Σ {<}, {S} {<,′ , ”} {<,′ , ”}

Table 5.3: Minimum Edge and Alphabet Cuts

Table 5.3 shows that the min-edge-cut results in a very smallalphabet-cut. Espe-

cially for the first benchmark, it is clear that we got the optimum solution since we have

a single symbol in the cut. The result for benchmark 3 using single-track DFA isΣ for

both inputs (i.e., we need to delete all characters for both inputs). This is due to the

fact that our analysis that uses single track automata can not keep the relation between

121

Chapter 5. Sanitization Synthesis

the input and output and any of the two inputs can contribute the attack to the sink. In

this case the vulnerability signature isΣ∗. But when we use the relational vulnerability

signature for this example, the min-edge-cut for the multi-track automaton has 3 edges

corresponding to character ’<’ for input 1 and ’S’ for input 2 (i.e., we only need to

delete ’<’ for input 1 and delete ’S’ for input 2).

122

Chapter 6

Composite Analysis

We present a composite symbolic verification technique [12]that combines string [1,

15, 52, 58] and size [20, 22, 46] analyses with the goal of improving the precision of

both. We use a forward fixpoint computation to compute the possible values of string

and integer variables and to discover the relationships among the lengths of the string

variables and integer variables.

Similar to prior size analysis techniques [20, 22, 46] we associate each string vari-

able with an auxiliary integer variable that represents itslength. At each program point,

we symbolically compute all possible values of all integer variables (including the aux-

iliary variables), as well as all possible values of all string variables. The reachable

values of all integer variables are over-approximated as a Presburger arithmetic (linear

arithmetic) formula and symbolically encoded asarithmetic automata[3, 51]. Simi-

123

Chapter 6. Composite Analysis

lar to some prior string analysis techniques [1, 58], the values that string variables can

take are over-approximated as regular languages and symbolically encoded asstring

automata. Our composite analysis is as a forward fixpoint computationwith widening

on these arithmetic and string automata.

There are two challenges we need to overcome to connect the information contained

in the string automata and the arithmetic automata (hence, improving the precision of

both) during our composite analysis: 1) Given a string automaton, we need to derive the

arithmetic automaton that accepts the length of the language accepted by the string au-

tomaton, and 2) Given an arithmetic automaton, we need to restrict a string automaton

so that the length of the language is accepted by the arithmetic automaton.

To tackle the first challenge, we present techniques for constructing a length au-

tomatafor a given regular language. It is known that the length of the language accepted

by a DFA forms a semilinear set. Given an arbitrary DFA, we areable to construct DFAs

that accept either unary or binary representation of the length of its accepted words. The

unary automaton can be used to identify the coefficients of the semilinear set, while the

binary automaton can be composed with other arithmetic automata on integer variables

to enforce or check length constraints.

To tackle the second challenge, we identify the boundary of the lengths of string

variables from the arithmetic automaton. Precisely, we compute the lower and upper

bound of the values of the string lengths accepted by the arithmetic automaton. We

124

Chapter 6. Composite Analysis

prove that, given a one-track arithmetic automaton, the lower bound forms a shortest

path to an accepting state while the upper bound (if it exists) forms the longest loop-free

path. Both can be computed in linear complexity to the size ofthe arithmetic automa-

ton. We can restrict the target string automaton by intersecting the string automaton

that accepts arbitrary strings within this boundary.

This chapter is organized as follows. We present the length automata construction

in Section 6.1. We present our composite analysis techniquethat integrates string and

arithmetic analyses in Section 6.2. We present our experiments with our prototype tool

in verifying small C routines, buffer-overflow benchmarks and PHP web applications

in Section 6.3.

6.1 Length Automata Construction

Given a string automatonM , we want to construct a DFAMb (over a binary al-

phabet) such thatL(Mb) is the set of binary representations of the lengths of the words

accepted byM . We tackle this problem in two steps. We first construct a DFAMu (over

a unary alphabet) such thatL(Mu) is the set of unary representations of the lengths of

the words accepted byM . It is known that this set is a semilinear set. We identify the

formula that represents the semilinear set fromMu. We then constructMb from the

125

Chapter 6. Composite Analysis

formula, such thatw ∈ L(Mb) if and only if the binary value ofw satisfies the formula

(i.e., the unary representation of the binary value ofw is in L(Mu)).

A DFA M is a tuple〈Q, q0, Σ, δ, F 〉 whereQ is a finite set of states,q0 is the initial

state,Σ is a finite set of symbols.F : Q → {−, +} is a mapping function from a state

to its status. Given a stateq ∈ Q, q is an accepting state ifF (q) = +. δ : Q × Σ → Q

is the transition function. The cardinality of a finite setA is denoted as♯A. The set of

arbitrary words over a finite alphabetΣ is denoted asΣ∗. The length of a wordw ∈ Σ∗

is denoted as|w|. A stateq of M is asinkstate if∀α ∈ Σ, δ(q, α) = q andF (q) = −.

In the following sections, we assume that for all unspecifiedpairs(q, α), δ(q, α) goes

to asink state. In the constructions below, we also ignore the transitions that lead to a

sink state.

A string automatonM is a DFA that consists of a tuple of〈Q, q0, B
k, δ, F 〉. M

accepts a set of words, where each symbol is encoded as ak-bit string.

6.1.1 Length Constraints on String Automata

We are interested in characterizing lengths of the acceptedwords. We characterize

these lengths as a set of natural numbers by alength constraint. Formally speaking, the

length constraint of a given string automatonM is a formulaf over a variablex, such

thatf [c/x] evaluates to true if and only if there exists a wordw, such thatw ∈ L(M)

andc = |w|.

126

Chapter 6. Composite Analysis

Regular language Length set
baaab {5}

(baaab)+ {5 + 5k|k ≥ 0}
(baaab)+ab {7 + 5k|k ≥ 0}

((baaab)+ab)+ {7, 12, 14, 17, 19, 21, 22, 24, 25, 26, 27, 28}∪ {29 + k|k ≥ 0}
(abb)+ {3 + 3k|k ≥ 0}

(abb)+|(baaab)+ab {3 + 15k|k ≥ 0} ∪ {6 + 15k|k ≥ 0} ∪ {7 + 15k|k ≥ 0}∪
{9 + 15k|k ≥ 0} ∪ {12 + 15k|k ≥ 0} ∪ {15 + 15k|k ≥ 0}∪
{17 + 15k|k ≥ 0}

Table 6.1: Regular Languages and Their Length Sets

Property 1: For any DFAM , {|w| | w ∈ L(M)} forms a semilinear set.

Property 2: For any DFAM , fM is in the form that
∨

i x = ci ∨
∨

j ∃k.x =

aj+bj×k, whereaj, bj andci are constants.fM can be written as
∨

i x = ci∨
∨

j ∃k.x =

C + rj + R × k, such thatci, rj, C, R are constants, and∀i, ci < C, and∀j, rj < R.

We say that a semilinear set in this form iswell-formed.

In the following, we give the algorithm to construct the automata that accept unary

or binary representation of the length of the language accepted by a given string au-

tomata. This construction shows that the length constraintof a DFA is a well formed

semilinear set, and hence gives a constructive proof of Property 1 and Property 2.

Before delving into the construction details, in Table 6.1,we give some examples of

a regular language and the set of lengths of its words. It can be seen that identifying the

length set of an arbitrary regular language is not trivial, particularly for those having

nested closure. The results in Table 6.1 are obtained automatically by implementing

our construction.

127

Chapter 6. Composite Analysis

6.1.2 From String Automata to Unary Length Automata

It is known that the unary representation of the values of a semilinear set can be

uniquely identified by a unary automaton. In the following, we first show how to con-

struct an automatonMu (over a unary alphabet) from a given string automatonM , such

thatL(Mu) is the set of unary representations of{|w| | w ∈ L(M)}. We sayMu is the

unary length automaton ofM .

Given a string automatonM = 〈Q, q0, B
k, δ, F 〉, a naive construction of the unary

length automaton isMu = 〈Q, q0, B
1, δ′, F 〉, whereδ′(q, 1) = q′ if ∃α, δ(q, α) = q′.

However,Mu constructed this way will be an NFA. The MBDD representations that we

use cannot encode NFAs. Instead, we use a construction whichcombines the projection

and determinization steps as follows.

Given a string automatonM = 〈Q, q0, B
k, δ, F 〉, we first construct an intermediate

automatonM ′ = 〈Q, q0, B
k+1, δ′, F 〉, where

• ∀q, q′ ∈ Q, and both are not sink states,δ
′

(q, α1) = q′, if δ(q, α) = q′.

M ′ is a DFA that accepts the same words asM except that each symbol in the word

is appended with ‘1’.Mu can then be constructed fromM ′ by projecting the first k bits

away. This projection is done by iterative determinizationand minimization. During

determinization, the subset construction is applied on thefly.

128

Chapter 6. Composite Analysis

6.1.3 From Unary Length Automata to Semilinear Set

Here we describe how to identify the well formed formula of a semilinear set from

a unary automaton.

Property 3: A finite deterministic unary automatonM = 〈Q, q0, B
0, δ, F 〉 can be

in two forms: a linear list of states that starts from the initial state with finite length♯Q,

or a linear list of states that starts from the initial state with finite length,C, and ends in

a cycle with finite length,R, whereC + R = ♯Q (i.e., a lasso).

Given a deterministic unary automaton,Q can be labeled such that

• ♯Q = n + 1.

• ∀0 ≤ i < n, δ(qi, 1) = qi+1.

Cycle Case:If ∃0 ≤ m < n, δ(qn, 1) = qm, the well-formed formula of a unary

automaton is
∨

i x = ci ∨
∨

j ∃k.x = C + rj + R × k, where

• C = m, R = n − m.

• ∀i, ∃qt, t < m, F (qt) = +, ci = t.

• ∀j, ∃qt, t ≥ m, F (qt) = +, rj = t − m.

No Cycle Case: Otherwise, the well-formed formula of a unary automaton is

∨
i x = ci, where∀i, ∃qt, t ≤ n, F (qt) = +, ci = t.

129

Chapter 6. Composite Analysis

6.1.4 From Semilinear Set to Binary Length Automata

We propose a novel construction to derive a DFAM such thatL(M) is equal to the

set of binary representations (from the least significant bit) of a well-formed semilinear

set. We sayM is a binary length automaton of the string automaton, the length of

whose accepted words forms the semilinear set.

Assume that we are given a well-formed semilinear set
∨

i x = ci ∨
∨

j ∃k.x =

C +rj +R×k. LetN bemax(C, R). A DFA M that accepts the binary representation

of the given semilinear set can be constructed as a tuple〈Q, q0, Σ, δ, F 〉, where:

• We assume that there exists a sink stateqsink ∈ Q, s.t.,F (qsink) = −, δ(qsink, 0) =

qsink andδ(qsink, 1) = qsink, and all transitions that are ignored in this construc-

tion are going toqsink.

• Other than the sink state, each stateq ∈ Q is a tuple(t, v, b), wheret ∈ {val , remt,

remf}, v ∈ {0, . . . , N}, andb ∈ {⊥} ∪ {1, . . . , N}. q.t is the type of stateq,

which indicates the meaning of the value ofq.v andq.b. While q.t = val , q.v is

equal to the value of the binary word accepted from the initial state to the current

state, andq.b is equal to the binary value of the previous bit in the word. Weas-

sume2 ⊥= 1. While q.t = remt or remf , q.v is equal to the remainder of which

the dividend is the value of the binary word accepted from theinitial state to the

current state and the divisor isR; q.b is the remainder of which the dividend is

130

Chapter 6. Composite Analysis

the binary value of the previous bit in the accepted word and the divisor isR.

q.t = remt indicates the value of the binary word accepted from the initial state

to the current state is greater or equal toC; q.t = remf indicates the value is less

thanC.

• q0 is (val , 0,⊥).

• Σ = {0, 1} (i.e.,B1).

• δ(q, 1) = q′ if and only if one of the following condition holds:

– q.t = val , q.v + 2q.b ≥ C, q′.t = remt, q′.v = (q.v + 2q.b) mod R,

q′.b = (2q.b) mod R.

– q.t = val , q.v + 2q.b < C, q′.t = val , q′.v = q.v + 2q.b, q′.b = 2q.b.

– q.t = rem t, q′.t = remt, q′.v = (q.v + 2q.b) mod R, q′.b = (2q.b)

mod R.

– q.t = remf , q′.t = remt, q′.v = (q.v + 2q.b) mod R, q′.b = (2q.b)

mod R.

• δ(q, 0) = q′ if and only if one of the following condition holds:

– q.t = val , q.v + 2q.b ≥ C, q′.t = remf , q′.v = q.v mod R, q′.b = (2q.b)

mod R.

131

Chapter 6. Composite Analysis

– q.t = val , q.v + 2q.b < C, q′.t = val , q′.v = q.v, q′.b = 2q.b.

– q.t = remt, q′.t = rem t, q′.v = q.v, q′.b = (2q.b) mod R.

– q.t = remf , q′.t = remf , q′.v = q.v, q′.b = (2q.b) mod R.

• F (q) = +, for all q ∈ {q | q.t = val , ∃i, q.v = ci} ∪ {q | q.t = remt, ∃j, q.v =

(C + rj) mod R}; F (q) = −, o.w.

By definition,♯Q is O(N2). Precisely, in our construction, the number of states that

q.t = val is bounded byC. The number of states thatq.t = rem t is bounded byR2

and the number of states thatq.t = remf is bounded byC ×R. On the other hand, we

have observed that after minimization,♯Q is often reduced toN .

An Incremental Algorithm: Below we give an incremental algorithm to construct a

Binary Length Automaton (BLA)M . The construction is achieved by calling the pro-

cedureCONSTRUCT BLA . The input is given as a well-formed semilinear formula,

∨
0≤i≤n x = ci ∨

∨
0≤j≤m ∃k.x = C + rj + R × k. At line 3, we first buildQb, the

set of binary states that will be reached by calling the procedureADD BSTATE. A bi-

nary state is actually the value of the tuple(t, v, b) as described in the previous section.

Each binary state is further associated with an index, a truebranch and a false branch,

which are used to construct the state graph. Briefly,ADD BSTATE is a recursive func-

tion which incrementally adds the reached binary state if ithas never been explored.

Initially, the binary state is(val , 0,⊥). Note thatADD BSTATE is guaranteed to ter-

132

Chapter 6. Composite Analysis

minate since the number of binary states are bounded. Upon termination, all reached

binary states will have been added toQb. For each binary state inQb, as line 4 to 9, we

iteratively generate a stateq and set its transition relation and accepting status, which

are used to construct the final automaton at line 10.

Algorithm 6 ADD BSTATE(Q, C, R,t, v, b)
1: if ∃q = (t, v, b) ∈ Q then
2: return q.index;
3: else
4: Createq = (t, v, b);
5: q.index = ♯Q;
6: q.true = −1;
7: q.false = −1;
8: Add q to Q;
9: if t == val ∧ (v + 2 × b ≥C) then

10: q.true =ADD BSTATE(Q, C, R,remt, (v + 2 × b)%R, (2 × b)%R);
11: q.false =ADD BSTATE(Q, C, R,remf , v%R, (2 × b)%R);
12: else ift == val ∧ (v + 2 × b < C) then
13: q.true =ADD BSTATE(Q, C, R,val , v + 2 × b, 2 × b);
14: q.false =ADD BSTATE(Q, C, R,val , v, 2 × b);
15: else ift == remt then
16: q.true =ADD BSTATE(Q, C, R,remt, (v + 2 × b)%R, (2 × b)%R);
17: q.false =ADD BSTATE(Q, C, R,remt, v%R, (2 × b)%R);
18: else ift == remf then
19: q.true =ADD BSTATE(Q, C, R,remt, (v + 2 × b)%R, (2 × b)%R);
20: q.false =ADD BSTATE(Q, C, R,remf , v%R, (2 × b)%R);
21: end if
22: return q.index;
23: end if

We have implemented the above algorithms using the MONA DFA package. Min-

imal unary and binary length automata for a regular languageare shown Figure 6.1

and Figure 6.2. It is interesting to note that in both cases, the minimal unary length

133

Chapter 6. Composite Analysis

Algorithm 7 CONSTRUCT BLA(C, R, C = {c1, c2, . . . cn}, R = {r1, r2, . . . rm})

1: Qb = ∅;
2: Q = ∅;
3: init =ADD BSTATE(Qb, C, R,val , 0,⊥);
4: for eachqb ∈ Qb do
5: Add q = qq.index to Q;
6: δ(q, 1) = (qb.true 6= −1?qqb.true : qsink);
7: δ(q, 0) = (qb.false 6= −1?qqb.false : qsink);
8: F (q) = ((qb.t == 0 ∧ ∃c ∈ C.qb.v == c) ∨(qb.t == 1 ∧ ∃r ∈ R.qb.v ==

(r+C)%R) :′ +′?′−′);
9: end for

10: ConstructM = 〈Q ∪ {qsink}, qinit, B
1, δ, F 〉;

(a) Unary (b) Binary

Figure 6.1: The Length Automata of(baaab)+

(a) Unary (b) Binary

Figure 6.2: The Length Automata of(baaab)+ab

134

Chapter 6. Composite Analysis

automaton and binary length automaton have the same number of states. In Figure 6.1,

both automata accept the set{5+5k|k ≥ 0}. Consider the number1865735, whose bi-

nary encoding is11100011110000000111. One can test that the bit string from the least

significant is accepted by the binary length automaton shownin 6.1(b). In Figure 6.2,

both automata accept the set{7+5k|k ≥ 0}. Consider the number1087, whose binary

encoding is10000111111. The bit string from the least significant is also accepted by

the binary length automaton shown in 6.2(b).

We have presented the algorithms to construct length automaton from an arbitrary

string automaton. The construction of both unary and binarylength automaton has

been implemented using the MONA DFA package. We are able to identify the pre-

cise semilinear set for arbitrary regular language, and construct both unary and binary

length automata which accept the unary and binary representations of the semilinear set

respectively. In the following section, we present acomposite analysisthat integrates

length automata with string and arithmetic analyses.

6.2 Composite Verification

We first introduce a simple imperative language (the syntax is similar to the one used

in [53]) as our target language. This language consists of a set of labeled statements

l : stat. Labels correspond to instruction addresses. We uses to denote a string

135

Chapter 6. Composite Analysis

variable,i to denote an integer variable, andc to denote a constant. Eachs ∈ S is

associated with one auxiliary integer variable, denoted ass.length. Let S denote the

set of string variables andI denote the set of integer variables, andIL denote the set of

auxiliary variables. A statement can be one of the following:

• A termination statementhalt or abort .

• A string assignment statements := strexp, wherestrexp is a string expression

that can be one of the following:

– input (i) which returns an arbitrary string value up to the length equal to

the value ofi.

– a string variables ∈ S.

– a regular expressionregexp overS.

– prefix (s, i) which returns the prefix ofs up to the firstc characters where

c is equal to the value ofi.

– suffix (s, i) which returns the the suffix ofs starting from thecth charac-

ter, wherec is equal to the value ofi.

– concat (s1, s2) that returns the concatenation of the value ofs1 and the

value ofs2.

136

Chapter 6. Composite Analysis

– replace (s1, s2, s3) that returns the result of the following actions: (1)

scan the value ofs1 and find the substrings that match to the value ofs2,

and (2) replace the matched substrings with the value ofs3.

• An integer assignment statementi := intexp, whereintexp is an integer expres-

sion in the form
∑

t ct ∗ it that returns a value of the linear function
∑

t ct ∗ it,

where each variableit ∈ I ∪ IL.

• A conditional statementif (bexp) goto l′, wherebexp is a binary expres-

sion (defined below).l′ is a program label which indicates the label of the next

statement whenbexp evaluates to true.

• An assertion statementassert (
∧

bexp). An assertion holds if
∧

bexp evaluates

to true. A program is correct if all assertions hold on all executions.

A bexp is either a string or an integer formula defined as follows:

• A string formula can be in two forms: (1)s ∈ regexp, or (2) s[c1, c2] ∈ regexp,

which specifies that the value ofs or the value of the substring (from thecth
1 to

cth
2 character) ofs is within a constant regular language. Note that hereregexp

is restricted to a constant set of string values.s 6∈ regexp is an abbreviation

of s ∈ regexp ′, whereregexp′ is the complement set ofregexp. s = c is an

abbreviation ofs ∈ {c} ands 6= c is an abbreviation ofs 6∈ {c}, wherec is a

constant string.

137

Chapter 6. Composite Analysis

strlen(s1){
1: cnt := 0;
2: s2:=s1;
3: if(s2=’\0’) goto 7;
4: s2:=suffix(s2, 1);
5: cnt := cnt +1;
6: if(s2 != ’\0’) goto 4;
7: assert(s1.length = cnt);
8: halt;
}

Figure 6.3: The Rewritten String Length Routine

• An integer formula can be in the form:
∑

t ct ∗ it ∼ c, whereit ∈ I ∪ IL and

∼∈ {=, <,≤,≥, >}.

We assume that for eachl : stmt, l + 1 is a valid label ifstmt is not a termination

statement. For each conditional statementif (bexp) goto l′, l′ is a valid label.

Modeling a C Example: To analyze normalC programs, one can consider each deref-

erence of a pointer, e.g.,∗p, as a string variable. A sequence value from the address

pointed by the pointer is a string value of the string variable. The pointer arithmetic

operation, e.g.,p1 := p2 + i, can be considered as a string suffix statement that assigns

the suffix of the dereference ofp2 to the dereference ofp1.

The string length routine shown in Figure 1.14 can be rewritten using this simple

language as shown in Figure 6.3.

138

Chapter 6. Composite Analysis

6.2.1 Verification Framework

Assume thatS = {s1, . . . , sm} andI = {i1, . . . , in} denote the set of string and

integer variables in our target program, respectively. In our analysis, each string vari-

able sk, 1 ≤ k ≤ m, is associated with an auxiliary integer variablein+k as its

length sk.length. Hence, we also have the set of auxiliary integer variablesIL =

{in+1, . . . in+m}. A state for each program label consists of a string-automata vector

~α = 〈α1, . . . , αm〉 and ann + m-track arithmetic automatona.

Each string variablesk is associated with the string automatonαk in ~α, which ac-

cepts an over approximation of the set of all possible valuesthat sk can take at the

corresponding program label. Each track of the arithmetic automatona is a binary en-

coding starting from the least significant bit of the value ofan integer variable (the first

n tracks) or the value of the length of a string variable (the lastm tracks).

A word accepted by the arithmetic automaton corresponds to avalid valuation for

the integer variables and the lengths of string variables atthe corresponding program

point during the execution of the program. The arithmetic automaton accepts an over

approximation of the set of possible words at the corresponding program label. Each

wordw is an assignment of the integer variables and the lengths of the string variables;

and each track ofw is actually the value thati ∈ I ∪ IL can take at the corresponding

program label. We usew[k] to denote thekth track of the wordw. For1 ≤ k ≤ n, w[k]

is the value of the integer variableik. Forn + 1 ≤ k ≤ n + m, w[k] is the length of the

139

Chapter 6. Composite Analysis

string variablesk. We say a stringw is the value of a string variablesk if w ∈ L(αk),

and∃w′ ∈ L(a) such thatw′[k] is equal to the binary encoding of|w| starting from the

least significant bit.

Forward Fixpoint Computation: Our analysis is based on a standard forward fixpoint

computation on~α anda for all program labels. For simplicity, we useν[l] to denote~α[l]

anda[l], where~α[l] is the string-automaton vector anda[l] is the arithmetic automaton

at the program labell. The algorithm is a standard work-queue algorithm as shown in

table 11.

For sequential operations (string/integer assignments),we are continuously com-

puting the post image ofν[l] againstl : stmt, and join the result toν[l + 1] wherel + 1

is the label of the next statement. For branch statementl : if (bexp) goto l′, if the

intersection of the language ofν[l] andbexp is not an empty set, we add the result to

ν[l′]. If the intersection of the language ofν[l] and the complement set ofbexp is not

an empty set, we add the result toν[l + 1]. For checking statementl : assert (φ), if

the language ofν[l] is not included inφ, we raise an alarm.

Upon joining the results, we check whether a fixpoint of that program point is

reached. If it is not, we updateν at that program point and push its labeled state-

ment into the queue. Since we target infinite state systems, the fixpoint computation

may not terminate. We incorporate an automata widening operator, denoted as∇A,

140

Chapter 6. Composite Analysis

Algorithm 8 COMPOSITEANALYSIS(l0)
1: Init(ν);
2: queueWQ;
3: WQ.enqueue(l0 : stmt0);
4: while WQ 6= NULL do
5: e := WQ.dequeue(); Lete bel : stmt;
6: if stmt is sequential operationthen
7: tmp := post(ν[l], stmt);
8: tmp := (tmp ∪ ν[l + 1])∇ν[l + 1];
9: if tmp 6⊆ ν[l + 1] then

10: ν[l + 1] := tmp;
11: WQ.enqueue(l + 1);
12: end if
13: end if
14: if stmt is if bexp goto l′ then
15: if CheckIntersection(ν[l], bexp) then
16: tmp := ν[l] ∧ bexp;
17: tmp := (tmp ∪ ν[l′])∇ν[l′];
18: if tmp 6⊆ ν[l′] then
19: ν[l′] := tmp;
20: WQ.enqueue(l′);
21: end if
22: end if
23: if CheckIntersection(ν[l],¬bexp) then
24: tmp := ν[l] ∧ ¬bexp;
25: tmp := (tmp ∪ ν[l + 1])∇ν[l + 1];
26: if tmp 6⊆ ν[l + 1] then
27: ν[l + 1] := tmp;
28: WQ.enqueue(l + 1);
29: end if
30: end if
31: end if
32: if stmt is assert (φ) then
33: if ¬ CheckInclusion(ν[l], φ) then
34: Assertion violated!
35: end if
36: end if
37: end while

141

Chapter 6. Composite Analysis

proposed by Bartzis and Bultan in [4] to accelerate the fixed point computation.ν∇ν ′

is implemented asα1∇Aα′
1, . . ., αm∇Aα′

m [58] anda∇Aa′ [4].

Finally, we detail how to compute post and restrict computations (i.e., post(ν, stmt)

andν ∧ bexp) in the following paragraphs.

Basic Operations: Before we detail the algorithms of post and restrict computations,

we first define some notations and basic operations to simplify our presentation. We

usea to denote the arithmetic automaton, andak to denote the one-track arithmetic

automaton that accepts the values of thekth track of the arithmetic automatona. We

useα to denote a string automaton and~α to denote a vector of string automata.αk

is thekth string automaton of~α. bla (α) returns the binary length automaton of the

string automatonα. The binary length automaton can be considered as an one-track

arithmetic automaton. We useαc, wherec is an integer constant, to denote the string

automaton which accepts arbitrary words having length equal to c. That isL(αc) =

{w | w ∈ Σ∗, |w| = c}. This notation is also extended to a range [c1, c2], where

c1, c2 are integer constants. We say thatα[c1,c2] is the string automaton that accepts

{w | w ∈ Σ∗, c1 ≤ |w| ≤ c2}.

• Extraction:a ⇂k, returns an one-track arithmetic automatonak so thatw ∈ L(ak)

if ∃w′ ∈ L(a) andw′[k] = w. ak is constructed by projecting away all tracks

except thekth track of the arithmetic automatona.

142

Chapter 6. Composite Analysis

• Projection:a ↿k, returns a new arithmetic automatona′ which accepts{w|w′ ∈

L(a), ∀1 ≤ t ≤ m+n, t 6= k, w′[t] = w[t]}. a′ is constructed by projecting away

the trackk of the arithmetic automatona.

• Composition: a ◦ αk, returns a new arithmetic automatona′ so thatL(a′) =

{w | w ∈ L(a), w[k] ∈ L(bla (αk))}. a′ is constructed by intersectinga with an

arithmetic automaton that the trackk is accepted by the binary length automaton

of the string automatonαk, and other tracks are unrestricted. This composition

restrictsL(a) to a smaller set where the length ofsk (the value of the trackk) is

accepted by the binary length automaton ofαk.

• Boundary:min (ak) returns the lower bound of the set of integer values whose

binary encodings from the least significant bit are acceptedby the one-track au-

tomatonak. max(ak) returns the upper bound.

Post Images:Recall that there arem string variables andn integer variables. Given

stmt and the stateν that consists of~α = 〈α1, . . . , αm〉 and the arithmetic automatona,

we want to compute~α′ = 〈α′
1, . . . , α

′
m〉 anda′ as the result of the post image against

stmt. We assume that the automata that are not specified remain thesame. Letstmt

be one of the following:

• sk := input (ip). α′
k := α[c1,c2], wherec1 = min (ap) and c2 = max(ap).

a′ := CONSTRUCT(a, in+k := ip).

143

Chapter 6. Composite Analysis

• sk1
:= sk2

. α′
k1

:= αk2
. a′ := CONSTRUCT(a, in+k1

:= in+k2
).

• sk := regex. α′
k := CONSTRUCT(regexp). a′ := a ↿n+k ◦α′

k.

• sk1
:= prefix (sk2

, ip). α′
k1

:= PREFIX(αk2
, [c1, c2]), wherec1 = min (ap) and

c2 = max(ap). a′ := CONSTRUCT(a, in+k1
:= ip)∧CONSTRUCT(in+k2

−ip ≥ 0).

• sk1
:= suffix (sk2

, ip). α′
k1

:= SUFFIX(αk2
, [c1, c2]), wherec1 = min (ap) and

c2 = max(ap). a′ := CONSTRUCT(a, in+k1
:= ip)∧CONSTRUCT(in+k2

−ip ≥ 0).

• sk := strcat (sk1
, sk2

). α′
k := CONCAT(αk1

, αk2
). a′ := CONSTRUCT(a, in+k :=

in+k1
+ in+k2

).

• sk := replace (sk1
, sk2

, sk3
). α′

k := REPLACE(αk1
, αk2

, αk3
). a′ := a ↿n+k

∧atmp, whereatmp accepts{w | w[k] ∈ L(bla (α′
k))}.

• ip := intexp. a′ := CONSTRUCT(a, ip := intexp).

Restriction: Here we describe the result ofν ∧ bexp, whereν is the state consists of~α

anda. Let bexp be one of the following:

• sk ∈ regexp. α′
k = αk ∧ CONSTRUCT(regexp). a′ = a ◦ α′

k.

• sk[c1, c2] ∈ regexp. α′
k = αk ∧ αtmp, where αtmp is constructed by

CONCAT(CONCAT(α[c1,c2], CONSTRUCT(regexp)), α∗). a′ = a ◦ α′
k.

144

Chapter 6. Composite Analysis

•
∑

t ct ∗ it ∼ c. ∀t > n.α′
t = αt ∧ α[c1,c2], wherec1 = min (a′ ⇂t) andc2 =

max(a′ ⇂t). a′ = a ∧ CONSTRUCT(
∑

t ct ∗ it ∼ c).

6.2.2 Implementation

Automaton Construction: Here we describe how to construct the corresponding arith-

metic and string automata used in our composite analysis. The constructions of arith-

metic automata includingCONSTRUCT(
∑

t ct∗it ∼ c) andCONSTRUCT(a, i :=
∑

t ct∗

it) are detailed in [3]. The latter returns an arithmetic automaton which accepts the re-

sult of the post image computation ona against the integer assignmenti :=
∑

t ct∗it+c.

This construction is implemented by quantifier eliminationand variable renaming; i.e.,

(∃i, Φ(a) ∧ i′ =
∑

t ct ∗ it)[I
′/I]. For some special cases, the time complexity of

this construction is linear to the size ofa [3]. The constructions of string automata

includingCONSTRUCT(regexp), CONCAT(αk1
, αk2

), andREPLACE(αk1
, αk2

, αk3
) have

been detailed in [58]. We describe the implementation ofPREFIX(α, [c1, c2]) and the

implementation ofSUFFIX(α, [c1, c2]) below.

Prefix: Formally speaking,α′ is a prefix-DFA ofα regarding to the range[c1, c2], if

L(α′) = {w | w ∈ Σ[c1,c2], ∃w′, ww′ ∈ L(α)}. Given α = 〈Q, q0, Σ, δ, F 〉 and

[c1, c2], we first constructα′ = 〈Q, q0, Σ, δ, F ′〉, where∀q ∈ Q, F ′(q) =′ +′. α′

accepts the prefix ofL(α). The next step is restricting its length to the range[c1, c2].

145

Chapter 6. Composite Analysis

PREFIX(α, [c1, c2]) returns the the result of the intersection ofα′ andα[c1,c2], which is

exactly the prefix-DFA ofα regarding to the range[c1, c2].

Suffix: Formally speaking,α′ is a suffix-DFA ofα regarding to the range[c1, c2], if

L(α′) = {w | ∃w′ ∈ Σ[c1,c2], w′w ∈ L(α)}. We first introduce the function

REACH(α, [c1, c2]). REACH(α, [c1, c2]) returns the set of all[c1, c2]-reachable states.

We say a state is[c1, c2]-reachable if it is reachable from the initial state byk steps

and c1 ≤ k ≤ c2. Given α = 〈Q, q0, Σ, δ, F 〉 and [c1, c2], we first computeR =

REACH(α, [c1, c2]) via a breadth-first search. We then construct the following finite

automatonα′ = 〈Q′, q′0, Σ, δ
′

, F ′〉, where

• Q′ = Q ∪ {q′0}

• ∀q, q′ ∈ Q, δ
′

(q, α) = q′, if δ(q, α) = q′.

• ∀q ∈ R, q′ ∈ Q, δ
′

(q′0, α) = q′, if δ(q, α) = q′.

• F
′

(q0) =′ +′, if ∃q ∈ R, F (q) =′ +′.

• ∀q ∈ Q, F
′

(q) = F (q).

146

Chapter 6. Composite Analysis

Note thatα′ constructed by the above construction may be a nondeterministic fi-

nite automaton. We add auxiliary bits to resolve nondeterminism as proposed in [58].

SUFFIX(α, [c1, c2]) returns the result of the minimization and determinizationof α′.

Boundary: Below we describe how to identify the boundary of a one-trackarithmetic

automaton, which accepts the binary encodings of a set of integer values from the least

significant bit.

Property 4: For an one-track minimized DFAa = 〈Q, q0, B
1, δ, F 〉: ∀q, q′ ∈ Q, if

δ(q, 0) = q′, thenF (q) = F (q′).

Property 4 states that transitions labelled by0 cannot change accepting status, which

holds due to the fact that by definition, the arithmetic automaton accepts a word and any

number of 0 in its higher significant bits. It follows that forany accepted integer value

(except 0), the word from the least significant bit up to the most non-zero significant

bit of its binary encoding forms a unique path (ended by 1) from the initial state to

an accepting state. Furthermore, an accepted non-zero minimal integer value forms

the shortest path from the initial state to an accepting state. On the other hand, if there

exists an accepted non-zero maximal integer value, the maximal value forms the longest

loop-free path from the initial state to an accepting state.Note that if there exists an

accepted path containing a loop,a accepts an infinite set and the maximal value does

not exist. In this case, we useinf to denote the maximal value.

147

Chapter 6. Composite Analysis

Formin (a) andmax(a), we have implemented two functionsMIN (a) andMAX (a).

Let ms be the length of the shortest path that ends with 1 andml be the length of the

longest loop-free path that ends with 1. Bothms andml can be determined by a breadth

first search up to♯Q steps. In our implementation, we first check whethera accepts any

non-zero integer value. If this is the case,MIN (a) returns2ms−1, which is a lower

bound for the shortest path. If there exists a path containing a loop,MAX (a) returnsinf.

OtherwiseMAX (a) returns2ml+1 − 1, which is an upper bound for the longest path.

Note that our implementation is a conservative approximation. These bounds can be

tightened by tracing the values along paths.

6.3 Experiments

We experimented with our composite analysis tool on a numberof test cases ex-

tracted from C string library, buffer overflow benchmarks [36] and web vulnerability

benchmarks [58]. These test cases are rather small but involve pointer arithmetic, string

content constraints, length constraints, loops, and replacement operations. We manu-

ally convert them to our simple imperative language.

For int strlen(char *s) , we verify the invariant that the return value is equal

to the length of the input string. Forchar *strrchr(char *s, int c) , we verify

whether the language accepted by the return string is included in{cx | x ∈ Σ∗} ∪ {ǫ}

148

Chapter 6. Composite Analysis

Test case (bad/ok) Result Time (s) Memory (kb)

int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T 0.014/0.018 216/252
samba (CVE-2007-0453) F/T 0.015/0.021 218/252

MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210)F/T 0.021/0.022 496/662

BloggIT 1.0 (admin.php:27) F/T 0.719/0.721 5857/7067

Table 6.2: The Experimental Results of Composite Analysis.

upon reaching the fixpoint. For buffer overflow benchmarks, we check whether the

identified memory may overflow its buffer upon reaching the fixpoint for both buggy

(bad) and modified (ok) cases. For web vulnerability benchmarks, we check whether

the identified sensitive function may take any attack stringas its input before (bad)

and after (ok) inserting limit constraints and sanitization routines. If it does not, the

sensitive function is SQL attack free with respect to the attack patternΣ∗<script Σ∗.

Limit constraints are written as new statements that limit the length of string variables

using a$limit variable. The experimental results are shown in Table 6.2, where ”T”

indicates buffer overflow free or SQL attack free. The results show that our composite

analysis works well in these test cases in terms of both accuracy and performance. As

a final remark, for web vulnerability benchmarks, one may restrict limit constraints,

e.g., set$limit less than 7, to prevent the specified attacks without adding/modifying

sanitization routines. In this case, pure string analysis [58] will raise false alarms.

149

Chapter 7

Relational String Analysis

Verification of string manipulation operations is a crucialproblem in computer se-

curity. In this part, we present a new relational string analysis technique based on

multi-track automata and abstraction. Our approach is capable of verifying properties

that depend on relations among string variables. This enables us to prove that vulnera-

bilities that result from improper string manipulation do not exist in a given program.

In Chapter 2, we have formalized the string verification problem as reachability

analysis ofstring systemsand demonstrated that the string analysis problem is unde-

cidable even for two binary variables or three unary variables with comparisons. In

this chapter, we use multi-track deterministic finite automata (DFAs) as a symbolic

representation to encode the set of possible values that string variables can take at a

given program point. We apply the forward symbolic reachability analysis technique

150

Chapter 7. Relational String Analysis

that computes an over-approximation of the reachable states of a string system using

widening and summarization. Unlike prior string analysis techniques, our analysis is

relational; i.e., it is able to keep track of the relationships among thestring variables,

improving the precision of the string analysis and enablingverification of invariants

such asX1 = X2 whereX1 andX2 are string variables. We describe the precise con-

struction of multi-track DFAs for linear word equations, such asc1X1c2 = c′1X2c
′
2 and

show that non-linear word equations (such asX1 = X2X3) cannot be characterized

precisely as a multi-track DFA (Section 7.1). We propose a regular approximation for

non-linear equations and show how these constructions can be used to compute the

post-condition of branch conditions and assignment statements that involve concate-

nation. We use summarization for inter-procedural analysis (presented in Chapter 4)

by generating a multi-track automaton (transducer) characterizing the relationship be-

tween the input parameters and the return values of each procedure. To be able to use

procedure summaries during our reachability analysis wealign multi-track automata so

that normalized automata are closed under intersection.

To improve the efficiency of our approach, we propose two string abstraction tech-

niques: alphabet and relation abstractions (Section 7.3).In alphabet abstraction, we

identify a set of characters that we are interested in and usea special symbol to rep-

resent the rest of the characters. In relation abstraction,we identify the variables that

are related and encode them as a single multi-track automata. For those that are not

151

Chapter 7. Relational String Analysis

related, we use multiple single-track automata to encode their values, where relations

among them are abstracted away. We define an abstraction lattice that combines these

abstractions under one framework and show that earlier results on string analysis can be

mapped to several points in this abstraction lattice. We also extend our symbolic anal-

ysis technique by presenting algorithms for computing the post condition of complex

string manipulation operations such as replacement. We implemented these algorithms

using the MONA automata package [27] and analyzed several PHP programs demon-

strating the effectiveness of our string analysis techniques.

7.1 Regular Approximation of Word Equations

To analyze string systems, we approximate configurations over string variables as a

regular language accepted by a multi-track deterministic finite automaton (DFA). Our

analysis is based on the facts that: (1) The transitions and the configurations of a string

system can be symbolically represented using word equations with existential quantifi-

cation, (2) Word equations can be represented/approximated using multi-track DFAs,

which are closed under intersection, complement, projection, and (3) the operations re-

quired during reachability analysis (such as equivalence checking) can be computed on

DFAs.

152

Chapter 7. Relational String Analysis

Before we discuss how to perform symbolic reachability analysis on string systems,

we introduce the multi-track DFAs and word equations in thissection. We characterize

word equations that can be expressed using multi-track DFAs, as well as detail the

construction of these multi-track DFAs. Using these constructions, in the next section,

we show how to perform symbolic reachability analysis on string systems.

7.1.1 Aligned Multi-track DFAs

A multi-track DFA is a DFA over an alphabet that consists of many tracks. Ann-

track alphabet is defined asΣn = (Σ∪ {λ})× (Σ ∪ {λ})× . . .× (Σ ∪ {λ}) (n times),

whereλ 6∈ Σ is a special symbol for padding. We usew[i] (1 ≤ i ≤ n) to denote theith

track ofw ∈ Σn. An alignedmulti-track DFA is a multi-track DFA where all tracks are

left justified (i.e.,λ’s are right justified). That is, ifw is accepted by an alignedn-track

DFA M , then for1 ≤ i ≤ n, w[i] ∈ Σ∗λ∗. We sayL(M) is ann-track language.

We also usêw[i] ∈ Σ∗ to denote the longestλ-free prefix ofw[i]. For the following

descriptions, a multi-track DFA is an aligned multi-track DFA unless we explicitly state

otherwise.

Multi-track DFAs are closed under intersection, disjunction, complementation, and

homomorphism. Precisely: Given twon-track DFAsM1, M2, there exists ann-track

DFA M that acceptsL(M1) ∪ L(M2), or acceptsL(M1) ∩ L(M2). Given ann-track

DFA M1, there exists ann-track DFAM that accepts the complement set ofL(M1),

153

Chapter 7. Relational String Analysis

and also there exists an (n − 1)-track DFA M ′ that acceptsL(M1 ⇂i), whereM1 ⇂i

denotes the result of erasing theith track (by homomorphism) ofM1.

7.1.2 Word Equations

A word equation is an equality relation of two words that concatenate a finite set

of variablesX and a finite set of constantsC. The general form of word equations is

defined asv1 . . . vn = v′
1 . . . v′

m, where∀i, vi, v
′
i ∈ X ∪ C.

Let f be a word equation overX= {X1, X2, . . . , Xn}, f [c/X] denotes a new

equation whereX is replaced withc for all X that appears inf . We say that ann-

track DFA M under-approximatesf if for all w ∈ L(M), f [ŵ[1]/X1, . . . , ŵ[n]/Xn]

holds. We say that ann-track DFAM over-approximatesf if for any s1, . . . , sn ∈ Σ∗

wheref [s1/X1, . . . , sn/Xn] holds, there existsw ∈ L(M) such that for all1 ≤ i ≤

n, ŵ[i] = si. We callM precise with respect tof if M both under-approximates and

over-approximatesf .

Definition 8 A word equationf is regular expressible if and only if there exists a multi-

track DFAM such thatM is precise with respect tof .

Linear Word Equations: A linear word equation is a word equation where either side

of the equation contains at most one variable. A general formof linear word equation

is c1X1c2 = d1X2d2. Any linear word equation is equivalent to one of the following:

154

Chapter 7. Relational String Analysis

• c′1X1c
′
2 = X2 if c1 = d1c

′
1 andc2 = c′2d2,

• c′1X1 = X2d
′
2 if c1 = d1c

′
1 andd′

2c2 = d2,

• X1c
′
2 = d′

1X2 if c1d
′
1 = d1 andc2 = c′2d2,

• X1 = d′
1X2d

′
2 if c1d

′
1 = d1 andd′

2c2 = d2,

• falseotherwise.

It follows that all linear equations can be reduced into two forms: (1)X1 = cX2d or

(2) cX1 = X2d, which are equivalent to∃Xk.X1 = cXk ∧ Xk = X2d and∃Xk.cX1 =

Xk ∧ Xk = X2d.

Theorem 9 Linear word equations and Boolean combinations of these equations can

be expressed using equations of the formX1 = X2c andX1 = cX2, Boolean combina-

tions of such equations and existential quantification.

Non-linear Word Equations: A non-linear word equation is a word equation where at

least one side of the equation has at least two variables. There are two basic forms of

non-linear equations:c = X1X2 andX1 = X2X3.

Theorem 10 Non-linear word equations and Boolean combinations of these equations

can be expressed using equations of the formc = X1X2 and X1 = X2X3, Boolean

combinations of such equations and existential quantification.

155

Chapter 7. Relational String Analysis

For example,X1 = X2dX3X4 is equivalent to∃Xk1
, Xk2

.X1 = X2Xk1
∧ Xk1

=

dXk2
∧ Xk2

= X3X4.

In the following, we show how to construct the correspondingmulti-track DFAs for

the basic forms of linear and non-linear word equations: (1)X1 = X2c, (2) X1 = cX2,

(3) c = X1X2, and (4)X1 = X2X3. Note that, based on the fact that multi-track DFAs

are closed under intersection, disjunction, complementation, and homomorphism, we

can construct the corresponding multi-track DFAs for all word equations both linear and

non-linear, as well as their Boolean combinations based on the constructions for these

basic forms. Note that the boolean operations conjunction,disjunction and negation

can be handled with intersection, disjunction, and complementation of the multi-track

automata, respectively. Existential quantification on theother hand, can be handled

using homomorphism, where given a word equationf and a multi-track automatonM

such thatM is precise with respect tof , then the multi-track automatonM ⇂i is precise

with respect to∃Xi.f .

Before delving into these constructions, we summarize our results in the following

theorem:

Theorem 11 (1) Linear word equations are regular expressible, as well as their Boolean

combinations. (2)X1 = cX2 is regular expressible but the correspondingM has expo-

nential number of states in the length ofc. (3) X1 = X2X3 is not regular expressible.

156

Chapter 7. Relational String Analysis

7.1.3 Construction of Multi-track DFAs for Word Equations

Given a DFAM = 〈Q, Σ, δ, I, F 〉, Q is the set of states,Σ is the alphabet,δ :

Q × Σ → Q is the transition function,I ∈ Q is the initial state, andF ⊆ Q is the

set of final (accepting) states. We say a stateq ∈ Q is a sink state if q 6∈ F and

∀a ∈ Σ, δ(q, a) = q. Thesink states are also extended to multi-track DFAs. In the

following constructions, we ignore transitions that go to sink states, and assume that all

unspecified transitions go to sink states.

Before we give the constructions, we generalize the problemof constructing multi-

track DFAs for word equations as follows. We assume that eachvariable inX=

{X1, X2, . . . , Xn} is associated with an automatonMi = 〈Qi, Σ, δi, Ii, Fi〉, where

L(Mi) denotes the set of values that the variableXi can take. Then, given a word equa-

tion f overX= {X1, X2, . . . , Xn}, we say thatann-track DFAM under-approximates

f within M1, . . .Mn, if for all w ∈ L(M), f [ŵ[1]/X1, . . . , ŵ[n]/Xn] holds and for all

1 ≤ i ≤ n, ŵ[i] ∈ L(Mi). We say thatann-track DFAM over-approximatesf within

M1, . . .Mn, if for any s1, . . . , sn ∈ Σ∗ wheref [s1/X1, . . . , sn/Xn] holds and for all

1 ≤ i ≤ n, si ∈ L(Mi), there existsw ∈ L(M) such that for all1 ≤ i ≤ n, ŵ[i] = si.

Note that, for either case, for any wordw ∈ L(M), for all 1 ≤ i ≤ n, ŵ[i] ∈ L(Mi).

The Construction ofX1 = X2c: LetM1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉

be two DFAs that accept possible values of variablesX1 andX2, respectively. We

157

Chapter 7. Relational String Analysis

present the construction of a 2-track DFAM = 〈Q, Σ, δ, I, F 〉, such thatM is precise

with respect toX1 = X2c within M1, M2.

Let sink1 be the sink state ofM1, andsink2 be the sink state ofM2. Let c =

a1a2 . . . an, where∀1 ≤ i ≤ n, ai ∈ Σ andn is the length of the constant stringc.

M = 〈Q, Σ2, δ, q0, F 〉 is constructed as:

• Q ⊆ Q1 × Q2 × {0, . . . , n},

• I = (I1, I2, 0),

• ∀a ∈ Σ, δ((r, p, 0), (a, a)) = (δ1(r, a), δ2(p, a), 0), if δ1(r, a) 6= sink1 and

δ2(p, a) 6= sink2

• ∀ai, p ∈ F2, δ((r, p, i), (ai, λ)) = (δ1(r, ai), p, i + 1),

• F = {(r, p, i) | r ∈ F1, p ∈ F2, i = n}.

Note thatM simulatesM1 andM2 making sure that both tracks are the same until

a final state ofM2 is reached. Then, the second track reads the symbolλ while the first

track reads the constantc, and the automaton goes to a final state whenc is consumed.

|Q| isO(|Q1|×|Q2|+n) since in the worst caseQ will contain all possible combinations

of states inQ1 andQ2 followed with a tail ofn states for recognizing the constantc.

For the automatonM resulting from the above construction we have,w ∈ L(M) if and

158

Chapter 7. Relational String Analysis

only if ŵ[1] = ŵ[2]c, ŵ[1] ∈ L(M1) andŵ[2] ∈ L(M2), i.e.,M is precise with respect

to X1 = X2c (within M1, M2), hence,X1 = X2c is regular expressible.

The Construction ofX1 = cX2: LetM1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉

be two DFAs that accept possible values of variablesX1 andX2, respectively. Below

we present the construction of a 2-track DFAM , such thatM is precise with respect to

X1 = cX2 within M1, M2. Let c = a1a2 . . . an, where∀1 ≤ i ≤ n, ai ∈ Σ andn is the

length of the constant stringc.

The intuition behind the construction ofM is as follows. In the initial stage (denoted

asinit below),M makes sure that the first track matches the constantc, while recording

the string that is read in the second track in a buffer (a vector of symbols) stored in

its state. Afterc is consumed,M goes to the next stage (denoted asmatchbelow) and

matches the symbols read in the first track with the next symbol stored in the buffer

while continuing to store the symbols read in the second track in the buffer. Note that,

thekth symbol read in track 2 has to be matched with the(k+n)th symbol read in track

1. So, the buffer stores the symbols read in track 2 until the corresponding symbol in

track 1 is observed.

Let ~v be a sizen vector. For1 ≤ i ≤ n,~v[i] ∈ Σ ∪ { ⊥}. The vector~v′ = ~v[i := a]

is defined as follows:~v′[i] = a and∀j 6= i, ~v′[j] = ~v[j]. M = 〈Q, Σ2, δ, I, F 〉 is

constructed as:

• Q ⊆ Q1 × Q2 × {1, . . . , n} × (Σ ∪ {⊥})n × {init, match},

159

Chapter 7. Relational String Analysis

• I = (I1, I2, 1, ~v⊥, init), where∀i, ~v⊥[i] = ⊥,

• ∀a ∈ Σ, 1 ≤ i < n, δ((r, p, i, ~v, init), (ai, a)) = (δ1(r, ai), δ2(p, a), i + 1, ~v[i :=

a], init),

• ∀a ∈ Σ, i = n, δ((r, p, i, ~v, init), (ai, a)) = (δ1(r, ai), δ2(p, a), 1, ~v[i := a], match),

• ∀a, b ∈ Σ, 1 ≤ i < n,~v[i] = a, δ((r, p, i, ~v, match), (a, b)) = (δ1(r, a), δ(p, b), i+

1, ~v[i := b], match),

• ∀a, b ∈ Σ, i = n,~v[i] = a, δ((r, p, i, ~v, match), (a, b)) = (δ1(r, a), δ(p, b), 1, ~v[i :=

b], match),

• ∀a ∈ Σ, p ∈ F2, 1 ≤ i < n,~v[i] = a, δ((r, p, i, ~v, match), (a, λ)) = (δ1(r, a), p, i+

1, ~v[i := ⊥], match),

• ∀a ∈ Σ, p ∈ F2, i = n,~v[i] = a, δ((r, p, i, ~v, match), (a, λ)) = (δ1(r, a), p, 1, ~v[i :=

⊥], match),

• F = {(r, p, i, ~v⊥, match) | r ∈ F1, p ∈ F2}.

160

Chapter 7. Relational String Analysis

SinceM accepts the set{w | ŵ[1] = cŵ[2], ŵ[1] ∈ L(M1), ŵ[2] ∈ L(M2)}, X1 =

cX2 is regular expressible. However, the number of states ofM is exponential inc.

Below, we show that the exponential number of states is inevitable.

Intractability of X1 = cX2: Consider the equationX1 = cX2, wherec is a constant

string of lengthn. Let L(M1) andL(M2) be regular languages. Define the 2-track

language:

L = {(x1x2, y1y2λ
n) | x1x2 ∈ L(M1), y1y2 ∈ L(M2), k ≥ n, |x1x2| = k, |x1| = |y1| =

n, x1 = c, x2 = y1y2}

Note that any automatonm that accepts the languageL defined above will be pre-

cise with respect to the the equationX1 = cX2 (within M1 andM2).

Theorem 12 Any nondeterministic finite automaton (NFA)M needs at least2n states

to acceptL.

Proof 5 Let c = 1n and consider the regular languagesL(M1) = (0 + 1)+ and

L(M2) = (0 + 1)+. SupposeM is an NFA acceptingL. Consider any pair of dis-

tinct stringsy1 andy′
1 of lengthn. ThenM will accept the following 2-track strings:

(1nx2, y1y2λ
n), wherex2, y1, y2 ∈ (0 + 1)+, k ≥ n, |1nx2| = k, |y1| = n, x2 =

y1y2, and

161

Chapter 7. Relational String Analysis

(1nx′
2, y

′
1y

′
2λ

n), wherex′
2, y

′
1, y

′
2 ∈ (0 + 1)+, k ≥ n, |1nx′

2| = k, |y′
1| = n, x′

2 =

y′
1y

′
2

Suppose in processing(1nx2, y1y2λ
n), M enters stateq after processing the initial 2-

track segment(1n, y1), and in processing(1nx′
2, y

′
1y

′
2λ

n), M enters stateq′ after pro-

cessing the initial 2-track segment(1n, y′
1). Thenq 6= q′; otherwise,M will also accept

(1nx2, y
′
1y2λ

n). This is a contradiction, sincex2 6= y′
1y2.

Since there are2n distinct stringsy of lengthn, it follows thatM must have at least

2n states.

The Construction of c = X1X2: Below we briefly describe the construction of a 2-

track DFAM , such thatM is precise with respect toc = X1X2 within the given regular

sets characterizing possible values ofX1 andX2. Assume thatc = a1 . . . an. We can

split c to two stringsa1 . . . ak andak+1 . . . an so thatc = a1 . . . akak+1 . . . an. There are

n+1 such splits. For each of them, ifa1 . . . ak ∈ L(M1) andak+1 . . . an ∈ L(M2), then

if k ≥ n − k, (a1 . . . ak, ak+1 . . . anλ
2k−n) should be accepted byM and ifk < n − k,

(a1 . . . akλ
n−2k, ak+1 . . . an) should be accepted byM . We can construct an automaton

M with O(n2) states that accepts this language by explicitly checking each of these

162

Chapter 7. Relational String Analysis

n + 1 cases. Since we can construct this 2-track DFA, it follows that c = X1X2 is

regular expressible.

Non-Regularity of X1 = X2X3: We first show thatX1 = X2X3 is not regular ex-

pressible, and later we give constructions of 3-track DFAs that over-approximate or

under-approximateX1 = X2X3.

Given M1, M2, M3, let L = {w | ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈ L(M1), ŵ[2] ∈

L(M2), ŵ[3] ∈ L(M3)}.

Theorem 13 L is not necessarily a regular language.

Proof 6 Let L(M1) = a+b+, L(M2) = a+, andL(M3) = b+. SupposeL is regular

and is accepted by a 3-track DFAM . ThenM when given a 3-track string consisting

of:

asbt

aiλs+t−i

bjλs+t−j

accepts if and only ifs = i and t = j. Clearly, we can construct a 3-track DFAM ′

which accepts 3-track strings of the form:

asbt

aiλs+t−i

biλs+t−i

163

Chapter 7. Relational String Analysis

We can then construct another 3-track DFAM ′′ which acceptsL(M) ∩ L(M ′). But

L(M ′′) consists of 3-track strings of the form:

aibi

aiλs+t−i

biλs+t−i

It follows that we can construct a 1-track NFA fromM ′′ which accepts the language

{aibi | i ≥ 1} (by erasing the second and third tracks by homomorphism), which is not

regular and leads to a contradiction.

The Approximation of X1 = X2X3: Below we propose an over approximation con-

struction forX1 = X2X3. Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉,

and M3 = 〈Q3, Σ, δ3, I3, F3〉 accept values ofX1, X2, andX3 respectively. M =

〈Q, Σ3, δ, I, F 〉 is constructed as follows.

• Q ⊆ Q1 × Q2 × Q3 × Q3,

• I = (I1, I2, I3, I3),

• ∀a, b ∈ Σ, δ((r, p, s, s′), (a, a, b)) = (δ1(r, a), δ2(p, a), δ3(s, b), s
′),

• ∀a, b ∈ Σ, p ∈ F2, s 6∈ F3, δ((r, p, s, s
′), (a, λ, b)) = (δ1(r, a), p, δ3(s, b), δ3(s

′, a)),

• ∀a ∈ Σ, p ∈ F2, s ∈ F3, δ((r, p, s, s
′), (a, λ, λ)) = (δ1(r, a), p, s, δ3(s

′, a)),

• ∀a ∈ Σ, p 6∈ F2, s ∈ F3, δ((r, p, s, s
′), (a, a, λ)) = (δ1(r, a), δ2(p, a), s, s′),

164

Chapter 7. Relational String Analysis

• F = {(r, p, s, s′) | r ∈ F1, p ∈ F2, s ∈ F3, s
′ ∈ F3}.

|Q| is O(|Q1|× |Q2|× |Q3|+ |Q1|× |Q3|× |Q3|). For allw ∈ L(M), the following

properties hold:

• ŵ[1] ∈ L(M1), ŵ[2] ∈ L(M2), ŵ[3] ∈ L(M3),

• ŵ[1] = ŵ[2]w′ andw′ ∈ L(M3),

Note thatw′ may not be equal tôw[3] (i.e., there existsw ∈ L(M), ŵ[1] 6=

ŵ[2]ŵ[3]), and henceM is not precise with respect toX1 = X2X3. On the other

hand, for anyw such thatŵ[1] = ŵ[2]ŵ[3], we havew ∈ L(M), henceM is a regular

over-approximation ofX1 = X2X3.

Below, we show a regularunder-approximation construction ofX1 = X2X3. Note

that if L(M2) is a finite set language, one can construct the DFAM that satisfiesX1 =

X2X3 by explicitly taking the union of the construction ofX1 = cX3 for all c ∈ L(M2).

If L(M2) is an infinite set language, we can still use this idea to construct a regular

under-approximation ofX1 = X2X3 by considering a (finite) subset ofL(M2) where

the length is bounded. Formally speaking, for eachk ≥ 0 we can constructMk, so

thatw ∈ L(Mk), ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈ L(M1), ŵ[3] ∈ L(M3), ŵ[2] ∈ L(M2) and

|ŵ[2]| ≤ k. It follows thatMk is a regularunder-approximation ofX1 = X2X3. The

following lemma holds by construction.

Lemma 14 L(Mk1
) ⊆ L(Mk2

) if k1 ≤ k2.

165

Chapter 7. Relational String Analysis

To sum up, ifL(M2) is a finite set language, there existsk (the length of the longest

accepted word) so thatL(Mk) is precise with respect toX1 = X2X3. If L(M2) is an

infinite set language, there does not exist suchk so thatL(Mk) is precise with respect

to X1 = X2X3, as we have proven non-regularity ofX1 = X2X3.

We say a regular under-approximationMκ is tightest if L(Mκ) is an

under-approximation ofX1 = X2X3 and for allM ′ whereM ′ is an under-approximation

of X1 = X2X3 we haveL(M ′) ⊆ L(Mκ). Since the precision of a regular under-

approximation can be always improved by adding new words to the language, the tight-

est regular under-approximation does not exist ifL(M2) is not finite.

7.2 Symbolic Reachability Analysis on Multi-track Au-

tomata

Our symbolic reachability analysis involves two main steps: forward fixpoint com-

putation and summarization.

7.2.1 Forward Fixpoint Computation

The first phase of our analysis is a standard forward fixpoint computation on multi-

tack DFAs. Each program point is associated with a single multi-track DFA, where

each track is associated with a single string variableX ∈ X. We useM [l] to denote

166

Chapter 7. Relational String Analysis

the multi-track automaton at the program labell. The forward fixpoint computation

algorithm is a standard work-queue algorithm. Initially, for all labelsl, L(M [l]) = ∅.

We iteratively compute the post-images of the statements and join the results to the

corresponding automata. For astmt in the form:X:= sexp, the post-image is computed

as:

POST(M, stmt) ≡ (∃X.M ∩ CONSTRUCT(X ′ = sexp, +))[X/X ′].

CONSTRUCT(exp, b) returns the DFA that accepts a regular approximation ofexp, where

b ∈ {+,−} indicates the direction (over or under, respectively) of approximation if

needed. During the construction, we recursively push the negations (¬) (and flip the di-

rection) inside to the basic expressions (bexp), and use the corresponding construction

of multi-track DFAs discussed in the previous section. We use function summaries to

handle function calls. Each functionf is summarized as a finite state transducer, de-

noted asMf , which captures the relations among input variables (parameters), denoted

asXp, and return values. The return values are tracked in the output track, denoted as

Xo. We discuss the generation of the transducerMf below. For astmt in the formX:=

call f(e1, . . . , en), the post-image is computed as:

POST(M, stmt) ≡ (∃X, Xp1
, . . .Xpn

.M ∩ MI ∩ Mf)[X/Xo],

167

Chapter 7. Relational String Analysis

whereMI = CONSTRUCT(
∧

i Xpi
= ei, +). The process terminates when we reach

a fixpoint. To accelerate the fixpoint computation, we extendour automata widening

operator [58], denoted as∇, to multi-track automata. We identify equivalence classes

according to specific equivalence conditions and merge states in the same equivalence

class [4, 7]. The following lemma shows that the equality relations among tracks are

preserved while widening multi-track automata.

Lemma 15 if L(M) ⊆ L(x = y) andL(M ′) ⊆ L(x = y), L(M∇M ′) ⊆ L(x = y).

Algorithm 9 CONSTRUCT(exp, b)
1: if exp is exp1 ∧ exp2 then
2: return CONSTRUCT(exp1 , b) ∩ CONSTRUCT(exp2 , b);
3: else ifexp is ¬(exp1 ∧ exp2) then
4: return CONSTRUCT(¬exp1, b) ∪ CONSTRUCT(¬exp2, b);
5: else ifexp is ¬(¬exp1) then
6: return CONSTRUCT(exp1 , b);
7: else ifexp is bexp then
8: return CONSTRUCT(bexp, b);
9: else ifexp is ¬bexp then

10: return COMPLEMENT(CONSTRUCT(bexp, b̄));
11: end if

For astmt in the form:X:= sexp, the post-image is computed as follows:

POST(M, stmt) ≡ (∃X.M ∩ CONSTRUCT(X ′ = sexp, +))[X/X ′].

We use function summaries to handle function calls. Each function f is summarized

as a finite state transducer, denoted asMf , which captures the relations among input

168

Chapter 7. Relational String Analysis

variables (parameters), denoted asXp, and return values. The return values are tracked

in the output track, denoted asXo. For astmt in the formX:= call f(e1, . . . , en),

POST(M , stmt) returns the result of(∃X, Xp1
, . . .Xpn

.M ∩ MI ∩ Mf)[X/Xo], where

MI = CONSTRUCT(
∧

i Xpi
= ei, +).

During the fixpoint computation, we report assertion failures if M [l] accepts some

string that violates the assertion labeledl. Note that at line 21 we compute an under

approximation of the assertion expression to ensure the soundness of our analysis. Fi-

nally, a program labell is not reachable ifL(M [l]) is empty. Our analysis is sound but

incomplete due to the following approximations: (1) regular approximation for non-

linear word equations, (2) the widening operation and (3) summarization.

Algorithm 10 PROPAGATE(m, l)
1: m′ := (m ∪ M [l])∇M [l];
2: if m′ 6⊆ M [l] then
3: M [l] := m′;
4: WQ.enqueue(l);
5: end if

7.2.2 Summarization

Similar to analysis on single track automata, we compute procedure summaries

in order to handle procedure calls. We assume parameter-passing with call-by-value

semantics and we are able to handle recursion. Each functionf is summarized as a

169

Chapter 7. Relational String Analysis

Algorithm 11 FORWARDRECAHABILITYANALYSIS(l0)
1: Init(M);
2: queueWQ;
3: WQ.enqueue(l0 : stmt0);
4: while WQ 6= NULL do
5: e := WQ.dequeue(); Lete bel : stmt;
6: if stmt is seqstmt then
7: m := POST(M [l], stmt);
8: PROPAGATE(m, l + 1);
9: end if

10: if stmt is if exp goto l′ then
11: m := M [l]∩ CONSTRUCT(exp, +);
12: if L(m) 6= ∅ then
13: PROPAGATE(m, l′);
14: end if
15: m := M [l]∩ CONSTRUCT(¬exp, +);
16: if L(m) 6= ∅ then
17: PROPAGATE(m, l + 1);
18: end if
19: end if
20: if stmt is assert exp then
21: m := CONSTRUCT(exp, −);
22: if L(M [l]) 6⊆ L(m) then
23: ASSERTFAILED (l);
24: else
25: PROPAGATE(M [l],l + 1);
26: end if
27: end if
28: if stmt is goto L then
29: for l′ ∈ L do
30: PROPAGATE(M [l],l′);
31: end for
32: end if
33: end while

170

Chapter 7. Relational String Analysis

multi-track DFA, denoted asMf , that captures the relation among its input variables

and return values.

During the summarization phase, (possibly recursive) functions are summarized as

unaligned multi-track DFAs that specify the relations among their inputs and return

values. The summarization approach has been discussed in Chapter 4. Briefly, we first

build (possibly cyclic) dependency graphs to specify how the inputs flow to the return

values. Each node in the dependency graph is associated withan unaligned multi-track

DFA that traces the relation among inputs and the value of that node. An unaligned

multi-track DFA is a multi-track DFA whereλs might not be right justified. Return

values of a function are represented with an auxiliary output track. Given a function

f with n parameters,Mf is an unaligned(n + 1)-track DFA, wheren tracks represent

the n input parameters and one trackXo is the output track representing the return

values. We iteratively compute post images of reachable relations and join the results

until we reach a fixpoint. Upon termination, the summary is the union of the unaligned

DFAs associated with the return nodes. The main difference is that to compose these

summaries at the call site, we also propose an alignment algorithm toalign (so thatλ’s

are right justified) an unaligned multi-track DFA. In Section 7.2.3, we discuss some

theoretical results about alignment problems and propose an approximate algorithm to

align unaligned multi-track automata.

171

Chapter 7. Relational String Analysis

Once the summary DFAMf has been computed, it is not necessary to reanalyze

the body off . To compute the post-image of a call tof we intersect the values of

input parameters withMf and use existential quantification to obtain the return values.

Let M be a one-track DFA associated withX whereL(M) = {b}. POST(M , X :=

call f(X)) returnsM ′ whereL(M ′) = ba∗ for the example function shown above.

As another example, letM be a2-track DFA associated withX, Y that is precise with

respect toX = Y . ThenPOST(M , X := call f(X)) returnsM ′ which is precise

with respect toX = Y.a∗ precisely capturing the relation betweenX andY after the

execution of the function call. As discussed above,M ′ is computed by(∃X, Xp1
.M ∩

MI ∩ Mf)[X/Xo], whereL(MI) = CONSTRUCT(Xp1
= X, +).

7.2.3 Alignment

In general,Mf can be an unaligned multi-track DFA (λs are not right justified)

and needed to bealignedbefore composition. Theorem 16 shows that an unaligned

multi-track DFA may not be definable by an aligned multi-track DFA.

Theorem 16 For anyn ≥ 2, there exists a languageL accepted by an unalignedn-

track DFAM that cannot be converted to any aligned DFAM ′.

Proof 7 Let L = {(aλ)i(cc)k | i, k ≥ 1}. Clearly,L can be accepted by an unaligned

2-track DFAM . Suppose we can convertM to an aligned 2-track DFAM ′. Let M ′

172

Chapter 7. Relational String Analysis

haves states. Consider the stringw = (ac)s(cλ)s. Thenw is accepted byM ′. Then

there existi, k ≥ 0 andj ≥ 1 such thatw decomposes intow = (ac)i(ac)j(ac)k(cλ)s,

wherei+j +k = s, and(ac)i(ac)mj(ac)k(cλ)s is accepted byM ′ for everym ≥ 0. Let

m = 2. Thenw′ = (ac)i(ac)2j(ac)k(cλ)s is accepted byM ′. But now, the first track of

w′ contains the stringas+jcs, and the second track containscs+j. Sincej ≥ 1, this is a

contradiction since the number ofc’s in the first track is less than the number ofc’s in

the second track.

Given an unaligned multi-track DFAM and a boundk, we constructM ′ that accepts

an over or underapproximation ofL(M) based onk. The construction is shown in

Appendix. The basic idea is to associate a bounded FIFO queue(up to sizek) with

the states ofM ′ to record the symbols seen on the track that is being aligned when

a transition that contains the symbolλ for that track is taken. Later, when a non-λ

symbol is seen on that track, it has to match the symbol that isat the head of the queue

if the queue is not empty. During the construction, if no queue exceeds sizek, then

we sayM is k-alignable, and the construction returns the precise alignedM ′ such that

L(M ′) = L(M). If M is notk-alignable, theunder-approximation construction rejects

all words that cause a queue to exceedk and returns anM ′ such thatL(M ′) ⊆ L(M),

while theover-approximation construction accepts those words that partially match the

173

Chapter 7. Relational String Analysis

contents of the queue (up to sizek) and returns anM ′ such thatL(M) ⊆ L(M ′). The

precision improves when we increasek.

Our approximate construction: We propose an approximatek-alignmentconstruc-

tion. Given an unaligned multi-track DFAM and a boundk, we constructM ′ that

accepts anoveror underapproximation ofL(M) based onk.

Let M = 〈Q, Σn, δ, I, F 〉 andΣn ⊆ (Σ ∪ {λ}) × . . . × (Σ ∪ {λ}). For α ∈ Σn,

α[i] ∈ Σ ∪ {λ} denotes theith character ofα andα[i := a] denotesα′ ∈ Σn such that

α′[i] = a and∀i 6= j, α′[j] = α[j]. We align one track ofM at a time. To alignM

completely, we iteratively align each track. Given a boundk and a tracki, we construct

M ′ such that the tracki is aligned inM ′. We assume that there is a sink state and all

unspecified transitions go to the sink state. Let̺⊥ be an empty queue and∗ denote+

or−. We constructM ′ = 〈Q′, Σn, δ′, I ′, F ′〉 as follows:

• Q′ ⊆ Q × Qqueue, whereQqueue ⊆ {+,−} × Σk.

• I ′ = (I, (+, ̺⊥)).

• F ′ = {(q, (∗, ̺⊥)) | q ∈ F)}

For eachδ(q, α) = q′,

• if α[i] ∈ Σ,

– δ′((q, (∗, ̺⊥)), α) = (q′, (−, ̺⊥)),

174

Chapter 7. Relational String Analysis

– δ′((q, (∗, ̺)), α[i := λ]) = (q′, (−, ̺′), if α[i] = ̺.head and̺ ′ = ̺.dequeue.

• if α[i] = λ,

– δ′((q, (−, ̺⊥)), α) = (q′, (−, ̺⊥)),

– δ′((q, (+, ̺)), α) = (q′, (−, ̺)),

– ∀a ∈ Σ̺, ̺′ = ̺.enqueue(a) and |̺′| ≤ k, δ′((q, (+, ̺)), α[i := a]) =

(q′, (+, ̺′)).

Σ̺ ⊆ Σ is the set of characters that can be reached in tracki after seeing the sequence

of symbols stored in̺. Precisely, letMi = 〈Qi, Σ, δ, Ii, Fi〉 accept{ŵ[i] | w ∈ L(M)},

thenΣ̺ = {a | q′ 6= sink, δi(I, ̺a) = q′}. Using Σ̺ (instead ofΣ) prevents the

construction from adding useless states that will end up transitioning to the sink state.

The above construction returns anunder-approximation ifM is notk-alignable. To

return anover-approximation, we make the following modifications. We first add two

extra states to the queue,{e, e′}, to denote that the queue capacity has been exceeded.

After the queue capacity is exceeded, we will stop enqueuingsymbols to the queue

when we seeλ. We continue to match and dequeue when we seea ∈ Σ until the queue

is empty. In both cases, we can output arbitrary charactera ∈ Σ or λ (e), but once we

outputλ, we can only outputλ thereafter (e′).

For eachδ(q, α) = q′,

• if α[i] ∈ Σ,

175

Chapter 7. Relational String Analysis

– δ′((q, ({e, e′}, ̺⊥)), α[i := λ]) = (q′, (e′, ̺⊥)),

– ∀a ∈ Σ, δ′((q, (e, ̺⊥)), α[i := a]) = (q′, (e, ̺⊥)),

– if α[i] = ̺.head and̺ ′ = ̺.dequeue.

∗ δ′((q, ({e, e′}, ̺)), α[i := λ]) = (q′, (e′, ̺′),

∗ ∀a ∈ Σ, δ′((q, (e, ̺)), α[i := a]) = (q′, (e, ̺′)),

• if α[i] = λ,

– if |̺| = k,

∗ ∀a ∈ Σ, δ′((q, (+, ̺)), α[i := a]) = (q′, (e, ̺)),

∗ δ′((q, (+, ̺)), α) = (q′, (e′, ̺)),

– δ′((q, ({e, e′}, ̺⊥)), α) = (q′, (e′, ̺⊥)),

– ∀a ∈ Σ, δ′((q, (e, ̺)), α[i := a]) = (q′, (e, ̺)).

7.3 String Abstractions

We present two string abstraction techniques,alphabet abstractionandrelation ab-

straction, and show that they can be combined to form different abstraction classes with

different levels of precision.

176

Chapter 7. Relational String Analysis

7.3.1 Alphabet Abstraction

Let Σ, a finite alphabet, be the concrete alphabet, and⋆ 6∈ Σ be a special symbol

to represent characters that are abstracted away. An abstract alphabet ofΣ is defined

asΣ′ ∪ {⋆}, whereΣ′ ⊂ Σ. The concrete alphabetΣ and its abstract alphabets form

a complete lattice, denoted asLΣ, of which the bottom, denoted asσ⊥, is {⋆} and the

top, denoted asσ⊤, is Σ. The partial order ofLΣ is defined as follows. Letσ1, σ2 be

two elements inLΣ. We say

σ1 ⊑ σ2, if (σ1 \ ⋆) ⊆ (σ2 \ ⋆), and σ1 ⊏ σ2, if σ1 ⊑ σ2 andσ1 6= σ2.

Let σ2 ⊏ σ1. An alphabet abstraction function overσ1, σ2, denoted asασ1,σ2
is a

function fromσ1 to σ2, such that for anya ∈ σ1, ασ1,σ2
(a) = a if a ∈ σ2 ; ασ1,σ2

(a) =

⋆, otherwise. An alphabet concretization function overσ1, σ2, denoted asγσ1,σ2
, is a

function fromσ2 to σ1, such that for anya ∈ σ2, γσ1,σ2
(a) = a if a 6= ⋆; otherwise

there exists ac whereγσ1,σ2
(a) = c andc ∈ σ1 \ (σ2 \ {⋆}).

An alphabet transducer overσ1 andσ2 is a 2-track DFAMσ1,σ2
= 〈Q, σ1×σ2, δ, q0, F 〉,

where

• Q = {q0, sink}, F = {q0}, and

• ∀a ∈ σ2, δ(q0, (a, a)) = q0,

• ∀a ∈ σ1 \ σ2, δ(q0, (a, ⋆)) = q0.

177

Chapter 7. Relational String Analysis

Let M be a single track DFA overσ1 with track X. Mσ1,σ2
(X, X ′) denotes the

alphabet transducer overσ1 andσ2 whereX andX ′ correspond to the input and output

tracks, respectively. We define the abstraction and concretization functions on automata

as:

• ασ1,σ2
(M) ≡ (∃X.M ∩ Mσ1,σ2

(X, X ′))[X/X ′], and

• γσ1,σ2
(M) ≡ ∃X ′.(M [X ′/X] ∩ Mσ1,σ2

(X, X ′)).

The definition can be extended to multi-track DFAs. LetM be a multi-track DFA

overσn
1 associated with{Xi|1 ≤ i ≤ n}. ασ1,σ2

(M) returns a multi-track DFA over

σn
2 . On the other hand, whileM is a multi-track DFA overσn

2 , γσ1,σ2
(M) returns a

multi-track DFA overσn
1 . We addδ(q0, (λ, λ)) = q0 to Mσ1,σ2

to deal with the padding

symbolλ. We useMσ1,σ2
(Xi, X

′
i) to denote the alphabet transducer associated with

tracksXi andX ′
i. The abstraction and concretization of a multi-track DFAM is done

track by track as follows:

• ασ1,σ2
(M) ≡ ∀Xi.(∃Xi.M ∩ Mσ1,σ2

(Xi, X
′
i))[Xi/X

′
i], and

• γσ1,σ2
(M) ≡ ∀Xi.(∃X ′

i.M [X ′
i/Xi] ∩ Mσ1,σ2

(Xi, X
′
i)).

7.3.2 Relation Abstraction

Let X = {X1, . . .Xn} be a finite set of variables. Letχ ⊆ 2X where∅ 6∈ χ. We say

χ defines a relation ofX if (1) for anyx,x′ ∈ χ, x 6⊆ x
′, and (2)

⋃
x∈χ x = X. The set

178

Chapter 7. Relational String Analysis

of χ that defines the relations ofX form a complete lattice, denoted asLX, of which

the bottom, denoted asχ⊥, is {{X1}, {X2}, {X3},{Xn}} (which corresponds to

the case where, for each program point,n single-track automata are used and each

automaton represents the set of values for a single string variable) and the top, denoted

asχ⊤, is {{X1, X2, . . . , Xn}} (which corresponds to the case where, for each program

point, a single multi-track automaton is used to represent the set of values for all string

variables where each string variable corresponds to one track). The partial order ofLX

is defined as follows: Letχ1, χ2 be two elements inLX. We say

• χ2 ⊑ χ1, if for any x ∈ χ2, there existsx′ ∈ χ1 such thatx ⊆ x
′.

• χ2 ⊏ χ1 if χ2 ⊑ χ1 andχ1 6= χ2.

Let χ2 ⊏ χ1. A relation abstraction function overχ1, χ2, denoted asαχ1,χ2
, is a

function fromχ1 to χ2, such that for anyx ∈ χ1, α(x) = x
′, wherex

′ ⊆ x and

x
′ ∈ χ2. A relation concretization function overχ1, χ2, denoted asγχ1,χ2

, is a function

from χ2 to χ1, such that for anyx′ ∈ χ2, γχ1,χ2
(x′) = x, wherex′ ⊆ x,x ∈ χ1.

For eachx ∈ χ, we use a|x|-track DFA, denoted asMx, where each track is

associated with a variable inx. For x′ ⊆ x, Mx ↓x′ is defined as the|x′|-track DFA

that accepts{w′ | w ∈ L(Mx), ∀Xi ∈ x
′, w′[i] = w[i])}, andMx′ ↑x is defined as the

|x|-track DFA that accepts{w | w′ ∈ L(Mx′), ∀Xi ∈ x
′, w[i] = w′[i])}.

179

Chapter 7. Relational String Analysis

Let Mχ = {Mx | x ∈ χ} be the set of DFAs ofχ. The set of string values

represented byMχ is defined as:L(
⋂

x∈χ Mx ↑xu
), wherexu = {X1, X2, . . . , Xn}.

That is, we extend the language of every automaton inMχ to all string variables and

then take their intersection.

Let χ2 ⊏ χ1. αχ1,χ2
(Mχ1

) returns an instance of the set of DFAs ofχ2, i.e.,

{Mx′ |x′ ∈ χ2}, where for eachx′ ∈ χ2, Mx′ = (
⋂

x∈χ1,x′∩x 6=∅ Mx ↑xu
) ↓x′ , where

xu = {Xi | Xi ∈ x,x ∈ χ1,x
′ ∩ x 6= ∅}.

γχ1,χ2
(Mχ2

) returns an instance of the set of DFAs ofχ1, i.e.,{Mx|x ∈ χ1}, where

for eachx ∈ χ1, Mx = (
⋂

x′∈χ2,x′∩x 6=∅(Mx′ ↑xu
)) ↓x, wherexu = {Xi | Xi ∈ x

′,x′ ∈

χ2,x
′ ∩ x 6= ∅}.

Both the alphabet and relation abstractions are conservative in the sense that the

automata generated by the abstraction functions recognizemore possible values for

the string variables than the input automata. On the other hand, the concretization

functions do not lose any precision, in the sense that, the automata generated by the

concretization functions recognize the same possible values for the string variables as

the input automata.

7.3.3 Heuristics for Abstraction Selection

An abstraction classis defined as a pair(χ, σ) whereχ ∈ LX andσ ∈ LΣ. The

abstraction classes ofX andΣ also form a complete lattice, of which the partial order

180

Chapter 7. Relational String Analysis

is defined as:(χ1, σ1) ⊑ (χ2, σ2) if χ1 ⊑ χ2 and σ1 ⊑ σ2. Given Σ and X =

{X1, . . . , Xn}, we can adjust the precision and performance of our analysisby selecting

different abstraction classes.

If we select the abstraction class(χ⊤, σ⊤), we conduct our most precise relational

string analysis. All the relations amongX that are regular expressible will be kept using

onen-track DFA at each program point. If we select(χ⊥, σ⊥), we only keep track of the

lengthof each string variable individually. Though we abstract away almost all string

relations and contents, this kind of path-sensitive (w.r.tlength conditions on a single

variable) size analysis can be used to detect buffer overflowvulnerabilities [20, 47]. If

we select(χ⊤, σ⊥), then we will be conducting relational size analysis. Finally, earlier

string analysis techniques that use DFA, e.g., our previouswork [58], correspond to the

abstraction class(χ⊥, σ⊤), where multiple single-track DFAs overΣ are used to encode

reachable states. As shown in [56,58], this type of analysisis useful for detecting XSS

and SQLCI vulnerabilities.

Given a string system and a property we propose a heuristic for selecting an abstrac-

tion class(χ, σ). Letxp denote the set of variables involved in the property we wish to

check andCp denote the set of characters. If the cardinality ofxp is less than or equal

to one, we setχ to χ⊥. That is, we abstract away all the relations among the string

variables. If there are more than one variables involved,χ is selected as follows: For

eachXi ∈ xp, we generate its dependency graph. Letxi denote the set of variables and

181

Chapter 7. Relational String Analysis

Ci be the set of characters that are associated with the nodes inthe dependency graph

of Xi. We selectχ as the least element ofLX, such that there existsx ∈ χ, xp ⊆ x, as

well as for eachXi ∈ xp, there existsx′ ∈ χ, xi ⊆ x
′. We selectσ as the least element

of LΣ, such thatCp ∪i Ci ⊆ σ.

Once an abstraction class is selected, we perform our reachability analysis using the

corresponding abstraction/concretization functions andthe operations defined below.

Let ασ denoteασ⊤,σ, andαχ denoteαχ⊤,χ. We uselog(|σ| + 1) bits to encode the

selected alphabet (including the padding symbolλ).

• ForMχ bop M
′
χ, bop ∈ {∪,∩,∇}, we return{Mx bop M ′

x | x ∈ χ}. The result

can be made more precise by refining the automata that have overlapping variable

sets so that their projections to the same set of variables are equal.

• For CONSTRUCT(exp, +), we returnασ(CONSTRUCT(exp, +)).

• For CONSTRUCT(exp, −), we returnασ(CONSTRUCT(exp, +)) ∩M⋆̄, whereM⋆̄

accepts arbitrary non-⋆ words (i.e.,L(M⋆̄) = {w | w ∈ (σ \ {⋆})∗}).

• ForMχ ∩Mexp, letxexp denote the set of variables that are associated withMexp.

xu = ∪x∈χ,x∩xexp 6=∅{Xi | Xi ∈ x}. We first generate a|xu|-track DFAMxu
=

Mexp ↑xu

⋂
x⊆xu

Mx ↑xu
. We returnM′

χ = {Mxu
↓x | x ⊆ xu,x ∈ χ} ∪

{Mx | x 6⊆ xu,x ∈ χ}.

182

Chapter 7. Relational String Analysis

7.3.4 Handling Complex String Operations

We extend our analysis to other complex string operations, e.g., replacement, that

have been defined using single-track automata [58]. To do so,we first extract the values

of each argument fromMχ as a single track DFA. We compute the result of the string

operation using these single-track DFAs accordingly. The post image ofMχ against

the operation can then be computed using the result. We also modify these operations

to ensure the soundness of our approach while using an abstract alphabet. Consider

REPLACE(M1 , M2, M3) [58] that returns the DFA accepts{w1c1w2c2 . . . wkckwk+1 | k >

0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈ L(M2), wi does not contain any sub-

string accepted byM2, ci ∈ L(M3)}. AssumeM1, M2, M3 over σ. We return

ασ(REPLACE(γσ (M1), γσ(M2), γσ(M3)) if L(M1) 6⊆ L(M⋆̄) andL(M2) 6⊆ L(M⋆̄),

so that all possible results in the concrete domain are included in the abstract domain

after abstraction. We return REPLACE(M1 , M2, M3), otherwise.

7.4 Experiments

We evaluate our approach against three kinds of benchmarks:1) Basic benchmarks,

2) MFE benchmarks, and 3) XSS benchmarks. These benchmarks represent typical

183

Chapter 7. Relational String Analysis

string manipulating programs along with string propertiesthat address severe web vul-

nerabilities.

Basic benchmarks:These examples demonstrate that our approach can prove implicit

equality properties of string systems. We wrote two small programs. CheckBranch

(B1) has if branch (X1 = X2) and else branch (X1 6= X2). In the else branch, we

assign a constant stringc to X1 and then assign the same constant string toX2. We

check at the merge point whetherX1 = X2. CheckLoop (B2) is similar to the example

from Section 2, where we assignX1 andX2 the same constant string at the beginning,

and iteratively append another constant string to both in aninfinite loop. We check at

the end point of the loop whetherX1 = X2. Let M accept the values ofX1 andX2

upon termination. The equality assertion holds whenL(M) ⊆ L(Ma), whereMa is

CONSTRUCT(X1 = X2, −).

MFE benchmarks: This set of benchmarks show that the precision that is obtained

using multi-track DFAs can help us in removing false positives generated by single-

track automata based string analysis. These benchmarks representmalicious file ex-

ecution(MFE) attacks. Such vulnerabilities are caused because developers directly

use or concatenate potentially hostile input with file or stream functions, or improp-

erly trust input files. We systematically searched web applications for program points

that execute file functions (include, fopen, etc) whose arguments may be influenced

184

Chapter 7. Relational String Analysis

by external inputs. At these program points, we check whether the retrieved files and

the external inputs are consistent with what the developersintend. For instance, in

pblguestbook.php distributed with Pblguestbook-1.32, one possible violation is that

$_GET[’type’] is A but the retrieved file ispblguestbook back up B.txt .

We manually generate a multi-track DFAMvul that accepts a set of possible violations

for each benchmark, and apply our analysis on the sliced program segments. Upon

termination, we report that the file function is vulnerable if L(M) ∩ L(Mvul) 6= ∅.

M is the composed DFA of the listed single-track DFAs in the single-track analy-

sis. M1: PBLguestbook-1.32, pblguestbook.php (536). 536 denotes the line num-

ber of the sink function in the PHP script. M2: MyEasyMarket-4.1, prod.php (94).

M3: MyEasyMarket-4.1, prod.php (189). M4: php-fusion-6.01, db backup.php (111).

M5: php-fusion-6.01, forumsprune.php (28). These test applications are available at

http://www.cs.ucsb.edu/ ˜ vlab/application/test-apps.tar.gz .

XSS benchmarks: In this set of benchmarks, we check the existence of Cross-Site

Scripting (XSS) vulnerabilities against known vulnerableWeb applications.

S1: MyEasyMarket-4.1, trans.php (218). S2: Aphpkb-0.71, saa.php(87), and S3:

BloggIT 1.0, admin.php (23). We check whether at a specific program point, a sen-

sitive function may take an attack string as its input. If so,we say that the program

is vulnerable for the given attack pattern. To identify XSS attacks, we check inter-

section emptiness against all possible values of the input of the sensitive function at a

185

Chapter 7. Relational String Analysis

(χ⊥, σ⊤)
Result DFA Time Memory

state(bdd) user+sys(sec) (kb)

B1 n 33(477) 0.027 + 0.006 410
B2 n 9(120) 0.022+0.008 484
M1 n 56(801) 0.027+0.003 621
M2 n 22(495) 0.013+0.004 555
M3 n 5(113) 0.008+0.002 417
M4 n 1201(25949) 0.226+0.025 9495
M5 n 211(3195) 0.049+0.008 1676

Table 7.1: Experimental Results against Basic and MFE Benchmarks Using Single-
track Automata.

given program point and the attack strings specified as a regular language. All three

benchmarks are vulnerable. We also modified/inserted sanitization routines to these

benchmarks (denoted as S1’, S2’, and S3’). These test benchmarks are available at

http://www.cs.ucsb.edu/ ˜ vlab/stranger .

Experimental Results: Table 7.1, 7.2, and 7.3 summarize the results for the first two

benchmarks where we check properties depending on the relations of variables. The

notation is explained as the following: DFA: the final (composed) DFA associated with

the checked program point, state: number of states, and bdd:number of bdd nodes.

We start from(χ⊥, σ⊤) (the analysis proposed in [57, 58]). As shown in Table 7.1,

for all these benchmarks, we fail to prove the properties using single-track automata

(”n” indicates that the property does not hold). We refine theabstraction class to

(χ, σ⊤), whereχ is selected for relation concretization by our heuristic, to perform a

186

Chapter 7. Relational String Analysis

(χ, σ⊤)
Result DFA Time Memory

state(bdd) user+sys(sec) (kb)

B1 y 14(193) 0.070 + 0.009 918
B2 y 5(60) 0.025+0.006 293
M1 y 50(3551) 0.059+0.002 1294
M2 y 21(604) 0.040+0.004 996
M3 y 3(276) 0.018+0.001 465
M4 y 181(9893) 0.784+0.07 19322
M5 y 62(2423) 0.097+0.005 1756

Table 7.2: Experimental Results against Basic and MFE Benchmarks Using Multi-
track Automata.

(χ, σ)
Result DFA Time Memory

state(bdd) user+sys(sec) (kb)

B1 y 10(61) 0.009 + 0.002 382
B2 y 5(16) 0.001+0.002 135
M1 y 54(556) 0.015+0.004 517
M2 y 22(179) 0.007+0.003 538
M3 y 3(49) 0.003+0.002 298
M4 y 175(4137) 0.218+0.13 5945
M5 y 66(1173) 0.033+0.003 782

Table 7.3: Experimental Results against Basic and MFE Benchmarks Using Multi-
track Automata and Alphabet Abstraction.

187

Chapter 7. Relational String Analysis

more precise analysis. As shown in Table 7.2, we prove all properties using multi-track

automata (”y” indicates that the property holds). Finally,we use the abstraction class

(χ, σ), whereσ is also selected for alphabet abstraction by our heuristic.As shown in

Table 7.3, we prove all properties with better performance in terms of both time and

memory using abstract alphabet. This result indicates thatour heuristic picks a good

abstraction class that is precise enough to prove the properties while coarse enough

to be efficiently computed. Using the presented techniques,we can prove properties

that we are not able to prove using multiple single-track automata, and by using our

abstraction techniques we can improve the performance.

Table 7.4 and Table 7.5 summarize the results for checking the XSS benchmarks.

The property holds if the benchmark is not vulnerable. Again, we start from(χ⊥, σ⊤).

We fail to prove the property for S1, S2, and S3, which might bedue to false alarms. We

refine the abstraction class to(χ, σ⊤), whereχ is manually selected so that all branch

conditions are precisely modeled. We still fail to prove theproperty for S1, S2, and

S3. We identify that all these benchmarks include a real vulnerability and, hence, both

analyses report correct results without false alarms. We manually insert/modify the

sanitization routines to remove the vulnerabilities in S1,S2, and S3. Using(χ⊥, σ⊤),

we are able to prove the property against the modified benchmarks (S1’, S2’, S3’).

We change the abstraction class to(χ⊥, σ), whereσ is selected by our heuristic, to

perform a more coarse analysis. We are still able to concludethat S1’, S2’, and S3’

188

Chapter 7. Relational String Analysis

(χ⊥, σ⊤)
Result DFA Time Memory

state(bdd) user+sys(sec) (kb)
S1 n 17(148) 0.010+0.002 444
S2 n 27(229) 0.035+0.002 895
S3 n 79(633) 0.062+0.005 1696

(χ⊥, σ⊤)
S1’ y 17(147) 0.010+0.002 382
S2’ y 17(141) 0.240+0.012 5686
S3’ y 127(1142) 0.436+0.008 6201

Table 7.4: Experimental Results against XSS Benchmarks.

(χ, σ⊤)
Result DFA Time Memory

state(bdd) user+sys(sec) (kb)
S1 n 65(1629) 0.195+0.150 1231
S2 n 47(2714) 0.153+0.008 2684
S3 n 79(1900) 0.226+0.003 2826

(χ⊥, σ)
S1’ y 17(89) 0.004+0.002 287
S2’ y 9(48) 0.036+0.005 2155
S3’ y 125(743) 0.297+0.002 3802

Table 7.5:Experimental Results against XSS Benchmarks Using Multi-track Automata
and Alphabet Abstraction.

are not vulnerable but with better performance in terms of both time and memory.

The experimental result shows that using the presented abstraction techniques, we can

improve the performance of earlier string analysis techniques. It also shows that for

this set of benchmarks, it is appropriate using multiple single-track automata, which

matches our heuristic.

189

Chapter 8

Stranger Tool

We present a new tool calledSTRANGER (STRing AutomatoN GEneratoR) that can

be used to check the correctness of string manipulation operations in Web applications

with respect to known attacks.STRANGER implements an automata-based approach [56,

58] for automatic verification of string manipulating programs based on symbolic string

analysis. String analysis is a static analysis technique that determines the values that a

string expression can take during program execution at a given program point.

STRANGER encodes the set of string values that string variables can take as deter-

ministic finite automata (DFAs).STRANGER implements both thepre- andpost-image

computations of common string functions on DFAs, includinga novel algorithm for

language-based replacement [58]. This replacement function takes three DFAs as argu-

ments and outputs a DFA and can be used to model PHP replacement commands, e.g.,

190

Chapter 8. Stranger Tool

preg replace() andstr replace() , as well as many PHP sanitization routines,

e.g.,addslashes() , htmlspecialchars() andmysql real escape string() .

STRANGER implements all string manipulation functions using a symbolic automata rep-

resentation (MBDD representation from the MONA automata package [9]) and lever-

ages efficient manipulations on MBDDs such as determinization and minimization.

This symbolic encoding also enablesSTRANGER to deal with large alphabets.

STRANGER combines forward and backward reachability analyses [56] and is capa-

ble of (1) checking the correctness of sanitization routines and proving that programs

are free from specified attacks (with respect to attack patterns), and (2) identifying vul-

nerable programs, as well as generating non-trivial vulnerability signatures. Using for-

ward reachability analysis,STRANGER computes an over-approximation of all possible

values that string variables can take at each program point.If this conservative approx-

imation does not include any attack pattern,STRANGER concludes that the program does

not contain any vulnerabilities. Otherwise, intersectingthese with attack patterns yields

the potential attack strings. Using backward analysisSTRANGER automatically generates

string-based vulnerability signatures, i.e., a characterization that includes all malicious

inputs that can be used to generate attack strings. In addition to identifying existing

vulnerabilities and their causes, these vulnerability signatures can be used to filter out

malicious inputs.

191

Chapter 8. Stranger Tool

8.1 Tool Description

STRANGER uses Pixy developed by Jovanovic et al. [31] as a front end andthe

MONA [9] automata package developed by Klarlund et al. for automata manipulation.

STRANGER takes a PHP program and a set of attack patterns as input and automatically

analyzes it and outputs the possible XSS, SQL Injection, or MFE vulnerabilities (char-

acterized as attack patterns) in the program. For each inputthat leads to a vulnerability,

it also outputs the vulnerability signature, i.e., an automaton (in a dot format) that char-

acterizes all possible string values for this input which may exploit the vulnerability.

The architecture ofSTRANGER is shown in Figure 8.1. The tool consists of the following

parts.

Figure 8.1: The Architecture of STRANGER

192

Chapter 8. Stranger Tool

8.1.1 PHP Parser and Taint Analyzer

The first step in our analysis is done by Pixy [31], a taint analysis tool for detecting

web application vulnerabilities. Pixy parses the PHP program and constructs the con-

trol flow graph (CFG). PHP programs do not have a single entry point as in some other

languages such as C and Java, so we process each script by itself along with all files

included by that script. The CFG is passed to the taint analyzer in which alias and de-

pendency analyses are performed to generate dependency graphs. A dependency graph

specifies how the inputs flow to a sensitive sink with respect to string operations. The

number of its nodes is linear in the number of the string operations in the program with

respect to a static single assignment representation. Loopstructures generate cyclic

dependency relations. If no tainted data flow to the sink, taint analysis reports the de-

pendency graph to be secure; otherwise, the dependency graph is tainted and passed to

the string analyzer for more inspection.

8.1.2 String Analyzer

The string analyzer implements our (forward and backward) vulnerability analy-

sis [56] on the tainted dependency graphs found by the taint analysis. The dependency

graphs are pre-processed to optimize the reachability analyses. First, a new acyclic de-

pendency graph is built where all the nodes in a cycle (identifying cyclic dependency

relations) are replaced by a single strongly connected component (SCC) node. The vul-

193

Chapter 8. Stranger Tool

nerability analysis is conducted on the acyclic graph so that the nodes that are not in a

cycle are processed only once. In the forward analysis, we propagate the post images to

nodes in topological order, initializing input nodes to DFAs accepting arbitrary strings.

Upon termination, we intersect the language of the DFA of thesink node with the attack

pattern. If the intersection is empty, we conclude that the sink is not vulnerable with re-

spect to the attack pattern. Otherwise, we perform the backward analysis and propagate

the pre images to nodes in the reverse topological order, initializing the sink node to a

DFA that accepts the intersection of the result of the forward analysis and the attack

pattern. Upon termination, the vulnerability signatures are the results of the backward

analysis for each input node. For both analyses, when we hit an SCC node, we switch to

a work queue fixpoint computation [56] on nodes that are part of the SCC represented

by the SCC node. During the fixpoint computation we apply automata widening [4] on

reachable states to accelerate the convergence of the fixpoint computation. We added

the ability to choose when to apply the widening operator. This option enables compu-

tation of the precise fixpoint in cases where the fixpoint computations converges after a

certain number of iterations without widening. We also incorporate a coarse widening

operator [4] that guarantees the convergence to avoid potential infinite iterations of the

fixpoint computation.

194

Chapter 8. Stranger Tool

8.1.3 String Manipulation Library

The string manipulation library (SML) handles all core string and automata opera-

tions such as replacement, concatenation, prefix, suffix, intersection, union, and widen.

During the vulnerability analysis, all string and automatamanipulation operations that

are needed to compute the values of a node in a dependency graph are sent to SML

along with the string and/or automata parameters. SML, then, executes the operation

and returns back the result as an automaton. A Java class calledStrangerAutomaton

has been used as the type of the parameters and results. The class follows a well de-

fined interface so that other automata packages can be plugged in and used with our

string analyzer instead of SML. SML is also decoupled from the vulnerability analysis

component so that it can be used with other string analysis tools.StrangerAutomaton

encapsulateslibstranger.so shared library that has the actual string manipulation code

implemented in C to get a faster computation and a tight control on memory. We used

JNA (Java Native Access) to bridge the two languages. Another feature of Stranger is

an option to produce a C trace of all string and automaton operations performed during

a run to allow us to debug the code directly in gdb. This can be generalized to produce

a higher intermediate language that can be used with other string analysis backends that

can not be plugged directly into Stranger.

195

Chapter 8. Stranger Tool

8.2 Experiments and Discussions

We have experimented withSTRANGERon several benchmarks extracted from known

vulnerable web applications [58]. For each vulnerable benchmark, we also generated

a modified version where string manipulation errors are fixed. STRANGER analyzed all

benchmarks within a minute. It successfully reported all known vulnerabilities, gen-

erated the vulnerability signatures, and verified that the modified version is secure and

free from the previously reported vulnerabilities with respect to the attack patterns.

We have conducted a case study onSchoolmate-1.5.4 - a PHP web applica-

tion for school administration.Schoolmate consists of 63 PHP files and 8181 lines

of code. Using a machine with Intel Core 2 Due 2.5GHz with 4 GB of memory running

Linux Ubuntu 8.04, it took 22 minutes to analyze the whole application. During the

analysis we checked 898 XSS sinks and consumed 281 MB of memory. Stranger re-

ported 153 XSS vulnerabilities with respect to the attack patternΣ∗ < scriptΣ∗. That

is, there are at most 153 sensitive sinks that may take a string that contains< script

as its input at run time. We manually inspected these vulnerabilities and identified 105

actual vulnerabilities (48 false alarms). The false positive rate ofSTRANGER is around

31.3%. 39 of these false alarms are caused by infeasible paths to exploit such vulnera-

bilities. We can eliminate all these false positives by performing path sensitive analysis

using multi-track automata. 6 of the false alarms are due to unmodeled built-in PHP

196

Chapter 8. Stranger Tool

functions. Three of these functions, e.g., pdf conversion,can be categorized as trusted

functions. The remaining unmodelled functions represent aset of functions that may

cause a vulnerability but are hard to model using the string operations in our string

manipulation library. 3 of the false alarms were the result of unavailable user written

functions. These false alarms are caused by different execution entries. Suppose that

a.php defines functionf , b.php uses the functionf but does not includea.php and

c.php includes botha.php andb.php. When we analyzea.php and b.php as part of

c.php, we will not get a false alarm. However, when we analyzeb.php by itself (since

a.php is not included, we were not able to find the definition of the functionf), we will

conservatively returnΣ∗ as the return value of functionf . On the other hand, while run-

ning b.php directly, the PHP interpreter will abort the execution due to an unavailable

functionf .

We have also conducted another case study onSimpGB-1.49.0 - a PHP guest-

book web application.SimpGB consists of 153 php files containing 44000+ lines of

code. Using a machine with Intel Core 2 Due 2.5 GHz with 4GB of memory running

Linux Ubuntu 8.04,STRANGER took 231 minutes to check XSS vulnerabilities for all en-

tries of executable PHP scripts and concluded 304 possible vulnerabilities out of 15115

sinks.STRANGER took 175 minutes to reveal 172 possible SQL Injection vulnerabilities

from 1082 sinks, and 151 minutes to reveal 26 possible MFE vulnerabilities from 236

sinks.

197

Chapter 8. Stranger Tool

In sum, we presented a string analysis tool for verification of web applications,

focusing on SQLI, XSS and MFE attacks. In addition to identifying vulnerabilities

and generating vulnerability signatures of vulnerable applications,STRANGER can also

verify the absence of vulnerabilities in applications (with respect to attack patterns)

that use proper sanitization. Compared to grammar-based string analysis tools [15, 38,

48], STRANGER features specific automata-based techniques including automata widen-

ing [4], language-based replacement [58] and symbolic automata encoding and manipu-

lation [9]. STRANGER and several benchmarks are available at

http://www.cs.ucsb.edu/ ∼vlab/stranger .

198

Chapter 9

Related Work

Static analysis of strings in programs has been an active research area with the

goal of finding and eliminating security vulnerabilities caused by the misuse of string

variables. There have been two separate branches of research in this area: 1)String

analysisthat focuses on statically identifying all possible valuesof a string expression

at a program point in order to eliminate vulnerabilities such as SQL injection and cross-

site scripting (XSS) attacks [1,15,52,58], and 2)Size analysisthat focuses on statically

identifying all possible lengths of a string expression at aprogram point in order to

eliminate buffer overflow errors [20,22,46]. In this chapter, we review the related work

on string analysis, size analysis, and composite analysis.

199

Chapter 9. Related Work

9.1 String Analysis

Due to its importance in security, string analysis has been widely studied. Chris-

tensen, Møller and Schwartzbach [15] propose a grammar-based string analysis (im-

plemented in a tool called JSA) to statically determine the values of string expressions

in Java programs. They convert the flow graph into a context free grammar where each

string variable corresponds to a nonterminal, and each string operation corresponds to

a production rule. Then, they convert this grammar to a regular language by computing

an over-approximation.

Kirkegaard et al. apply JSA to static analysis of XML transformations in Java pro-

grams [35] by using DTD schemas as types and modeling the effects of XML transfor-

mation operations. Gould et al. [24] use the grammar-based string analysis technique to

check for errors in dynamically generated SQL query stringsin Java-based web applica-

tions [15]. Christodorescu et al. [16] present an implementation of the grammar-based

string analysis technique for executable programs for the x86 architecture.

Minamide [38] extends the grammar-based string analysis technique by providing

support for string-based replacement operations. He uses finite-state transducers to

model replace operations. He describes a string analysis tool similar to JSA to stati-

cally detect cross-site scripting vulnerabilities and to validate pages generated by Web

200

Chapter 9. Related Work

applications written in the PHP language. Instead of approximating the grammar as a

regular language, he performs his analysis directly on the context free grammar.

Wassermann et al. [48, 49] propose grammar-based static string analyses to detect

SQL injections and XSS, following Minamide’s approach [38]. There are some other

tools for string analysis [14,21,43,52]. Shannon et al. [43] use forward bounded sym-

bolic execution to perform string analysis on Java programs. Similar to our approach,

they use automata to represent path constraints and to encode the values of string vari-

ables. They support trim and substring operations. Xie and Aiken [52] support string

assignment and validation operations. Fu et al. [21] and Choi et al. [14] support string-

based replacement (as opposed to language-based replacement). None of the tools

mentioned above address language-based replacement operations. This is a shortcom-

ing that causes the approximations computed by these tools to be too coarse for the

analysis of some input sanitization routines.

Language-based replacement has been discussed in computational linguistics [23,

32, 40, 45]. These algorithms are based on the composition offinite state transducers.

By composing specific transducers, constraints like longest match and first match can

be precisely modeled. However, each composition may resultin a quadratic increase

in the size of the non-deterministic automaton, and is more likely to blow-up compared

to our construction. The transducer-based replacement function [40] has been imple-

mented in Finite State Automata utilities (FSA) [44], whereautomata are stored and

201

Chapter 9. Related Work

manipulated using an explicit representation. We use a symbolic DFA representation

based on MBDDs. This symbolic encoding enabled us to performcomplex automata

operations, such as closure, concatenation, replace, and widening, efficiently using the

MBDDs.

Balzarotti et al. [1] combine both dynamic and static analysis techniques to verify

PHP programs. They support language-based replacement by incorporating FSA [44],

but they only support bounded computation for loops and approximate variables up-

dated in a loop as arbitrary strings once the computation does not converge within a

fixed bound. We incorporate the widening operator in [4] to tackle this problem and

obtain a tighter approximation that enables us to verify a larger set of programs.

Choi et al. [14] also investigate a widening method to analyze strings. Their widen-

ing operator is defined on strings and the widening of a set of strings is achieved by

applying the widening operator pairwise to each string pair. The widening operator we

use is defined on automata, and was originally proposed for arithmetic constraints [4].

The intuition behind this widening operator is applicable to any symbolic fixpoint com-

putation that uses automata. In [4] it is shown that, for a restricted class of systems, the

widening operator computes the precise fixpoint. We extend this result to our analy-

sis. In our experiments we demonstrate that the over-approximation computed by this

widening operator works well in proving the type of properties that we are interested

in.

202

Chapter 9. Related Work

There are several recent string analysis tools that use symbolic string analysis based

on DFA encodings [21,43,58]. Some of them are based on symbolic execution and use

a DFA representation to model and to verify the string manipulation operations in Java

programs [21,43].

None of the previous work we mentioned so far address vulnerability signature and

sanitization generation. Wassermann et al. [50] use stringanalysis in test input gener-

ation for Web applications. Their approach is based on concolic execution [42], where

results of a concrete execution is used to collect constraints on program execution.

These constraints are then used to generate new test cases. They use an automata based

backward image computation based on transducers (which is similar to our backward

analysis) to propagate constraints on string variables. However, they do not discuss

replacement operations which are crucial for string manipulation, and their approach

targets test generation rather than generating a sound approximation of all possible in-

puts that can exploit a vulnerability. Moreover, their approach does not provide a sound

approximation in the presence of loops.

Compared to recent work on attack generation (for example [34]), we propose a

sound static analysis approach that characterizes all possible inputs that can exploit a

given attack pattern, rather than generating concrete attacks using dynamic analysis

techniques based on given exploits.

203

Chapter 9. Related Work

There has been earlier work on vulnerability signature generation [10, 11, 18]. The

techniques discussed in [18] and [10] require an input that exploits a vulnerability (i.e.,

an exploit) in order to generate the vulnerability signatures. For example, in [18], this

is obtained by running an instrumented version of the program. Our approach does not

need an exploit as input since we combine forward and backward symbolic analyses.

The approach presented in [11] is a backward analysis similar to our backward

analysis. However, they require loop invariants to be provided by the user in order to

handle loops, whereas we use an automated approach based on widening. Also, they

focus on weakest precondition computation for binary programs. None of the earlier

results on vulnerability signature generation [10, 11, 18]focus on string manipulation

operations. Instead, they use existing symbolic executionengines, which cannot handle

the string manipulation operations that we focus on in this dissertation. In order to an-

alyze vulnerabilities of PHP applications, it is necessaryto handle string manipulation

operations faithfully as we do in our work. We also generate sanitization statements

that repair the bad inputs which has not been done before to the best of our knowledge.

Furthermore, all of the results mentioned above use single-track DFAs and encode

the reachable configurations of each string variable separately. This can cause two

problems: 1) Branch conditions that check relations among different string variables

can lead to imprecision in the analysis, resulting in false positives. 2) It is not possi-

ble to check invariants that refer to more than one string variable using these earlier

204

Chapter 9. Related Work

techniques. Our multi-track automata encoding not only improves the precision of the

string analysis but also enables verification of propertiesthat cannot be verified with the

previous approaches. To the best of our knowledge, our approach is the first relational

string analysis technique.

We have also presented alphabet and relation abstractions that enable us to adjust

the precision and performance of our analysis. Compared to abstraction techniques on

automata [7], our abstractions focus on the values of the string variables and the rela-

tions among them. In the heuristic we propose, the selectionof a suitable abstraction

class can be guided by the constants and relations appearingin the program and the

property.

The use of automata as a symbolic representation for verification has been investi-

gated in other contexts (e.g., [8]). In this dissertation, we focus on verification of string

manipulating programs.

There has been some recent work on solving string constraints. Hooimeijer and

Weimer [28] present an automata-based decision procedure for solving equations over

regular language variables. Our techniques can be used in solving their string con-

straints. In addition, we can also (conservatively) deal with complex string operations,

e.g., replacement. Kiezun et al. [33] presentHAMPI, a SAT-based solver for string con-

straints over bounded string variables. Given a set of constraints (including membership

of regular languages),HAMPI outputs a string that satisfies all the constraints, or reports

205

Chapter 9. Related Work

that the constraints are unsatisfiable. Bjoner et al. [6] present a path feasibility analysis

based on solving bounded path conditions for string manipulating programs. Instead

of solving string constraints directly, they solve their length constraints using a SMT

solver. If the length constraints are unsatisfiable, it implies that the string constraints are

unsatisfiable. If the length constraints are satisfiable, they use the satisfying assignment

to bound the length of string variables and solve the string constraints over bounded

string variables.

Finally, we have investigated the boundary of decidabilityfor the string verification

problem. Bjørner et al. [6] show an undecidability result with the replace operation. We

show that even when only the concatenation operation is allowed the string verification

problem is undecidable for deterministic string systems with only three unary string

variables and non-deterministic string systems with only two string variables if the

comparison of two variables are allowed.

9.2 Size Analysis

Size analysis is a crucial problem in software security. Various software defects,

such as array out of bound errors and memory overflow errors, can be discovered by

tracing object sizes without knowing the contents of the objects. Various techniques

206

Chapter 9. Related Work

that use integer variables and integer constraints to verify size properties have been

proposed in the past [13,30,54,55,60].

Hughes et al. [30] present a sound semantic model of size types to verify the prop-

erties of reactive systems. They show that various essential program properties, such

as function productivity, memory leaks, array bounds and the termination of some re-

stricted functions, can be reduced to type checking problems. The advantages of type

analysis include a) the soundness proof and b) the efficient type checking algorithm.

Hughes’ work was the first paper on using size types to analyzeprograms.

Chin et al. [13] extend size types to the verification of object-oriented languages by

annotations. They annotate an abstract data type for each object with size invariants,

which could then be used to infer size properties among objects. They propose an

intermediate language, called OIMP, to capture the size information of programs (such

as C++/Java programs) via an annotated type system. One advantage of their approach

is that it can handle shared objects.

In our earlier work [60], we apply size analysis to a specification language: Object

Constraint Language (OCL), which is part of the Unified Modeling Language (UML).

Instead of annotating types on objects, we verify specification consistency on size prop-

erties using automata-based symbolic analysis of integer variables. We evaluate our

approach against the specification of JAVA card APIs and reveal several unknown er-

207

Chapter 9. Related Work

rors. Verifying invariants related to integer variables has also been applied to shape

analysis [54,55].

9.3 Composite Analysis

In this dissertation, we present a composite symbolic verification technique [12] that

combines string [1,15,52,58] and size [20,22,46] analyseswith the goal of improving

the precision of both. We use a forward fixpoint computation to compute the possi-

ble values of string and integer variables and to discover the relationships among the

lengths of the string variables and integer variables. Similar to prior size analysis tech-

niques [20, 22, 46] we associate each string variable with anauxiliary integer variable

that represents its length. At each program point, we symbolically compute all possible

values of all integer variables (including the auxiliary variables), as well as all possible

values of all string variables. The reachable values of all integer variables are over-

approximated as a Presburger arithmetic (linear arithmetic) formula and symbolically

encoded asarithmetic automata[3, 51]. Similar to some prior string analysis tech-

niques [1,58], the values that string variables can take areover-approximated as regular

languages and symbolically encoded asstring automata. Our composite analysis is a

forward fixpoint computation with widening on these arithmetic and string automata.

In addition, we improve precision by restricting both representations using lengths of

208

Chapter 9. Related Work

the values of string variables. To identify length constraints, one can also characterize

the Presburger arithmetic formula from the arithmetic automaton by solving the Pres-

burger synthesis problem [37] and further restricting the target string automaton. Our

approach is an over approximation that uses the boundary rather than the values of the

semilinear set, and it is efficient and simple to implement.

In addition to earlier work on string analysis [1, 15, 52, 58]and size analysis [20,

22, 46] that motivated our work [59], there has been some recent work on analyzing

string and integer variables together during symbolic execution [21,43,53]. Unlike our

approach, these are unsound techniques that target testingand they do not try to com-

pute an over-approximation of the reachable states via widening. Hence, they cannot

prove properties of examples that we present in this dissertation. Compared to [25,26]

that use abstract interpretation for reasoning about relational properties among the con-

tents of symbolic intervals of arrays, our analysis traverses concrete values of string and

integer variables using automata and addresses language properties.

Finally, symbolic model checking on various variable typeshas been investigated

in [12, 55]. Bultan et al. [12] propose a sound composite framework that combines

BDDs and arithmetic constraint representations to analyzesystems having boolean

(bounded) and integer (unbounded) variables. Leveraging the compactness of both rep-

resentations on their own domains, Bultan et al. show the effectiveness of the composite

framework on several applications. Yavuz-Kahveci and Bultan [55] apply the symbolic

209

Chapter 9. Related Work

composite model checking framework to concurrent linked list specifications. The anal-

ysis combines BDDs, linear arithmetic constraints, and shape graphs to represent values

of booleans, integers, and heap variables respectively. They compute both lower and

upper approximations of reachable states on this compositerepresentation, and hence

their analysis is capable of falsifying or verifying invariants of target programs. Our

analysis extends the composite analysis framework to thestring domain and takes ad-

vantage of the fact that arithmetic automata provide a compact representation for Pres-

burger arithmetic constraints and string automata providea compact representation for

regular languages.

210

Chapter 10

Conclusion

Many security vulnerabilities are caused by inadequate manipulation of string vari-

ables. In this dissertation, we presented a formal characterization of the string verifi-

cation problem and investigated the decidability boundaryfor string systems. We pro-

posed a conservative symbolic verification approach that computes an over-approximation

of the reachable states. The approach features language-based replacement, fixpoint ac-

celeration, and symbolic automata encoding.

We presented a set of techniques that 1) given an attack pattern, identify vulnera-

bilities that are due to string manipulation, 2) generate a characterization of inputs that

can exploit the vulnerability, and 3) generate sanitization statements that eliminate the

vulnerability. Our approach is based on automata-based symbolic forward and back-

ward reachability computations. We developed two techniques to generate vulnerabil-

211

Chapter 10. Conclusion

ity signatures that characterize all malicious inputs, andproposed different strategies

to prevent attacks that match the given attack patterns by automatically synthesizing

effective sanitization routines from the vulnerability signatures.

We presented an automata-based approach for symbolic verification of infinite-state

systems with unbounded string and integer variables. Our composite approach that

combines string analysis with size analysis is able to verify properties that cannot be

verified with either analysis alone. We proposed a novel algorithm to convert unary

automata to binary automata and vice versa, and showed how the precision of both

string and size analyses can be improved by using length automata and the conversion.

We proposed a novel relational string verification technique using multi-track au-

tomata, symbolic reachability analysis, summarization and abstraction. Compared to

earlier automata-based string analysis techniques, the presented technique uses a single

multi-track DFA to represent all possible values of string variables at a given program

point, and enables us to check equality properties among string variables and improves

the precision of the string analysis.

Finally, we have developedSTRANGER, a public automata-based string analysis tool

for verification of PHP web applications, focusing on SQLI, XSS and MFE attacks.

In addition to identifying vulnerabilities and generatingvulnerability signatures and

effective patches of vulnerable applications,STRANGER can also verify the absence of

212

Chapter 10. Conclusion

vulnerabilities in applications that use proper sanitization. We demonstrated the effec-

tiveness of our approach on several examples, as well as somelarge-scale applications.

213

Bibliography

[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, C. Kruegel, E. Kirda, and
G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate Saniti-
zation in Web Applications. InProceedings of the Symposium on Security and
Privacy (S&P), 2008.

[2] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna. Multi-module vulnerabil-
ity analysis of web-based applications. InProceedings of the 14th ACM confer-
ence on Computer and Communications Security (CCS), pages 25–35, New York,
NY, USA, 2007. ACM.

[3] C. Bartzis and T. Bultan. Efficient symbolic representations for arithmetic con-
straints in verification.Int. J. Found. Comput. Sci., 14(4):605–624, 2003.

[4] C. Bartzis and T. Bultan. Widening arithmetic automata.In Proceedings of the
16th International Conference on Computer Aided Verification (CAV), pages 321–
333, 2004.

[5] M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for guided tree automata. In
First International Workshop on Implementing Automata, LNCS 1260. Springer
Verlag, 1997.

[6] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. InProceeding of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 307–321, 2009.

[7] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
Proceedings of the 16th International Conference on Computer Aided Verification
(CAV), pages 372–386, 2004.

[8] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking.
In 12th International Conference on Computer Aided Verification (CAV), pages
403–418, 2000.

214

Bibliography

[9] BRICS. The MONA project.http://www.brics.dk/mona/ .

[10] D. Brumley, J. Newsome, D. X. Song, H. Wang, and S. Jha. Towards automatic
generation of vulnerability-based signatures. InProceedings of the 2006 IEEE
Symposium on Security and Privacy (S&P), pages 2–16, 2006.

[11] D. Brumley, H. Wang, S. Jha, and D. X. Song. Creating vulnerability signatures
using weakest preconditions. InProceedings of the 20th IEEE Computer Security
Foundations Symposium (CSF), pages 311–325, 2007.

[12] T. Bultan, R. Gerber, and C. League. Composite model-checking: verification
with type-specific symbolic representations.ACM Trans. Softw. Eng. Methodol.,
9(1):3–50, 2000.

[13] W.-N. Chin, S.-C. Khoo, S. Qin, C. Popeea, and H. H. Nguyen. Verifying safety
policies with size properties and alias controls. InProceedings of the 27th inter-
national conference on Software engineering (ICSE), pages 186–195, 2005.

[14] T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A practical string analyzer by the
widening approach. InProgramming Languages and Systems, 4th Asian Sympo-
sium (APLAS), pages 374–388, 2006.

[15] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string
expressions. InProceedings 10th International Static Analysis Symposium(SAS),
volume 2694 ofLNCS, pages 1–18. Springer-Verlag, June 2003.

[16] M. Christodorescu, N. Kidd, and W.-H. Goh. String analysis for x86 binaries. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE). ACM Press, Sept. 2005.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT
Press, 1990.

[18] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer: securing
software by blocking bad input. InProceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), pages 117–130, 2007.

[19] CVE. Common Vulnerabilities and Exposures.http://www.cve.mitre.
org .

[20] N. Dor, M. Rodeh, and M. Sagiv. Cssv: towards a realistictool for statically
detecting all buffer overflows in c.SIGPLAN Not., 38(5):155–167, 2003.

215

Bibliography

[21] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.A static analysis
framework for detecting sql injection vulnerabilities. InProceedings of the 31st
Annual International Computer Software and Applications Conference (COMP-
SAC), pages 87–96, Washington, DC, USA, 2007.

[22] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer overrun
detection using linear programming and static analysis. InProceedings of the
10th ACM Conference on Computer and Communications Security (CCS), pages
345–354, 2003.

[23] D. Gerdemann and G. van Noord. Transducers from rewriterules with backref-
erences. InProceedings of the 9th Conference of the European Chapter ofthe
Association for Computational Linguistics, pages 126–133, 1999.

[24] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated
queries in database applications. InProceedings of the 26th International Confer-
ence on Software Engineering (ICSE), pages 645–654, 2004.

[25] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quan-
tified logical domains. In35th ACM Symposium on Principles of Programming
Languages (POPL), pages 235–246. ACM, Jan. 2008.

[26] N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. InProceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation (PLDI), pages 339–348, 2008.

[27] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. InProceedings
of the International Conference on Tools and Algorithms forthe Construction and
Analysis of Systems (TACAS), pages 89–110, 1995.

[28] P. Hooimeijer and W. Weimer. A decision procedure for subset constraints over
regular languages. InProceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 188–198, 2009.

[29] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[30] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. InProceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL), pages 410–423, New York, NY,
USA, 1996. ACM.

216

Bibliography

[31] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). InProceedings of the 2006 IEEE
Symposium on Security and Privacy (S&P), pages 258–263, 2006.

[32] L. Karttunen. The replace operator. InProceedings of the 33rd annual meeting
on Association for Computational Linguistics, pages 16–23, 1995.

[33] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi: a solver
for string constraints. InProceedings of the Eighteenth International Symposium
on Software Testing and Analysis (ISSTA), pages 105–116, 2009.

[34] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of SQL
injection and cross-site scripting attacks. InProceedings of the 30th International
Conference on Software Engineering (ICSE), Vancouver, BC, Canada, May 20–
22, 2009.

[35] C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of xml trans-
formations in java. IEEE Transactions on Software Engineering, 30(3), March
2004.

[36] K. Ku, T. E. Hart, M. Chechik, and D. Lie. A buffer overflowbenchmark for
software model checkers. InProceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering (ASE), pages 389–392,
New York, NY, USA, 2007. ACM.

[37] J. Leroux. A polynomial time presburger criterion and synthesis for number deci-
sion diagrams. InProceedings of the 20th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 147–156, 2005.

[38] Y. Minamide. Static approximation of dynamically generated web pages. In
Proceedings of the 14th International World Wide Web Conference (WWW), pages
432–441, 2005.

[39] M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in
the theory of Turing machines. InAnn. of Math (74), pages 437–455, 1961.

[40] M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules. In
Proceedings of the 34th annual meeting on Association for Computational Lin-
guistics, pages 231–238. Association for Computational Linguistics, 1996.

[41] O. W. A. S. P. (OWASP). Top ten project.http://www.owasp.org/ , May
2010.

217

Bibliography

[42] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c. In
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE), pages 263–272, 2005.

[43] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic
execution with string analysis. InProceedings of the Testing: Academic and In-
dustrial Conference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION), pages 13–22, Washington, DC, USA, 2007.

[44] G. van Noord. FSA utilities toolbox. http://odur.let.rug.nl/

˜ vannoord/Fsa/ .

[45] G. van Noord and D. Gerdemann. An extendible regular expression compiler
for finite-state approaches in natural language processing. In Proceedings of the
4th International Workshop on Implementing Automata (WIA), pages 122–139.
Springer-Verlag, July 1999.

[46] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A firststep towards auto-
mated detection of buffer overrun vulnerabilities. InIn Network and Distributed
System Security Symposium (NDSS), pages 3–17, 2000.

[47] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A firststep towards auto-
mated detection of buffer overrun vulnerabilities. InProceedings of the Network
and Distributed System Security Symposium (NDSS), pages 3–17, 2000.

[48] G. Wassermann and Z. Su. Sound and precise analysis of web applications for
injection vulnerabilities. InProceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation (PLDI), pages 32–41,
2007.

[49] G. Wassermann and Z. Su. Static detection of cross-sitescripting vulnerabilities.
In Proceedings of the 30th International Conference on Software Engineering
(ICSE), pages 171–180, 2008.

[50] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. Dynamic
test input generation for web applications. InProceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), pages 249–
260, 2008.

[51] P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. InProceedings of the 6th International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), pages 1–19, 2000.

218

Bibliography

[52] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting lan-
guages. InProceedings of the 15th conference on USENIX Security Symposium
(USENIX-SS), pages 13–13, Berkeley, CA, USA, 2006. USENIX Association.

[53] R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for buffer overflows with
length abstraction. InProceedings of the ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA). ACM, 2008.

[54] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W.
O’Hearn. Scalable shape analysis for systems code. InCAV, pages 385–398,
2008.

[55] T. Yavuz-Kahveci and T. Bultan. Automated verificationof concurrent linked
lists with counters. InProceedings of the 9th International Symposium on Static
Analysis (SAS), pages 69–84, 2002.

[56] F. Yu, M. Alkhalaf, and T. Bultan. Generating vulnerability signatures for string
manipulating programs using automata-based forward and backward symbolic
analyses. In24th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2009.

[57] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis
tool for php. InProceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), 2010.

[58] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic string verification: An
automata-based approach. In15th International SPIN Workshop on Model Check-
ing Software (SPIN), pages 306–324, 2008.

[59] F. Yu, T. Bultan, and O. H. Ibarra. Symbolic string verification: Combining string
analysis and size analysis. In15th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), pages 322–336,
2009.

[60] F. Yu, T. Bultan, and E. Peterson. Automated size analysis for ocl. InProceedings
of the 6th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (ESEC/FSE), pages 331–340, 2007.

219

