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Abstract

Action Language is a specification language for reac-
tive software systems. In this paper we present the Action
Language Verifier which consists of 1) a compiler that con-
verts Action Language specifications to composite symbolic
representations, and 2) an infinite-state symbolic model
checker which verifies (or falsifies) CTL properties of Action
Language specifications. Our symbolic manipulator (Com-
posite Symbolic Library) combines a BDD manipulator (for
boolean and enumerated types) and a Presburger arithmetic
manipulator (for integers) to handle multiple variable types.
Since we allow unbounded integer variables, model check-
ing queries become undecidable. We present several heuris-
tics used by the Action Language Verifier to achieve conver-
gence.

1. Introduction

Action Language Verifier is an infinite-state CTL model
checker based on Action Language, a formal specification
language for reactive systems. Action Language supports
both synchronous and asynchronous compositions as basic
operations [2]. Translations of Statecharts [9] and SCR [10]
specifications to Action Language are compact and Action
Language translations preserve the original structure of the
specifications.

Action Language Verifier translates an Action Language
specification to a composite symbolic representation pro-
vided by our Composite Symbolic Library [12]. Composite
Symbolic Library combines different symbolic representa-
tions, such as BDDs for representing boolean logic formu-
las and polyhedral representations for Presburger arithmetic
formulas (formulas of integer arithmetic where multiplica-
tion among variables is not allowed), using composite sym-
bolic representation. Since Composite Symbolic Library
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uses an object-oriented design, Action Language Verifier is
polymorphic. It can dynamically select symbolic represen-
tations provided by the Composite Symbolic Library based
on the variable types in the input specification.

In general, model checking queries for the infinite-state
systems are undecidable. In this paper, we present sev-
eral heuristics used by the Action Language Verifier to
achieve convergence such as approximate fixpoint compu-
tations, loop-closures and approximate reachability analy-
sis. Approximate fixpoint computations based on truncated
fixpoints and widening operator have been used in the ab-
stract interpretation context before [6, 7, 8, 11]. Our use of
loop-closures is similar to the meta-transitions used in [1]
for reachability analysis. The idea of computing an approx-
imation to the set of reachable states by a forward fixpoint
computation, and then using this result to prune the iter-
ates of the backward fixpoint computations has been used
in [11]. However, our use of these techniques in the con-
text of composite symbolic representation is unique and ex-
tends our previous work on composite symbolic representa-
tion [3].

The rest of the paper is organized as follows. In Section
2 we give an overview of the Action Language using an
example specification. We discuss the Composite Symbolic
Library in Section 3. In Sections 4 and 5 we present the
fixpoint computations and the heuristics used in the Action
Language Verifier, respectively. Finally, in Section 6 we
give directions for future work.

2. Action Language

Statecharts specification of a light-control-system for an
office is given in Figure 1. Figure 2 shows its transla-
tion to Action Language. The variable c¢ and the state
Occupant s keep track of the number of people in the of-
fice. Events enter and exit signal people entering and
exiting the room and events s_on and s_off signal light
switch being turned on and off, respectively. Light cannot
be turned off if there are more than one people in the office.
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Figure 1. Statecharts specification

An action language specification consists of a set of
module definitions. Semantically, each module corresponds
to a transition system with a set of states, a set of initial
states and a transition relation. Variable declarations define
the set of states of the module. Set of states can be restricted
using a restrict expression. Initial expression defines the set
of initial states of the module. A module expression (which
starts with the name of the module) defines the transition
relation of the module in terms of its actions and submod-
ules using asynchronous and synchronous composition op-
erators. Each action in an Action Language specification
defines a single execution step. In an action expression,
primed variables denote the next-state values for the vari-
ables and unprimed variables denote the current-state val-
ues.

Asynchronous composition of two actions a; and as, de-
noted a; | a2, is defined as the disjunction of their tran-
sition relations. However, we also assume that an action
preserves the values of the variables which are not modi-
fied by itself [2]. Two actions aq and a» can also be com-
bined with synchronous composition a; & as. Semantics
of synchronous composition corresponds to conjunction if
two actions are always enabled. However, if one component
of synchronous composition is not enabled in a state, this
would deadlock the composed system if we use conjunc-
tion as its semantics. To prevent this, we assume that, in
such a state, the disabled component makes a synchronous
idle transition and stays in the same state which allows other
components to progress [2].

The Action Language translation (Figure 2) uses one
enumerated variable to encode each OR state in the Stat-
echarts specification (Figure 1). Each transition in the Stat-
echarts specification is represented by one action in the Ac-
tion Language translation. Then, the overall transition re-
lation is exactly the expression which corresponds to com-
bining the transitions of OR states with asynchronous com-
position |, and the transitions of AND states with syn-
chronous composition &. Hence, Action Language trans-

module main ()

enumerated Office {Empty, Occupied};

enumerated Occupants {One, Multiple};

enumerated Light {On, Off};

boolean enter, exit, s_on, s_off;

integer c;

initial : c=0 and Office=Empty;

restrict: (enter => not (exit or s_on or s_off))
and (exit => not (enter or s_on or s_off)
and (s_on => not (enter or exit or s_off)
and (s_off => not (enter or exit or s_on));

tl: Office=Empty and enter and Office'=Occupied
and Occupants'=One and Light'=On and c'=c+1l;

t2: Office=Occupied and Occupants=One and exit
and Office'=Empty and c'=c-1;

t3: Office=0Occupied and Occupants=0One and enter
and c'=c+l and Occupants'=Multiple;

t4: Office=Occupied and Occupants=Multiple and
exit and c=2 and Occupants'=One and c'=c-1;

t5: Office=Occupied and Occupants=Multiple
and c>2 and exit and c'=c-1;

t6: Office=0Occupied and Occupants=Multiple
and enter and c'=c+l;

t7: Office=Occupied and Light=0On and s_off
and Occupants=0One and Light'=0ff;

t8: Office=0Occupied and Light=0ff and s_on
and Light'=0n;

t9: Office=Occupied and Light=0ff and enter
and Light '=0n;

environment: (enter => not (enter')) and
(exit => not (exit')) and (s_on => not(s_on')
and (s_off => not(s_off'));
main: (t1 | t2 | ((£3 | t4 | £5 | t6)
& (£7 | t8 | t9))) & environment;
spec: invariant ([ (Office=0Occupied

and Occupants=Multiple) => Light=0n])
spec: invariant ([c>1 <=>
Office=0Occupied and Occupants=Multiple])
spec: invariant ([c=1 <=>
Office=0Occupied and Occupants=0ne])
endmodule

Figure 2. Action Language specification

lations preserve the structure of Statecharts specifications.
Same principle also holds if we use submodules in the
translation. We can get an equivalent translation of the
above Statecharts example to Action Language by creat-
ing two submodules Occupants and Light defined as:
Occupants:t3 | t4 | t5 | t6 and Light:t7
| £t8 | t9. Then, the specification of the main mod-
ule would be main: (tl | t2 | (Occupants()
& Light ())) & environment again preserving the
structure of the Statecharts specification.

Restrict condition in Figure 2 imposes the one-input-
assumption (i.e., only one external event occurs at a time).
The synchronous composition of the environment ac-
tion with the rest of the system makes sure that generated
events are reset immediately. Other semantic interpretations
of Statecharts specifications can also be implemented using
restrict expression to restrict the state space and using
synchronous composition to enforce the restrictions on the
transition relation.

Although the specification given in Figure 2 is an
infinite-state system (the variable c is unbounded), when
we used Action Language Verifier to verify the first invari-



ant, the exact fixpoint computation (discussed in Section 4)
converged in one iteration and we were able to verify the
property in 0.04 seconds on a SUN ULTRA 10 workstation
with 768 MBytes of main memory running Solaris. Simi-
larly, the exact fixpoint computation for the second invari-
ant converged in 5 iterations and the property was verified
in 0.20 seconds. For the third invariant, however, the exact
fixpoint computation did not converge. When we used ap-
proximations (discussed in Section 5) the fixpoint computa-
tion converged in 5 iterations and we were able to prove the
property in 0.37 seconds.

3. Composite Symbolic Representation

Action Language parser translates an action language
specification to a transition system 7" = (.S, I, R) that con-
sists of a state space S, a set of initial states I C S, and a
transition relation R C S x S. Generally, in model check-
ing transition systems are restricted to be finite (i.e., S is
finite). and the transition relation R is assumed to be total
(i.e., for each state s € S there exits a next state s’ such
that (s,s') € R). We, let go of both of these assump-
tions. For the infinite-state systems that can be specified
in Action Language, CTL model checking is undecidable.
In this paper, we present several heuristics used by the Ac-
tion Language Verifier to achieve convergence. Since we
allow non-total transition systems also some fixpoint com-
putations have to be modified.

Composite Symbolic Library is the symbolic manipula-
tor used by the Action Language Verifier. It combines dif-
ferent symbolic representations using the composite model
checking approach [3]. Our current implementation of the
Composite Symbolic Library uses two basic symbolic rep-
resentations: BDDs for boolean logic formulas and poly-
hedral representation for Presburger arithmetic formulas.
Boolean and enumerated variables in the Action Language
specifications are mapped to BDD representation, and inte-
gers are mapped to arithmetic constraint representation.

To analyze a system using Composite Symbolic Library,
one has to specify its initial condition, transition relation,
and state space using a set of composite formulas. A com-
posite formula is obtained by combining integer arithmetic
formulas on integer variables with boolean variables using
logical connectives. Enumerated variables are mapped to
boolean variables by the Action Language parser. Since
integer representation in the Composite Symbolic Library
currently supports only Presburger arithmetic, we restrict
arithmetic operators to + and —. However, we allow multi-
plication with a constant and quantification.

A composite formula, p, is represented in disjunctive
normal form as
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where p;; denotes the the formula of basic symbolic repre-
sentation type ¢ in the ith disjunct, and n and T' denote the
number of disjuncts and the number of basic symbolic rep-
resentation types, respectively. Our Composite Symbolic
Library implements methods such as intersection, union,
complement, satisfiability check, subset test, which manip-
ulate composite representations in the above form.

Given a set of states p and a transition relation R, pre-
condition PRE(p, R) are all the states that can reach a state
in p with a single transition in R (i.e., the set of predecessors
of all the states in p). POST(p, R) is defined similarly. Given
a set p and a transition relation R both represented using
composite symbohc representation as p = /1%, /\t 1 Dit

and R = \/%, /\t 1 T the pre-condition can be computed
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The above property holds because the existential variable
elimination in the PRE(p, R) computation distributes over
the disjunctions, and due to the partitioning of the variables
based on the basic symbolic types, the existential variable
elimination also distributes over the conjunction above.

4. Fixpoint Computations

The CTL temporal operator EX corresponds to pre-
condition computation, i.e., EX p = PRE(p, R). AX can
also be computed as AX p = —PRE(—p, R). Rest of the
CTL operators can be computed as least and greatest fix-
points using EX and AX [5]

pEUg=pux.q V (p AN EXz) EGp=vr.p A EXz
pAUg=pux.qV (p AN AXz) AGp=vr.p AN AXz

However, above characterizations of AU and EG are not
complete if we do not restrict the transition relation to be
total. Since a non-total transition system can have states
which do not have any next states, AX false will be satis-
fied in such states vacuously. Hence, those states will sat-
isfy AF false too. This creates a problem, since we will
have states which satisfy AF p without p being satisfied in
any future state. To prevent this we alter the fixpoint com-
putation for AU (and similarly for AF) as follows

pAUg=pux.q V (p AN AXx A AtLeastOne)

where AtLeastOne is the set of states which have at least
one successor.

Dual of this problem appears in the EG fixpoint. If all the
states in a finite path that ends at a state which does not have
any successors satisfies p, then the states on that path should
satisfy EGp. Then, we need to change the EG fixpoint as:

EGp=vz.p A (EXz V None)



where None are the set of states which have no successors
(i.e., None = —AtLeastOne).

Action Language Verifier iteratively computes the fix-
points for the temporal operators. In an infinite-state model
checker convergence is not guaranteed. Although each iter-
ation takes us closer to the fixpoint we are not guaranteed to
reach it. However, if a fixpoint is reached we are sure that it
is the least or the greatest fixpoint based on the type of the
iteration.

5. Heuristics for Infinite-State Verification

If we cannot directly compute the truth set of a temporal
property p for a transition system 7' = (S, I, R), we can
try to generate a lower bound for p, denoted p~, such that
p~ C p. Then, if we determine that the set of initial states
are included in this lower bound (i.e., I C p~—), we have also
showed that I C p, i.e., we proved that transition system 7'
satisfies the property p. However, if I € p—, we cannot
conclude anything because it can be a false negative. In
that case we can compute a lower bound for the negated
property: (—p)~. If we can find a state s such that s €
I N (—p)~, then we can generate a counter example which
would be a true negative. If both cases fail, i.e., both I € p~
and I N (=p)~ = 0, then the verifier cannot report a definite
answer.

Since Action Language Verifier computes the temporal
formulas recursively starting from the innermost temporal
operators, we have to compute an approximation to a for-
mula by first computing approximations for its subformu-
las. All temporal and logical operators other than “—” are
monotonic. This means that any lower/upper approxima-
tion for a negation free formula can be computed using the
corresponding lower/upper approximation for its subformu-
las. To compute a lower bound for a negated property like
p = —q, we can compute an upper bound ¢ for the subfor-
mula ¢ where g7 D ¢, and then let p~ = S — ¢ Similarly
we can compute an upper bound for p using a lower bound
for g. Thus, we need algorithms to compute both lower and
upper bounds of temporal formulas.

Truncated Fixpoints Computations Each iteration of a
least fixpoint computation gives a lower bound for the least
fixpoint. Hence, if we truncate the fixpoint computation af-
ter a finite number of iterations we will have a lower bound
for the least-fixpoint. Similarly, each iterate of a greatest
fixpoint computation gives an upper bound for the great-
est fixpoint. Action Language Verifier has a flag which can
be set to determine the bound on number of fixpoint itera-
tions. If the obtained result is not precise enough to prove
the property of interest, it can be improved by running more
fixpoint iterations.

Widening and Collapsing Operators For computing up-
per bounds for least-fixpoints we use the widening tech-
nique [6] generalized to the composite symbolic represen-
tation [3]. Assume that p and q are two sets of states, then
the widening operator 3/ satisfies the following constraint:
pUgq C pV q. Intuitively, 57 operator guesses the direction
of growth in the fixpoint iterates, and extends the successive
iterates in that direction. The least fixpoint computations are
modified so that at each iteration the current iterate p; is set
to p;—1 V p;. For the polyhedral representation we use the
widening operator defined in [4] for Presburger arithmetic
constraints by generalizing the convex widening operator in
[7]. The basic idea is to find pairs of polyhedra p and ¢ such
that p C ¢ and set p Y/ ¢ to conjunction of constraints in p
which are also satisfied by q. Intuitively, if a constraint of p
is not satisfied by ¢ this means that the iterates are increas-
ing in that direction. By removing that constraint we extend
the iterates in the direction of growth as much as possible
without violating other constraints.

To compute lower-bounds for greatest fixpoint computa-
tions we define the dual of the widening operator and call
it the collapsing operator (and denote it with 57 71). Given
two set of states p and ¢ the collapsing operator 57 ! satis-
fies the following: pN g D p 7! ¢. Intuitively, 57! oper-
ator finds which parts of the fixpoint iterates are decreasing
and removes them to accelerate the fixpoint computation.
The greatest fixpoint computations are modified so that at
each iteration the current iterate p; is set to p;_1 V' p;.
In our symbolic representation for integers each Presburger
arithmetic formula is represented as a disjunction of poly-
hedra. Given two such representations p and g, our collaps-
ing operator looks for a polyhedron in p which subsumes a
polyhedron in q. When a pair is found the subsumed poly-
hedron is removed from g. The result of the collapsing op-
eration is the union of the polyhedra remaining in q.

Loop-Closures Another heuristic we use to accelerate
convergence is to compute closures of self-loops in the
specifications. Given a transition relation R we can use any
relation R’ which satisfies the constraint R C R' C R*
(where R* denotes the reflexive-transitive closure of R) to
accelerate the fixpoint computations for temporal operators
EF and EU [4].

To exploit this idea, given a transition relation R in com-
posite symbolic representation R = \/77, /\g’:1 r;¢ Action
Language Verifier transforms it to

T

A IR)

R=RV \/(ri, A
i t=1,t#tr

where IR, is the identity relation for the variables repre-
sented with the basic symbolic representation type ¢, and
tr is the symbolic representation type for integers. Note



that, /\tT:1 t+t; 1R corresponds to identity relation for
all the variables other than integers. Hence, \/;(ri; A

/\ZW:L ity 1 R;) denotes the part of the transition relation
where all the variables other than the integer variables stay
the same. To compute r;;,'s we intersect the transition re-
lation R with /\Z;Lt +t; TR and collect the resulting dis-
juncts which are satisfiable. Then, for each r;;, we com-
pute 75, , where ry;, C rj, C ry . We take the union of
the result with the original transition relation R to compute

T

N IRy

R =RV \/(r}, A
i t=1,t#t;

Then, we use R’ in the fixpoint computations for EF and

EU instead of R to accelerate the fixpoint computations.

Note that we can not use closure computations for EG or

AU fixpoints since they may introduce cycles which do not

exist in the original transition system.

Reachable States The fixpoint algorithms described thus
far are backward techniques. They start with a property p,
and then use PRE to determine which states can reach p.
The last step is to determine whether the set of initial states
I is included in the derived set. Alternatively, it may be
useful to start with the initial states I, compute an upper
approximation RS™ to the reachable state-space RS, and
then use RS™ to help in the model-checking process. We
can accomplish this by altering the symbolic model checker
to restrict its computations to states in RST. To generate
the upper bound RS, we used the POST function. The
(exact) reachable state-space of a transition system is the
least fixpoint RS = pxz . I V POST(z, R), and it can be
computed using the techniques we previously developed for
EU. Moreover, we can use the widening method to compute
an upper bound for RS as well. After computing RS, we
restrict the result of every operation in the model checker to
RST.

6. Future Work

We plan to extend the Action Language Verifier with new
variable types such as reals and new symbolic representa-
tions such as automata for arithmetic constraints. The mod-
ular structure of our Composite Symbolic Library should
make such extensions relatively easy. The verification pro-
cedures do not need to be changed. We plan to investigate
using hierarchical and compositional verification strategies
in Action Language Verifier. We would also like to develop
visual (e.g., Statecharts) and tabular (e.g., SCR) specifica-
tion front ends for Action Language Verifier. Another direc-
tion we are considering is generating concurrent Java pro-
grams from Action Language specifications.

Composite Symbolic Library and Action Language Ver-
ifier are available at:
http://www.cs.ucsb.edu/"bultan/composite/
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