
Automated Choreography Repair?

Samik Basu1, Tevfik Bultan2

1 Iowa State University, sbasu@iastate.edu
2 University of California at Santa Barbara, bultan@cs.ucsb.edu

Abstract. Choreography analysis is a crucial problem in concurrent and
distributed system development. A choreography specifies the desired
ordering of message exchanges among the components of a system. The
realizability of a choreography amounts to determining the existence
of components whose communication behavior conforms to the given
choreography. The realizability problem has been shown to be decidable. In
this paper, we investigate the repairability of un-realizable choreographies,
where the goal is to identify a set of changes to a given un-realizable
choreography that will make it realizable. We present a technique for
automatically repairing un-realizable choreographies and provide formal
guarantees of correctness and termination. We demonstrate the viability
of our technique by applying it to several representative unrealizable
choreographies from Singulary OS channel contracts and Web services.

1 Introduction

Choreography specifications are used in a variety of domains including coordi-
nation of software in service-oriented computing [18], specification of process
interactions in Singularity OS [11], and specification of communication behavior
among processes in distributed programs [2]. Choreographies describe desired
message exchange sequences among components, programs or processes (we will
refer to them as peers) of a distributed system. The choreography realizability
problem is determining whether one can construct peers whose interaction behav-
ior conforms to the given choreography. As an example, consider the choreography
over two peers P1 and P2 shown in Figure 1(a) where edges represent messages
sent from one peer to another. This choreography describes a simple file transfer
protocol [9] where P1 is the client asking for the file transfer and P2 is the file
server. First, the client sends a message to the server to request that the server
starts the transfer. When the transfer is finished, the server sends the “Transfer
Finished” message and the protocol terminates. However, the client may decide
to cancel the transfer before hearing back from the server by sending a “Cancel
Transfer” message in which case the server responds with “Transfer Finished”
message, which, again, terminates the protocol.

Figure 3(a) presents the projection of the choreography onto the participating
peers resulting in the corresponding peer behaviors (send actions are denoted
by “!” and receive actions are denoted by “?”). The distributed system that
consists of the peer specifications shown in Figure 3(a) can generate the message
sequence:

msP1→P2 ,mfP2→P1 ,mcP1→P2 (1)
? This work is partially supported by NSF grants CCF 1155780 and CCF117708.

Event Message Name

ms: P1 → P2 Start Transfer
mf: P2 → P1 Transfer Finished
mc: P1 → P2 Cancel Transfer

s0

s1

ms:P1 -> P2

s2

mc:P1 -> P2

s3

mf:P2 -> P1

s4

mf:P2 -> P1

s0

s1

ms:P1 -> P2

s2

mc:P1 -> P2

s3

mf:P2 -> P1

s4

mf:P2 -> P1 mc:P1 -> P2

s0

s1

ms:P1 -> P2

s3

mf:P2 -> P1

ns(0)

m(0):P2 -> P1

s2

s4

mf:P2 -> P1

mc:P1 -> P2

(a) (b) (c)
Fig. 1. (a) Un-realizable choreography [9]; Repair by (b) relaxation, (c) restriction.

This sequence corresponds to the case where the server sends a “Transfer Finished”
message (mf), but before consuming that message, the client sends the cancella-
tion request message (mc). The sequence moves the server to an undefined (error)
configuration, where the server does not know whether the file was transferred
completely to the client before the client sent the cancellation request. In terms
of the choreography specification shown in Figure 1(a), the message sequence
given above is not covered by the choreography, but any implementation of this
choreography that uses asynchronous message passing will generate the message
sequence: (1), violating the choreography specification. Hence, the choreography
specification shown in Figure 1(a) is un-realizable.

Problem Statement. This brings up the question: when a choreography is
determined to be un-realizable, is it possible to automatically repair the choreogra-
phy such that the repaired version is realizable? We will refer to this problem as
the choreography repairability problem. Its importance stems from the fact that
automation in repairing choreography will allow faster development of distributed
systems with formal guarantees of correctness.

Our Solution. Our choreography repair technique analyzes and eliminates the
cause of violation of the condition for choreography realizability. In [4], we have
proved that choreography C is realizable if and only if its behavior (i.e., the set of
message sequences generated by C, denoted as L(C)) is identical to the behavior
of IC1 (denoted as L(IC1)), where IC1 is the asynchronous system in which each
participating peer has at most one pending message at any point of time, and is
obtained from the projection of C. We present two types of choreography repair
mechanisms that eliminate the differences between L(C) and L(IC1):

1. Relaxation. The choreography C is changed to C′ such that L(C) ⊆ L(C′), i.e.,
new behavior is added to C, such that L(C′) = L(IC′1).

2. Restriction. The choreography C is changed to C′ such that L(C) = L(C′ ↓C) =
L(IC′1 ↓C) ⊆ L(IC1), where ↓C denotes the behavior projected on the messages
in C. This change implies that some behavior of IC1 is disallowed in IC′1 . This
is achieved by adding extra synchronization messages in C′. When these extra

public contract ReservationSessionContract {
state Start: {

request? -> Decide;
}
state Decide: {

succeed! -> Success;
failed! -> Sink;
cancel? -> (cancelled!);

}
state Success: {

cancel?;
confirm?;

}
state Sink: {

cancel?;
}

}

start

decide

request:C -> S

success

succeed:S -> C

sink

failed:S -> C

decide0

cancel:C -> S

end

cancel:C -> S confirm:C -> S cancel:C -> S cancelled:S -> C

(a) (b)
Fig. 2. (a) Channel Contract for ReservationSession and (b) the corresponding state
machine

messages are projected away, the repaired choreography C′ specifies exactly
the same sequences of messages specified by the un-realizable choreography C.

For example, the choreography in Figure 1(a) is changed to the one in Figure 1(b)
via relaxation, by adding new behavior (blue bold-edge), which makes the latter
realizable. This is because the sequence that made C un-realizable (see sequence (1)
above) is now included in the repaired version C′. On the other hand, Figure 1(c)
demonstrates repair via restriction, by adding synchronization messages from state
s1 to ns(0) (red dotted-edges); this repair also makes the resulting choreography
realizable. In this case, the sequence in (1) is not possible in IC′1 .

Contribution. We present a formal characterization of choreography repairabil-
ity. To the best of our knowledge, this is the first time such a characterization
has been presented. We present a sound and complete algorithm for choreog-
raphy repair based on this characterization. We also discuss its application by
demonstrating automated repair of several unrealizable choreographies. Although
choreography examples we use in this paper consist of two-party choreographies,
the formal model and the repair algorithm we present are general and handle
multi-party choreographies.

2 Repairing Singularity OS Channel Contracts

We motivate the practical applicability of automated choreography repair using
Singularity OS channel contracts. Singularity OS [16] is developed by Microsoft
research with the objective of improving OS dependability by ensuring process
isolation. The processes in Singularity OS communicate over FIFO channels
and follow specific channel contracts (choreographies in our case); that specify
allowable communication patterns between processes (client and server). The
Singularity OS channel contracts correspond to choreography specifications. One
problem is to determine whether one can implement a client and a server whose
interaction conforms to the given channel contract, i.e., determining realizability
of the given channel contract.

Figure 2(a) presents a channel contract called reservation session contract
(where message declarations are omitted for brevity). The contract specifies four
explicit states and the message sequences from the perspective of the server. For
instance, the contract specifies that the state changes from “Start” to “Decide”
when the server receives a message “request” from the client. From the state
“Decide”, there are three choices: the server sends the message “succeed” to the
client resulting in the state update to “Success”; the server responds to the
client with message “failed” leading to the state “Sink”; the client sends “cancel”
followed by the server sending “cancelled” message. Figure 2(b) presents the state
machine for this contract (C represents the client and S represents the server).

The Singularity Design Note 5 [16] states that the client and server processes
that are verified to conform to a given channel contract (i.e., that implement the
projection of the channel contract correctly) are guaranteed to interact without
any deadlocks. However, in [17], the authors demonstrated that this claim is
incorrect since the channel contract itself can be un-realizable, in which case the
processes implemented based on the projection of the contract can deadlock. One
of the examples demonstrating this problem is the reservation session contract
from Singularity OS shown above. Due to asynchronous communication, the
client and server can move out-of-sync and deadlock. Consider the scenario where
the client sends a “cancel” message and waits for the “cancelled” message from
the server, while the server sends a “failed” message and consumes the “cancel”
message from the client. This sequence of interactions leads to a deadlock. In fact
there are no client and server processes that can conform to this contract without
deadlock while interacting via FIFO channels (as required by the Singularity
OS), i.e., the choreography specified by this channel contract is un-realizable.

The automated choreography repair technique we present in this paper is
directly applicable to Singularity OS channel contracts. Using our technique we
can repair un-realizable channel contracts, and ensure deadlock free implemen-
tation of repaired contracts. We will discuss the application of our automated
choreography repair technique to the reservation contract in Section 5.

3 Choreography Realizability

We proceed by presenting an overview of the existing results [4] on choreography
realizability, which forms the basis of our automated choreography repair strategy.

Peers. The behavior B of a peer P is a finite state machine (M,T, t0, δ) where
M is the union of input (M in) and output (Mout) message sets, T is the finite set
of states, t0 ∈ T is the initial state, and δ ⊆ T × (M ∪ {ε})× T is the transition
relation. A transition τ ∈ δ can be one of the following three types: (1) a send-
transition of the form (t1, !m1, t2) which sends out a message m1 ∈Mout, (2) a
receive-transition of the form (t1, ?m2, t2) which consumes a message m2 ∈M in

from peer’s input queue, and (3) an ε-transition of the form (t1, ε, t2). We write

t
a−→ t′ to denote that (t, a, t′) ∈ δ. Figure 3(a) illustrates the behavior of peers

P1 and P2; states in Pi are denoted by a tuple (Pi:“state-name”).

System. Given a set of peers P = {P1, . . . , Pn} with Bi = (Mi, Ti, t0i, δi)
denoting the behavior of Pi and Mi = M in

i ∪Mout
i such that ∀i : M in

i ∩Mout
i = ∅,

P2 : s0

P2 : s1

 ?ms

P2 : s2

 ?mc

P2 : s3

 !mf

P2 : s4

 !mf

P1 : s1

P1 : s3

 ?mf

P1 : s2

 !mc

P1 : s4

 ?mf

P1 : s0

 !ms

P2 : s0

P2 : s1

 ?ms

P2 : s2

 ?mc

P2 : s3

 !mf

P2 : s4

 !mf

P1 : s1

P1 : s3

 ?mf

P1 : s2

 !mc

P1 : s4

 ?mf

P1 : s0

 !ms

[P1 : s0 : [],P2 : s0 : []]

[P1 : s1 : [],P2 : s0 : [ms]]

ms:P1 -> P2

[P1 : s1 : [],P2 : s1 : []]

 epsilon

[P1 : s2 : [],P2 : s1 : [mc]]

mc:P1 -> P2

[P1 : s1 : [mf],P2 : s3 : []]

mf:P2 -> P1

[P1 : s2 : [mf],P2 : s3 : [mc]]

mf:P2 -> P1

[P1 : s2 : [],P2 : s2 : []]

 epsilon mc:P1 -> P2

[P1 : s3 : [],P2 : s3 : []]

 epsilon

[P1 : s4 : [],P2 : s3 : [mc]]

 epsilon

[P1 : s2 : [mf],P2 : s4 : []]

mf:P2 -> P1

[P1 : s4 : [],P2 : s4 : []]

 epsilon

(a) (b)
Fig. 3. (a) Projected Peers P1 and P2 for Figure 1(a); (b) System Behavior

and ∀i, j : i 6= j ⇒M in
i ∩M in

j = Mout
i ∩Mout

j = ∅. A system behavior or simply a
system over P is denoted by a (possibly infinite state) state machine I = (P, S, s0,
M,∆) where P is the set of peers, S is the set of states in the system and each
state s = (Q1, t1, Q2, t2, . . . Qn, tn) in the system is described by the local states
(tis) of the peers in P along with the contents of their queues (Qis). s0 ∈ S is the
start state, where none of the peers have any pending messages in their queue to
consume. The set M contains the set of all messages that are being exchanged
by the participating peers.

Finally, the transition relation ∆ is described as follows. The send actions are
non-blocking, i.e., when a peer Pi sends a message m to a peer Pj (denoted by
mPi→Pj), the message gets appended to the tail of the queue associated to Pj .
We refer to the queue as the receive queue of Pj . The receive actions are blocking,
i.e., a peer can only consume a message if it is present at the head of its receive
queue; on consumption of the message, it is removed from the head of the queue.
Only the send actions are observable in the system as these actions involve two
entities: the sender sending the message and the receive queue of the receiver. All
other actions are local to one peer and, therefore, unobservable (ε-transitions).
We will use the functions lSt(., .) and lQu(., .) to obtain local state and queue
of a peer from a state in the system, i.e., for s = (Q1, t1, Q2, t2, . . . Qn, tn) ∈ S,
lSt(s, P1) = t1 and lQu(s, P1) = Q1.

K-bounded System. A k-bounded system (denoted by Ik) is a system where
the length of message queue for any peer is at most k. In any k-bounded system,

the send actions can block if the receive queue of the receiver peer is full. Any
k-bounded system is finite state as long as the behaviors of the participating
peers are finite state. Figure 3(b) illustrates the system I1 obtained from the
communicating peers P1 and P2 of Figure 3(a). Note that initially P1 is at the
local state P1 :s1 with an empty receive queue denoted by [].

Choreography Specification. A choreography specification is a finite state
machine C = (P, SC , sC0 , L,∆

c) where P is a finite set of peers, SC is a finite
set of states, sC0 ∈ C is the initial state, L is a finite set of message labels and,
finally, ∆c ⊆ SC ×P ×L×P × SC is the transition relation. A transition of the
form (sCi , P,m, P

′, sCj) ∈ ∆c represents the sending of message m from P to P ′

(P, P ′ ∈ P).

Peer Projection. The projection of a choreography C on one of the peers P ,
is obtained from C by performing the following updates to the state machine
describing C. (a) If a transition label is mP→P ′ then replace it with !m; (b) if a
transition label is mP ′→P then replace it with ?m; (c) otherwise, replace transition
label with ε. The system obtained from the asynchronous communication of the
projected peers of C is denoted by IC; IC1 being the corresponding 1-bounded
system. The language of a choreography or a system is described in terms of a
set of sequences of send actions of the form mP→P ′ ; the concatenation of ε to
any sequence results in the sequence itself. The language is denoted by L(.).

Theorem 1 (Realizability [4]). C is language realizable ⇔ [L(C) = L(IC1)]

This theorem states that a choreography is realizable if and only if the set of
sequences of send actions of a choreography is identical to the set of sequences of
send actions of the 1-bounded system where the participating peers are generated
from the (determinized) projection of the choreography under consideration. Fig-
ure 3(b) presents the behavior of the system IC1 for the choreography specification
C shown in Figure 1(a), where epsilon-labeled transitions denote consumption of
messages and other transitions denote sending of messages. The choreography
C is un-realizable because it does not include a specific send sequence that is
possible in IC1 (Figure 3(b)) (Sequence (1) discussed in Section 1).

4 Choreography Repair

Types of Repair. In this paper, we present two alternative techniques for
repairing un-realizable choreographies. One is based on adding new behaviors
(in terms of sends) to C, which we call relaxation. The other is based on adding
constraints that do not alter allowed sequences of sends in C but restrict the
behavior in IC1 . We call this approach restriction. The techniques will be based
on the observation that from Theorem 1 and from the nature of asynchrony, it
follows: L(C) 6= L(IC1) ⇒ L(C) ⊂ L(IC1).

State Relationships between IC1 and C. Before we describe the repair tech-
niques, we first discuss the structure of the IC1 , which is crucial for understanding
our approach. If a state in C is represented as sC , then the corresponding state
in the peer P is a tuple denoted by P :sC . Proceeding further, if s is a state in
IC1 , then s = (Q1, t1, . . . , Qn, tn), where n is the number of peers and ti is of the

form Pi :sCi . Note that, the local states of each peer in s may have been obtained
from different states sCi in C.

Consider for example, the second state of the system in Figure 3(b)–P1 is at
a state P1 :s1 obtained from the state s1 in C and P2 is at a state P2 :s0 obtained
from the state s0 in C. Using the notations introduced in Section 3, lSt((P1 :s1 :
[], P2 :s0 : [ms]), P1) = P1 :s1; lQu((P1 :s1 : [], P2 :s0 : [ms]), P2) = [ms].

4.1 Differences between C and IC
1

In order to apply relaxation or restriction, it is important to identify at least
one difference between C and IC1 in terms of sequences of send actions. We know
that for un-realizable C, L(C) ⊂ L(IC1). Therefore, there exists at least one send
sequence in IC1 which is absent in C.

Consider that there exists a path in IC1 in the form

s1
m

P1→P ′1
1−−−−−→ s2

m
P2→P ′2
2−−−−−→ s3 −→ . . . si

m
Pi→P ′i
i−−−−−→ si+1 (2)

which generates the following sequence of send actions m
P1→P ′1
1 ,m

P2→P ′2
2 , . . . ,

m
Pi→P ′i
i . Assume that, none of the paths in C allow the above send sequence. How-

ever, there exists a path in C which replicates the above sequence till m
Pi−1→P ′i−1

i−1 .
Let such a path be denoted by

t1
m

P1→P ′1
1−−−−−→ t2

m
P2→P ′2
2−−−−−→ t3 −→ . . . ti−1

m
Pi−1→P ′i−1
i−1−−−−−−−−→ ti (3)

where ti does not have any outgoing transition labeled by m
Pi→P ′i
i . In summary,

one of the differences between the send sequences present in C and IC1 is due to the

presence of send action m
Pi→P ′i
i at si and absence of the same at ti. For instance,

going back to the example in Figure 3, the difference between C and IC1 is due to
msP1→P2 ,mfP2→P1 ,mcP1→P2 , in which case si is equal to (P1 :s1 : [mf], P2 :s3 : [])
in IC1 and ti is equal to s3 in C. The cause of the difference between the behaviors
can be explained in one of the two ways:
Independent Branches. The choreography specification includes a branching
behavior involving sends from at least two peers in two different branches. The
sender peers follow different paths in the branches. This is the case in Figure 1(a).
Independent Sequences. The choreography specification includes a path
where there are two messages sent by two different peers and the sender of the
second message does not depend on the first message. This situation can be illus-

trated using the following choreography specification: t0
mP1→P2

−−−−−→ t1
mP3→P4

−−−−−→ t2.
The first and second transitions correspond to send actions of P1 and P3, which
can occur in any order in the corresponding system and therefore, this choreog-
raphy, therefore, cannot be realized. We will refer to the path as independent
sequences and the transitions as independent transitions.

The objective of repair via relaxation or restriction is to alter the behavior of
C proceeding from ti such that the above causes of differences can be eliminated.

4.2 Repair by Relaxation

As noted before, relaxing C corresponds to adding new behaviors to C. Specifically,
adding a new behavior from state ti (in path (3) above) implies adding a transition

from ti to some t′i with transition label m
Pi→P ′i
i . The addition of such a new

transition obviously results in a new choreography specification, say C′. We
will denote relaxation of C to C′ as C ↗ C′. Note that, the following holds:
C ↗ C′ ⇒ L(C) ⊆ L(C′).

While adding a new transition from ti to a state (say t′i) eliminates the

difference due to the send action m
Pi→P ′i
i , the important next step is to identify

a suitable t′i. There are two possibilities: we can either assign t′i to some existing
state in C or generate a new state. Careful selection of one of the two choices is
important because it impacts the termination of the repair mechanism. Using the
form of the system path shown in (2), let lSt(si, Pi) = Pi :ci; lSt(si+1, Pi) = Pi :
ci+1; lQu(si, Pi) = Qi; lQu(si+1, Pi) = Qi+1. In the above, Qi = Qi+1 because
the peer Pi does not consume any messages at this transition.

Case 1. Consider that the receive queue Qi of the peer Pi is non-empty,
implying that there is one pending message to be consumed (recall that the IC1
is 1-bounded system with each receive queue capacity being 1). In other words,
some peer (say, R) has sent the message (say m) to Pi and Pi has not encountered
any receive action along the choreography path it has taken resulting in system
path shown in (2).

This case corresponds to the situation described as independent branching
(see above), when peer Pi is moving along a choreography specification path π
and the other peer R is moving along a different path π′ of the choreography
specification, resulting in the path shown in (2). Furthermore, R has sent m to
Pi which resides un-consumed in the receive queue of Pi.

Case 1a. Let there be a transition in the behavior of peer Pi at state Pi :ci+1,

where it can consume the message in its queue: Pi :ci+1
?m−−→ Pi :c′i. That is, the

choreography specification includes ci+1
mR→Pi

−−−−−→ c′i along the path π. Therefore,
both of the paths under consideration, π and π′, have the send action mR→Pi .

In π, m
Pi→P ′i
i is followed by mR→Pi . In π′, mR→Pi is not followed by m

Pi→P ′i
i .

In this case, the relaxation adds ti
m

Pi→P ′i
i−−−−−→ t′i in the choreography specification

and sets t′i to c′i.

Case 1b. On the other hand, if there exists no transition in the behavior of peer
Pi starting from state Pi :ci+1 where it can consume the message in its queue,
then the following repair is done.

Case 1b-i. If Pi : ci+1 belongs to a cycle then in the newly added transition

ti
m

Pi→P ′i
i−−−−−→ t′i, t

′
i is set to a newly generated state, which replicates the choreog-

raphy specification starting from ci+1. Note that, the repair does not assign t′i to
ci+1. This is because such assignment will result in unnecessary over-relaxation
of choreography specification due to the presence in mR→Pi in path π′ and its
possible absence in the cycle which is part of the path π. We will discuss below
this scenario using the example in Figure 4.

Case 1b-ii. If Pi at Pi :ci+1 cannot consume the pending message and Pi :ci+1

does not belong to any cycle, then t′i is set to a newly generated state. The

s1

s2

m1:P1 -> P2

s3

n1:P2 -> P1

m1:P1 -> P2

(a)

s1

s2

m1:P1 -> P2

s3

n1:P2 -> P1

m1:P1 -> P2

ns(0)

n1:P2 -> P1 m1:P1 -> P2

m1:P1 -> P2

(b)

System: (
P1 :s1 : []
P2 :s1 : []

)
n
P2→P1
1−−−−−−→ (

P1 :s1 : [n1]
P2 :s3 : []

)
m

P2→P1
1−−−−−−−→ (

P1 :s2 : [n1]
P2 :s3 : [m1]

)

Choreography: s1
n
P2→P1
1−−−−−−→ s3

Case 1b-i: s3
m

P1→P2
1−−−−−−−→ ns(0)

m
P1→P2
1−−−−−−−→ ns(0)

System: (
P1 :s1 : []
P2 :s1 : []

)
m

P1→P2
1−−−−−−−→ (

P1 :s2 : []
P2 :s1 : [m1]

)
n
P2→P1
1−−−−−−→ (

P1 :s2 : [n1]
P2 :s3 : [m1]

)

Choreography: s1
m

P1→P2
1−−−−−−−→ s2

Case 1a: s2
n
P2→P1
1−−−−−−→ ns(0)

Fig. 4. Example illustrating application of Case 1b-ii and 1a of relaxation

addition of the new transition removes the identified difference between the
choreography and the system.

For instance, in Figure 3(b), the path in IC1 that is absent in C (Figure 1(a)) has
the sequence msP1→P2 , mfP2→P1 , mcP1→P2 . Note that, we are considering only
the send actions and the transitions are considered with zero or more occurrences
of ε followed by a send action. The path in C that replicates most of this sequence

is s0
msP1→P2

−−−−−−→ s1
mfP2→P1

−−−−−−→ s3. Therefore, for repair by relaxation, our objective
is to add a transition with send action mcP1→P2 from the choreography state s3.
From the system, we know that the peer P1 at the state P1 :s2 can consume the
message mf in its receive queue and move to a state in P1 : s4 (see Figure 3).
Therefore, the transition added from s3 has the destination state s4. The result of
this repair by relaxation is the choreography specification presented in Figure 1(b).
This illustrates the Case 1a of repair by relaxation.

Figure 4 illustrates the applications of Case 1b-i and 1a. The local states
of the peers participating in the system transitions are presented in bold-font.
In the first step, the difference between the system transition sequence and the
choreography sequence is repaired following the Case 1b-i. P1 :s2 does not have
a transition where it consumes the pending message n1, and P1 :s2 belongs to
a cycle. Therefore, a new state ns(0) replicating s2 is generated as part of the
repair strategy instead of adding the transition mP1→P2

1 from s3 to s2.

Case 2. Now consider that the receive queue Qi of the peer Pi is empty,
implying that there is no pending message to be consumed. Unlike the previous
case, in this situation, the difference between IC1 and C (represented by paths (2)
and (3) in Section 4.1) is not necessarily due to independent branches, when two
peers move along two different paths of the choreography specification.

Instead the peers may be moving along the same path of the choreography
specification, and the latter has imposed an “un-realizable” ordering of send

actions involving m
Pi→P ′i
i . In other words, it is not possible to “stop” Pi from

sending the message mi from its projected behavior when the choreography

specification reaches ti, however ti does not have m
Pi→P ′i
i . This corresponds to

the case of independent sequences (see above).

Recall that, the choreography specification state is ti from where there is no

matching m
Pi→P ′i
i event. We check whether there exists a path from Pi : ti (i.e.,

local state of Pi obtained from projection at ti) to Pi : ti in the peer Pi via a
sequence of transitions such that after a sequence of ε-transitions, there is a !mi

transition followed by some other sequence of transitions.

Case 2a. If the check is successful, then we can infer that ti is part of a loop
and it contains independent transitions, which cause un-realizability.

Case 2a-i. Then we identify the first intermediate state Pi : t in this loop, which
has an outgoing transition over some other output action. In this case, a new

transition ti
m

Pi→P ′i
i−−−−−→ t′i with t′i set to t is added to replicate the behavior in IC1 .

Case 2a-ii. If no such intermediate state exists, then ti
m

Pi→P ′i
i−−−−−→ t′i with t′i set

to ti (self-loop) is added.

In either case, the permutations of pairs of independent transitions that were
identified as the difference between C and IC1 are added and nothing else.

Case 2b. On the other hand, if the check is unsuccessful, then we can infer that
ti is not part of a loop.

Case 2b-i. We find out whether P :ci+1 (local state of the sender at si+1) has a
path to P : ti (ti being the choreography state that cannot replicate the behavior
of the system from si). If such path exists in the behavior of Pi, we infer that
Pi moves along a path different from t1, t2, . . . , ti (see path 3) in choreography
but the path has the ability to join at ti. In this case, we add a new transition

labeled with ti
m

Pi→P ′i
i−−−−−→ ci+1 to remove the difference between the choreography

and corresponding the system.

Case 2b-ii. If the condition in Case 2b-i fails, then we find out the choreography
state reachable from ci+1 (the choreography state corresponding the senders

local state at si+1) via the action m
Pi−1→P ′i−1

i−1 . If such a state is t, then this

implies that the choreography path extending from ci+1 allows m
Pi−1→P ′i−1

i−1 after

m
Pi→P ′i
i , while the choreography path along t1, t2, . . . , ti (see path 3) does not

allow m
Pi→P ′i
i after m

Pi−1→P ′i−1

i−1 . The repair in this case is similar to Case 1a

and amounts to adding ti
m

Pi→P ′i
i−−−−−→ t. On the other hand, if no such choreography

state t exists, then a new state is generated and a transition over m
Pi→P ′i
i is

added from ti to this newly generated state.

Figure 5 illustrates the application of Case 2 of relaxation.

4.3 Repair by Restriction

The objective of restriction, unlike relaxation, is to constrain the behavior of
the system IC1 . In other words, going back to paths (3) and (2) in Section 4.1,

s1

s2

a:P1 -> P2

s3

b:P3 -> P4

c:P1 -> P2

(a)

s1

s2

a:P1 -> P2

b:P3 -> P4

s3

b:P3 -> P4

c:P1 -> P2

c:P1 -> P2

b:P3 -> P4

(b)

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
bP3→P4−−−−−−→ (

P1 :s1 : []
P2 :s1 : []
P3 :s3 : []
P4 :s1 : [b]

)

Choreography: s1

Case 2a-ii: s1
bP3→P4−−−−−−→ s1

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
aP1→P2−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : []

)
cP1→P2−−−−−−→ (

P1 :s1 : []
P2 :s1 : [ac]
P3 :s1 : []
P4 :s1 : []

)

Choreography: s1
aP1→P2−−−−−−→ s2

Case 2a-i: s2
cP1→P2−−−−−−→ s1

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
aP1→P2−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : []

)
bP3→P4−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : [b]

)

bP3→P4−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []

P4 :s1 : [bb]

)

Choreography: s1
aP1→P2−−−−−−→ s2

bP3→P4−−−−−−→ s3

Case 2a-ii: s3
bP3→P4−−−−−−→ s3

Fig. 5. Example illustrating application of Case 2a of Relaxation

restriction implies disallowing the transition si
m

Pi→P ′i
i−−−−−→ si+1 in IC1 i.e., introduc-

ing restriction to disallow the transition ci
m

Pi→P ′i
i−−−−−→ c′i in C from happening at

the system state si, where lSt(si, Pi) = Pi :ci and lSt(si+1, Pi) = Pi :ci+1. The

restriction of transition ci
m

Pi→P ′i
i−−−−−→ c′i is achieved by adding a new intermediate

state between ci and c′i.

Case 1. Let ti have a transition to t where some peer P sends a message m
to P ′ and P is different from Pi, the sender peer of the message mi. We verify

whether the transition ci
m

Pi→P ′i
i−−−−−→ ci+1 is reachable from t.

If the verification is successful, this corresponds to the case of unrealizability
due to independent transitions. The repair, in this case, results from the addition

of an intermediate state between ti and t such that ti
mP→P ′

−−−−−→ ns
nmP ′→Pi

−−−−−−→ t,
where nm is a new message and ns is a new state. Addition of such transitions

will disallow the m
Pi→P ′i
i at the system state si.

Case 2. However, if there is no transition from the state ti or the transition is
labeled with a send action performed by the same peer Pi, then it corresponds
to the case of unrealizability due to independent branches. In this case, we
identify the sender peer Pi−1 for the transition from ti−1 to ti. The restriction
is achieved by introducing an intermediate state between ci and ci+1 as follows:

ci
nmPi−1→Pi

−−−−−−−−→ ns
m

Pi→P ′i
i−−−−−→ ci+1, where nm and ns are newly added message and

newly added state, respectively.

Algorithm 1 Repair(C, inputRepairMechanism)

1: Compute IC
1

2: if L(C) = L(IC
1) return C . C is realizable

3: Find a difference between C and IC
1 . Sec.4.1

4: Apply C inputRepairMechanism C′ . Sec.4.2, 4.3
5: GOTO Line 1 with C assigned to C′ . Iterate

These newly added messages and transitions in the choreography can be
viewed as an extra step which forces the peer Pi to come in sync with some other
peer (P ′ in Case 1a above and P in Case 1b and 2 above) before sending the
message mi. We refer to such extra step as the synchronization step.

We will denote restriction of C to generate C′ as C ↘ C′. It is immediate that

C ↘ C′ ⇒ L(C′ ↓C) = L(C′) ∧ L(IC
′

1 ↓C) ⊆ L(IC1) (4)

The operation ′.′ ↓C extracts the behavior with respect to actions present in C.
The restriction does not alter the behavior of the choreography in terms of the
actions in C but restricts the behavior of the corresponding system in terms of
the actions in C. Figure 1(c) presents the result of applying restriction based
repair of the choreography in Figure 1(a). There exists a path in the system
where it reaches the state P1 :s1 : [mf], P2 :s3 : [] via the send sequence msP1→P2 ,
mfP2→P1 ; from this state, the system is capable of producing mcP1→P2 (see
Figure 3). The choreography via the same sequence of sends reaches the state s3.
Therefore, the restriction is achieved by following the Case 2 above resulting in a
repaired choreography in Figure 1(c).

4.4 Iterative Algorithm

It is necessary to apply the relaxation or the restriction iteratively till a realizable
choreography is obtained and all differences between the choreography and the
corresponding 1-bounded system behavior have been resolved. In Algorithm 1
the input parameter “inputRepairMechanism” is either set to ↗ (relaxation) or
↘ (restriction). Figures 4 and 5 illustrate the application of Algorithm 1.

Theorem 2 (Correctness). The algorithm Repair is guaranteed to terminate
and produce a repaired (i.e., realizable) choreography.

Proof Sketch. The algorithm iterates as long as there is a difference between
the choreography C and the interaction behavior of the corresponding system
IC1 . To address the difference, the algorithm introduces new states as part of
the repair process. The number of such introduction of new states depends
directly on the number of independent branches and independent transitions
(that cause un-realizability of the choreography). The number of independencies
are bounded by the number of branches and the maximum length of a path
(with one unfolding) in the choreography, which ensures the boundedness in
the introduction of new states. This, in turn, ensures that all possible causes of
choreography un-realizability is removed within finite number of steps. �

start

decide

request:C -> S

success

succeed:S -> C

sink

failed:S -> C

decide0

cancel:C -> S

end

cancel:C -> S confirm:C -> S cancel:C -> S cancelled:S -> C failed:S -> C succeed:S -> C

Fig. 6. ReservationSession Contract repaired by relaxation

rs

rs1

gettpmstatus:C -> S

rs0

send:C -> Stpmstatus:S -> C

ior

ackstart:S -> C

sendcomplete:S -> C

ior0

gettpmstatus:C -> S tpmstatus:S -> C

rs

rs1

gettpmstatus:C -> S

rs0

send:C -> S

tpmstatus:S -> C ior

ackstart:S -> C

sendcomplete:S -> C

ior0

gettpmstatus:C -> S tpmstatus:S -> C

sendcomplete:S -> C

(a) (b)
Fig. 7. (a) TpmContract Specification, (b) repaired.

5 Case Studies

We have implemented Algorithm 1 and used it to repair several un-realizable
choreographies that were reported earlier [7, 17]. Our implementation obtains
repaired versions of these un-realizable choreographies within a second.

Recall that the Singularity OS reservation contract (see Section 2) is un-
realizable. Figure 6 presents a repaired version by adding new message exchanges.
Another un-realizable contract is TpmContract (Figure 7(a)). In Figure 7(b), we
show a repaired version that is automatically generated by our technique. The
repaired version is similar to the one identified by authors in [9]; note however
that [9] suggested an addition of a new state and two new transitions. Our repair
mechanism achieves the same result by introducing one new transition between
two existing states.

We have also analyzed the “Meta Conversation” protocol developed by
IBM [12] and discussed in [7]. Two peers P1 and P2 race to decide the initiator
of the interaction. The protocol is illustrated in Figure 8(a). It is un-realizable
because the peers can both send the start messages (aStartcp and bStartcp)

which is not allowed in the protocol. The restriction based solution (Figure 8(b))
only allows peer P1 to start the interaction.

(a)

start

bRequested

bStartcp:P2 -> P1

aRequested

aStartcp:P1 -> P2aAccept:P1 -> P2

done

aRefuse:P1 -> P2

bAccept:P2 -> P1

bRefuse:P2 -> P1

(b)

start

aRequested

aStartcp:P1 -> P2

ns(0)

m(0):P1 -> P2bAccept:P2 -> P1

done

bRefuse:P2 -> P1 bRequested

aAccept:P1 -> P2

aRefuse:P1 -> P2

bStartcp:P2 -> P1

Fig. 8. (a) Meta Conversation, (b) repaired.

Note that the repair only con-
siders the transitions and their la-
bels, and not their semantics. For
instance, in Figure 6, the added
bold blue edges (relaxation) do
not follow the semantics of the
messages being exchanged. Con-
sider the new path in the interac-
tion, where “cancel” from client to
server can be followed by “succeed”
from the server to client. This is
present in the repair in order to
allow any ordering between “suc-
ceed” and “cancel” messages (as
“succeed” followed by “cancel” is
allowed in the original contract),
which may not make sense in the
context of the contract. There-
fore, it is sometimes necessary to
obtain certain application-domain
specific information from the user such that relaxations can be guided appro-
priately. If the user had provided additional information that “cancel” can
never be followed by “succeed”, then relaxation would have been impossible and
the only choice for removing difference between the un-realizable choreography
and the corresponding 1-bounded system will be restriction. We allow users to
provide such domain knowledge in our implementation. We have also allowed
user-interaction to decide on whether relaxation or restriction is preferred for
repair. The user-interaction essentially involves examination of the difference
(as presented by our tool) and deciding on the choice between relaxation and
restriction. Figure 9 presents an alternative solution for repairing the contract in
Figure 6 generated by our tool. Observe that in this solution, a combination of
relaxation and restriction has been applied.

6 Related Work

Realizability of choreographies has been studied before. The authors in [7, 9]
use state machine based specifications while the authors in [10, 6] use session
types; both present sufficient conditions for realizability. In [4], we have proved
the decidability of choreography realizability in terms of send sequences3 by
presenting a necessary and sufficient condition for realizability.

3 Note that, the realizability problem for the MSC-graphs, which considers both send
and receive actions for realizability, is undecidable [1].

start

decide

request:C -> S

sink

failed:S -> C

ns(1)

m(1):S -> C

ns(2)

m(2):S -> C

end

cancel:C -> S

success

cancel:C -> S confirm:C -> S

decide0

cancelled:S -> C failed:S -> C

ns(0)

succeed:S -> C

m(0):C -> S

cancel:C -> S

Fig. 9. Alternative repair strategy for
ReservationSession (Figure 2(b))

In [15], the realizability of choreogra-
phy requires the developer to specify a
“dominant” process for each branch and
loop construct, which allows the projec-
tion mechanism to synthesize necessary
synchronization messages between the
dominant process and others. Similarly,
techniques proposed in [14, 19, 8, 3] rely
on introducing new processes, monitors
and central controllers to ensure realiz-
ability. These may not be viable options
if one is using a distributed computing
paradigm. Moreover these techniques can
be conservative in the sense that unnec-
essary synchronization messages can be
added to even realizable choreographies.
Furthermore, the focus of these works is
technically different from that of our–for
instance, the technique in [3] coordinates
the activities of the peers in a distributed
fashion such that their coordinated be-
havior conforms to the given choreography. The repair technique developed by
authors in [13] focuses on process algebraic description of choreographies and
repair by restriction in the context of independent sequences (referred to as
connected choreography by the authors); additionally, the description does not
take into consideration iterations, which makes the technique inapplicable to
choreographies with cycles.

In contrast, our work (which includes both relaxation and restriction mecha-
nisms) does not require introduction of new processes, does not require a central
controller, and does not require use of synchronous communication between
any entities/peers. As our technique is based on finite state machines and their
language equivalence, it is applicable to choreographies and interactions which are
specified at different levels of abstractions, such as session-types [10] and collabo-
ration diagrams [5], as long as these specifications are translated to state-machine
based representation described in [4] and used in this paper.

7 Conclusion

We present techniques for automatically repairing un-realizable choreographies
based on two strategies: 1) relaxation, where new behaviors are added to the
choreography as part of the repair and 2) restriction, where un-desired (excluded
by the choreography) behaviors in the system obtained by projecting the chore-
ography are removed as part of the repair. We prove that our repair algorithm
always terminates with a realizable choreography. To the best of our knowledge,
our method is the first to consider automatically repairing choreographies and to
provide formal guarantees of correctness.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proc. 28th Int. Colloq. on Automata, Languages, and Programming,
pages 797–808, 2001.

2. J. Armstrong. Getting Erlang to talk to the outside world. In Proc. ACM SIGPLAN
Workshop on Erlang, pages 64–72, 2002.

3. M. Autili, D. Ruscio, A. Salle, P. Inverardi, and M. Tivoli. A model-based synthesis
process for choreography realizability enforcement. In Fundamental Approaches to
Software Engineering, pages 37–52, 2013.

4. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2012.

5. T. Bultan and X. Fu. Specification of realizable service conversations using collabo-
ration diagrams. In Service Oriented Computing and Applications, 2008.

6. P.-M. Denielou and N. Yoshida. Multiparty session types meet communicating
automata. In In Proceedings of ESOP, 2012.

7. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification
and verification of reactive electronic services. In Proc. of the 8th Int. Conf. on
Implementation and Application of Automata (CIAA), 2003.

8. M. Güdemann, G. Salaün, and M. Ouederni. Counterexample guided synthesis of
monitors for realizability enforcement. In Automated Technology for Verification
and Analysis, pages 238–253. Springer, 2012.

9. S. Hallé and T. Bultan. Realizability analysis for message-based interactions using
shared-state projections. In SIGSOFT Foundations of Software Engineering, 2010.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In Proceedings of Symposium Principles of Programming Languages, 2008.

11. G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. Operating
Systems Review, 41(2):37–49, 2007.

12. S. Kumaran, P. Nandi, J. Hanson, T. Heath, and Y. Patnaik. Conversational
browser. IBM Techreport, 2004.

13. I. Lanese, F. Montesi, and G. Zavattaro. Amending choreographies. In Automated
Specification and Verification of Web Systems, 2013.

14. N. Lohmann and K. Wolf. Realizability is Controllability. In Proc. 1st Central-
European Work. on Services and Their Composition, pages 61–67, 2009.

15. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the theoretical foundation of
choreography. In In Proceedings of Conference on World Wide Web, 2007.

16. Singularity design note 5 : Channel contracts. singularity rdk documentation (v1.1).
http://www.codeplex.com/singularity, 2004.

17. Z. Stengel and T. Bultan. Analyzing singularity channel contracts. In Proc. 18th
Int. Symp. on Software Testing and Analysis (ISSTA), pages 13–24, 2009.

18. Web Service Choreography Description Language (WS-CDL).
http://www.w3.org/TR/ws-cdl-10/, 2005.

19. Y. Yoon, C. Ye, and H.-A. Jacobsen. A distributed framework for reliable and
efficient service choreographies. In Proceedings of the 20th International Conference
on World wide web, WWW ’11, pages 785–794. ACM, 2011.

