
An Integrated Data Model Verifier with
Property Templates

Jaideep Nijjar Ivan Bocic Tevfik Bultan
University of California, Santa Barbara
{jaideepnijjar, bo, bultan}@cs.ucsb.edu

Abstract—Most modern web applications are built using devel-
opment frameworks based on the Model-View-Controller (MVC)
pattern. In MVC-based web applications the data model specifies
the types of objects used by the application and the relations
among them. Since the data model forms the foundation of
such applications, its correctness is crucial. In this paper we
present a tool, IDAVER, that 1) automatically extracts a formal
data model specification from applications implemented using the
Ruby on Rails framework, 2) provides templates for specifying
data model properties, 3) automatically translates the verification
of properties specified using these templates to satisfiability
queries in three different logics, and 4) uses automated decision
procedures and theorem provers to identify which properties
are satisfied by the data model, and 5) reports counterexample
instances for the properties that fail. Our tool achieves scalable
automated verification by exploiting the modularity in the MVC
pattern. IDAVER does not require formal specifications to be
written manually; thus, our tool enables automated verification
and increases the usability by combining automated data model
extraction with template-based property specification.

I. INTRODUCTION

Web applications have become ubiquitous. They are used
for commerce, entertainment, social interaction, education and
many other tasks. They are globally accessible not only from
desktop computers, but from a plethora of mobile devices with
network connectivity. Given the significant influence of web
applications on modern society, improving their dependability
is a critical and crucial problem.

Modern web applications are typically built using develop-
ment frameworks that are based on the Model-View-Controller
(MVC) pattern [6]. MVC-based frameworks include Ruby on
Rails (Rails for short), Zend for PHP, CakePHP, Django for
Python, and Spring for J2EE. The MVC pattern facilitates the
separation of the data model (Model) from the user interface
logic (View) and the control flow (Controller).

In this paper, we focus on dependability of data models
in web applications. We present IDAVER, a tool for formal
verification of data model properties. A data model specifies
the types of objects, the relations among the objects and the
constraints on the data model relations. MVC-based frame-
works use an object-relational mapping (ORM) to map the
object-oriented data representation of the web application to
the back-end database. By using these ORM specifications to
extract a formal data model, we do not require the user to
specify a formal data model manually.

Our tool targets web applications developed using the Rails
framework. The front-end of our tool automatically extracts a

formal data model from the ORM specification of the input
application. Although the formal data model is extracted auto-
matically, the user still has to specify the properties she desires
to check about the data model. To facilitate this process,
we developed a set of property templates. These templates
characterize the most common properties we observed in our
earlier research on data model verification [10], [11]. These
templates can easily be instantiated for different classes and
relations by the user.

Our tool verifies properties (specified using property tem-
plates) on the automatically extracted formal data model by
translating verification queries to satisfiability queries in a
specified theory and then using a backend solver for that
theory. Our tool combines three different variants of this
framework. The first two are SAT-based bounded verification
and Satisfiability Modula Theories (SMT)-based unbounded
verification from our earlier work [10], [11]. In this paper,
we add another unbounded verification approach based on
First Order Logic (FOL) and a FOL theorem prover. Our
tool integrates these three approaches and provides a unified
framework for the verification of data models.

Our contributions in this paper include 1) property templates
that facilitate specification of data model properties, 2) a novel
data model verification approach that translates verification
queries to first order logic (FOL) and uses an automated FOL
theorem prover to answer them, and 3) an integrated tool that
combines SAT- SMT- and FOL-based data model verification
approaches with property templates.

The rest of the paper is organized as follows: Section 2
presents a running example and describes Rails data models.
Section 3 defines the formal data model. Section 4 describes
the data model property templates. Section 5 presents IDAVER,
our tool for integrated data model verification. Section 6
presents a case study. Section 7 discusses the related work
and Section 8 concludes the paper.

II. DATA MODELS

In this section we give an overview of Rails’ data modeling
features using a running example. Figure 1 presents the
simplified data model for a social networking application built
on the Rails platform. In this application, there are users who
create profiles. Photos and videos can be tagged and posted to
a user’s profile, and users can be attributed with various roles.

1 class User < ActiveRecord::Base
2 has_and_belongs_to_many :roles
3 has_one :profile, :dependent => :destroy
4 has_many :photos, :through => :profile
5 end
6 class Role < ActiveRecord::Base
7 has_and_belongs_to_many :users
8 end
9 class Profile < ActiveRecord::Base
10 belongs_to :user
11 has_many :photos, :dependent => :destroy
12 has_many :videos, :dependent => :destroy,
13 :conditions => "format=’mp4’"
14 end
15 class Photo < ActiveRecord::Base
16 belongs_to :profile
17 has_many :tags, :as => :taggable
18 end
19 class Video < ActiveRecord::Base
21 belongs_to :profile
22 has_many :tags, :as => :taggable
23 end
24 class Tag < ActiveRecord::Base
25 belongs_to :taggable, :polymorphic => true
26 end

Fig. 1: A data model example

A. The Basic Relationships

Rails allows the developer to declare three different
types of relationships using the following association dec-
larations in pairs: has_many, has_one, belongs_to and
has_and_belongs_to_many. To declare a one-to-many re-
lationship, the has_many and belongs_to declarations are
used (e.g., lines 11 and 16 declare a one-to-many relationship
between Profile and Photo). To declare a one to zero-or-one
relationship, the has_one and belongs_to declarations are
used (e.g., lines 3 and 10 declare that a User is associated with
zero or one Profile objects). Finally, to declare a many-to-many
relationship two has_and_belongs_to_many declarations
are used (e.g., lines 2 and 7 to declare a many-to-many relation
between User and Role).

B. Extending the Basic Relationships

Rails offers constructs to extend the basic relationship to
express more complex relationships between objects. The first
construct is the :through option, which can be set on either
the has_one or has_many declaration. This option allows
the developer to express transitive relationships. For example,
lines 3, 10 and 11, 16 declare relationships between User
and Profile, and between Profile and Photo. The :through

option set on the association declaration on line 4 declares a
relationship between User and Photo that is the composition
of the ones between User and Profile, and Profile and Photo.

The second option is the :conditions option which allows
the developer to create a relation between one class and
the subset of another class. For instance, on line 13 the
:conditions option is set on the relation between Profile
and Video, denoting that Profile objects are only associated
with Video files that satisfy the condition "format=’mp4’".

The third option is the :polymorphic option, which can
is set on a :belongs_to declaration. This option creates a
relation that multiple other classes can relate to, similar to
the idea of interfaces in object-oriented programming. In the
running example, line 25 sets up such a relation in the Tag

User

Photo Video

Tag Taggable

Role
fŽƌŵĂƚс͚ŵƉϰ͛

Profile

Fig. 2: The schema extracted from the data model in Figure 1.

class. The Photo and Video classes both connect to this relation
by using the corresponding :as option in lines 17 and 22
(which can be set on either the has_one or has_many).

Finally, the :dependent option allows developers to model
how to propagate the object deletion at the data model level.
The :dependent option can be set to either :delete or
:destroy, where :delete will propagate the delete to the
associated objects, and no further, whereas :destroy will
go into the class of the associated objects and propagate the
delete further depending on the :dependent options set on its
relations. On line 11 in Figure 1 we see that the :dependent

option is set on the relationship between Profile and Photo.
This means that when a Profile object is deleted, all associated
Photo objects are also deleted. Since the :dependent option
is set to :destroy, the delete will also be propagated to any
relations in the Photo class with the :dependent option set.

III. FORMALIZING DATA MODELS

In this section, we describe how Rails’ data modeling
constructs are formalized by our tool. A data model is formally
defined as a tuple M = ⟨S, C,D⟩ where S is the data model
schema identifying the sets and relations of the data model, C
is a set of relational constraints, and D is a set of dependency
constraints [10], [11].

The schema is a tuple S = ⟨O,R⟩ that is made up of the
object classes O and the relations R in the data model. The
relations in the schema are specified as tuple consisting of
the domain class, the relation name, the relation type and the
range class: R ⊆ O ×N × T ×O.

For example, the schema S = ⟨O,R⟩ for the running
example in Figure 1 consists of the object classes O = {User,
Role, Profile, Photo, Video, Tag} and the object relations
R contain seven tuples, one for each relation declared in
Figure 1: User-Role, User-Profile, User-Photo, Profile-Photo,
Profile-Video, Photo-Tag, Video-Tag. As an example, the tuple
for the User-Photo relation is (User, User-Photo, (one, many,
transitive, not-conditional, not-polymorphic), Photo).

Figure 2 shows a visual representation of the schema for
the running example (which is automatically generated by our
tool IDAVER). The nodes are the object classes and the edges
are the object relations, which are depicted according to the
type of relation.

In addition to the schema, a formal data model contains
relational constraints, C that are imposed by their declarations.
For example, lines 3 and 10 in Figure 1 declare a one to many
relation between the Profile and Photo objects; this constraint

would be represented as a relational constraint in C. A formal
data model also contains dependency constraints, D, required
for modeling delete dependencies. Given the state of the data
model before a delete operation, these constraints specify how
the deletion of an object and the usage of the :dependent

options constrains the state of the data model after the delete
operation.

Formalizing Verification Queries: In order to formalize
verification queries, we define a data model instance as a tuple
I = ⟨O,R⟩ where O = {o1, o2, . . . onO} is a set of object
classes and R = {r1, r2, . . . rnR

} is a set of object relations
and for each ri ∈ R there exists oj , ok ∈ O such that ri ⊆
oj × ok.

Given a data model instance I = ⟨O,R⟩, we write R |= C
to denote that the relations in R satisfy the constraints in C.
Similarly, given two instances I = ⟨O,R⟩ and I ′ = ⟨O′, R′⟩
we write (R,R′) |= D to denote that the relations in R and
R′ satisfy the constraints in D.

A data model instance I = ⟨O,R⟩ is an instance of the data
model M = ⟨S,C,D⟩, denoted by I |= M , if and only if 1)
the sets in O and the relations in R follow the schema S, and
2) R |= C. Given a pair of data model instances I = ⟨O,R⟩
and I ′ = ⟨O′, R′⟩, (I, I ′) is a behavior of the data model
M = ⟨S,C,D⟩, denoted by (I, I ′) |= M if and only if 1) O
and R and O′ and R′ follow the schema S, 2) R |= C and
R′ |= C, and 3) (R,R′) |= D.

Given a data model M = ⟨S,C,D⟩, we define four types
of properties:

1) state assertions (denoted by AS): These are properties
that we expect to hold for each instance of the data
model. Formally, M |= AS ⇔ ∀I = ⟨O,R⟩, I |= M ⇒
R |= AS ,

2) behavior assertions (denoted by AB): These are proper-
ties that we expect to hold for each pair of instances
that form a behavior of the data model. Formally,
M |= AB ⇔ ∀I = ⟨O,R⟩,∀I ′ = ⟨O′, R′⟩(I, I ′) |= M ⇒
(R,R′) |= AB ,

3) state predicates (denoted by PS): These are properties
we expect to hold in some instance of the data model.
Formally, M |= PS ⇔ ∃I = ⟨O,R⟩, I |= M ∧R |= PS ,

4) behavior predicates (denoted by PB): These are prop-
erties we expect to hold in some pair of instances that
form a behavior of the data model. Formally, M |= PB ⇔
∃I = ⟨O,R⟩, ∃I ′ = ⟨O′, R′⟩), (I, I ′) |= M ∧ (R,R′) |= PB .

IV. PROPERTY TEMPLATES

Manual specification of formal data model properties can be
tedious and error-prone. Moreover, since our verification tool
targets multiple theories for data model verification, manual
specification of properties would require the user to learn the
semantics and syntax of the input languages of all the solvers
used by our tool, understand the specifications generated by
our model extractor and translator, and then write the data
model properties in the input language of the solver the user
desires to use for verification. We believe that this would
significantly reduce the usability of our tool. One of our

contributions in this paper is to present a set of property
templates that make the specification of data model proper-
ties easier. Since our tool integrates data model verification
with different solvers in one framework, it can automatically
translate the properties specified using these templates into the
input language of the solver that the user chooses.

We have a total of eight property templates available for the
user. These templates can easily be instantiated by the user for
different classes and relations by providing the names of the
object classes and relations as input.

We present the formal definitions of the eight property
templates below. For the following, let M be the data model
about which we are expressing the property. Let I = ⟨O,R⟩,
I ′ = ⟨O′, R′⟩ be data model instances, oA, oB , oC ∈ O,
o′A, o

′
B ∈ O′, rA−B , rB−C , rA−C ∈ R, and r′A−B, r

′
B−C ∈

R′. Let I |= M and (I, I ′) |= M .
I. alwaysRelated is used to express that objects from one

class are always related to objects of another class. We
formally define this template as

alwaysRelated(oA, oB , rA−B) ≡ ∀a ∈ oA, ∃b ∈ oB , (a, b) ∈ rA−B

For example we can express the following property on the
data model in Figure 1: alwaysRelated(Profile, User). This is
saying that a Profile object should always be associated with
a User object.

II. multipleRelated expresses the property that it is possible
for the objects of one class to be related to more than one
object of another class. Formally,

multipleRelated(oA, oB , rA−B) ≡ ∃a ∈ oA, b1, b2 ∈ oB ,

b1 ̸= b2 ∧ (a, b1) ∈ rA−B ∧ (a, b2) ∈ rA−B

In the running example, we can specify multipleRelated(Photo,
Tag) to state that a Photo may be associated with more than
one Tag.

III. someUnrelated is used to express that it is possible for
an object of one class to not be related to any objects of another
class. This template is defined formally as

someUnrelated(oA, oB , rA−B) ≡ ∃a ∈ oA,∀b ∈ oB , (a, b) ̸∈ rA−B

For example, the property someUnrelated(User, Photo) means
that it is possible to have a User without any Photos.

IV. transitive is the template used to express that one relation
is the composition of two others. Formally,

transitive(oA, oB , oC , rA−B , rB−C , rA−C) ≡
∀a ∈ oA, c ∈ oC , (a, c) ∈ rA−C ⇐⇒

∃b ∈ oB , (a, b) ∈ rA−B ∧ (b, c) ∈ rB−C

For the running example, the property transitive(User, Profile,
Photo) states that the relation between User and Photo is the
composition of the relation between User and Profile, and User
and Photo.

V. noOrphans applies to situations where objects can poten-
tially be orphaned. This occurs when a class, oB , has only one
relation, i.e. it is connected to the schema graph via exactly
one relation, rA−B . In this case, when an element of class oA
is deleted it is possible that its associated elements in oB may

be orphaned—left without any connections to other objects.
This property template is used to check for such scenarios.
Formally,

noOrphans(oA, oB , rA−B) ≡ ∀a ∈ oA, b
′ ∈ o′B

a ̸∈ oA =⇒ ∃a′ ∈ o′A, (a
′, b′) ∈ r′A−B

As an example, we may desire to check noOrphans(Video,
Tag) to make sure there are no orphaned Tags once a Video
has been deleted.

VI. noDangling is the template used to express that when an
object of one class is deleted, there are no objects of another
class that are left with a dangling reference to this deleted
object. Defined formally,

noDangling(oA, oB , rA−B) ≡ ∀a, a′ ∈ oA, b
′ ∈ o′B

a ̸∈ oA =⇒ ((a′, b′) ∈ r′A−B =⇒ a′ ∈ o′A)

For example, noDangling(Profile, Photo) expresses that when
a Profile object is deleted, there are no Photo objects that have
a dangling reference to a Profile object, i.e. no Photo object
is related to a deleted Profile object.

VII. deletePropagates template is about making sure that
when an object of one class is deleted, related objects in
another class are also deleted. This template is formally
defined as:

deletePropagates(oA, oB , rA−B) ≡ ∀a ∈ oA, b ∈ oB

a ̸∈ oA =⇒ ((a, b) ∈ rA−B =⇒ b ̸∈ o′B)

For instance, we can say deletePropagates(Profile, Video),
meaning that when a Profile object is deleted then the delete
is propagated to all associated Video objects.

VIII. noDeletePropagation is the template used to express
that when an object of one class is deleted, its associated
objects from another class are NOT deleted. Formally,

noDeletePropagation(oA, oB , rA−B) ≡ ∀a ∈ oA, b ∈ oB

a ̸∈ oA =⇒ ((a, b) ∈ rA−B =⇒ b ∈ o′B)

For example, noDeletePropagation(User, Role) means that
when a User is deleted, the associated Role should not be
deleted.

V. IDAVER: AN INTEGRATED DATA MODEL VERIFIER

IDAVER (Integrated DAta model VERifier) takes as input
a set of model files from a Ruby on Rails 2.0 application
and a set of properties in the form of templates (discussed
in Section IV). The user can choose one of three verification
options: 1) bounded verification with Alloy Analyzer 4, 2)
unbounded verification with the SMT Solver Z3 4.3, and
3) unbounded verification with the first order logic theorem
prover Spass 3.5.

IDAVER extracts a formal data model (discussed in Sec-
tion III) from the Rails data model files, which is then
translated into a specification in the language of the chosen
solver. The properties specified (using templates) are also
translated into the modeling language of the chosen solver
and appended to the specification. Then the specification is fed
into the solver, and the output of the solver is interpreted by

IDAVER and shown back to the user. In cases where the output
contains a satisfying or violating instance, IDAVER translates
the output of the solver to an instance of the data model (in
terms of sets and relations of the data model) before presenting
it to the user.

A. Bounded Verification with Alloy

For bounded verification, IDAVER translates the formal data
model it extracts into the Alloy language. To demonstrate how
this translation works, consider the following Rails data model
excerpt:
class User < ActiveRecord::Base

has_one :profile
end
class Profile < ActiveRecord::Base

belongs_to :user
end

This excerpt specifies a one to zero-or-one relation between
User and Profile objects. Its translation to Alloy is given below:
sig Profile {}
sig User {}
one sig State {

profiles: set Profile,
users: set User,
relation: Profile lone -> one User

}

The keyword sig is used in Alloy to define a set of objects.
Thus, a sig is created for each class in the input Rails data
model. In this example, a sig is declared for the Profile
and User classes. We also create a State sig, which we use
to define the state of a data model instance. Since we only
need to instantiate exactly one State object when checking
properties, we prepend the sig declaration with a multiplicity
of one. The State sig contains fields to hold the set of all
objects and related object pairs. In this example, the State
sig contains three fields. The first is named profiles and
is a binary relation between State and Profile objects. The
field uses the multiplicity operator set, meaning ’zero or
more’. In other words, the state of a data model instance may
contain zero or more Profile objects. The State sig contains
a similar field for User objects. Finally, the one to zero-or-
one relation between Profile and User objects is translated as
another field in the State sig. Named relation, it is defined
to be a mapping between Profile and User objects. It uses the
multiplicity operators lone and one to constrain the mapping
to be between ’zero or one’ Profile and ’exactly one’ User
object, respectively.

The translation of all Rails’ data modeling constructs into
Alloy is discussed in [10]. After IDAVER automatically trans-
lates the input data model and property template into an Alloy
specification, it sends the specification to the Alloy Analyzer.
Alloy Analyzer [5] is a bounded verification tool that converts
verification queries to Boolean SAT problems and uses a SAT-
solver to determine the result. IDAVER interprets this result
and reports back to the user whether the data model property
failed or verified. IDAVER also outputs satisfying instances for
predicate properties that verify and counterexample instances
for failing assertion properties.

B. Unbounded Verification with an SMT Solver

IDAVER can also be used to perform unbounded verifica-
tion. It gives two options to do so: a Satisfiability Modulo
Theories (SMT) solver or a First Order Logic (FOL) theorem
prover. If the SMT solver is chosen to perform verification,
IDAVER translates the formal data model into an SMT-
LIB specification. The generated SMT-LIB specification is a
formula in the theory of uninterpreted functions. For example,
the translation of the data model excerpt (given earlier) is:
(declare-sort User 0)
(declare-sort Profile 0)
(declare-fun relation (Profile) User)
(assert (forall ((p1 Profile)(p2 Profile))

(=> (not (= p1 p2))
(not (= (relation p1) (relation p2)))

)))

Types in SMT-LIB are declared using the declare-sort

command. We use this command to declare types for User
and Profile, as shown above. The relation is translated as
an uninterpreted function. Uninterpreted functions are cre-
ated in SMT-LIB using the declare-fun command. We
use this command to declare an uninterpreted function name
relation whose domain is Profile and range is User. Since
functions can map multiple elements in the domain to the same
element in the range, and we instead have a one to zero-or-one
relation, we constrain the function to be one-to-one to obtain
the desired semantics. This constraint is expressed using the
assert command, above. Details for the complete translation
of the all data modeling constructs in Rails are provided in
[11].

Once the formal data model and property are automatically
translated into SMT-LIB, IDAVER uses the SMT solver Z3
to determine the satisfiability of the generated formula. Based
on the output of the SMT solver, IDAVER reports whether the
property holds or fails. For failing assertions it also reports
a data model instance as a counterexample, or a satisfying
instance for predicate properties that verify.

In addition to returning unsatisfiable or satisfiable, an SMT
solver may also return “unknown” or it may timeout since the
quantified theory of uninterpreted functions is known to be
undecidable [1]. In such cases IDAVER reports a “timeout”.

C. Unbounded Verification with a FOL Theorem Prover

Finally, IDAVER also performs unbounded verification us-
ing a FOL theorem prover. When this option is chosen,
IDAVER translates the formal data model into first order logic
axiom formulas. Next, it translates the property that is to be
verified into a conjecture. Then the FOL theorem prover Spass
is used to determine whether the property holds by checking
if the axiom formulas imply the property.

To demonstrate how the translation is done to first order
logic, we use the data model excerpt provided earlier. The
result of its translation is given below:
1 list_of_symbols.
2 predicates[(relation, 2)].
3 sorts[Profile, User].
4 end_of_list.
5 list_of_formulae(axioms).

6 formula(forall([Profile(a)], not(User(a)))).
7 formula(forall([User(a)], not(Profile(a)))).
8 formula(forall([a, b], implies(

relation(a, b), and(Profile(a), User(b))))).
9 formula(forall([a, b1, b2], implies(

and(relation(b1,a), relation(b2,a)), equal(b1,b2)))).
10 formula(forall([a, b1, b2], implies(

and(relation(a,b1), relation(a,b2)), equal(b1,b2)))).
11 formula(forall([Profile(a)],

exists([b], relation(a, b)))).
12 end_of_list.

Class types are translated into unary predicates (line 3);
those denoting classes not related by inheritance are specified
to be mutually exclusive (lines 6 and 7). Each relation is
translated into a binary predicate (line 2) that can only be
true if both elements satisfy their corresponding class type
predicate (line 8).

The cardinality of relations is translated into additional
axiom formulas. For example, the constraint that each User
object is related to at most one Profile object is translated
into the formula on line 9. For the constraint that each Profile
object is associated with exactly one User object, we add
two formulas: one similar to that on line 9 and one that says
each Profile is related to at lease one User (lines 10 and 11,
respectively).

There are additional data modeling constructs that are
not covered in this example but are automatically translated
by IDAVER. Polymorphic relations are translated like non-
polymorphic relations, except that the elements are restricted
to multiple types. A transitive relation between objects a and
c, of classes A and C that goes through class B is defined as:
formula(forall([a, c], implies(and(A(a), B(b)),

equiv(through_relation(a, c), exists([b],
and(B(b), subrelation1(a, b), subrelation2(b, c)))

)))).

For conditional relations we introduce a unary predicate that
represents that the condition holds, and add a formula that
forces this predicate to hold on each object on the target side
of the relation.

Delete dependencies introduce additional complexity to
this basic translation. Two unary predicates are added:
Is_Deleted and Is_Destroyed. They mark objects as
deleted or destroyed, respectfully. A formula is added that
states, for all objects for which Is_Destroyed is true,
Is_Deleted is true by implication. In addition, all destroyed
objects propagate the deleted or destroyed status to related
objects, as defined by the dependencies in the Rails data
model.

After the translation IDAVER calls the FOL theorem prover
Spass. Since FOL is undecidable, it is possible that the theorem
prover may not return a result. In such a case, IDAVER
timeouts after the specified time limit. Otherwise, it interprets
the results and reports whether the property is verified or not.

VI. A CASE STUDY

We present a case study on an open source Rails application
called LovdByLess. This is a social networking application
with the usual features of users creating profiles, making
friends, and leaving messages for friends. It also includes a

forum where users can post and discuss topics. IDAVER takes
as input the path of the directory containing the Rails data
model files, and the name of the file containing the data model
property(ies). The properties are expressed using the property
templates discussed is Section IV. To make entry of properties
as easy as possible, the templates only require the class names
as input and the relations are inferred by IDAVER.

To start, let us say the user desires to verify the data
model of the LovdByLess application by ensuring the prop-
erty alwaysRelated[Photo, Profile] holds, meaning a
Photo object is always associated with some Profile object. The
user chooses to perform unbounded verification using Spass,
the FOL theorem prover. Running IDAVER on these inputs
gives the following result:

IDAVER outputs the name of the property being verified, the
verification technique and solver used, the total time spent to
obtain the result (including the taken to perform the translation
into the input language of the solver), the time spent by
the solver to perform the verification, and the size of the
formula in terms of the number of variables and clauses in the
specification. The formula size is solver-dependent: for SMT-
LIB and Spass, variables are the number of types, functions,
and quantified variables in the specification, and clauses are
the number of asserts, quantifiers and operations; for Alloy
this is the number of variables and clauses generated in the
boolean formula generated for the SAT-solver used by Alloy.
Finally, IDAVER outputs the result of the verification, which
in this case is that the property holds on the data model.

Next, let us change the solver to the SMT solver Z3, and
verify a different property. someUnrelated[ForumTopic,
ForumPost] checks that it is possible to have topics in a
forum that does not have any posts. IDAVER outputs the
following when run on these parameters1:

This scenario demonstrates a benefit gained by using Z3
over Spass as the unbounded verification solver: although
Spass tends to timeout less and be slightly faster than Z3

1The instances produced by the solvers were simplified to save space.

according to experiments we have done, Z3 formulates coun-
terexample instances and satisfying instances (as in this ex-
ample), which theorem provers are not designed to do.

In addition to unbounded verification, IDAVER can also
perform bounded verification using Alloy Analyzer. Speci-
fying bounded verification and using the default bound of
twenty (meaning up to twenty objects of each class will be
instantiated to check the property), we input the property
deletePropagates[Profile, Photo] to check that when
a Profile object is deleted, all associated Photo objects will also
be deleted. IDAVER gives the following output1:

Like Z3, Alloy also produces instances. IDAVER interprets
the instances provided and translates them to a language-
neutral and easy-to-understand form consisting of sets of
objects and related object pairs. In the above example, IDAVER
informs us that the property failed verification and provides
us with a counterexample in the format just described. Since
the user expected the property to hold, the counterexample is
useful for understanding the cause of the error.

In this example, investigation into the application code
reveals that all data related to a user, including Photos, should
be deleted once a user’s Profile is deleted. This can be enforced
in the data model using the :dependent option in the Profile
class on its relation with Photo, but currently this option is
not set. Running the application demonstrates that this failing
property does not manifest as an application error since the
user interface of the application currently does not allow
Profiles to be deleted, only to be deactivated. Thus this failing
property is an example of a data model error (an error in
the design of the data model) that does not show up as an
application error because it is enforced in other parts of the
application code.

Even though we performed bounded verification for this
property, we were able to determine that the property failed.
However this may not always be the case. In fact, the main
disadvantage of bounded verification is that its results are
not sound for verified assertions and failing predicates. For
example, checking the alwaysRelated[Photo, Profile]

property with Alloy Analyzer (which we checked earlier with
Spass) gives the following result:

Notice that IDAVER outputs that the property may hold since
no counterexample was found within the bound. In this case
unbounded verification gives a stronger verification result.

However, bounded verification has its own benefits. Recall
from the previous section that unbounded solvers may timeout
since satisfiability of FOL formulas and formulas in the theory
of uninterpreted functions with quantification are known to be
undecidable. This is the main benefit of having a tool that
integrates both bounded and unbounded verification: in cases
where unbounded solvers are unable to prove or disprove a
property, IDAVER provides the user with the option to perform
bounded verification to obtain an answer for the verification
query with in a given bound.

Let us look at one final example. To check that delet-
ing a Blog entry does not cause any Comment objects to
have a dangling reference, we check the noDangling[Blog,

Comment] property. Using Z3 to do unbounded verification,
IDAVER returns that this property does not hold on the data
model and provides a counterexample to help the user pinpoint
the error. When the user runs the application and deletes a Blog
entry, we see that in the database the associated Comments
are left with a dangling reference to the deleted Blog entry. In
the application, the user’s main page contains a list of recent
activity. This includes when someone has commented on that
user’s blog entry. The application sees there is a comment
made for this user, but it cannot find the referenced blog entry.
The application tries to make up for this error by returning an
empty string. An application error occurs nonetheless since
this empty string is displayed on the screen where text is
expected. Using IDAVER, the user discovers a bug that can
now be fixed in the data model by setting the :dependent

option on the relation to Comment in the Blog class, so that
all Comments are deleted when a Blog entry is deleted. This
example demonstrates the importance of verifying data models
and using the data modeling constructs available in Rails to
enforce properties of data models. Using other parts of the
application to enforce properties that should and can be upheld
by the data model may lead to errors, such as this one.

VII. RELATED WORK

Alloy Analyzer has been used for bounded verification of
data models by others [2], [13]. However, translation to Alloy
is not automated in these earlier works. Rubicon [8] is a tool
based on Alloy that targets the verification of the Controller
component in Ruby on Rails applications, whereas our work
focuses on data model verification. Furthermore, these ap-
proaches focus only on bounded verification whereas our tool
also supports unbounded verification. There has been some
recent work on unbounded verification of Alloy specifications

using SMT solvers [4], but to the best of our knowledge this
approach has not been implemented.

There has been recent work on the specification and analysis
of conceptual data models [12], [7]. These efforts follow the
model-driven development approach whereas our approach is
a reverse-engineering approach that extracts the model of an
existing application and analyzes it to find errors.

The data model property inference and repair techniques
presented in [9] are complementary to the contributions we
present in this paper. In this paper, rather than trying to
automatically synthesize the data model properties, we are
focusing on providing templates that enable users to specify
the data model properties at a high level.

The idea of using patterns to facilitate formal property
specification was first proposed for temporal logic proper-
ties [3]. The property templates we present in this paper are
not temporal and they are specific to data model analysis.

VIII. CONCLUSION

We presented a tool (IDAVER) for verifying data models of
web applications written using the Rails framework. IDAVER
integrates bounded and unbounded verification techniques, and
supports property templates that simplify the task of property
specification. IDAVER is applied directly on application code
and does not require users to be familiar with any specialized
modeling language or formal notation. We presented a case
study demonstrating that IDAVER can be used on real-world
web applications, and it can help developers in identifying
errors in the web application data models.

REFERENCES

[1] R. E. Bryant, S. M. German, and M. N. Velev. Exploiting positive
equality in a logic of equality with uninterpreted functions. In Proc.
CAV, pages 470–482, 1999.

[2] A. Cunha and H. Pacheco. Mapping between Alloy specifications and
database implementations. In Proc. SEFM, pages 285–294, 2009.

[3] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proc. International Confer-
ence on Software Engineering (ICSE), pages 411–420, 1999.

[4] A. A. E. Ghazi and M. Taghdiri. Relational reasoning via SMT solving.
In Proc. FM, pages 133–148, 2011.

[5] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, Cambridge, Massachusetts, 2006.

[6] G. E. Krasner and S. T. Pope. A cookbook for using the model-view
controller user interface paradigm in smalltalk-80. Jour. Object-Orient.
Program., 1(3):26–49, 1988.

[7] M. J. McGill, L. K. Dillon, and R. E. K. Stirewalt. Scalable analysis of
conceptual data models. In Proc. ISSTA, pages 56–66, 2011.

[8] J. P. Near and D. Jackson. Rubicon: bounded verification of web
applications. In 20th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-20), page 60, 2012.

[9] J. Nijjar and T. Bultan. Data model prop-
erty inference and repair (under submission).
http://www.cs.ucsb.edu/˜bultan/publications/NB13submitted.pdf.

[10] J. Nijjar and T. Bultan. Bounded verification of Ruby on Rails data
models. In Proc. ISSTA, pages 67–77, 2011.

[11] J. Nijjar and T. Bultan. Unbounded data model verification using
smt solvers. In Proc. 27th IEEE/ACM Int. Conf. Automated Software
Engineering (ASE), 2012.

[12] Y. Smaragdakis, C. Csallner, and R. Subramanian. Scalable satisfiability
checking and test data generation from modeling diagrams. Autom.
Softw. Eng., 16(1):73–99, 2009.

[13] L. Wang, G. Dobbie, J. Sun, and L. Groves. Validating ORA-SS data
models using Alloy. In Proc. ASWEC, pages 231–242, 2006.

