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Abstract—Modern web applications use complex data models
and access control rules which lead to data integrity and access
control errors. One approach to find such errors is to use
formal verification techniques. However, as a first step, most
formal verification techniques require extraction of a formal
model which is a difficult problem in itself due to dynamic
features of modern languages, and it is typically done either
manually, or using ad hoc techniques. In this paper, we present
a technique called symbolic model extraction for extracting formal
data models from web applications. The key ideas of symbolic
model extraction are 1) to use the source language interpreter for
model extraction, which enables us to handle dynamic features
of the language, 2) to use code instrumentation so that execution
of each instrumented piece of code returns the formal model
that corresponds to that piece of code, 3) to instrument the
code dynamically so that the models of methods that are created
at runtime can also be extracted, and 4) to execute both sides
of branches during instrumented execution so that all program
behaviors can be covered in a single instrumented execution. We
implemented the symbolic model extraction technique for the
Rails framework and used it to extract data and access control
models from web applications. Our experiments demonstrate that
symbolic model extraction is scalable and extracts formal models
that are precise enough to find bugs in real-world applications
without reporting too many false positives.

Keywords-Formal Verification; Model Extraction; Web Appli-
cations

I. INTRODUCTION

Web applications are used in all aspects of life. Due to the
convenience of cloud-based data stores, many web applications
store private and sensitive user data, loss or leakage of which
could be disastrous for individuals and organizations. The
complexity of data models and access control rules used by
modern web applications leads to programming errors that
can compromise both integrity and privacy of data. Hence,
eliminating data integrity and access control errors from web
applications is a critical problem.

In recent years, dynamically typed, interpreted languages
such as JavaScript, Python and Ruby have become commonly
used for web application programming. These languages,
compared to statically typed languages, offer more flexibility
and typically require less source code to implement the same
program. Moreover, web application frameworks (such as
Rails and Django) utilize dynamic features of these languages
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to provide a rich set of tools to developers. The increased
expressiveness, however, comes at a cost. Certain compile-
time guarantees of correctness become impossible to achieve
in general. These include guarantees that are taken for granted
in statically typed languages, such as the guarantee that every
invoked function or method exists.

There exists a significant body of work on model based
verification of web applications [29], [11], [27], [3], [6], [8],
[17], [19], [23], [24], [22]. These approaches rely on extraction
of formal models, where the extracted model is an abstraction
of the program, focusing on a particular feature or behavior
of the program. These models are then verified using model
checkers or theorem provers [12], [9], [10], [31], [30], [14].

Some of this research specifically targets applications writ-
ten in dynamically typed languages [17], [18], [3], [4]. Ex-
tracting a formal model from programs written in dynamically
typed languages is a challenging problem in itself. Because
of the difficulties in model extraction, web applications ver-
ified in most research papers tend to be simple. Third party
libraries that augment the default behavior of the development
frameworks are generally avoided. To statically verify such
applications, verification tools require either that the applica-
tions do not use these features [21], [22], or they pre-process
applications to make declarative constructs explicit [13]. Even
with these limitations that are due to challenges in model
extraction, model based verification techniques were able to
find various previously unknown security and data integrity
bugs in open source web applications[17], [20], [21].

In this paper, we present symbolic model extraction: a
technique for automatic extraction of formal models from
applications written using dynamically typed, interpreted lan-
guages. Symbolic model extraction takes a program in a
source language as input and generates a model in a target
modeling language as output, such that the generated model
abstracts the behavior of the input program. Symbolic model
extraction is based on the following ideas: 1) We instrument
code such that executing the instrumented code returns the
model that corresponds to the original code; 2) We implement
the instrumentation function in the source language itself such
that we can instrument newly dynamically generated code as
it is encountered; 3) The instrumentation function replaces
branches with code that handles both paths of the branch in a
single execution in order to achieve full path coverage.



1 class Article < ActiveRecord::Base
2 acts_as_paranoid
3 end
4 class ArticlesController < ApplicationController
5 load_resource
6 before_action :destroy do
7 redirect_to :back unless current_user.verified?
8 end
9 def destroy

10 @article.destroy!
11 end
12 end

Fig. 1: Ruby on Rails Example.

Symbolic model extraction has its own limitations. Our
approach may not correctly handle code dynamically gener-
ated from user input. This is not a significant problem in our
experience, as directly evaluating user supplied code is unsafe
and slow and, hence, is not common practice. Moreover,
under certain conditions, the presence of mutually conflicting
code generation under different program paths may result in
extraction of inaccurate models. We did not experience this in
practice, although it is a theoretical possibility.

To validate our approach, we implemented symbolic model
extraction for data model verification of Rails applications.
Our tool is open source and available online1.

Our experiments show that symbolic model extraction can
be used to extract models from real-world web applications
very efficiently. We extracted models from 19 open source
Rails applications, spanning up to 84 KLoC (Ruby source
only). Extracting the entire model of most applications took
under 10 seconds, and 62 seconds for the largest application.
Automated verification of the extracted models took 0.069
seconds per property on average. On these 19 applications,
we verified 18,490 properties. 404 properties failed and we
manually confirmed that these are due to real bugs in the
application code. We also observed 56 false positives. These
results demonstrate that symbolic model extraction is fast and
precise enough to be useful for finding bugs in practice.

The rest of the paper is organized as follows. Section II
presents a portion of a Rails application, demonstrating why
model extraction from applications written in dynamically
typed web applications can be difficult. In Section III we dis-
cuss the foundations of symbolic model extraction. Section IV
explains how we implemented symbolic model extraction
to extract models of Rails applications that focus on data
integrity or access control. Section V presents the experimental
evaluation of our extraction. Section VI discusses related work,
and in Section VII we conclude the paper.

II. A MODEL EXTRACTION EXAMPLE

Consider the excerpt of a Rails application in Figure 1. Lines
1-3 declare a model class, which is a class whose objects
can be stored in the database. This particular class, Article,
defines articles that are managed by this web application. This
class does not contain any fields or additional methods for the
sake of clarity. Lines 4-12 define the ArticlesController.

1http://bocete.github.io/adsl/

1 class ArticlesController < ApplicationController
2 def destroy
3 @article = Article.find(params[:id])
4 redirect_to :back unless current_user.verified?
5 @article.deleted_at = Time.now
6 @article.save!
7 end
8 end

Fig. 2: Static Equivalent to Action in Figure 1.

Controllers define actions which are executed in response to
user requests. The one action in this example is called destroy

(lines 9-11). This action seemingly deletes the object stored in
the @article variable using the destroy! method (line 10).

Due to dynamic features that are often used in Rails, the
source code of the action is deceptive. The action does much
more than deleting an object.

First, it is not clear which article object is being deleted.
In line 5 of Figure 1 we see the load_resource declaration,
defined by the CanCan gem [7]. This declaration will ensure
that, before an action executes, the framework will preload an
object and store it in a variable, to be accessed from inside the
action. The specifics of this preload operation are subject to a
number of conventions such as the name of the controller, the
name of the action, and configurations.

Second, the before_action declaration in lines 6-8
prepends a filter to the action. Filters execute before or after
an action and are usually used to prepare data for an action, or
to conditionally prevent an action from executing any further.
In this case, if the current user is not verified (line 7), the filter
will redirect to a different page. This redirection will prevent
the action from executing.

Finally, in line 10, the action invokes the destroy method
on the object in order to delete it. However, in line 2, the
acts_as_paranoid declaration (provided by the ActsAsPara-
noid gem [26]), overrides the destroy! method for the Article
class. Instead of deleting an object, the object is simply marked
as deleted but not removed from the database. This allows for
Article objects to be restored later if need be.

Figure 2 contains a destroy action that is semantically
equivalent to the action in Figure 1, but with its semantics
directly understandable from the source code.

This is a simple example of how actions can be enhanced
using dynamic features of the Ruby language. There exists a
rich set of libraries that Rails developers can use to similarly
enhance the framework. Some of these libraries, such as
ActiveAdmin [2], can even generate entire actions that are
not present statically. This way of developing applications
makes static analysis and model extraction difficult, as the
semantics of an application are fully defined only at runtime,
after libraries have had the opportunity to augment them.

We explain symbolic model extraction and its application to
data model verification in the following sections, but here we
wish to demonstrate the result of symbolic model extraction
when applied to the example in Figure 1. As the target
modeling language, we focus on Abstract Data Store Language
(ADSL) which has been defined in our earlier work [3].



1 action destroy
2 article = oneof(Article)
3 if *
4 return
5 end
6 end

Fig. 3: Model Extracted from Figure 1.

We discuss features of ADSL later in Section IV. When
applied to the example in Figure 1, symbolic model extraction
extracts the ADSL model in Figure 3. This model is an
abstraction of the original method. In line 2, an object is read
from the database but there are no specifics on which object
is loaded. Lines 3-5 will abort the action, depending on a
nondeterministic condition. Finally, the model will correctly
omit the delete operation that was seemingly present in the
original source code. This model is a sound abstraction of the
full semantics of the action, including its dynamic features.

III. SYMBOLIC MODEL EXTRACTION

We explain symbolic model extraction on an abstract pro-
gramming language L. Let us assume that L is an interpreted,
dynamically typed, imperative programming language with
functions as first-class citizens (e.g. functions can be assigned
to variables, passed as arguments to function calls etc.).

For simplicity, we will represent a program written in L
as a statement s. Since a sequence of statements is itself a
statement, this perspective is accurate. At runtime, programs
written in L are executed using the interpreter I where I
evaluates statements to migrate the program from one state
to another state.

Because this is a dynamically typed language, the types
of objects assigned to variables may change over time. In
addition, the type system in the program can change in any
number of ways: Classes can be defined at runtime, methods
can be added or even replaced at runtime.

Let L be the set of program states in L. These states include
the program counter, the stack and heap memory states. This
lets us define a statement s as a set of state transitions:

s ⊆ L× L
In words, given an initial state l ∈ L, executing a statement
s will migrate the program state to some state l′ such that
〈l, l′〉 ∈ s. Furthermore, we constrain the definition of state-
ments to have at least one state transition from any program
state. Let S be the set of all statements in language L.

For model-based verification, in order to verify a program
(statement) s ∈ S, we need to extract s]: the model of a
statement s in some modeling language L]. This model is an
abstraction of the original statement, meaning that if there are
behaviors in s, they can be detected in s].

Let L] be the set of abstract program states. Each abstract
program state l] ∈ L] is a set of concrete program states:

l] ⊆ L
Similarly, an abstract statement s] is a set of transitions
between abstract states that abstracts a concrete statement s.

s
Source Program

T

Instrumenter

I
Interpreter

s]
Model

Fig. 4: Overview of symbolic model extraction

More precisely, for every state transition in s, s] contains the
transition of corresponding abstract states:

∀〈l, l′〉 ∈ s : ∃〈l], l]′〉 ∈ s] : l ∈ l] ∧ l′ ∈ l]′

We can see that s] simulates the behavior of s, i.e., for each
behavior in s there exists a corresponding behavior in s].
Hence, s] is an abstraction of s.

Note that this definition of statements does not account for
expression return values. We are using this set of definitions
to simplify the presentation.

A. Symbolic Model Extraction Rules

Symbolic model extraction uses the interpreter for the
source language, and an instrumentation function that is ac-
cessible during runtime, to execute the input program in an
instrumented, path-insensitive environment to explore static as
well as dynamically generated code and extract the model for
the given program in the target modeling language.

We illustrate the high level information flow in the symbolic
model extraction in Figure 4 where the input program (s) in
the source language is passed to the instrumenter function (T ).
The instrumenter will instrument the given program and pass it
to the interpreter for execution. When new code is encountered
or dynamically generated, the interpreter will pass this new
code to the instrumenter for immediate instrumentation. The
execution of the instrumented program returns the extracted
model (s]) in the target modeling language.

In order for this approach to work without developing a
custom interpreter, the instrumenter has to be implemented
in the source programming language itself. Newly generated
code can then be investigated and instrumented using metapro-
gramming.

Key to our approach is the symbolic model extraction
instrumentation function T , or the instrumenter in short. T is a
function T : S → S that, given a statement s ∈ S, returns the
instrumented statement T (s). When executed by the interpreter
I , T (s) evaluates to the model of s:

I(T (s)) = s]

In words, the instrumenter transforms a statement such that
executing the transformed statement using the source language
interpreter returns the model of the original statement.

After implementing T in the source language, we can use
it to instrument and extract a model of a dynamic program
using the source language interpreter. We instrument and
invoke the program’s entry point within the same runtime. Our
instrumentation ensures that instrumentation will propagate as
new code is discovered or even generated.

Additionally, we override all methods that are relevant
to our abstraction to make them execute symbolically. For



Rule # s T (s) I(T (s))

1 α1;α2; . . . ;αn ins_block(T (α1), T (α2), . . ., T (α3)) α]
1;α

]
2; . . . ;α

]
n

2 fn(α1 . . . αn) T(fn)(T (α1) . . . T (αn)) fn](α]
1 . . . α

]
n)

3 if α then β

else γ
ins_if(T (α), T (β), T (γ)) if](α], β], γ])

4 while α

β
ins_while(T (α), T (β)) while](α], β])

5 αop β ins_op(op, T (α), T (β))
α

]
op

]
β
]
, if op] exists within the abstraction

∗ otherwise

6 var = α

result = T (α)

var = SymVar.new(result.sym_type, ’var’)
ins_assignment(’var’, result)

var =] α]

7 var var var]

TABLE I: Statement Instrumentation

example, if we aim to extract a model that focuses on database
operations, methods that communicate with the database will
be overridden such that, instead of communicating with the
database, they return a model that describes the nature of
communication that was attempted.

The instrumenter’s behavior is not obvious when it comes to
dynamic language features, control flow, and data flow features
such as scoping and assignments that appear in the source
program. Table I demonstrates how the instrumenter could be
implemented with regards to basic language constructs.

1) Sequences of statements: Rule 1 in Table I demonstrates
how a sequence of statements is instrumented in order to
extract the model of the sequence.

Let us extract the model of a sequence of statements
s = α1;α2; . . . ;αn using symbolic model extraction. We
instrument the sequence in such a way that executing the
instrumented sequence returns the model of the sequence. To
achieve this, we replace each statement αk with its instru-
mented version T (αk) and pass these instrumented statements
as arguments to an ins_block function. As such,

T (s) = ins_block(T (α1), T (α2), . . . , T (αn))

Note that this instrumented statement is still a valid statement
in the source language. ins_block is a method provided by
our instrumentation library that merges a sequence of models
of statements into a block model.

When executing T (s), the interpreter will first evaluate each
argument for ins_block in order. The result of each argument
T (αk) will be α]k, the model of the statement αk. Finally,
these models will be merged by ins_block into the sequence
of statements in the modeling language.

2) Method calls: Rule 2 in Table I refers to how function
(or method) calls are treated by the instrumenter. Any call to
a function fn(α1, . . . , αn) in the source program is replaced
with a call to T (fn)(T (α1), . . . , T (αn)). In words, the instru-
mented function gets executed instead of the original function,
with arguments having been instrumented as well. The result
of this execution, as defined by the instrumenter, will be the
model of the function’s body.

To illustrate this approach, consider Figure 5(a). It illustrates
the execution of a program that dynamically generates a
method α and subsequently invokes it. Since code generation
is done at runtime, it poses a problem for standard model
extraction techniques. Figure 5(b) demonstrates how symbolic
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Fig. 5: Symbolic model extraction from dynamically generated
methods.

model extraction extracts the model of a dynamically gen-
erated method. After generating the method, the interpreter
instruments the generated method at runtime. The instrumen-
tation alters the method such that, after it is invoked with
symbolic arguments, the instrumented method returns its own
model. This is how instrumentation is propagated through the
program: all functions are instrumented just before they are
invoked, allowing us to extract statically available source code
as well as source code that might not exist statically.

3) Control Flow: Dynamic program analysis is typically
subject to the problem of path explosion. Symbolic model
extraction bypasses this problem by exploring all paths of
the program at the same time. We transform branches into a
sequence of three symbolic executions: one for the condition,
one for the then block, and one for the else block. We
execute all these in an instrumented environment in order to
extract models of the condition and both branches. Finally, we
combine the resulting three models into a branch statement in
our modeling language.

Rule 3 in Table I summarizes our approach for extracting
models of branches. Given a branch where α is the condition
and β and γ are the then and else block respectively, the
instrumenter replaces the branch with a call to ins_if(T (α),

T (β), T (γ)) which will consecutively instrument and execute
the condition and both paths. The results of executions of
instrumented elements are the models of each element, which
are combined into a model representation of the branch itself.
Note that, contrary to intuition, this approach can handle
some often encountered situations where different paths have
seemingly conflicting side effects, such as assigning different



1 do
2 a = Article.new
3 a.destroy!
4 end

1 ins_block(
2 (
3 result = ins_call(Article, :new);
4 a = SymVar.new(result.sym_type, ’a’);
5 ins_assignment(’a’, result)
6 ),
7 ins_call(a, :destroy!)
8 )

1 {
2 a = create(Article)
3 delete a
4 }

(a) Rails code (b) Instrumented Rails code (c) Extracted Model

Fig. 6: Symbolic model extraction example.

values to the same variable. This will be made clear in
Section III-A5.

Loops are handled analogously (Rule 4 in Table I). Instead
of executing the loop body a number of times, the loop can
be instrumented and executed only once to extract the model
of the loop body.

4) Expressions: Rule 5 in Table I explains how our ap-
proach handles expressions. Even though this discussion as-
sumes that the expression is a binary operator, the principle
generalizes to any number of arguments.

Given an expression α op β, we first extract the model of α
and β by instrumenting and evaluating them. Then, depending
on the operation op itself and α] and β], using the ins_op

function, we return either the model that correctly abstracts the
expression (α]op]β]), or ∗, representing any possible value.

The specifics of the treatment of expressions is highly
dependent on the specifics of the modeling language. Any
expression that can be represented in our modeling language
should be instrumented so that executing the instrumented
code evaluates to the corresponding model. Otherwise, the
instrumented expression should result in a symbol representing
any possible value. For example, if the abstraction handles
integer addition but not string concatenation, ins_op(:+, α],

β]) would check whether α] and β] are both integers. If they
are, ins_op should return the model of an addition operation
with appropriate models for arguments. Otherwise, the result
of ins_op would be a symbol representing any possible value.

5) Variables and scoping: Rule 6 in Table I refers to
how variable assignments are treated by the instrumenter
and Rule 7 explains how variable reads are treated by the
instrumenter. These two operations are closely tied to each
other, as we actually instrument variable reads as a side effect
of instrumenting assignments.

Given an assignment var = α, the instrumenter should
generate code that, when executed, returns the model represen-
tation of an assignment operation. Similarly, when a variable
var is read in the original program, the corresponding model
should represent the variable reading operation.

As shown in Rule 6 in Table I, the instrumenter replaces
the assignment with a sequence of three statements. The first
statement instruments and extracts the model of the assigned
expression, storing it in a temporary, local variable result.

The second statement creates a model of the variable read
operation and stores it in the assigned variable, along with
the type of the assigned expression and the name of the
variable. That way, whenever this variable is subsequently

read by the interpreter, the interpreter will identify the correct
variable using the scoping rules of the language and return the
proper variable read model. This approach not only reduces
the amount of work needed to implement symbolic model
extraction as we need not worry about variable scoping rules
in the source language, but this is especially useful in Ruby,
where it is not trivial to distinguish variable reads from method
calls made without parenthesis and arguments.

Finally, the third statement constructs and returns the model
of the assignment operation itself.

Since variables do not contain a value that is tied to the
expression that was assigned to the variable, symbolic model
extraction does not have a problem with the source program
assigning different values to the same variable in different
program paths. During symbolic model extraction from such
a program, although a different models will be extracted from
each assignment, all assignments will assign the very same
value to the variable in question.

6) Dynamic Code Generation: Symbolic model extraction
is built on the assumption that the dynamic features of the
source language are used input-independently within the ab-
straction of choice. In other words, all dynamically generated
code has an identical abstraction in every execution of the
program. This assumption holds in Rails very often as code
generation is almost exclusively used to make the developers
work easier, generating code that’s identical every time the
web application starts.

During instrumented extraction, code generation is executed
concretely, with all symbolic values concretized into arbitrary
values within their abstraction.

B. Symbolic Extraction Example
We will proceed to demonstrate how symbolic model ex-

traction can be used for model extraction on an example.
This example is designed to demonstrate key features of the
technique, and how the approach deals with difficulties more
straightforward techniques could not handle easily.

Assume that we wish to extract a model from the Ruby
block in Figure 6(a). This block creates a new Article object
(Article.new) and assigns it to a variable called a in line 2.
In line 3 the destroy! method is invoked on the previously
created object, deleting the object from the database. These
statements are wrapped in a block (lines 1-4).

The target modeling language is ADSL, which we will
discuss in more detail in Section IV. The model we will
eventually extract should be understandable regardless, and is
presented in Figure 6(c)).



1) Program Transformation: The instrumenter will auto-
matically transform the block in Figure 6(a) to the block
in Figure 6(b). We refer to the code in Figure 6(b) as
instrumented code to distinguish it from the original code.
Instrumented code is generated as a transformation of the
abstract syntax tree of the original block, and is executed
instead of the original code. This instrumented code follows
the instrumentation rules previously discussed in Table I.

The block presented in lines 1-4 of Figure 6(a) corresponds
to the ins_block statement that spans lines 1-8 of Figure 6(b).
This is a direct application of Rule 1 in Table I. The two argu-
ments of ins_block, spanning lines 2-6 and 7 of Figure 6(b),
directly correspond to the two statements in lines 2 and 3
of Figure 6(a) respectively. When executing the instrumented
code, arguments of ins_block will be evaluated one at a time,
evaluating to their models. The models of these statements will
be conjoined into the extracted block by the ins_block call.

The assignment in line 2 of Figure 6(a) is transformed into
the sequence of statements in lines 3-5 of Figure 6(b), as
described by Rule 6 in Table I.

The statement in line 3 of Figure 6(b) instruments and
evaluates the new method, storing the result model in a
temporary variable. We implemented ins_call to facilitate
instrumentation and invocation of the instrumented method
(line 2 of Table I. In this case, the expression is invoking the
new method on the Article class. This is a core Rails method
that creates a new model object, which we overrode to return
the model of the object creation operation: create(Article).

The statement in line 4 assigns a model of a variable read
operation to a. This value mimics the type that was assigned
to the variable in the original program, but otherwise has no
state. Whenever any subsequent statement reads variable a, the
value it reads will be the model of the operation of reading a.

The statement in line 5 creates a model representation of
an assignment operation. This model will be returned to the
ins_block call in lines 1-8 of Figure 6(b) as the first argument.

The method call in line 3 of Figure 6(a) is transformed into
the method call in line 7 of Figure 6(b). This is in concordance
with Rule 2 presented in Table I. The ins_call statement will
execute a method in an instrumented environment in two steps:

1) Find the method that will be invoked on the provided
object with any provided arguments, and instrument it.

2) Invoke the method with any provided arguments.
By default in Rails, the destroy! method deletes an object

from the database. During instrumented execution, calling
destroy! on an Article object returns the model of a delete

operation on the called object. In this case, since variable
’a’ contains the model of the variable read operation, from
destroy! we extract the model statement present in line 3 of
Figure 6(c).

C. Limitations

Symbolic model extraction has limitations. For one, the
approach assumes that the application does not utilize input
dependent dynamic features. If it does, for example if a user
is given the ability to enter code that will be executed by the

application, symbolic model extraction will not extract a sound
abstraction of the original source code. In practice, generating
code from user input is avoided for performance and security
reasons, so we did not encounter this issue.

Our treatment of branches is designed under the assumption
that different paths in the program will not use mutually
conflicting code generation. Consider a branch statement that
executes statement A if the condition holds true and statement
B if the condition holds false. Let A and B generate a
method under the same name with different source codes.
Inside A you would see A’s method during both concrete
and symbolic execution, inside B you would see B’s method
during both executions. However, after the branch, symbolic
model extraction would only consider B’s implementation.
Although this is a problem in theory, in practice, we did not
encounter such programs. We believe that this problem can be
avoided by keeping track of every generated method and using
aliasing to access different versions of the same method.

IV. SYMBOLIC EXTRACTION FOR DATA MODEL
VERIFICATION

We used symbolic model extraction to models from Ruby
on Rails applications. We used these models for two purposes:
to verify data integrity [3] and access control [6] properties.

In this section we present the Abstract Data Store Language
(ADSL), the target modeling language we used for verification
of data integrity in Rails applications. We also discuss the
extension of ADSL called ADSL+ that enhances ADSL with
access control information, although for brevity, ADSL+ is
discussed in less detail. In addition to presenting the modeling
language, we show how we employed symbolic model extrac-
tion to extract models in these target modeling languages.

A. Data Model Verification Models

Since our goal is to verify data integrity or access control,
the models we extract need to encompass operations the
application does on its data. For data integrity, we need to
focus on the way data can be modified by the application, as
well as automated validators and constraints that prevent data
invalidation. For access control, we additionally need to extract
the specifics of the permissions system, as well as observe
which objects might be read or modified by different users.

At the core of ADSL is a data store. A data store DS is
a tuple 〈C,R,A〉 where C is a set of classes, R is a set of
associations, and A is a set of actions. Classes and associations
define the types of entities stored in the data store, while
actions define possible ways to modify or query the data store.
Data store states define the exact set of data being stored in
the data store. We define DS to be the set of all possible
data store states of DS. Formally, a data store state is a tuple
〈O, T 〉 ∈ DS where O is the set of objects and T is the set
of tuples denoting associations among objects in O.

1) Classes and Associations: Given a data store DS =
〈C,R,A〉, C is the set of classes, and it identifies the types of
objects that can be stored in the data store. Each class has a



set of superclasses (superclass(c) ⊂ C) and, transitively, the
superclass relation cannot contain cycles.

Given a data store state 〈O, T 〉 ∈ DS, O is the set of
objects that are stored in a data store at some point in time.
Each object o ∈ O is an instance of a class c ∈ C. We use
the notation Oc to denote all objects in O whose class is c or
whose superclass is c (directly or transitively). We define O
to be the set of all sets of objects that appear in DS.

Associations define how objects of particular classes can
be related to one another. An association r = 〈name, co, ct 〉
∈ R contains a unique identifier name, an origin class co ∈ C,
and a target class ct ∈ C. We omit the definition of cardinality
constraints for brevity.

Similarly to how objects are instances of classes, tuples are
instances of associations. Each tuple t ∈ T is in the form t =
〈r, oo, ot〉 where r is an association r = 〈name, co, ct〉 ∈ R
and oo ∈ Oco and ot ∈ Oct . For a tuple t = 〈r, oo, ot〉 we
refer to oo as the origin object and ot as the target object.

Notice that this model does not include fields as part of the
class definition. ADSL abstracts basic types away for several
reasons. First, Rails natively supports validators that effectively
ensure that only valid basic type data can be saved in the
database. As such, verification is unlikely to yield useful re-
sults. Second, verification of basic types is difficult, especially
in case of strings, which are still unsupported by most SMT
solvers that we use for verification. This would limit our choice
of theorem provers. In addition, there is nothing that prevents
symbolic model extraction from extracting basic type field
operations. If necessary, this would be a simple addition to
our implementation.

2) Actions: Given a data store DS = 〈C,R,A〉, A denotes
the set of actions. Actions are used to query and/or update
the data store state. Each action a ∈ A is a set of executions
〈q, q′, α〉 ∈ DS×DS×O where q = 〈O, T 〉 is the pre-state of
the execution, q′ = 〈O′, T ′〉 is the post-state of the execution,
and α ⊆ O′ is the set of objects shown to the user as the
result of this action’s execution.

For example, given an action a ∈ A and an execution
〈q, q′, α〉 ∈ a, we can define the sets of objects this execution
created, deleted, and read as follows:

o ∈ created(〈q, q′, α〉)⇔ o 6∈ q ∧ o ∈ s′
o ∈ deleted(〈q, q′, α〉)⇔ o ∈ q ∧ o 6∈ q′
o ∈ read(〈q, q′, α〉)⇔ o ∈ α

In ADSL, an action is a sequence of statements. Statements
are state transitions specified using a combination of boolean
and object set expressions. Boolean expressions have the usual
semantics, and object set expressions represent a set of objects.

To illustrate how statements correspond to state transitions,
let us define the semantics of the delete(expr) statement.
Note that this statement operates with an object set expression.
Assuming that α is the set of objects that the expr argument
evaluates to, and that 〈q, q′〉 ∈ DS ×DS (where q = 〈O, T 〉

and q′ = 〈O′, T ′〉) are the pre- and post-states of the statement,
this statement transitions from q to q′ if and only if:
∀x : x ∈ O′ ⇔ x ∈ O ∧ x 6∈ α (1)
∀x : x ∈ T ′ ⇔ x = 〈r, xo, xt〉 ∈ T ∧ xo 6∈ α ∧ xt 6∈ α (2)

In other words, (1) x is an object in the post-state if and only
if it is an object in the pre-state that is not in α, (2) x is a tuple
in the post-state if and only if it is a tuple in the pre-state, and
neither the origin or the target object of x are in α.

ADSL includes statements for creating and deleting objects,
creating and deleting tuples between objects, variables and
assignments, branches and for-each loops. Updating objects
and tuples is outside our abstraction as objects do not contain
basic type fields, and as such, have no state that can be
updated.

ADSL+ expands on the above definition of data models
by modeling authentication, different user roles, the access
control policy as well as runtime access control checks that
are implemented in the source web application. The formal
definition of these models is discussed in prior work [6].

B. Implementation of Symbolic Model Extraction for Rails and
ActiveRecord

For both ADSL and ADSL+, in order to run instrumented
execution, we have to first install and configure the analyzed
application on our own computer. Once we can start the
web server, we add to it our own symbolic model extraction
library that overrides core Rails methods with their symbolic
versions. Finally, we start model extraction of each action by
generating http requests that will execute them. The set of
requests the server responds to are dynamically extracted from
the configuration of the instrumented server. This process is
fully automated.

ActiveRecord is the Object-Relation Mapping (ORM) li-
brary employed by Rails. It provides the methods by which
data can be managed or stored in the data store. As such, both
our models heavily rely on overriding ActiveRecord methods
with their symbolic counterparts. The configuration and usage
of ActiveRecord is highly relevant to our models.

Table II shows parts of the target modeling languages that
are common to the models we used to verify data integrity
or access control. Table II a) contains class (static) methods,
and Table II b) contains instance (object) methods. The first
column represents various Ruby on Rails methods. The second
column explains the semantics of the corresponding method.
Finally, the third column defines the expression in the target
modeling language (ADSL) that is extracted from said method.
This list is not exhaustive because many methods in Ruby on
Rails have multiple aliases (different names that achieve the
same functionality) for developer convenience.

For example, Model.create(attrs) is a constructor. Devel-
opers can use this method to create a new object of type Model,
setting the newly created object’s fields corresponding to the
attrs argument. Similarly, Model.all will return a collection
of all objects of type Model that exist in the database.

Our library will, when the Rails application is booting up,
replace core ActiveRecord methods with their instrumented



ActiveRecord method Semantics ADSL expression
Class.create(attrs) Creates an object with provided attributes (basic type values) create(Class)
Class.all Load all model objects of this type from the database allof(Class)
Class.where(...) Load all model objects in the database that satisfy some criteria subset(Class)
Class.find(id) Finds an object using the provided unique identifier oneof(Class)

a) Class Methods

ActiveRecord method Semantics ADSL expression
expr.select(...) Returns all objects in expr that meet some criterion subset(expr)
expr.association Returns object(s) related to expr via the association expr.association
expr.association << expr2 Associates object expr with expr2 via association association createTuple(expr, association, expr2)
expr.association = expr2 Mutates an association expr.association = expr2
expr.delete! Deletes the object delete(expr)
expr.destroy! Deletes the object, propagating deletion to associated objects delete(expr.assoc); delete(expr)
expr.destroy all! Deletes all objects in a collection expression delete(expr)
expr.each(block) Executes block once for each element in expr foreach v in expr: block
expr.nil? Checks whether expr is null or not isempty(expr)
expr.any? Checks whether expr has at least one object not(isempty(expr))

b) Instance Methods

TABLE II: Table of various ActiveRecord methods and corresponding ADSL expressions

versions. Other libraries that build on top of ActiveRecord do
not need to be manually specified and overridden, as when they
implement their functionality on top of core ActiveRecord,
they become implicitly prepared for instrumentation.

After overriding the core ActiveRecord methods, we iden-
tify the set of actions that the Rails application contains. We
instrument them and execute them one at the time. Each action
will return the model of itself, and these models make part of
the entire model we extract from the applications.

For data integrity verification, we make an additional step
to extract invariants [3]. These invariants are written in Ruby
using a library we developed for this purpose. Adapting our
extraction method to extract invariants was straightforward.
For example, we added quantification to ActiveRecord objects
that can be used to quantify over sets.

ADSL+ similarly requires an additional extraction step, and
even though it is more involved than invariant extraction, it
is essentially identical to extraction of other model features.
We extract access control information from CanCan configu-
ration [6]. Similar to how we handled ActiveRecord, we have
manually overridden a few key methods for policy declaration
and runtime checks of access control.

V. EXPERIMENTS

We used symbolic model extraction to extract models from
Rails applications in order to verify their data integrity [3],
[4], [5] and access control [6] properties. The result of our
experiments are summarized in Table III.

We analyzed a total of 19 open source Rails applications.
We found these applications from various sources. We looked
at the 25 most starred open-source Rails applications on
Github according to the OpenSourceRails.com website [25], a
compilation of open source Rails applications categorized by
domain [1], and applications investigated by related work.

Our implementation of symbolic extraction does not support
all versions of Rails, as that would require a substantial
engineering effort. Our tool supports Rails 3, up to and

including Rails 4.2. Furthermore, since we focused on how
applications employ ActiveRecord, we did not extract models
from applications that bypass ActiveRecord: for example, if
they are not backed by a relational database.

Column LoC (Ruby) shows the number of Ruby lines of
code in these applications. This number does not include
JavaScript, html, dynamic html generation through irb files, or
configuration files. Columns Classes, Actions and Invariants
show the number of model classes, actions, and invariants
respectfully. As invariants are not part of the core Rails
framework, we wrote them manually for each application after
investigating their source code. We did not write any invariants
for Bootstrap and Illyan because their models were too simple
to warrant any non-trivial invariants.

Column Access Control shows whether the application
employs access control through CanCan [7]. For applications
that do, we verified access control in addition to data integrity.

Column Extraction Time shows the total amount of time
it took to extract models from these applications. This in-
cludes booting up the Rails application, instrumenting it,
and executing each action as described in Section IV. We
obtained these results on a computer with an Intel Core i5-
2400S processor, running 64bit Linux. Memory consumption
was typical for starting and running a Rails application. We
manually confirmed that the extracted models are correct.

We find the performance and the quality of our model
extraction to be more than acceptable for real world use,
potentially both as part of verification of applications during
the quality assurance process, and for daily developer use.

A. Verification Results

For each model that was extracted, we used data model
integrity verification and access control to verify each appli-
cation. For data integrity verification, our tool generated set
of first order logic (FOL) formulas for each action/invariant
pair. We refer to these sets of formulas as verification queries.
A verification query can be used to verify whether an action



LoC Access Extraction Verification Avg Time per FalseApplication (Ruby) Classes Actions Invariants Control Time (sec) Queries Query (sec) Verified Bugs Timeouts Positives
Avare 1137 6 26 3 X 3.708 111 0.015 75 36 0 0
Bootstrap 785 2 4 / X 2.861 4 0.005 3 1 0 0
Communautaire 753 5 28 6 X 3.236 216 0.004 208 2 6 0
Copycopter 3201 6 11 6 3.534 66 0.014 66 0 0 0
CoRM 7745 39 163 32 X 33.868 5671 0.090 5537 91 25 18
FatFreeCRM 20178 32 120 8 X 14.383 1120 0.030 1077 40 3 0
Fulcrum 3066 5 40 6 4.966 246 0.009 239 7 0 0
Illyan 1486 3 24 / X 5.099 25 0.008 24 1 0 0
Kandan 1535 5 25 6 X 5.395 177 0.009 162 15 0 0
Lobsters 5501 17 86 9 7.576 819 0.203 798 13 4 4
Obtvse2 828 2 13 1 6.266 13 0.001 13 0 0 0
Quant 4124 9 38 4 X 5.688 203 0.006 203 0 0 0
Redmine 84770 74 264 21 62.295 5796 0.054 5771 19 6 0
S2L 1334 9 44 4 X 3.913 266 0.022 209 53 4 0
Sprintapp 3042 15 120 8 X 14.899 1105 0.032 1058 47 0 0
Squash 15801 19 46 18 8.251 828 0.031 824 4 0 0
Tracks 17562 11 117 9 16.349 1188 0.127 1171 11 3 3
Trado 10083 33 66 10 X 12.094 709 0.081 638 64 5 2
WM-app 2425 18 95 4 X 6.095 414 0.019 414 0 0 0
Totals 185356 310 1330 155 220.476 18977 0.069 18490 404 56 27

TABLE III: Experimental Results

could potentially invalidate an invariant. Given an action a and
invariant i, assuming a pre-state in which all invariants hold,
is it necessarily true that i will hold in the post-state? If not,
verification fails and reports an error.

If the application employs access control, we generate
verification queries that verify access control enforcement in
the application. This verification technique is detailed in prior
work [6]. Given an action a that may execute an operation
(such as create or read) over objects in set α, assuming that
the action is invoked by a user with any role, is α necessarily a
subset of the set of objects that users are permitted to operate
on? If not, verification fails and reports an error.

Verification queries are translated both for Z3, an SMT
solver, and Spass, a FOL theorem prover. We ran Z3 and
Spass concurrently for each verification query. If either prover
reaches a conclusive result with 60 seconds we accept it,
otherwise, we halt both provers and mark the result as in-
conclusive. We consider this an acceptable time limit as very
few queries for which we reach a conclusive result take more
than a second. Spass outperformed Z3 in only 7 queries out
of 18977.

Using our tool to verify models extracted from real world
web applications using symbolic extraction, we found numer-
ous bugs. These applications are publicly available and have
been developed over years by multiple developers. Neither
the original developers or verification by related approaches
caught these bugs before us.

Most bugs we found are access control bugs. In particular,
303 invalidated verification queries relate to access control.
For example, CoRM (a customer relationship manager) allows
administrators to import data into the database by accessing
a special admin panel. Our tool found that the access control
check for managing imports is incorrect: anybody can import
and export data if they know the correct URL.

Data integrity bugs were present as well, having caused 101
invalidated verification queries. For example, in Redmine (a
project management web application), when a user is deleted,

associated data is not properly cleaned up in the database. This
leads to crashes and strange patterns in the user interface when
this invalid data is accessed.

Column Verification Queries in Table III shows the number
of verification queries that were generated for each application.
Column Avg Time per Query shows the average time provers
took per verification query to reach conclusive results.

Column Verified shows the number of verification queries
that were proven correct, showing that an action preserves an
invariant or correctly enforces some aspect of access control.
Column Bugs shows the number of queries that reported an
error, and we manually confirmed the error is caused by a
bug. These queries demonstrate either a way to invalidate an
invariant, or to expose restricted information to the user.

Column False Positives shows the number of queries that
reported an error, but that were caused by a deficiency in
our implementation instead of an application bug. All false
positives we found were detected by an application creating
objects that would invalidate the database, but never saving
them in the database. Our implementation does not distinguish
between objects that were saved in the database from those
that are not, which we plan to improve on. Finally, column
Timeouts lists the number of verification queries that caused
our theorem provers to time out.

B. Verifiability

Our tool is open source and available online2. We also
uploaded our experimental set online3 so that our results can
be reproduced. This includes all configuration and changes we
made to run our tool. This will still require installation of ruby,
rails, corresponding gems and database configuration.

To extract a model from an application, the developer
needs to first install and setup the application. This process is
different for each application, but typically requires installing
an appropriate version of Ruby, associated gems, and setting

2http://bocete.github.io/adsl/
3http://tinyurl.com/symext



up the database. Even though we do not communicate with
the database during symbolic model extraction, the application
still has to establish a connection and validate the schema to
start up. Finally, the model is extracted using the command:

rake adsl_translate

As for verification, our library has an executable called
bin/adsl-verify. In addition to installing ruby and dependen-
cies of our library, theorem provers Spass [31] and Z3 [10]
need to be installed and added to the system path variable.
After extracting a model, assuming it is stored in a file,
it can be verified using command bin/adsl-verify <file>.
Additional command line options can be used to get a more
detailed verification report.

VI. RELATED WORK

Near et al. [17] developed Rubicon, a web application verifi-
cation tool that adds quantification to unit tests, for verification
using Alloy [14]. Their symbolic execution is fully explained
in a technical report [19]. Like them, we use the dynamic
features of an unmodified Ruby runtime to override concrete
methods with their symbolic counterparts. They both override
methods with their symbolic counterparts only once, before
symbolic execution has started. Considering that they use clas-
sical symbolic execution in a Ruby interpreter, there are some
key differences between our methods: most importantly, we
extract models from dynamically generated source code, and
don’t depend on SMT solvers for branch condition resolution.
Recently, they used their symbolic execution technique to
extract access control signatures from Rails programs [20].
Their experiments are limited to applications much smaller and
simpler than ours. We suspect this is caused by their extraction
method not supporting dynamic code generation.

RubyX [8] is a tool for symbolic execution in Rails that can
be used to find access control bugs. It uses manually written
scripts, each of which has to setup a database with symbolic
values, execute an action, manually capture relevant output of
the action, and check whether specific post-conditions hold.
We require no manual effort from the developer both in
terms of specifying expectations of correctness and scenarios
under which these expectations should be met. Furthermore,
symbolic model extraction does not rely on SMT solvers and a
custom symbolic runtime. Because we do not use SMT solvers
during model extraction, we are not limited to conditionals that
can be specified in decidable logic fragments. We accomplish
model extraction without a custom runtime that keeps track of
symbolic values. Furthermore, they use DRails [13] to make
specific usages of Rails code explicit, whereas we capture
metaprogramming natively.

RailroadMap [16] is an automated tool for verification
of access control in Rails using CanCan and Pundit. Their
program analysis is limited to parsing a few specific Rails
files and examining the AST, not even taking file dependencies
into account. As such, their program analysis is difficult to
make usable in practice. Their experimental evaluation focuses
on small applications: all but a few had a single developer
and were abandoned in weeks. We extracted semantically rich

models from some of the applications they analyzed. We could
not extract models from all of their applications because they
were written in Rails 2, a long deprecated version of Rails,
which our tool does not support.

This work relies on previous work for data model integrity
verification [3], [4], [5] and access control verification [6].
These earlier contributions are on efficient detection of bugs
and verification of Rails web applications using theorem
provers. This is achieved by extracting models from Rails
applications and translating them to first order logic. These
earlier papers focus on translation of real world behaviors to
first order logic in a way that will be analyzed by theorem
provers quickly and with high probability of success. This
paper, in contrast, focuses on model extraction. The extraction
techniques we used previously were limited (e.g. they did not
support branch conditions) and had a number of problems
caused by an unprincipled solution that was implemented
out of necessity. In addition, these previous papers did not
elaborate on the extraction method they employed. This paper
presents a novel model extraction method that is applicable to
other programming and modeling languages.

Access control bugs are sometimes found with techniques
not specifically tailored for finding access control bugs [17].
These methods typically require more effort than our auto-
mated method and may miss bugs.

Symbolic execution [15] is a well known technique for
program analysis. Instead of executing source code in a normal
runtime, symbolic execution will execute source code in an
alternate runtime, operating on symbolic values instead of
concrete values. These symbolic values are abstractions of
concrete values. SAT and SMT solvers are used in branch
conditions to determine if branch conditions are satisfiable, in
order to guide path exploration for the purpose of testing. We
use an unmodified Ruby runtime which makes our technique
easier to implement, and we do not use solvers to resolve
branch conditions as our purpose does not extend beyond
extracting the model of a branch condition.

Concolic execution [28] extends on symbolic execution by
keeping track of concrete values as well as symbolic. This
is useful when solvers are not able to check satisfiability or
find satisfying assignments to a branch conditions. One could
look at our treatment of dynamic features as concolic, as we
execute them concretely instead of symbolically.

VII. CONCLUSION

In this paper we presented an approach for model extraction
from applications written in dynamically typed, interpreted
languages. This is done by 1) using the source language
interpreter in order to handle dynamic code generation, 2)
instrumenting code so that executing it returns the model
that corresponds to it, 3) implementing instrumentation in the
source language in order to be able to instrument dynamically
generated code, and 4) executing both branches of a branch
statement in order to fully explore code. We experimentally
demonstrate that symbolic model extraction can be used to



efficiently extract models of real world applications and to
verify data integrity and access control properties.
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