Realizability of Choreographies using Process
Algebra Encodings

Gwen Salaiin! and Tevfik Bultan?

! University of Mélaga, Spain
salaun@lcc.uma.es
2 University of California, Santa Barbara, USA
bultan@cs.ucsb.edu

Abstract. Service-oriented computing has emerged as a new program-
ming paradigm that aims at implementing software applications which
can be used through a network via the exchange of messages. Interac-
tions among a set of services involved in a new system are described from
a global point of view using choreography specification languages such as
WS-CDL or collaboration diagrams. In this paper, we present an en-
coding of collaboration diagrams into the LOTOS process algebra. This
encoding allows to (i) check choreography specification using the LOTOS
verification toolbox (CADP), (ii) check realizability of collaboration dia-
grams for both synchronous communication and bounded asynchronous
communication, and (iii) automate service peer generation. Realizability
indicates whether peers can be generated from a choreography such that
they will behave exactly as formalized in its specification. If the collabo-
ration diagram is unrealizable, our approach extends the peer generation
process by adding some communications that make the peers respect the
choreography specification.

1 Introduction

Formal methods play a key role in many open research problems that are of sig-
nificant importance to the field of service-oriented applications. This is the case
for problems related to choreography, i.e., specification of interactions among
a set of services from a global point of view. Several formalisms have already
been proposed to specify choreographies: WS-CDL, collaboration diagrams, pro-
cess calculi, BPMN, SRML, etc. Given a choreography specification, it would be
desirable if the local implementations, namely peers, can be automatically gen-
erated via projection. However, generation of peers that precisely implement
the choreography specification is not always possible: This problem is known as
realizability.

Recent works on this topic [10,15,4,2] advocate techniques to check the
realizability of a choreography, or define well-formedness rules to be applied
while writing the choreography specification in order to ensure its realizability.
To the best of our knowledge, no solution has been proposed yet to generate
peers realizing any choreography without adding rules or constraints on the

2 Gwen Salatin, Tevfik Bultan

choreography language or on specifications written with it. Accordingly, our
contribution is twofold. First, our solution generates peers for any choreography
specification by extending them with additional messages if the choreography
is unrealizable. Second, our approach is supported by tools for verification of
choreographies, testing realizability, and generation of peers in a completely
automated way.

In this paper, we use collaboration diagrams as the choreography specification
language. We propose an encoding of collaboration diagrams into the LOTOS
process algebra. We chose LOTOS because it provides a good level of expres-
siveness to describe all the collaboration diagram interaction constraints, and
is equipped with a rich toolbox (CADP) which offers state-of-the-art tools for
state space exploration and verification. The LOTOS encoding allows to (i) verify
choreography specification using CADP, (ii) check realizability of collaboration
diagrams for both synchronous communication and bounded asynchronous com-
munication®, and (iii) automate service peer generation, adding new messages if
the diagram is unrealizable.

The rest of this paper is organized as follows. Section 2 introduces collab-
oration diagrams and the problem of their realizability. Section 3 presents our
encoding into LOTOS, and how this encoding is used to test realizability and
generate peers. Section 4 sketches the tools that support our approach. Section 5
compares our proposal to related work, and Section 6 ends the paper with some
concluding remarks.

2 Collaboration Diagrams

A collaboration diagram [2] (called communication diagram in UML 2) consists
of a set of peers, a set of links between peers, and a set of message send events
associated with links. An event is a tuple containing a dependency relation (fac-
ultative), a (unique) label, a message, and a recurrence type. Labels (1, 2, 3, ...,
Al, A2, A3, ..., B1, B2, B3, ...) contain prefixes (g, A, B) that organize events into
different threads. All messages in one thread share the same prefix and execute
based on the numerical order defined by their labels. Messages from different
threads occur concurrently, and can be interleaved in any order that respects
the dependency relation. A recurrence type is either “1”7 (default type) meaning
that the associated event happens once, “?” for a conditional event (the event
may occur once or it may not occur at all), or “*” for an iterative event (the
event may not occur at all or it may occur multiple times).

Figure 1 presents a collaboration diagram for a train station service that we
will use as a running example throughout this paper. This diagram contains four
peers, respectively Customer, TrainStation, Availability, and Booking. It involves

! Promela (with its SPIN model-checker) is a formalism we could have used as an
alternative to LOTOS, since Promela supports both synchronous and asynchronous
communications whereas asynchronous communication can be expressed in LOTOS
by explicitly encoding queues. However, SPIN does not provide behavioural equiva-
lence checking we needed for the approach at hand.

Realizability of Choreographies using Process Algebra Encodings 3

three threads: 1) The main thread with prefix ¢ and events 1 and 2; 2) The
A thread with prefix A and events Al, A2 and A3; and 3) The B thread with
prefix B and events Bl, B2 and B3. The collaboration diagram starts by the
emission of a request to the train station (event 1). Next, the station checks
ticket availability (events Al, A2, and A3), reserves tickets (events B1, B2, and
B3), and sends the result to the customer (event 2).

Let us focus on thread A. It contains three events, the first one, 1/Al:info,
means that the message info should be sent by peer TrainStation to peer Avail-
ability only after the execution of the event 1. L.e., the tuple (1, Al) is included
in the dependency relation, indicating that the event Al is executable only after
the event with label 1 (namely 1:request) has been executed. The third event of
thread A (A3:itinerary *) must be run after A2 (due to the sequential order within
a thread), and can be executed several times (due to “*” recurrence type).

1l:request
:Customer —
B2/2:result
1/Al:info
B3:invoice ?T :TrainStation E— :Availability
A3/Bl:bookl A3:itinerary *
:Booking

B2:ack

Fig. 1. Train station service collaboration diagram

Before illustrating the realizability problem for collaboration diagrams, let
us introduce the peer model. A peer is described as a Labeled Transition System
(LTS). An LTS is a tuple (A4,S5,1,F,T) where: A is an alphabet, that is a set
of messages with direction (“!” for emission, and “?” for reception), S is a set
of states, I € S is the initial state, F' C S are final states, and T"C S x A x §
is the transition function. Peers interact using binary communication on same
message names with opposite directions. In this paper, we will consider both
synchronous and asynchronous communication models.

A couple of unrealizable collaboration diagrams are presented in Figure 2.
The first one (left hand side) is unrealizable because it is impossible for C to know
when A sends its request message (no interaction between A and C). Hence, the
peers cannot respect the execution order of messages as specified in the collab-
oration diagram. The second one is slightly more subtle because this diagram
is realizable for synchronous communication, and unrealizable for asynchronous
communication. Indeed, in case of synchronous communication, C can synchro-
nize with A (rendez-vous) only once request is sent, so the message order is
respected. This is not the case for asynchronous communication, since C sends

4 Gwen Salatin, Tevfik Bultan

its message to A without knowing if A has sent request or not. Therefore, the
correct order between the two messages cannot be satisfied. We also give in
Figure 2 the LTS generated for peer A.

1:request l:request
_—> e
A ‘B A B
Tz:update —_——— — — —
eer A 1

p
2:
update | request! |
_—
:C ‘D -C | Update? l

Fig. 2. Examples of unrealizable collaboration diagrams

Although realizability is easily figured out for these simple examples, it is
much more complicated to say if the collaboration diagram presented in Fig-
ure 1 is realizable or not. We present in Section 3 an approach to automate
the realizability test, and show that the train service collaboration diagram is
unrealizable for asynchronous communication.

3 Encoding into LOTOS

The backbone of our proposal is an encoding of collaboration diagrams into the
LOTOS process algebra [9]. We chose LOTOS because it relies on a rich notation
that allows to specify complex concurrent systems possibly involving data types.
In a second step, the LOTOS encoding allows (i) choreography verification by
using model checking tools available in CADP [8], (ii) realizability test and (iii)
generation of service peer implementations both for synchronous and bounded
asynchronous communication models. The different steps of our approach are
completely automated by different tools we present in Section 4.

3.1 Encoding Collaboration Diagrams into LOTOS

The collaboration diagram choreography is encoded using a LOTOS process.
This process is split up in as many parts (referred as thread behaviour in the
following) as there are threads in the diagram. Each thread behaviour encodes all
the messages involved in its thread in the order in which they must be executed
(achieved using the LOTOS action prefix operator). Each message is encoded
using source and target peer names as prefixes to avoid name clashes. The con-
ditional recurrence type “?” is encoded as a choice between the actual message

Realizability of Choreographies using Process Algebra Encodings 5

(condition is true), and a termination (exit) meaning that the condition is false
and the message not transmitted. The iterative recurrence type “*” is translated
into LOTOS using an intermediate looping process whose behaviour is: message;
loop_process [message] [i ; exit.

Each thread behaviour evolves independently, and they synchronize together
to respect dependency constraints (explicitly specified at the beginning of some
events, e.g., 1/Al:info) using new messages prefixed by “SYNC_.”. These messages
are inserted in the LOTOS specification in two cases: (i) before running a message
if this event depends on another message execution, (ii) after a message when
this message appears in a dependency relation in the diagram. In the second case,
the synchronization message should not block the thread execution, accordingly
it is interleaved with the rest of the thread behaviour.

Let us give a part of the LOTOS code generated for our running example.
We can distinguish the three threads, respectively for events starting by A, B,
and numbers. Thread A for instance contains three messages (info, infoAvail, and
itinerary) which are encoded in sequence and prefixed with peers participating
in these interactions (only initials for readability reasons). The last message
(a_ts_itinerary) involves an iterative recurrence type and is therefore translated
using a loop_process. An example of “?” recurrence type is given at the end of
thread B where the choice ([1) is used to express the execution of message invoice
(b_c_invoice) or not (exit).

As regards synchronization between thread behaviours, we can see for in-
stance that thread A synchronizes with the two others on messages SYNC_1 and
SYNC_A3. SYNC_1 is used to synchronize thread A and the main thread in order
to run message ts_a_info with label Al after message c_ts_request with label 1
(execution of SYNC_1 acts as a pre-condition to the execution of ts_a_info). In
thread B, the event Bl can only occur after A3 therefore message a_ts_itinerary
(which is labeled by A3) is followed by a SYNC_A3 message, in order to run
ts_b_book after A3. Note that the synchronization message SYNC_A3 should not
block the thread execution. Accordingly it is interleaved with the rest of the
thread behaviour (exit in this case, since it is the end of the thread).

((* -- thread A encoding -- *)
SYNC_1;
ts_a_info;
a_ts_infoAvail;
loop_process [a_ts_itinerary] >>
(SYNC_A3; exit ||| exit)
)
| [SYNC_1, SYNC_A3]]
((* -- thread B encoding -- *)
(
SYNC_A3;
ts_b_book;
b_ts_ack;
(
SYNC_B2; exit

6 Gwen Salatin, Tevfik Bultan

(
b_c_invoice; exit
(1
exit
) >> exit
)
)
| [SYNC_B2] |
(... (x -- main thread’s encoding -- *))

)

From this encoding, the corresponding LTS can be generated using CADP
state space generation tools, and verified using the Evaluator model-checker [13].
We checked for instance the liveness property stating that each c_ts_request is
eventually answered (ts_c_result). We show in Figure 3, the LTS obtained for the
collaboration diagram from the LOTOS encoding. This LTS was obtained by
hiding “SYNC_” messages, and by minimizing the resulting LTS (determiniza-
tion, removal of 7 transitions?, and suppression of similar paths) using reduction
techniques® available in the CADP toolbox.

a_ts_itinerary

c_ts_request ts_a_info a_ts_infoAvail
‘ ts_b_book

ts_c_result b_ts_ack
Ol ghite

b_c_invoice b_c_invoice

@ ts_c_result :

Fig. 3. Train station service: collaboration diagram LTS

3.2 Peer Generation

Peers are generated by projection from the LOTOS process encoding the collab-
oration diagram. This is achieved by generating a LOTOS process for each peer

2 7 transitions stand for internal actions. These transitions are generated while compil-
ing the LOTOS code. For example the LOTOS sequential composition “>>” inserts
such a 7 transition in the corresponding state space.

3 In this paper, minimizations are achieved using weak trace, safety and strong reduc-
tions.

Realizability of Choreographies using Process Algebra Encodings 7

whose body is an instance of the collaboration diagram process, and hiding in
this process all the messages in which the peer does not participate in.

Figure 4 gives a graphical view of peers generated for our running example
from their LOTOS descriptions. For instance, peer Booking (Fig. 4, (b)) starts
receiving a book request (ts_b_book?) from the train station, sends back an ac-
knowledgement (b_ts_ack!), and either stops or sends an invoice to the customer
(b_c_invoice!). We recall that peers interact on same message names with oppo-
site directions, e.g., c_ts_request! in the customer with c_ts_request? in the train
station.

c_ts_request! ts_c_result?
(a) ()
. . ts_a_info?

b_c_invoice? b_c_invoice?

ts_c_result?

ts_b_book? b_ts_ack! b_c_invoice!
(b) - N .
/
c_ts_request? ts_a_info! a_ts_infoAvail?
() —srequesty i
/

@‘ ts_c_result!m b_ts_ack?
_/

Fig. 4. Peers generated from the collaboration diagram: (a) customer, (b) booking,
(c) train station, (d) availability

a_ts_infoAvail!

a_ts |t|nerary|

a_ts_itinerary?

ts_b_book!

Once peers are generated, it is very difficult to say if their execution will
respect the interaction constraints specified in the collaboration diagram (order
of messages within a thread, and inter-thread message dependencies). In the
next subsection, we propose automated techniques to check realizability.

3.3 Realizability

Our idea is to compute realizability by comparing the collaboration diagram
LTS with the system composed of interacting peers using behavioural equiva-
lences [14]. If these two systems are equivalent, it means that the peer genera-
tion exactly preserves the collaboration diagram constraints. If they are not, it
is because peers do not generate the same interactions than those specified in
the diagram, therefore it is unrealizable. Computing realizability is achieved in
two steps: (i) generation of the system composed of interacting peers, and (ii)

8 Gwen Salatin, Tevfik Bultan

equivalence checking between the LTS resulting from step (i) and the collabora-
tion diagram LTS. In the following, we consider both synchronous and bounded
asynchronous communication models.

Synchronous communication. LOTOS relies on synchronous communication,
therefore from the LOTOS code obtained previously, we generate an LTS for
each peer process, and compose all peers in parallel making explicit messages on
which they synchronize.

Let us now give the resulting system for our running example. This system
is given in SVL [7] below. SVL is a scripting language that complements the
LOTOS encoding, and automates parts of the approach by calling the different
CADP tools we reuse. Moreover, these scripts were used to circumvent the state
explosion problem (see a discussion on this issue in Section 4). Beg files (delimited
by double quotes and with extension bcg below) are internal state/transition
representations computed (by CADP) from the LOTOS peer processes. Message
directions “!” and “?” as added in Figure 4 for pretty-printing reasons, have a
different semantics in LOTOS, they are used for value passing. Since, we do
not need this feature here, we have encoded messages without any direction for
the synchronous case as they appear in the synchronization sets (noted between
[[..]1) below. If two peers do not have to synchronize, they are composed using
the interleaving operator (| 11).

"distributed_system.bcg" =
"peer_Customer_lts.bcg"
| [c_ts_request, ts_c_result, b_c_invoice]|
(
"peer_TrainStation_lts.bcg"
| [ts_a_info, a_ts_infoAvail, a_ts_itinerary, ts_b_book, b_ts_ack]|
(
"peer_Availability_lts.bcg" ||| "peer_Booking lts.bcg"
)
)

Once this system is generated and reduced, we compare it to the collaboration
diagram LTS generated as explained in Section 3.1 using a strong equivalence
relation [14]. This check either says that both systems are equivalent and the
collaboration diagram is then realizable, or returns false which means that the
diagram is unrealizable. As far as our running example is concerned, the equiv-
alence test returns true for synchronous communication.

Asynchronous communication. This case is slightly more difficult because
asynchronous communication is not supported by LOTOS. To simulate how
the system evolves with an asynchronous communication model, we generate
some LOTOS code to implement bounded FIFO queues. Each peer is associated
with a queue (a LOTOS process) from which it can consume messages received
beforehand. This also means that a peer which wants to send a message to
another one, will actually interact (synchronously) with the other one’s queue. A
queue process needs a queue datatype (BQueue below) to store received messages.

Realizability of Choreographies using Process Algebra Encodings 9

This datatype is implemented using algebraic specification facilities provided
by LOTOS. A queue process can either interact with other peers on messages
that can be received by its own peer (t_s_book for the Booking queue below),
or synchronizes with its own peer if this one wants to evolve by consuming a
message available in its own queue (t_s_book_REC for the Booking peer). Note
that a local communication between a peer and its queue is suffixed with “_REC”,
whereas a communication between a peer (sender) and a queue is not suffixed.
The datatype encoding queues defines several operations: bisfull tests if the queue
is full, binsert appends a message to the end of the queue, bishead tests if a
message appears at the head of the queue, and bremove suppresses the message
at the head of the queue.

process queue_Booking [ts_b_book, ts_b_book_REC] (q:BQueue) : exit :=
[not (bisfull(q))] ->
ts_b_book;
queue_Booking [ts_b_book, ts_b_book_REC] (binsert(ts_b_book,q))
(]
[bishead(ts_b_book,q)] ->
ts_b_book_REC;
queue_Booking [ts_b_book, ts_b_book_REC] (bremove(q))
(]
exit
endproc

Next, a process for each couple (peer, queue) is generated in LOTOS. A peer
and a queue interact together on all messages (suffixed with “_REC”) that can
be received by the peer. From an external point of view, these messages are
not of interest, and that is why they are hidden. We show below the LOTOS
peer_queue_Customer process body for illustration purposes. Notice that the pro-
cess queue_Customer below is instantiated with a size set to 1 and no messages in
the queue (nil). The queue size is an input parameter of the LOTOS encoding.

hide ts_c_result_REC, b_c_invoice_REC in
(
peer_Customer [...]
| [ts_c_result_REC, b_c_invoice_REC] |
queue_Customer [...] (queue (1, nil))

)

Finally, the distributed system (in SVL below) is obtained by compiling all
LOTOS processes encoding couples (peer, queue) into beg files, and making all
these couples synchronize correctly on messages exchanged among peers (that is
all messages sent from peers to corresponding queues).

"distributed_system_async.bcg"=
"peer_queue_Customer.bcg"
| [c_ts_request, ts_c_result, b_c_invoice]|
(

"peer_queue_TrainStation.bcg"

10 Gwen Salatin, Tevfik Bultan

| [ts_a_info, a_ts_infoAvail, a_ts_itinerary, ts_b_book, b_ts_ack] |
(
"peer_queue_Availability.bcg" ||| "peer_queue_Booking.bcg"
)
)

Once the distributed system is computed, realizability is checked similarly to
the synchronous case, by comparing if the collaboration diagram LTS obtained
as presented in Section 3.1 is strongly equivalent to the distributed system.

As far as our running example is concerned, the equivalence test says false,
and indicates that the trace c_ts_request, ts_a_info, a_ts_infoAvail, ts_b_book ap-
pears in both systems, but a_ts_itinerary is then present in the distributed system
(it should not be), and not in the collaboration diagram LTS. The problem here
is that the train station peer has no way to know whether the availability peer
will send or not a_ts_itinerary because the recurrence type is “*” which means zero
or several times. So, what happens is that the train station peer sends ts_b_book
to the booking peer (assuming the availability peer will never send a_ts_itinerary),
and after this emission, the availability peer finally sends a_ts_itinerary, thus the
dependency relation A3/B1:book is not respected. We show in the next subsec-
tion how such unrealizable collaboration diagrams can be implemented.

3.4 Peer Generation, Extended

To make peers respect interaction constraints of unrealizable collaboration dia-
grams, we have to insert additional communications among peers. To do so, peers
have to (i) respect the application order of messages in each thread, and (ii) re-
spect dependency relations which specify constraints on the firing of a specific
message. The first constraint is achieved by adding in the collaboration diagram
encoding some explicit messages prefixed with “SEQ.” between each thread mes-
sage. As regards the second one, we will use the “SYNC_” messages that have
been used in the initial encoding to respect message dependency relations.

Let us illustrate with thread A of our running example, where in addition to
messages SYNC_1 and SYNC_A3, two new messages SEQ_A1 and SEQ_A2 appear
respectively after messages ts_a_info and a_ts_infoAvail. It is not useful to insert
such a message after the last message since it is the end of the thread.

((* -- thread A encoding -- *)
SYNC_1;
ts_a_info;
SEQ_A1;
a_ts_infoAvail;
SEQ_A2;
loop_process [a_ts_itinerary] >>
(SYNC_A3; exit ||| exit)
)

From this extended collaboration diagram encoding, peers are generated by
keeping visible the messages in which the peer does participate in, and also some

Realizability of Choreographies using Process Algebra Encodings 11

of the additional communications introduced above. Additional communications
to be kept are figured out following two rules: (i) A peer contains in its be-
haviour all “SEQ_" messages of a specific thread if the peer participates in at
least one interaction of this thread; (ii) a peer contains in its behaviour each
“SYNC_” message for which the corresponding message (e.g., for SYNC_1, the
message labeled 1 that is c_ts_request) is either one of its own messages, or is
used in a dependency relation of the collaboration diagram. For both rules, peers
synchronize on all additional communications that they share in their alphabets.

Let us illustrate that showing peer Booking (Fig. 5) generated with this ap-
proach. First, since peer Booking only participates in thread B, its behaviour
contains messages SEQ_B1 and SEQ_B2 which means that all peers involved in
thread B (namely peers Customer, Booking, and TrainStation) will synchronize
using these messages so as to respect the execution order of messages in this
thread. Second, two messages for dependency relations, SYNC_A3 and SYNC_B2,
are used too. SYNC_A3 is necessary because message ts_b_book must be run only
after the message identified by A3 (a_ts_itinerary) in the collaboration diagram.
Moreover, SYNC_B2 appears in peer Booking because the message identified by
B2 in the collaboration diagram (b_ts_ack) is used as dependency of another mes-
sage (ts_c_result sent by the train station to the customer), thus once b_ts_ack is
sent, peer Booking will interact with peers Customer and TrainStation to inform
them the result can be emitted.

SYNC_A3 — ts_b_book? —~ SEQ_Bl
{CD AN N4 i

SYNC B2 SEQ B2
R Wik

b_ts_ack!

b_c_invoice! b_c_invoice!

SYNC_B2

Fig. 5. Peer Booking with additional messages

Once the new peers are generated, the distributed system is built by extend-
ing the description given in Section 3.3 with additional communications and also
synchronizing peers on them. We recall that all peers do not synchronize on all
additional communications but only on those belonging to their alphabet and
shared with the other peers. Finally, equivalence between the collaboration di-
agram LTS and the distributed system in which all additional communications
have been hidden, confirms that the extended peers conform to the collaboration
diagram.

12 Gwen Salatin, Tevfik Bultan

4 Tool Support and Experiments

The different steps of our approach are completely automated by several tools
(Fig. 6). We have implemented a prototype tool named cd2lotos which, given
a collaboration diagram, generates the LOTOS code necessary to compute all
the results we have presented before in this paper. The cd2lotos prototype also
generates some SVL scripts that complement the LOTOS encoding and auto-
mate the rest of the process by calling the different CADP tools we reuse. Thus,
LTS generation is achieved using Caesar.adt and Caesar LOTOS compilers, as
well as reduction techniques available in Reductor. Model-checking can be per-
formed using Evaluator. Note that model-checking is the only step which is not
fully automated. Indeed, if a designer wants to go beyond basic checks (such
as deadlock-freeness), (s)he has to write some formulas encoding properties to
be satisfied by the choreography specification. Last, Bisimulator is used to check
that the collaboration diagram LTS is equivalent to the distributed peer imple-
mentation.

change option —> add communications

&«

Collaboration LOTOS/ISVL LOTOS spec. Protocol
) > 4 h
diagram e generation e 4 SVL scripts —> generation
N
A . / \
.~
.~
.~
Py
Temporal Collabo. diagram Peer LTSs
properties LTS

N NV

not ok —> modify Model Equivalence) false
checking checking

true
Fig. 6. Tool overview

Our approach, and especially the tool we implemented (cd2lotos), was ap-
plied and validated on about 85 collaboration diagrams (which resulted in the
generation of about 49,000 lines of LOTOS and 23,000 lines of SVL). We also
tested realizability on all these case studies, and all the unrealizable ones were
checked equivalent once additional communications were inserted in the peer
protocols.

Table 1 shows experimental results* on some of the examples belonging to
our database. For each experiment, the table gives the size of the diagram in

4 Experiments have been carried out on a Vaio VGN-FZ11Z (Intel Core 2 Duo Pro-
cessor T7300 2GHz, 2GB of RAM).

Realizability of Choreographies using Process Algebra Encodings 13

terms of number of peers, messages, and threads. Next, the table contains the
number of lines of LOTOS and SVL generated by our prototype as well as the
size (number of states and transitions) of the LTS generated from the diagram.
Last, we give realizability results for both synchronous and asynchronous com-
munication, and the time needed to compute both realizability checks. Example
¢d-045 corresponds to the case study presented in this paper.

First of all, it takes 1.9s to our prototype to generate SVL and LOTOS
files for all the examples of our database for both communication models (syn-
chronous and asynchronous) and both strategies (with and without additional
communications). For medium size examples (cd-008, ¢d-025, c¢d-045), the gen-
eration of all intermediate LTSs and the realizability checks are quite fast (less
than 20 seconds). For bigger diagrams (cd-059, ¢d-072), the computation time
increases up to several minutes. It is interesting to note that examples involving
more threads (cd-064) induce time consuming computations since they gener-
ate bigger intermediate state spaces due to the higher number of interleavings
coming with the number of threads.

Collab. Size LOTOS| SVL |CD LTS Realizability
diagrams||peers|messages|threads|| (lines) |(lines)| (st./tr.) ||sync.Jasync.] time
cd-008 || 5 9 1 388 | 148 | 27/46 || / | +/ | 19.56s
cd-025 || 4 6 3 304 | 130 | 12/15 || / | / | 16.20s
cd-045 5 8 3 341 130 | 10/13 vV X 18.69s
cd-059 || 10 20 3 666 238 | 56/175 X X |1m12.31s
cd-064 7 13 6 495 184 | 96/396 X X |1m46.14s
cd-072 || 16 30 4 959 346 (220/748|| X X |6m31.39s

Table 1. Realizability results for some case studies (no additional communications)

Table 2 shows results obtained for the unrealizable examples presented in
Table 1 once some additional communications are inserted. Obviously, all these
examples are realized by adding these communications. Notice that realizability
tests may take less time compared to Table 1 (cd-059, cd-064) because adding
communications increases the sequentiality of the system, and therefore reduces
communication interleaving.

During the experiments, we had to face the state explosion problem. In a first
attempt, we were computing distributed systems in a single step, but, even for
simple examples, the state space compilation lasted several minutes. Experiments
showed that for collaboration diagrams of medium size (4/5 peers and 10/15
messages), the compilation of couples (peer, queue) was returning LTS containing
hundreds even thousands of states (resp. transitions). Consequently, we decided
to build first each couple (peer, queue), minimize them, and compose them to
finally obtain the expected system. This technique (known as compositional
verification in CADP) allows to generate any step of the (distributed) system
computation in less than one second.

14 Gwen Salatin, Tevfik Bultan

Collab. Size LOTOS| SVL |CD LTS Realizability
diagrams||peers|messages|threads|| (lines) |(lines)| (st./tr.) ||sync.Jasync.] time
cd-045 || 5 8 3 343 | 134 [10/13 || / | +/ | 17.09
cd-059 || 10 | 20 3 674 | 242 | 56/175 || / | /| 44.45s
cd-064 7 13 6 501 188 |96/396 || +/ Vv |1m25.25s
cd-072 || 16 30 4 974 350 [220/748]| +/ Vv |6mb1.51s

Table 2. Realizability results for some case studies (additional communications)

5 Related Work

Several works aimed at studying and defining the realizability problem for chore-
ography [10,3,11,6,2]. In [3, 11], the authors define models for choreography and
orchestration, and formalize a conformance relation between both models. These
models are assumed given as input whereas we focus on the generation of one
from the other (generation of peers from a global specification) while ensuring
conformance. On a wider scale, all these approaches focus on theoretical aspects
and most of them lack of tool support. WSAT [5] is the only tool we know which
takes conversation protocols as input, and checks a set of realizability condi-
tions on them. Our proposal is fully automated by tools. Moreover, these works
only test realizability, but do not try to modify or extend peers to make them
implementable as we do.

Other works [4, 15] propose well-formedness rules to enforce the specification
to be realizable. For example, in [4], the authors rely on a 7-calculus-like language
and session types to formally describe choreographies. Then, they identify three
principles for global description under which they define a sound and complete
end-point projection, that is the generation of distributed processes from the
choreography description. We consider this solution too restricted since it may
prevent the designer from specifying what (s)he wants to. In addition, it makes
the choreography design more complicated since the designer cannot only focus
on composition issues, but has to consider at the same time these well-formedness
rules.

Last, to the best of our knowledge, the only work which proposes to add
messages in order to implement unrealizable choreographies is [15]. To do so,
the authors modify their choreography language to take new constructs (named
dominated choice and loop) into account. During the projection of these new
operators, some communications are added in order to make peers respect the
choreography specification. This solution complicates the design because these
new constructs are more restricting than the original ones, and they oblige the
designer to explicit extra-constraints in the choreography specification by asso-
ciating dominant roles to certain peers.

With respect to all these works, ours allows to implement any choreography
specification (here written with collaboration diagrams) without adding any rule
or constraint on the choreography language or specifications written with it.

Realizability of Choreographies using Process Algebra Encodings 15

Furthermore, the LOTOS encoding makes possible the complete automation of
realizability test, choreography verification, and peer generation (possibly with
additional messages). Last but not least, we consider in this paper both syn-
chronous and asynchronous communication models.

6 Concluding Remarks

In this paper, we have presented an encoding of collaboration diagrams into
LOTOS in order to detect realizability issues, and if necessary solve them while
generating peers by adding some communications. Our proposal deals with syn-
chronous communication but also bounded asynchronous communication, and
allows a completely automated and smooth process thanks to a prototype tool
we implemented to generate LOTOS code, and the use of the CADP toolbox to
analyze results generated from this code.

We have not discussed implementation issues here because it was out of scope.
However, from peers generated using our approach either new services can be
implemented, or some wrappers can be generated if an implementation of a
service already exists [16]. In the latter case, the wrapper aims at constraining
the functionality of the existing service to make it respect the application order
of operations as specified in the generated peer behaviour. Implementation of
executable services (Java, BPEL) from abstract descriptions can be achieved
using Pi4SOA technologies [1], or following guidelines presented in [12].

As regards future works, a first perspective aims at extending our approach
by considering as input to our problem a set of collaboration diagrams. Indeed,
choice is a missing construct in the collaboration diagram notation, and using
a set of diagrams allows to fill this gap. Second, realizability results for asyn-
chronous communication were computed with various queue sizes. During these
experiments, we noticed that results for queues of size one can be generalised
to any size (i.e., if a collaboration diagram is realizable for peers with queues
of size one, it will be realizable too for queues of size k). Intuitively, this is be-
cause the equivalence check involves only sent messages, and received messages
can be run at any time without any control. However, although this conjecture
was experimentally validated, we would like to go forward and formally prove
that realizability results for queues of size one hold for queues of size k and un-
bounded queues. Last, additional communications inserted in peer protocols to
make them respect the collaboration diagram choreography can be minimized.
In this paper, we systematically added a new message for each sequence of two
actions in every thread, as well as for each dependency relation. However, all
these messages are not always useful, and removing some of them for certain
collaboration diagrams does not invalid their realizability. We would like to pro-
pose automatic techniques which figure out the minimal number of necessary
additional messages to implement a given collaboration diagram.

Acknowledgements. The authors thank Javier Camara and José Antonio
Martin for fruitful discussions and interesting comments on a former version

16

Gwen Salatin, Tevfik Bultan

of this paper. This work has been partially supported by project TIN2008-05932
funded by the Spanish Ministry of Innovation and Science, project P0O6-TIC2250
funded by the Andalusian local Government, and US National Science Founda-
tion Grants CCF-0614002 and CCF-0716095.

References

10.

11.

12.

13.

14.

15.

16.

Pi4SOA Project. www.pidsoa.org.

T. Bultan and X. Fu. Specification of Realizable Service Conversations using
Collaboration Diagrams. Service Oriented Computing and Applications, 2(1):27—
39, 2008.

. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and

Orchestration Conformance for System Design. In Proc. of Coordination’06, volume
4038 of LNCS, pages 63-81. Springer, 2006.

M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-
gramming for Web Services. In Proc. of ESOP’07, volume 4421 of LNCS, pages
2-17. Springer, 2007.

X. Fu, T. Bultan, and J. Su. WSAT: A Tool for Formal Analysis of Web Services.
In Proc. of CAV’04, volume 3114 of LNCS, pages 510-514. Springer, 2004.

X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations among Web
Services. IEEE Transactions on Software Engineering, 31(12):1042-1055, 2005.
H. Garavel and F. Lang. SvL: A Scripting Language for Compositional Verification.
In Proc. of FORTE’01, pages 377-394. Kluwer, 2001.

H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In Proc. of CAV’07, volume
4590 of LNCS, pages 158-163. Springer, 2007.

ISO. LOTOS — A Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour. Technical Report 8807, International Standards
Organisation, 1989.

R. Kazhamiakin and M. Pistore. Analysis of Realizability Conditions for Web
Service Choreographies. In Proc. of FORTE’ 06, volume 4229 of LNCS, pages 61—
76. Springer, 2006.

J. Li, H. Zhu, and G. Pu. Conformance Validation between Choreography and
Orchestration. In Proc. of TASE’07, pages 473-482. IEEE Computer Society,
2007.

R. Mateescu, P. Poizat, and G. Salatin. Adaptation of Service Protocols using
Process Algebra and On-the-Fly Reduction Techniques. In Proc. of ICSOC’08.
Springer, 2008.

R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255-281,
2003.

R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the Theoretical Foundation of
Choreography. In Proc. of WWW’07, pages 973-982. ACM Press, 2007.

G. Salaiin. Generation of Service Wrapper Protocols from Choreography Specifi-
cations. In Proc. of SEFM’08, pages 313-322. IEEE Computer Society, 2008.

