International Journal of Foundations of Computer Science
© World Scientific Publishing Company

EFFICIENT SYMBOLIC REPRESENTATIONS FOR ARITHMETIC
CONSTRAINTS IN VERIFICATION*

CONSTANTINOS BARTZIS and TEVFiK BULTAN
Department of Computer Science, University of California, Santa Barbara CA 93106, USA

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

In this paper we discuss efficient symbolic representations for infinite-state systems
specified using linear arithmetic constraints. We give algorithms for constructing finite
automata which represent integer sets that satisfy linear constraints. These automata
can represent either signed or unsigned integers and have a lower number of states
compared to other similar approaches. We present efficient storage techniques for the
transition function of the automata and extend the construction algorithms to formulas
on both boolean and integer variables. We also derive conditions which guarantee that
the pre-condition computations used in symbolic verification algorithms do not cause an
exponential increase in the automata size. We experimentally compare different symbolic
representations by using them to verify non-trivial concurrent systems. Experimental
results show that the symbolic representations based on our construction algorithms
outperform the polyhedral representation used in Omega Library, and the automata
representation used in LASH.

Keywords: automata, Presburger arithmetic, symbolic model checking

1. Introduction

Symbolic representations enable verification of systems with large state spaces
which cannot be analyzed using enumerative approaches [1]. Recently, symbolic
model checking has been applied to verification of infinite-state systems using sym-
bolic representations that can encode infinite sets [2, 3, 4]. One class of infinite-
state systems is systems that can be specified using linear arithmetic formulas on
unbounded integer variables. Verification of such systems has many interesting
applications such as monitor specifications [5], mutual exclusion protocols [3, 4],
parameterized cache coherence protocols [6], and static analysis of access errors in
dynamically allocated memory locations (buffer overflows) [7]. In this paper we
present new symbolic representations for linear arithmetic formulas and experimen-
tal results on efficiency of different symbolic representations.

*This work is supported in part by NSF grant CCR-9970976 and NSF CAREER award CCR-
9984822.



There are two basic approaches to symbolic representation of linear arithmetic
constraints in verification: 1) Polyhedral representation: In this approach linear
arithmetic formulas are represented in a disjunctive form where each disjunct cor-
responds to a convex polyhedron. Each polyhedron corresponds to a conjunction of
linear constraints [8, 2, 4]. This approach can be extended to full Presburger arith-
metic by including divisibility constraints (which can be represented as an equality
constraint with an existentially quantified variable) [3, 9]. 2) Automata representa-
tion: An arithmetic constraint on v integer variables can be represented by a v-track
automaton that accepts a string if it corresponds to a v-dimensional integer vec-
tor (in binary representation) that satisfies the corresponding arithmetic constraint
[10, 11, 12, 13]. For both of these symbolic representations one can implement
algorithms for intersection, union, complement, existential quantifier elimination
operations, and subsumption, emptiness and equivalence tests, and therefore use
them in model checking.

In this paper we present construction algorithms for the automata representation
of sets satisfying Presburger arithmetic formulas. We also experimentally compare
two alternative automata representations and the polyhedra representation. Our
construction algorithms are based on finite state transducers which compute linear
functions (used in the arithmetic constraints that are being translated to FA) by
processing the bits of the variables starting with the least significant bits. The input
encoding is the same as the one used in [10] and the resulting FA are equivalent,
however, our construction is also able to handle negative integers. Also we are able
to prove tighter bounds on the sizes of the generated automata. The sizes of the
generated automata and the input encoding in our construction are different than
the construction given in [13]. We present automata construction for divisibility
constraints which can be used as an alternative to projection operation required for
Presburger formulas with quantification. We also show that the pre-condition com-
putations required in symbolic verification algorithms do not cause an exponential
increase in the automata representation if certain realistic conditions are satisfied.

We implemented our construction algorithm using the MONA tool [14] and
integrated it to a set of tools for infinite-state model checking [15]. We experimented
with a large set of examples. To compare the performance of our construction
algorithm to other approaches we also integrated the LASH tool [16] which uses
the automata construction given in [13], and Omega Library [17] which uses a
polyhedral representation to the same set of tools and ran them on the same set of
examples. Our experimental results show that our construction algorithm produces
more compact representations than the construction algorithm given in [13]. Also
automata representation is more efficient compared to the polyhedral representation
used in [17].

The rest of the paper is organized as follows. In Sections 2 and 3 we give our
automata construction algorithms for Presburger arithmetic formulas. In Section 4
we present an alternative encoding and discuss efficient storage techniques for the
transition function of the FA and extend the construction algorithms to formulas
on both boolean and integer variables. In Section 5 we summarize the complexity



results and discuss the related work. In Section 6 we derive conditions which guar-
antee that the pre-condition computations do not cause an exponential increase in
the FA size. In Section 7 we discuss our implementation and experimental results.
Finally, we state our conclusions in Section 8.

2. Finite Automata Representation for Linear Constraints on Natural
Numbers

In this section we describe our algorithm for constructing a finite automaton
that accepts the set of natural number tuples that satisfy a Presburger arithmetic
formula on v variables. The same problem has been solved in [10]. Here we give a
similar approach that enables us to prove a tighter bound on the size of the resulting
automaton and can also be easily generalized to include negative integers as we will
show in Section 3.

We encode numbers using their binary representation. A wv-tuple of natural
numbers (ny,ns,...,n,) is encoded as a word over the alphabet {0,1}?, where
the 4z, letter in the word is (b1, bi2, ..., biy) and by is the 4y, least significant bit
of number n;. Given a Presburger formula ¢, we construct a finite automaton
FA(¢)=(K,X,0,e, F) that accepts the language L(¢) over the alphabet ¥ = {0,1}?,
which contains all the encodings of the natural number tuples that satisfy the for-
mula. K is the set of automaton states, ¥ is the input alphabet, § : K x ¥ — K is
the transition function, e € K is the initial state, and F' C K is the set of final or
accepting states.

2.1. Addition of v variables Y, x;

As a basis for all following construction algorithms we will use a state machine
that performs linear arithmetic over natural numbers, which we will refer to as BSM
(for basic state machine) from now on. Formally, the BSM is a Mealy machine or
a finite state transducer (K, X, A, 4, e), where K is a set of states, X is the input
alphabet, A is the output alphabet, e € K is the initial state, and § : K xX — K XA
is the transition function from pairs of states and input symbols to pairs of states
and output symbols.

When adding v variables, all the BSM has to remember is all the possible values
for the carry, which in particular are all the integers between 0 and v — 1. Thus a
BSM with v states is sufficient. At any point, the BSM adds up all the bits of the
current letter plus the carry value of the current state, writes the resulting bit to the
output, and moves to a new state according to the value of the new carry. The initial
state is the one with carry value zero. Formally, K = {0,1,...,v — 1}, ¥ = {0,1}?,
A ={0,1}, e = 0, and d(k, (b1, ...,by)) = ([(k+ > i bi)/2], (k + > ;_; b;) mod 2),
where @ mod b is the remainder of the division of a by b.

2.2. Linear functions Y ;_, a; - x;

Now each variable is multiplied with a positive (negative) coefficient. The only
change to the above addition process is that now the bit of the i, variable is added



o ~oo
aAa~o
a~ao
o ~o =

a~ocollo~=ao
o~ocollo~=aa

o ™~=0
a~

A~

C3 4 C3y 3

A~ =

Fig. 1. A Basic State Machine for z 4 2y

(subtracted) |a;| times. For the moment, we assume that there is no constant
term. Obviously the number of possible values of the carry (and thus the number
of states) is now equal to Y ;_, |a;|. This is true if the GCD of all the coefficients
is 1. If this is not the case, we can divide all the coefficients with their GCD.

Formally, 3, A and e are the same as before, K = {k| > a; <k < Y a;} and
a;<0 a;>0

O(k, (byy ..y by)) = (L (K + E:Zl a; - b;)/2],(k+ E::l a; - b;) mod 2).
An example BSM for calculating x + 2y is shown in Figure 1. The transitions
are labeled with the current bits of  and y and also the bit written to the output.

2.8. Checking for equality with zero . ; a;-x; =0

From now on we describe Finite Automata (FA) based on the BSM. This means
that we now characterize the states as accepting and rejecting and there is no
output. This FA operates similarly to the BSM, except that after computing every
bit, instead of printing it to the output, it compares it against zero. While the
comparison is successful (the resulting bit is indeed zero), the FA continues its
normal operation. Otherwise it jumps to an extra sink state. The size of this
FA is at most one more than the size of the BSM. The accepting state is the
initial state (carry is zero) and all the others are rejecting. If we are checking for
non-equality, all we need to do is make the accepting states non-accepting and vice-
versa. Formally, FA(}"7_, a;-z; = 0) = (K,X,d,e, F), where K = {k | Y a; <

a; <0
k< > ai}U{sink}, ¥ ={0,1}", e =0, F = {0}, and the transition function ¢ is
a; >0
defined as:

5k (br b)) = (k + ;a 01)/2  ifk+ Y0, a;-byis even and k # sink

sink otherwise

2.4. Checking inequalities

The situation now is simpler. If we are checking for < 0, the FA is identical to
the BSM, except that it does not produce any output. The accepting states are all
the states representing negative carries. All the other states are rejecting. If we are
checking for > 0, we take the complement of the above described FA, by making



Input equation: > 7_; a; -x; =c¢ Output FA: (3, K, d,e, F)

¥ :={0,1}"?
K := {—c, sink}
e:=—c

FOR ALL ¢ € £ {(sink,0) := sink
WHILE 3k € K,0 € % s.t. 0(k, o) = null DO

FOR ALL ¢ = (b, ...,by) € ¥ DO
IF k' := (V_, a; - b; + k)/2 € Z THEN

K:=KU{k'}
&(k,0) == k'
ELSE
8(k,0) := sink
F .= {0}

Fig. 2. FA Algorithm for equations on natural numbers

Input inequation: >°7_; a; -x; < c¢ Output FA: (X, K, 4, e, F)

¥ :={0,1}"
K :={—c}
e:=—c¢

WHILE 3k € K,0 € ¥ s.t. §(k,0) = null DO
FOR ALL o = (b1,...,by) € X DO
K= (327 ai - bi + k)/2]

K :=KU{k'}
&(k,0) ==k’
F:=10

FOR ALL k € K
IF k < 0 THEN F := F U {k}

Fig. 3. FA Algorithm for inequations on natural numbers

the accepting states rejecting and vice versa. For the rest of the cases (> 0,< 0),
we change the signs of all coefficients and then we construct the FA like before.

Formally, FA(}.;_, ai - z; < 0) = (K,%,6,¢e,F), where K = {k | Y a; <k <
a; <0

> a;} is the set of states, ¥ = {0,1}" is the alphabet, e = 0 is the initial state,

a; >0

F ={k| ke KAk <0} is the set of accepting states, and the transition function

is d(k, (b1, .-, bp)) = [(k+ > ai - b1)/2].

2.5. Constant term

So far we assumed no constant term in the equations and inequations or, in
other words, the constant term was zero. Now suppose that the linear combination
of the variables is compared against a non-zero integer constant term c, i.e. we are
constructing a FA for a constraint of the form >°7_, a; - z; ~ ¢, where ~€ {=,#
,>,>,<,<}. All we have to do is make the state corresponding to a carry value
of —c the initial state of the FA (e = —c), that is, we begin with a carry of —c
and by gradually adding the linear combination of the variables, we compare the
result against zero, as we did before. If no such state exists, we introduce one. Of



course we need to introduce more states corresponding to values between —c and
the carry value closest to —c. Specifically, for inequalities, the set of states becomes

K={k| > a<k< > a;V0<k< —cV—c<k<0} Thus the number
a;<0 a; >0
of states now becomes |K| < S =4.¢ |min(—¢, > a;)| + |max(—c, ). a;)|. For
a;<0 a; >0
equalities, there is one extra sink state. Note that this upper bound on the number of

states is tighter that the one given in [10], even though the construction algorithms
are similar. The algorithms for constructing FA from equations and inequations are
given in Figures 2 and 3, respectively.

There is an alternative way to cope with the constant term. If | = log, ¢ is the
length of the binary representation of the constant ¢, we can stack I + 1 BSMs in
I+ 1 layers. For equations, any transition from layer 1 < ¢ <[, whose output is the
same as the . bit of ¢ goes to the appropriate state of layer i + 1, if the output is
different, it goes to the sink state. Initial state is the initial state of the first BSM.
Accepting states are the accepting states of the final BSM. For inequations (< c¢),
all transitions from any layer except the last go to the appropriate state of the next
layer and accepting states are those representing a negative carry. The total number
of states is at most (I +1)-.7 , |a;], i.e. |K| < (logyc+1)->"7_, |ai|. Note that
the two approaches described will result in the same automaton, when minimized.
We can choose which one to use depending on the expected upper bound on the
number of states.

2.6. Presburger formulas

Presburger formulas contain Boolean connectives between atomic linear con-
straints (equations and inequations) and quantifiers. Given two linear constraints
¢1 and @2 and the automata FA(¢1) and FA(¢s) representing them (with sizes
|[FA(¢1)| and |[FA(¢2)| respectively), we can easily construct a new FA that accepts
the Boolean AND (OR) between them by computing the intersection (union) of
the two FA. It is known that such a FA contains at most |[FA(¢1)| - |[FA(¢2)| states.
Similarly we can deal with NOT, by FA complementation. Given a formula ¢ con-
taining ! atomic linear constraints of the form ¢; : Y7 a;; -2 ~ ¢;,1 < j <
l, where ~€ {=,#,>,>,<,<}, and Boolean connectives, one would expect the
size of FA(¢) to be H§'=1 |FA(¢;)|. Fortunately, [FA(¢)| can be much less. Sup-
pose ¢ contains m atomic linear constraints 1, ...¢0,,, with distinct coefficients and
FA(¢;)=(K};,%,0;,e;, F;) is defined as described earlier. Now FA(¢)=(K, X, d, e, F')
can be constructed as follows. Each state of FA(¢) will correspond to a carry value
for each of the distinct constraints (or sink for equalities). Transitions are defined in
a similar way to those for single constraints. Finally, any state can be characterized
as accepting iff ¢ evaluates to true according to the carries stored in that state.
Formally, ¥ = {0,1}?, K = H;"zl Kj, 0((k1y-s km),0) = (6(k1,0),...,0(km,0)),
and e = (e1,es,...,em). Clearly the size of FA(¢) is O([I}L, X" lai,;|). Hence,
the size of the FA(¢) depends on the number of distinct atomic constraints in ¢,
i.e., repetition of an atomic constraint does not increase the size of the FA(¢).

If some variable is existentially quantified, we can compute a non-deterministic



FA accepting the projection of the initial FA on the remaining variables and then
determinize it. The size of the resulting deterministic FA can be exponential on the
size of the initial FA, i.e. |[FA(3z;.¢)| = 2FA(@] in the worst case. The resulting FA
may not accept all satisfying encodings (with any number of leading zeros). We can
overcome this by identifying all rejecting states k such that §(k, (0,0,...,0)) € F,
and make them accepting. Clearly, this modification does not increase the size of
the FA. Universal quantification can be similarly implemented by the use of the FA
complementation.

It is known that any Presburger formula can be expressed in a disjunctive form,
where each disjunct is a conjunction of equality, inequality and divisibility con-
straints [18]. Divisibility constraints are of the form Y;_; a;-z; +¢ =4 0, where d is
a positive integer constant, and =4 means equivalent modulo d. Given a Presburger
arithmetic formula in the form Jz;.¢ where ¢ is a conjunction of atomic equality
and inequality constraints, one can construct a formula ¢' which is equivalent to
dz;.¢ and ¢’ consists of atomic equality, inequality, and divisibility constraints and
x; does not appear in ¢’ [18]. Hence, if we can construct FA for arithmetic formulas
with divisibility constraints we would have an alternative approach to constructing
FA for quantified formulas. Having shown how to construct FA for equations and
inequations, here we describe the construction of FA for divisibility constraints.

First we describe a FA (K, X, §, e, F') that accepts an integer if it is divisible by d,
by reading its bits in most-significant to least-significant bit order, i.e. ¥ = {0, 1}.
There are d states, each representing the remainder of the division of the input with
d,ie., K ={0,1,...,d — 1}. State 0 is the entry state and also the only accepting
state. Finally, 6(k,0) = (2- k) mod d and 6(k,1) = (2-k + 1) mod d. In order
to make this FA “compatible” with those for equations and inequations described
earlier, we need to reverse the bit order. That is easy when d is odd. We just reverse
all the transitions. One can easily verify that the resulting FA is deterministic. This
is because in the initial FA the entry state is the same with the unique accepting
state and also there are no same-labeled transitions originating in distinct states
and going to the same state. If d is even, then it can be written as 2" - m where
m is odd and n > 0. We can build a FA for divisibility with m as described above
and add n + 1 states to check if the first n least significant bits of the input are
zero. The resulting FA will have at most d states. Now we can define FA(Y"] | a; -
z; + ¢ =¢ 0)=(K,X%,d,¢e, F), based on FA(y =4 0)=(K iy, {0, 1}, ddiv, 0, {0}) and
BSI\/I(E;):1 ai-.Z','—}—C):(KBSM, EBSM, A, 5BSM; eBSM). In particular, K = KBSM X
Kgiv, ¥ = Ypsu, e = (eBsm,0), F = Fpsy x {0} and finally 6((ky,k2),0) =
(ki , k%) iff s (k1,0) = (K, b) Adgiv(k2,b) = kb. The size of this FA is S-d, where
S was defined in Section 2.5.

3. Finite Automata for Linear Constraints on Integers

So far we have described the construction of automata for linear constraints on
natural variables. Here we show how to build finite automata which accept linear
constraints on all integers, including negative, using 2’s complement arithmetic.
These new FA are only twice as large as the former ones. The construction, again,



Input equation: > 7_; a; -x; =c¢ Output FA: (3, K, d,e, F)

¥ :={0,1}"?
K :={(-c,a),(—c,7), sink}
e:=(—c,a)
FOR ALL ¢ € £ §(sink,0) := sink
WHILE 3(k,a) € K,0 € ¥ s.t. §((k,a),0) = null DO
FOR ALL ¢ = (b, ...,by) € ¥ DO
IF k' := (V_, a; - b; + k)/2 € Z THEN
IF k¥’ = k THEN
o((k,a),0) := (k,a)
ELSE
K := KU{(K,a),(K' )}
o((k,a),0) := (K',7)
ELSE
8((kya),0) := sink
5((k,1),0) = 8((k, ), o)
=0
FOR ALL (k,a) € K DO
F:= FU{(k,a)}

Fig. 4. FA Algorithm for equations on integers

Fig. 5. Example automaton for z 4+ 2y = 0

is based on the basic state machine which calculates linear formulas. As an example
we use the constraint z + 2y = 0, the BSM of which is shown in Figure 1. Again
we describe automata for constraints with no constant terms. The addition of such
terms is done in exactly the same way as in the previous section.

3.1. Finite automata for equality with zero

The procedure is based on the fact that in order for the FA to accept the encoding
of a tuple of numbers, it must also accept the encoding of the same numbers with
arbitrarily many sign bits (i.e. the most significant bit of each number repeated
arbitrarily many times). This means that the according BSM must write only 0Os
when reading such an arbitrarily long word. The only way for the BSM to continue
writing Os by repeatedly receiving the same combination of bits is by following
a looping transition. The FA contains two clones (k,a) and (k,r) of each state



Input inequation: > 7_; a; - x; < c Output FA: (%, K, 4, e, F)

e —( ¢, a)
WHILE El(k a) € K,o € ¥ s.t. §((k,a),0) = null DO
FOR ALL o = (b, ...,by) € 3 DO
K= (305, ai - bi + k)/2]
templ ;= k
temp2 := k'
WHILE templ # temp2 DO
templ := temp?2
temp2 := [(3°7_; a; - b + templ) /2]
IF (XU_, a; - b + temp1)/2 € Z THEN
6((k,a),0) = (K',1)
ELSE
8((k,a),0) == (k'; a)
@5((’c \1),0) = 8((k, @), o)

FOR ALL (k,a) € K DO
F:=FU{(k,a)}

Fig. 6. FA Algorithm for inequations on integers

k of the BSM, one accepting and one rejecting respectively. It also contains a
rejecting sink state. Looping transitions in the BSM that write 0 go to the according
accepting clone. All other transitions that write 0 go to the rejecting clone. All
transitions that write 1 in the BSM go to the sink state. Formally, one can define
the FA(};_,a; - z; = 0) = (Kpa,%,0p4,€ra,F) based on the BSM(}";_; a; -
ZL’i)Z(KBSM, 3, A, dBsm, eBSM)- In particular, Kpa = {(k‘, a), (k, 7‘) | ke KBSM}U
{sink}, eFpA = (eBSM,a), F = {(k,a) | ke KBSM} and

(k,a) iff (SBSM(k‘,O') = (k,O)
0ra((k,a),0) =0ra((k,r),0) = (K',r) iff 6pspr(k,0) = (K, 0)ANK' £k
sink iff 0psm(k,0) = (K',1)

Obviously such an automaton has twice as many states and transitions as the
BSM, thus its size is at most 2S + 1, where S was defined in Section 2.5. One
can easily verify that this is the minimum possible. The algorithm for constructing
FA for equations on integers is shown in Figure 4. The example automaton for
z + 2y = 0 is shown in Figure 5. The sink state and all transitions to it have been
omitted.

3.2. Finite automata for inequalities

Like before we will only describe the < 0 case. All other types of inequalities can
be effectively derived from it. Now we want the result of the addition to be negative,
thus having an 1 as a sign bit. Unfortunately, the bit most recently written by the
BSM is not always the sign bit of the result, due to possible overflow. Thus, a tuple
of integers renders a negative result iff by repeating their most significant bits an
adequate number of times, the BSM will eventually enter a looping transition that



Fig. 7. Example automaton for z + 2y < 0

writes 1. Any number of repetitions greater or equal to the binary logarithm of
the sum of the absolute values of the coefficients is adequate. That is how many
extra bits of the result one would need to compute in order to avoid an overflow.
Again we create one accepting and one rejecting clone of each state of the BSM and
there is no sink state. Looping transitions that write 1 go to the accepting clone
and those which write 0 go to the rejecting clone. Any other transition goes to
the appropriate accepting clone, iff by repeatedly receiving the same combination
of bits the BSM will eventually enter a loop which writes 1. Otherwise it goes to
the rejecting clone. This condition is checked in the second WHILE loop in Figure
6. As explained earlier the loop will finish in at most log,(}"7_, |as|) steps. Again,
one can formally define the FA(Y",_, a; - z; < 0) based on the BSM(}.;_, a; - z;).
Obviously this FA has 25 states. The algorithm for constructing FA for inequations
on integers is shown in Figure 6. The example automaton for = + 2y < 0 is shown
in Figure 7.

Note that for both equations and inequations, the automata resulting from our
construction are deterministic, unlike those described in [13] which require (linear
time) determinization. Secondly, once a state has been created, all transitions
originating from it can be computed immediately (as opposed to [13]), which is
more convenient when transitions are stored using BDDs. Moreover, even though
we can prove an upper bound on the number of states different (and in many cases
better) than the one given in [13], if we follow the BSM stacking method for dealing
with the constant term, described in Section 2.5 we can achieve the same bound of
O(log, ¢+ > lai]). Finally, our construction and the one in [13] result in different
automata, because the accepted languages are different (one is the reverse of the
other).

4. Practical issues and extensions

In all FA construction algorithms given so far, v-tuples of integers have been
encoded as words over the alphabet {0,1}?. While this encoding is convenient for
describing the algorithms and proving their complexity, it is inefficient in practice.

10



The reason is that the size of the transition function is proportional to the size of
the alphabet. Thus, an alphabet with size exponential in the number of variables
v is problematic. In this section we discuss two ways of dealing with this problem:
1) changing the encoding and 2) storing the transition function more efficiently.
Finally, we use these ideas to construct FA for combined Presburger and Boolean
formulas.

4.1. Alternative FA

Here we will describe an alternative FA construction. Alternative FA accepts the
same values for the variables as before, but the encoding is different. There is only
one track containing the bits of all the variables interleaved. Particularly, a v-tuple
of natural numbers (ni,ns,...,ny) is encoded as a word over the alphabet {0, 1},
where the i, least significant bit of number n; appears in position (i — 1) -v + j of
the word.

The construction procedure is similar but now we have to keep all the intermedi-
ate results of the addition of the 4, bit of the variables, thus we need the appropri-
ate states to represent these results and to tell which variable’s bit is coming next.
States will be labeled with a variable’s name and a value for an intermediate result.
For the first variable there are as many states as the different possible values of the
carry which are at most 25. For the next variable there are at most |a; | more states
and so on. The total number of states in the automaton is 20S + >°7_; (v — 7)|a;]
which is less than 3vS. Interestingly this leads us to the conclusion that the size of
the automaton is minimized if the variables are ordered in increasing order of the
absolute values of their coefficients.

4.2. Storing the transition function §

A problem with the FA representation for arithmetic constraints is the size of the
transition function, since the number of transitions from each state is exponential
on v, the number of integer variables. Hence, it is impractical to store the transition
function as a table. Actual implementations use different solutions to this problem.
LASH [16] follows a technique similar to the Alternative FA described earlier. The
input is serialized by interleaving the bits of each integer variable in some fixed
order. This way there are (linearly) more states but only two transitions from
each state. The weakness of this approach is that the number of states in the FA
is proportional to the total number of variables and not only those with non-zero
coefficients. On the other hand, MONA is an automata package [14] that uses BDDs
[19] to store the transition function. In particular, for each FA state n, there is a
BDD representing the function d(n, (b1, ...,b,)). The terminal nodes are also FA
states and internal nodes can be shared. Since BDDs are a canonical representation
for Boolean functions, given a fixed variable ordering, the size of the transition
relation can be kept minimal, e.g., variables with zero coefficients do not appear in
the BDD representing the transition function. Note that this BDD is isomorphic to
the transition graph of the Alternative FA of the previous paragraph, thus its size

11



is linear on the number of integer variables v.

4.8. Adding Boolean formulas

Clearly, a Boolean formula ¢ with n boolean variables can be represented by a
FA that accepts the valuations of the Boolean variables that satisfy the formula. Us-
ing the alphabet {0, 1}, any word encoding a satisfying valuation has a fixed length
n, hence the according language L(¢) is regular. Now suppose that ¢ is a general
formula containing both Boolean subformulas (By, ..., B,) and Presburger subfor-
mulas (P, ..., Py,) combined with Boolean connectives (A, V, -, etc). Obviously one
can construct a FA for ¢, with size []} ; |[FA(B;)| - [];*, |FA(F;)|. Fortunately, one
can take advantage of the BDD representation for the transition function described
in the previous paragraph to reduce the size of the FA for general formulas. The
idea is to put the Boolean variables first in the total variable ordering. This way, the
Boolean variables appear only in the first BDD representing the transition function
from the initial state of FA(¢). If one can find a good variable ordering for the
Boolean variables, this BDD can be kept small. In the worst case the size of this
BDD is at most [], [FA(B;)|. The rest of the BDDs that represent the transitions
in the FA(FP;) for 1 < i < m are independent of the Boolean variables and thus their
total size is at most [[;-; [FA(P;)|. Finally the total size of the BDD representing
the transition function of FA(¢) is [[;, [FA(B;)| + [1i~, [FA(F;)|.

5. Complexity Outline

The following table summarizes the time complexity of the construction al-
gorithms for linear integer arithmetic constraints, as well as the sizes of the re-
sulting structures. The entries of the tables are worst-case asymptotic estima-
tions. The size of a FA is the number of its states. Like before, v denotes the
number of integer variables, a; are the coefficients, ¢ is the constant term and

S =|min(—c¢, > a;)| + |max(—c, > a;)|-

a; <0 a;>0
FA for FA for LASH
non-negative integers all integers
Construction Time 2vS 2vT1Slogy S | 2+ log(|c)) oY, |as]
Construction Size S 28 2log(le|) >o7—; las]

The reader can find similarities between our FA construction algorithms and
those proposed in [10] and [13]. Here we briefly explain the advantages of our
approach. In [10] only constraints over non-negative integers are considered. We
describe FA for constraints over all integers as well, by only doubling the complexity.

On the other hand, in [13] the complexity of O(2-log, |c|- Y";_, |as|), where ¢ is
the constant term and |a;| are the absolute values of the coefficients, is worse than
ours for most practical cases. Note that by slightly modifying our construction we
can also achieve that complexity, whenever needed. Moreover in [13] no algorithm

12



is given for constraints on non-negative integers. There are cases where all variables
range over the non-negative integers, and adding extra constraints to denote that,
would be wasteful. Also, in Section 4.1 we give a detailed complexity analysis for
an alternative automaton that is equivalent to the “sequentialized” FA described in
[13].

Finally, our transducer-based FA can be composed with FA for constraints be-
yond Presburger arithmetic, such as “z is a power of two”.

6. Pre-condition computations

One of the fundamental operations in symbolic verification algorithms is com-
puting the pre-condition of a set of states (configurations) of a system. One in-
teresting issue is investigating the sizes of the FA that would be generated by the
pre-condition operation if one uses the FA encoding described in the previous sec-
tions as a symbolic representation.

Given a set of states S C ZY of a system as a relation on the state vari-
ables z1,...,2, and the transition relation R C Z2?¥ of the system as a relation
on the current state and next state variables x1,...,2,,2],...,2z,, we would like
to compute the pre-condition of S with respect to R, pre(S,R) C Z*. We con-
sider systems where S and R can be represented as Presburger arithmetic formu-
las, ie., S = {(z1,.-.,2%y) | ¢s(z1,-..,24)} and R = {(z1,...,%y,2},...,2%) |
Or(Z1,- -, Ty, 2y, ...,2,)}, where ¢g and @gr are Presburger arithmetic formulas.
For example, consider a system with three integer variables x;,z2 and z3. Let the
current set of states be S = {(x1,z2,23) | 1 + 22 = z3} and the transition relation
be R = {(x1, %2, z3, 2,25, 25) | z1 > 0Az] = 21 —1Azh = 22 Azl = x3}. Then the
pre-condition of S with respect to R is pre(S, R) = {(z1,%2,z3) | 1 > 0Az1 + 29 =
x3 + 1}.

One can compute pre(S, R) by first renaming the variables in ¢g, then conjoining
it with ¢g, and then existentially eliminating the next state variables, i.e., ¢pre(s,R)
is equivalent to 3z}...32,.(s[a) a1,....2t 2,] N Pr) Where Py, ] is the formula
generated by substituting z for y in 4. Hence, to compute pre(S, R) we need three
operations: conjunction, existential variable elimination and renaming. As stated in
Section 2.6, given FA(¢) representing the set of solutions of ¢, FA(zy,...,3z,.¢)
can be computed using projection, and the size of the resulting FA is at most
O(2FA(9))). Note that, existential quantification of more than one variable does not
increase the worst case complexity since the determinization can be done once at the
end, after all the projections are done. As discussed earlier, conjunction operation
can be computed by generating the product automaton, and the renaming operation
can be implemented as a linear time transformation of the transition function.
Hence, given formulas ¢g and ¢g representing S and R, and corresponding FA,
FA(¢s) and FA(¢r), the size of the automaton FA(¢,.(s,r)) is O(2/FA(@s)|-[FA@r)])
in the worst case. Below, we show that under some realistic assumptions, the size of
the automaton resulting from the pre-condition computation can be much better.

We assume that the formula ¢g defining the transition relation R is a guarded-
update of the form guard(R) A update(R), where guard(R) is a Presburger formula

13



on current state variables 1, ..., , and update(R) is of the form x} = f(z1,...,24) A
A xg = z; for some 1 <4 < v, where f : ZY — Z is a linear function. This is
K3

frealistic assumption, since in asynchronous concurrent systems, the transition
relation is usually defined as a disjunction of such guarded-updates. This holds for
all the concurrent systems we experimented with in Section 7. Also, note that, the
pre-condition of a transition relation which is a disjunction of guarded-updates is
the union of the pre-conditions of individual guarded-updates, and can be computed
by computing pre-condition of one guarded-update at a time.

First, we consider two kinds of updates: z} = ¢ and z} = z; + ¢, where ¢ is and
integer constant. Given ¢g and ¢g, the formulas defining S and R, respectively, we
can show that for these two cases the size of FA(¢,¢(s,r)) can be less than or equal
to the size of the FA(¢s A guard(R)) in certain cases, and in the worst case it is
exponential in the number of distinct atomic constraints in ¢g, which is a significant
improvement over the upper bound of O(2FA(4s)I-IFA(Sr)]) given above.

Suppose ¢g consists of | atomic linear constraints of the form ¢; : 3.7 | a; j-z; ~
¢j,1 < j <1, where ~e {=,#,>,>,<,<}, and Boolean connectives. If z; is
updated by z} = ¢, then ¢,..(s,r) is equivalent to ¢gz,«q A guard(R)). The
FA(¢;) can be constructed by the BSM stacking method described in Section 2.5
where the resulting FA will have log, ¢; layers. The FA(¢;[,,«]) can be constructed
based on the BSM stacking method for FA(¢;). The alphabet of FA(¢;) includes
a bit for variable z; whereas the alphabet of FA(¢;,,« ) does not. Each layer
in FA(®j[z,«c)) has the same states as in FA(¢;). Each transition in FA(¢;[5, ¢])
corresponds to a transition in FA(¢;) where the bit of z;, for that layer is equal to the
corresponding bit of ¢. The number of layers now becomes max(log, |¢;|, log, |¢])+1.
If |c| < |cj, then |FA(@)(4y ]| = [FA(¢;)|. If this holds for all j, the size of the
FA(¢pre(s,r)) is equal to the size of the FA(¢s A guard(R)). Otherwise, it may
increase exponentially on the number of |c;|s that are less than |c|.

If 2 is updated by z} = =z} + ¢, then ¢,,.(s,r) can be derived from ¢g by
replacing each atomic constraint Y, a;;j-@; ~ ¢; with 37 a; ;-2 ~¢j—ag,;-c
and then conjuncting the result with guard(R). The FA for both of these constraints
can be constructed by the algorithms described in Section 2. If min(—c¢;, Y. a;) <

a; <0
—(¢j — ag,j - ¢) < max(—c;, E>0a,~), then [FA(}, ja; ;-2 ~ ¢ —apj-c)| <
<27
[FA(>;_; aij - ©i ~ ¢;)|. Again, if this condition holds for all j, the size of the
FA(dpre(s,r)) is less than or equal to the size of the FA(¢s A guard(R)). Otherwise,
it may increase exponentially on the number of atomic constraints, for which the
condition is violated.

In the most general case, an update can be in the form =} = 3°7_, a; - z; + c.
Even for such updates the number of atomic constraints in ¢,,.(s,r) Will be at most
the number of atomic constraints in ¢g plus the number of atomic constraints in
guard(R). An update in the above form may change all the coefficients on all atomic
constraints ¢; in ¢5. However, the size of the FA(¢p,¢(s,r)) will not be more than
the size of the FA(¢s A guard(R)) if the constant term and the sum of the absolute
values of the coefficients in each individual atomic constraint ¢; do not increase.

14



7. Implementation and Experiments

In this section we discuss the implementation of the presented algorithms and
experimentally compare two alternative automata representations and the polyhe-
dra representation for arithmetic constraints. Earlier results from our experiments
were reported in [20].

In [21] polyhedral and automata representation for arithmetic constraints are
compared experimentally for reachability analysis of several concurrent systems.
The results show no clear winner. On some problem instances the polyhedral repre-
sentation is superior, on some others automata representation is. Qur experimental
setup is more reliable compared to [21]. In [21] Boolean variables are mapped to
integer variables when polyhedral representation is used. This is an inefficient en-
coding which gives an unfair advantage to the automata representation. In our
experiments Boolean variables are not mapped to integers in any representation.
Also, our tools perform full CTL model checking including liveness properties in-
stead of just reachability analysis discussed in [21].

7.1. Implementation

Before we explain our implementation and experiments we would like to explain
the tools we used. Omega Library is a symbolic manipulator for Presburger arith-
metic formulas [17]. Omega Library uses a disjunctive normal form to represent
Presburger arithmetic formulas where each disjunct corresponds to a conjunction
of a set of equality, inequality or divisibility constraints.

MONA is an automata manipulation tool which also implements decision pro-
cedures for the Weak Second-order Theory of One or Two successors [22]. We used
MONA'’s automata package to implement our construction procedures and sym-
bolic operations. We chose this specific package because its internal representation
of state transitions using BDDs makes most of the operations time efficient. Of
course we had to make various modifications to meet our needs and also implement
functions not included in MONA such as checking for automata equivalence and
emptiness.

LASH is a toolset for representing infinite sets and exploring infinite state spaces
based on finite-state automata [16]. It includes a C library that provides FA con-
struction functions for linear constraints as well as FA manipulation functions. In
our experiments we examine their efficiency.

We integrated our construction algorithms to an infinite state CTL model checker
called Action Language Verifier [23] built on top of the Composite Symbolic Library
[15]. The Composite Symbolic Library uses an object-oriented design to combine
different symbolic representations [15]. An abstract interface defines the operations
used in symbolic verification: Boolean operations, equivalence and subsumption
tests, and pre- and post-condition computations. To integrate a new symbolic rep-
resentation to the Composite Symbolic Library one simply has to implement the
abstract interface with specialized operations. Composite Symbolic Library sup-
ports a disjunctive composite representation for formulas on integer and Boolean

15



variables. A disjunctive composite representation is in the form V?:l /\tET pit where
p;it denotes the formula of type ¢ (which could be integer or Boolean) in the ith dis-
junct, and n and T denote the number of disjuncts and the set of variable types
(T = {integer, boolean})), respectively. The methods such as intersection, union,
complement, satisfiability check, subsumption test, which manipulate composite
representations in the above form are implemented in the Composite Symbolic Li-
brary by calling the operations on integer and Boolean formula representations [15].
We integrated five different symbolic representations to the Composite Sym-
bolic Library. The first three use the disjunctive composite representation used in
Composite Symbolic Library to combine formulas on integer and Boolean variables.
We used the BDD representation for Boolean formulas. We implemented three dif-
ferent integer formula representations using LASH [16]) (version V3), Omega [17]
(version V2), and our automata construction algorithms (version V1) which uses
MONA automata package [14] as an automata manipulator. We also implemented
two automata based representations using LASH (version V5) and our construction
algorithms (version V4) again built on top of MONA automata package, for both
Boolean and integer variables without using the disjunctive composite representa-
tion. The states of both Boolean and integer variables can be represented in an
automaton, hence one can avoid using the disjunctive composite representation.

7.2. Experiments

We experimented with a large set of examples which are describe below. Each

instance is labeled using NAME(number of processes)-(property number). Action
Language specifications of these examples and properties are available at:
http://www.cs.ucsb.edu/"bultan/composite/
First set of examples are monitor specifications for the sleeping barber problem.
We verified three properties for systems with 2, 3, and 4 customer processes and
one barber process (BARBER(2,3,4)-(1,2,3)). We also verified the three properties
(BARBERP-(1,2,3)) on the parameterized system for arbitrary number of customer
processes. BAKERY(2,3,4) and TICKET(2,3,4) are mutual exclusion protocols (for
(2,3,4) processes, respectively). We verified both mutual exclusion (BAKERY(2,3,4)-
1, TICKET(2,3,4)-1) and starvation-freedom properties for these protocols
(BAKERY(2,3,4)-2, TICKET(2,3,4)-2). We analyzed a parameterized cache coher-
ence protocol specification given in [6]. We verified three properties given in [6].
RW(4,16,64) is a monitor specification for readers-writers problem for various num-
ber of processes [24]. AIRPORT(2,4,8,16) is a monitor specification from [25] for
airport ground traffic control simulation with various number of processes.

The results of our experimental evaluation of different representations are shown
in Tables 1 and 2. We obtained the experimental results on a SUN ULTRA 10 work
station with 768 Mbytes of memory, running SunOs 5.7. In Table 2, we show the
types and the number of fixpoint iterations (F denotes the forward fixpoint com-
putation, EG and EF denote the fixpoint computations for corresponding CTL
operators), and the number of integer and boolean variables for each problem in-
stance. For each version of the verifier we recorded the following statistics: 1) Time

16



Table 1. Experimental results for performance of different encodings of integer
arithmetic constraints within the disjunctive composite representation. Time
measurements appear in seconds.

Disjunctive Composite Representation
V1 - Automata V2 - Omega V3 - LASH
Problem TR MAX

Instance cT | VT | TRS Ms cT | vT | AC | AC cT | VT | TRS | Ms
BARBERM2-1 0.15 0.90 27(184) 86(224) 0.14 1.57 48 87 0.19 17.10 198 283
BARBERM3-1 0.13 1.53 35(241) 112(294) 0.16 2.69 60 105 0.22 40.55 257 365
BARBERM4-1 0.17 2.57 43(298) 142(34) 0.17 4.13 72 123 0.27 79.37 316 461
BARBERM2-2 0.14 0.12 27(184) 13(13) 0.14 0.12 48 12 0.19 2.16 198 51
BARBERM3-2 0.16 0.13 35(241) 13(22) 0.16 0.15 60 12 0.23 3.03 257 51
BARBERM4-2 0.17 0.16 43(298) 13(17) 0.17 0.18 72 12 0.28 3.86 316 51
BARBERM2-3 0.16 0.24 27(184) 36(71) 0.14 0.31 48 30 0.19 8.60 198 125
BARBERM3-3 0.16 0.65 35(241) 58(120) 0.15 0.77 60 42 0.23 22.64 257 202
BARBERM4-3 0.15 1.42 43(298) 82(174) 0.16 1.51 72 54 0.27 49.85 316 281
BARBERMP-1 0.16 0.39 82(1266) 26(131) 0.16 0.45 72 36 0.42 1.29 1282 139
BARBERMP-2 0.14 0.37 82(1266) 26(131) 0.14 0.45 72 36 0.42 1.28 1282 139
BARBERMP-3 0.14 0.39 82(1266) 26(131) 0.15 0.45 72 36 0.43 1.29 1282 139
0.12 0.02 18(80) 15(31) 0.14 0.07 32 20 0.12 0.22 96 42

0.12 0.09 18(80) 6(13) 0.13 0.16 32 8 0.12 0.42 96 25

0.15 0.62 63(558) 97(306) 0.19 2.06 126 183 0.41 9.31 569 424

0.20 3.06 63(558) 63(232) 0.19 12.06 126 139 0.42 22.66 569 340
0.32 12.58 228(3284) 551(2437) 0.34 58.95 396 1820 1.51 208.82 2691 3321

T T T T T T T T T T T T

0.14 0.13 18(168) 24(117) 0.15 0.14 38 24 0.17 0.52 188 116

0.14 0.13 18(168) 24(117) 0.14 0.22 38 24 0.27 1.15 188 116

0.18 0.79 27(315) 99(611) 0.17 0.98 66 119 0.28 4.12 354 627

0.15 1.83 27(315) 99(611) 0.16 1.91 66 119 0.45 12.34 354 627
0.18 6.28 36(504) 365(2775) 0.19 13.11 100 638 0.42 30.30 568 2961
0.19 17.95 36(504) 365(2775) 0.20 25.78 100 638 0.71 116.79 568 2961

0.18 0.19 74(1150) 39(23) 0.19 0.12 120 42 0.53 5.50 1203 263

0.19 0.89 74(1150) 165(573) 0.19 0.62 120 105 1.04 8.49 1203 568
0.18 2.55 74(1150) 323(1595) 0.18 2.17 120 189 1.02 47.16 1203 2019

0.12 0.01 20(50) 2(3) 0.12 0.01 16 1 0.09 0.01 40 3

0.31 0.01 80(200) 2(3) 0.33 0.02 64 1 0.28 0.04 160 3

3.87 0.07 320(800) 2(8) 3.76 0.08 256 1 3.47 0.18 640 3

AIRPORT2 0.70 0.26 148(3958) 3(15) 0.96 4.48 1094 247 4.49 65.44 4454 52
AIRPORT4 1.48 0.37 296(7916) 3(15) 1.93 8.34 2188 247 9.09 68.15 8908 52
AIRPORT8 3.76 0.60 592(15832) 3(15) 4.95 16.05 4376 247 20.00 74.50 17816 52
AIRPORT16 12.70 1.12 1184(31664) 3(15) 13.09 31.16 8752 247 48.35 87.31 35632 52

elapsed during the construction of the symbolic representation of the transition sys-
tem, shown in the table as CT. 2) Time elapsed during the verification process,
shown as VT. It includes the time needed for forward or backward fixpoint com-
putations, however, it excludes the construction time (CT). 3) For V1, V3, V4 and
V5 that use automata as a symbolic representation we recorded the size (number
of states) of the automaton representing the transition system, shown as TRS, and
the size of the largest automaton computed during the fixpoint computation, shown
as MS. As discussed above our automata construction algorithm used in versions
V1 and V4 uses MONA automata package. MONA automata package uses BDDs
to store the transition relation of the automata. Therefore, to make the comparison
with LASH fair, for versions V1 and V4, we also give the total number of BDD
nodes used in the MONA representation in parentheses. For V2 which uses a poly-
hedral representation we give the number of total atomic arithmetic constraints in
the transition relation (TR AC) and the largest fixpoint iterate (MAX AC). For the
instances marked with symbol 1, the verification tool did not converge in an hour.

By inspecting the Tables 1 and 2 one can make the following observations.
The number of states of the automata used in V1 is about an order of magnitude
less that the number of states of the automata used in V3. This is due to the
different encodings used in V1 and V3. Note that the transition function in V3
requires a constant amount of memory per state of the automata whereas in V1
the transitions from each state are encoded using BDDs. Hence, a better caparison
would be to compare the number of states of the automata in V3 to the number of

17




Table 2. Experimental results for performance of different automata-based
encodings of integer arithmetic constraints and boolean formulas. Time mea-
surements appear in seconds.

V4 - Automata V5 - LASH
Problem Computed int bool
Instance Fixpoints var var CcT VT TRS MS CcT VT TRS MS
BARBERM2-1 EF(9) 3 4 0.04 0.13 11(115) 7(51) 1.41 4.85 276 177
BARBERM3-1 EF(10) 3 5 0.04 0.19 11(124) 9(63) 2.08 6.54 311 230
BARBERM4-1 EF(11) 3 6 0.05 0.26 11(133) 9(76) 2.7 8.42 346 287
BARBERM2-2 EF(5) 3 4 0.04 0.05 11(115) 5(19) 1.41 2.48 276 61
BARBERM3-2 EF(5) 3 5 0.05 0.06 11(124) 5(20) 2.08 2.73 311 69
BARBERM4-2 EF(5) 3 6 0.05 0.07 11(133) 5(21) 2.69 3.04 346 76
BARBERM2-3 EF(11) 3 4 0.04 0.16 11(115) 6(37) 1.44 5.64 276 165
BARBERM3-3 EF(12) 3 5 0.04 0.23 11(124) 7(54) 2.07 8.22 311 305
BARBERM4-3 EF(13) 3 6 0.05 0.37 11(133) 8(71) 2.69 11.72 346 479
BARBERMP-1 F(7) 6 2 0.05 0.11 68(1103) 21(131) 1.33 1.02 1544 156
BARBERMP-2 F(7) 6 2 0.04 0.11 68(1103) 21(131) 1.32 1.02 1544 156
BARBERMP-3 F(7) 6 2 0.04 0.11 68(1103) 21(131) 1.32 1.02 1544 156
EF(4) 2 3 0.04 0.02 14(117) 12(36) 1.43 0.25 236 73
EG(9), EF(1) 2 4 0.04 0.04 14(117) 9(28) 1.57 0.52 236 55
EF(5 3 6 0.08 0.62 56(646) 91(382) 4.04 6.39 1247 588
EG(15), EF(1) 3 6 0.32 1.43 56(646) 30(117) 6.24 13.80 1247 230
EF(6 4 8 0.22 56.00 218(3444) 964(6010) 11.05 226.52 5542 5667
EG(21), EF(6) 4 8 11.67 106.01 218(3444) 142(869) 64.33 546.90 5542 1027
F(4 3 3 0.04 0.04 12(179) 19(132) 1.80 0.64 263 161
F(4), EG(5), EF(1) 4 4 0.06 0.09 12(179) 19(132) 2.02 1.07 263 161
F(5 5 6 0.06 0.48 16(333) 64(562) 3.83 3.51 492 839
F(5), EG(8), EF(1) 5 6 0.14 1.29 16(333) 64(562) 4.85 9.04 492 839
F(6 6 8 0.09 4.67 20(531) 232(2336) 6.63 23.13 789 4103
F(6), EG(11), EF(1) 6 8 0.62 13.10 20(531) 232(2336) 12.03 75.68 789 4103
EF(4) 6 4 0.07 0.31 40(730) 18(86) 3.13 4.49 1377 237
EG(6), EF(5) 6 4 0.11 0.49 40(730) 36(161) 3.60 5.71 1377 472
EG(9), EF(8) 6 4 0.10 2.42 40(730) 94(544) 3.59 24.88 1377 1216
EF(1) 1 5 0.02 0.01 6(71) 4(5) 0.55 0.04 136 18
EF(1) 1 17 0.08 0.01 6(287) 4(5) 12.62 0.10 496 54
EF(1) 1 65 1.14 0.06 6(1151) 4(5) 531.55 0.35 1936 198
AIRPORT2 EF(1) 13 8 0.70 3.24 34(2070) 3(15) 53.41 177.77 3058 76
AIRPORT4 EF(1) 13 16 1.41 65.82 34(2710) 3(15) T T T T
AIRPORT8 EF(1) 13 32 T T T T T T T T
AIRPORT16 EF(1) 13 64 T T T T T T T T

BDD nodes used to encode the transition function of the automata in V1 (shown in
parenthesis under TRS and MS). We see that these numbers are comparable for each
problem instance. However, V1 is much faster than V3. Hence, although the BDD
encoding requires same amount of space as the encoding used in V3, it improves the
verification time significantly. The amount of memory required for the polyhedra
based approach used in V2 is proportional to the number of atomic constraints in
the polyhedra which is shown under TR, AC and MAX AC columns under V2. The
increase in the memory requirement of V2 with the increasing problem size seems
to be similar to the one observed for the automata based approaches V1 and V3.
The verification time for V2 is between the verification time required for V1 and
V3.

In general the memory requirement for version V4 seems to be less than that
of V5. Also verification times for V4 are significantly faster than those of V5. V4
and V5 are both able to verify the problem instance BAKERY4-2 whereas V1, V2,
and V3 were not able to verify this property in an hour. However, for the AIRPORT
example, V1, V2, and V3 scale better than V4 and V5. Both for V3 and V5 the
symbolic representation construction time takes a significant amount of time for
problem instances with large number of boolean variables. Based on these results
we conclude that the versions based on our automata construction algorithms for
linear integer arithmetic formulas and implemented using MONA automata package
(V1 and V4) are the most time efficient of all.

8. Conclusions

18




In this work we have presented algorithms for constructing Finite Automata
(FA) which represent integer sets that satisfy linear constraints. These automata
can represent either signed or unsigned integers and have a lower number of states
compared to other similar approaches. We discussed efficient storage techniques
for the transition function of the FA and extended the construction algorithms
to formulas on both boolean and integer variables. We also derived conditions
which guarantee that the pre-condition computations used in symbolic verification
algorithms do not cause an exponential increase in the FA size. Finally, we have
tested the presented representations by using them to verify non-trivial systems and
showed that in many cases they perform better than the polyhedral representation
used in Omega Library, or the automata representation used in LASH.

References

1. K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Mas-
sachusetts, 1993.

2. T. A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: a model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110-122, 1997.

3. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, approximations, and ex-
perimental results. ACM Transactions on Programming Languages and Systems,
21(4):747-789, July 1999.

4. Giorgio Delzanno and Andreas Podelski. Constraint-based deductive model check-
ing. Journal of Software Tools and Technology Transfer, 3(3):250-270, 2001.

5. T. Yavuz-Kahveci and T. Bultan. Specification, verification, and synthesis of con-
currency control components. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 169-179, July 2002.

6. G. Delzanno and T. Bultan. Constraint-based verification of client-server protocols.
In Proceedings of the Tth International Conference on Principles and Practice of
Constraint Programming, 2001.

7. N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations in
C programs via integer analysis. In Proceedings of the 8th International Static
Analysis Symposium, volume 2126 of Lecture Notes in Computer Science, pages
194-212. Springer-Verlag, 2001.

8. N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157-185,
August 1997.

9. W. Pugh. The Omega test: a fast and practical integer programming algorithm for
dependence analysis, 1992.

10. A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite
automata. In H. Kirchner, editor, Proceedings of the 21st International Colloguium
on Trees in Algebra and Programming - CAAP’96, volume 1059 of Lecture Notes in
Computer Science, pages 30—43. Springer-Verlag, April 1996.

11. P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger arith-
metic constraints. In Proceedings of the Static Analysis Symposium, September
1995.

12. Bernard Boigelot, Stéphane Rassart, and Pierre Wolper. On the expressiveness of

19



13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

real and integer arithmetic automata. Lecture Notes in Computer Science, 1443,
1998.

P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In S. Graf and M. Schwartzbach, editors, Proceedings of the 6th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, pages 1-19. Springer, April 2000.

Nils Klarlund and Anders Mgller. MONA Version 1.4 User Manual. BRICS Notes
Series NS-01-1, Department of Computer Science, University of Aarhus, January
2001.

T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. Composite symbolic library. In
Proceedings of the 7Tth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 of Lecture Notes in Computer
Science, pages 335—344. Springer-Verlag, April 2001.

The Liége Automata-based Symbolic Handler (LASH). Available at
http://wuw.montefiore.ulg.ac.be/"boigelot/research/lash/.

The Omega project. http://www.cs.umd.edu/projects/omega/.

D. C. Cooper. Programs for mechanical program verification. In Machine Intelli-
gence 6, pages 43-59, New York, 1971. American Elsevier.

R. Bryant. Graph-based algorithms for boolean function manipulation. In Proceed-
ings of the 27th ACM/IEEE Design Automation Conference, 1990.

C. Bartzis and T. Bultan. Automata-based representations for arithmetic con-
straints in automated verification. In Proceedings of the Seventh International
Conference on Implementation and Application of Automata, June 2002.

T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison of Presburger engines
for EFSM reachability. In Proceedings of the 10th International Conference on
Computer-Aided Verification, 1998.

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In
Tools and Algorithms for the Construction and Analysis of Systems, First In-
ternational Workshop, TACAS ’95, LNCS 1019, 1996. Also available through
http://www.brics.dk/klarlund/Mona/main.html.

T. Bultan and T. Yavuz-Kahveci. Action language verifier. In Proceedings of the
16th IEEE International Conference on Automated Software Engineering, 2001.

G. R. Andrews. Concurrent Programming: Principles and Practice. The Ben-
jamin/Cummings Publishing Company, Redwood City, California, 1991.

T. Yavuz-Kahveci and T. Bultan. Specification, verification, and synthesis of concur-
rency control components. In Proceedings of the 2002 ACM/SIGSOFT International
Symposium on Software Testing and Analysis, pages 169-179, 2002.

20



