
Bounded Verification of Ruby on Rails Data Models

Jaideep Nijjar and Tevfik Bultan
University of California, Santa Barbara

{jaideepnijjar, bultan}@cs.ucsb.edu

ABSTRACT
The use of scripting languages to build web applications has
increased programmer productivity, but at the cost of de-
grading dependability. In this paper we focus on a class of
bugs that appear in web applications that are built based on
the Model-View-Controller architecture. Our goal is to au-
tomatically discover data model errors in Ruby on Rails ap-
plications. To this end, we created an automatic translator
that converts data model expressions in Ruby on Rails ap-
plications to formal specifications. In particular, our trans-
lator takes Active Records specifications (which are used to
specify data models in Ruby on Rails applications) as input
and generates a data model in Alloy language as output.
We then use bounded verification techniques implemented
in the Alloy Analyzer to look for errors in these formal data
model specifications. We applied our approach to two open
source web applications to demonstrate its feasibility.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.11 [Software Engineering]:
Software Architectures—Data abstraction

General Terms
Verification

Keywords
automated verification, bounded verification, MVC frame-
works, data model, web application modeling and analysis

1. INTRODUCTION
It has become common practice to write web applications
using scripting languages, such as Ruby, because of their
quick turnaround times in producing working applications.
However, because of their dynamic nature, it is easy to in-
troduce hard-to-find bugs to the applications written using
these scripting languages. Current web software develop-
ment processes rely on manual testing for eliminating bugs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’11, July 17 - 21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07... $10.00.

Although testing is necessary for improving the dependabil-
ity of software systems in general, it is not possible to cover
the state space of a web application using testing. Hence,
undetected bugs find their way into deployed software sys-
tems resulting in unreliable behavior at best, and critical
safety and security flaws at worst.

In this paper we present a bounded verification approach
for data models of web applications that are written using
the Ruby on Rails framework (Rails for short). Rails is a
web development framework for the Ruby language, orga-
nized around the Model-View-Controller (MVC) architec-
ture [4]. The MVC architecture facilitates the separation of
the data model (Model) from the user interface logic (View)
and the control flow logic (Controller). Due to the modu-
larity and separation of concerns principles imposed by the
MVC architecture, the data model specifications in Rails ap-
plications can be separated from the other application logic.
This makes it feasible to perform verification on the data
model of an application in isolation.

Our verification approach works as follows: We first auto-
matically translate the Rails data models to formal specifi-
cations. Then, we write properties about the data model
that we expect to hold. Next, we use bounded verifica-
tion techniques to check if these properties hold on all the
instances of the given data model within a given bound.
We implemented this approach by writing a translator that
translates the Rails data model specifications to Alloy spec-
ifications [16]. (Our translator targets Rails version 2 and
the Alloy Analyzer version 4). We add the properties about
the data model to this automatically generated Alloy spec-
ification. We then use the Alloy Analyzer to check these
properties. The Alloy Analyzer converts bounded verifica-
tion queries to Boolean SAT problems and uses a SAT-solver
to determine the result.

To evaluate the effectiveness and usability of our approach,
we applied it to two open-source Rails applications, TRACKS
and FatFreeCRM. The model files of these two applications
were fed into our tool to generate formal data model spec-
ifications. Using the Alloy Analyzer we found that some
properties which could be enforced in the data model were
not being enforced in these applications.

The rest of the paper is organized as follows: Section 2
describes the Rails data models. Section 3 formalizes the
data model verification problem. Section 4 describes how

class Account < ActiveRecord::Base

belongs_to :user

has_many :account_contacts, :dependent => :destroy

has_many :contacts, :through => :account_contacts

has_one :address, :as => :addressable,

:dependent => :destroy,

:conditions => "address_type=’Billing’"

end

class AccountContact < ActiveRecord::Base

belongs_to :account

belongs_to :contact

end

class Address < ActiveRecord::Base

belongs_to :addressable, :polymorphic => true

end

class Contact < ActiveRecord::Base

belongs_to :user

has_one :account_contact, :dependent => :destroy

has_one :account, :through => :account_contact

has_one :address, :as => :addressable,

:dependent => :destroy

end

class User < ActiveRecord::Base

has_many :accounts

has_many :contacts

end

Figure 1: Simplified data model for FatFreeCRM

we translate Rails data models to the Alloy language. Sec-
tion 5 describes our experiments. Section 6 discusses related
work, and Section 7 presents our conclusions.

2. RAILS DATA MODELS
In this section, we describe how data models are expressed
in Rails applications. The object-relational mapping Rails
uses is called Active Records. Active Records handle all the
details of connecting to the underlying database, mapping
objects to tables, and data manipulation. Active Records
are also used to manage relationships between tables.

We use the running example shown in Figure 1 to describe
Rails’ data-modeling features. This is a simplified version
of the data model from an open source Customer Relations
Management software called FatFreeCRM [12]. Customers
are typically companies, and for each company an Account

is created by a User. Users also create Contacts. Contacts
are people in the companies who serve as the main person
of contact for that company. Finally, each Contact and Ac-

count have an Address. (There is also an AccountContact

class which is used to create a many-to-many relationship
between Account and Contact, which we explain below.)

2.1 Three Basic Relationships in Data Models
Active Records support three basic types of relationships: 1)
one-to-one: An Object A is associated with zero or one Ob-
ject B’s. So, more accurately, this is a one-to-zero-or-one re-
lationship. 2) one-to-many: An Object A is associated with
an arbitrary (zero or more) number of Object B’s. 3) many-
to-many: An arbitrary (zero or more) number of Object A’s
are associated with an arbitrary (zero or more) number of
Object B’s. These relationships are expressed by adding
a pair of declarations (from the set of four declarations:
has_one, has_many, belongs_to, and has_and_belongs_to_many)
in the corresponding Rails models of the related objects:

1. one-to-one: Declaring a one-to-one relationship be-
tween Contact and AccountContact objects:
class Contact < ActiveRecord::Base

has_one :account_contact

end

class AccountContact < ActiveRecord::Base

belongs_to :contact

end

2. one-to-many: Declaring a one-to-many relationship be-
tween User and Account objects:
class User < ActiveRecord::Base

has_many :accounts

end

class Account < ActiveRecord::Base

belongs_to :user

end

3. many-to-many: Declaring a many-to-many relation-
ship between Account and Contact objects 1:
class Account < ActiveRecord::Base

has_and_belongs_to_many :contacts

end

class Contact < ActiveRecord::Base

has_and_belongs_to_many :accounts

end

Note that in order to express the inheritance relation in Rails
the notation ChildClass < ParentClass is used. Most objects
will inherit from the ActiveRecord::Base class, as seen in the
examples above. This is so that the data objects inherit all
the database-connection functionality that is located in the
ActiveRecord class.

2.2 Extending the Data Relationships
Rails provides a set of options that can be used to extend
the three basic relationships we presented above. Below we
discuss the four options that affect relationships between
data objects.

The :through Option. The first option we want to discuss
is the :through option for the has_many and has_one declara-
tions. Let us assume that we are using the :through option
with the has_many declaration. The :through option is used
when ObjectA has a one-to-many relation with ObjectB,
ObjectC also has a one-to-many relation with ObjectB, and
the Rails programmer would like direct access from ObjectA
to ObjectC. For instance, let us say a data model is set up
such that a Book has many Authors, and a Book also has
many Editions. To get all the different editions of books an
author has worked on, the programmer would have to write
code to obtain the set of Books an Author has worked on,
and then get the set of Editions of those Books. However, by
using the :through option, the programmer can declare that
Authors have many Editions :through Books. This will allow
the programmer to directly access the set of book Editions
from an Author object. Another use of the :through option
is for setting up a many-to-many relation using a join model
as opposed to a join table using the has_and_belongs_to_many

declaration.

1Although FatFreeCRM does not have a direct many-
to-many relationship between Accounts and Contacts, we
present one here for illustrative purposes.

We see this following use of the :through option between
Accounts and Contacts in FatFreeCRM.

class Account < ActiveRecord::Base

has_many :account_contacts

has_many :contacts, :through => :account_contacts

end

class Contact < ActiveRecord::Base

has_one :account_contact

end

class AccountContact < ActiveRecord::Base

belongs_to :account

belongs_to :contact

end

The :conditions Option. The second option that can be
used to extend relationships is the :conditions option, which
can be set on all of the four declarations (has_one, has_many,
belongs_to, and has_and_belongs_to_many). As an example
of its use, consider the following:

class Account < ActiveRecord::Base

has_one :address,

:conditions => "address_type=’Billing’"

end

class Address < ActiveRecord::Base

belongs_to :account

end

The :conditions option limits the relationship to those ob-
jects that meet a certain criteria. In this example, Ac-

count objects are only related to an Address object if the
address_type field is Billing. The condition statement needs
to be in the form of the WHERE clause of a SQL query.

The :polymorphic Option. Rails supports declaration of
polymorphic associations. This is similar to the idea of in-
terfaces in object oriented design, where we have dissimilar
things that have common characteristics which are embod-
ied in the interface they implement. In Rails, polymorphic
associations are declared by setting the :polymorphic op-
tion on the belongs_to declaration. We see this setup in
FatFreeCRM between Address, Accounts and Contacts. Al-
though accounts and contacts are not similar enough to have
a sub-class relationship, both have an address. By using the
:polymorphic option in the Address class we set up an in-
terface that allows any and all classes that have an address
to create an association with the Address class. Any classes
created in the future can also take part in this relationship,
all without having to make any changes to the Address class.
The models for the Account, Contact and Address classes are
given below.

class Address < ActiveRecord::Base

belongs_to :addressable, :polymorphic => true

end

class Account < ActiveRecord::Base

has_one :address, :as => :addressable

end

class Contact < ActiveRecord::Base

has_one :address, :as => :addressable

end

The polymorphic relationship is expressed in Account and
Contact using the has_one declaration with an :as option.
(The :as option can also be specified on a has_many declara-
tion.)

The :dependent Option. The final Rails construct we want
to discuss adds some dynamism to the data model; it allows
modeling of object deletion at the data model level. The
Rails construct for this is the :dependent option, which can
be set for all the relation declarations except
:has_and_belongs_to_many. Normally, when an object is
deleted its related objects are not deleted. However, by set-
ting the :dependent option to :destroy or :delete (:delete_all
for has_many), deleting this object will also delete the asso-
ciated object(s). Although there are several differences be-
tween :destroy and :delete, the one that is important for
our purposes is that :delete will directly delete the asso-
ciated object(s) from the database without looking at its
dependences, whereas :destroy first checks whether the as-
sociated object(s) itself has associations with the :dependent

option set. For an example of the use of the :dependent

option, consider the following:

class Contact < ActiveRecord::Base

belongs_to :user

has_one :account_contact, :dependent => :destroy

has_one :address, :dependent => :destroy

end

The Contact class has two relations with the :dependent op-
tion set. Thus, when a Contact object is deleted, the ob-
jects in these two relations, account_contact and address,
will also be deleted. Further, since the :dependent option is
set to :destroy for both these relations, any relations with
the :dependent option set in the AccountContact and Address

classes will also have their objects deleted.

2.3 Data Model Properties
The three basic relations and the four options that we have
discussed above form the essence of the Rails data models.
Note that using these constructs a developer can specify
complex relationships among objects of a Rails application.
Since a typical application would contain dozens or may be
hundreds of object classes with many relationships among
them, it is possible to have errors and omissions in the spec-
ification of the data model that may result in unexpected
behaviors and bugs. Our goal in this paper is to develop an
automated verification tool that can automatically analyze
a Rails data model and identify errors. In order to look for
errors though, we still need a specification of the properties
that the developer expects to hold in the data model.

For example, for the FatFreeCRM running example, one
property that we might want to check is the following: “Is it
possible to have an account without any contacts?” The de-
veloper wants this behavior to be possible and may want to
check that the data model is not over-constrained to prevent
this behavior. Note that for this type of property finding an
instance of the data model that satisfies the property would
serve as proof of the property. However if we explore a set
of instances and cannot find an instance that satisfies this
property, we cannot definitely claim that the property fails

since there might be an instance that satisfies the property
that we have not explored.

As another example, consider the following property: “When
an account is deleted, there will not be any contacts left with-
out an account.” I.e., all the contacts that are related to
an account must be deleted with that account. The devel-
oper may want to make sure that the data model is not
under-constrained such that a violation of this property is
possible. For this type of property, if we find two consecu-
tive instances of the data model such that one leads to the
other by an account deletion and the second one violates
the stated property, then we can be sure that the property
is violated and there is an error in the data model. How-
ever, if we cannot find a violation of this property in a set
of instances that we analyze, then that does not constitute
a proof of the property.

3. FORMALIZING DATA MODELS
Based on the Active Record files in a Rails application, we
can construct a formal data model representing the objects
and their relationships in that application. Note that this
data model is mainly a static model. In our analysis we
do not model operations that update the objects and their
relationships (and corresponding database records based on
the object-relational mapping) except the delete propaga-
tion that is declared using the :dependent option. By focus-
ing on the static data model specified in the Active Record
files we can extract the set of constraints that must hold for
any instance of the data model. In the rest of this section we
present a formal data model and formalize the data model
verification problem.

We define a data model as a tuple M = 〈S, C, D〉 where
S is the data model schema, identifying the sets and rela-
tions of the data model, C is a set of relational constraints
and D is a set of dependency constraints. The schema S

only identifies the names of the object classes, the names of
the relations and the domains and ranges of the relations
in the data model. For example, the schema for the exam-
ple shown in Figure 1 will identify the following set of ob-
ject classes {Account, AccountContact, Address, Contact,
User} and the relations among these object classes {account-
account contacts, account-contacts, account-address,
contact-account contact, contact-address, user-accounts,
user-contacts} where each relation has an identified domain
and range (we named the relations above so that the prefix
identifies the domain and the suffix identifies the range).

The relational constraints in C express all the constraints
on the relations such as the ones related to cardinality (one-
to-one, one-to-many, and many-to-many), the ones related
to transitive relations (:through option), the ones related
to conditional behavior (:conditions option), and the ones
related to polymorphic behavior (:polymorphic option). For
example, let us assume that oA and oAC are the set of objects
for the Account and AccountContact classes and rA−AC is
an instance of the relation account-account contact. Since
this is a one-to-one (i.e., one-to-zero-or-one) relation accord-
ing to the declarations in Figure 1, then we would have the

following relational constraint C:

∀ac ∈ oAC , ∃(a, ac) ∈ rA−AC

∧ ∀ac ∈ oAC ((a, ac) ∈ rA−AC ∧ (a′, ac) ∈ rA−AC) ⇒ a = a′

∧ ∀a ∈ oA ((a, ac) ∈ rA−AC ∧ (a, ac′) ∈ rA−AC) ⇒ ac = ac′

Note that this constraint states that each Account object
must be associated with zero or one AccountContact ob-
ject based on this relation, and each AccountContact object
must be associated with exactly one Account object. If the
relation rA−AC satisfies the above constraint, then we would
state that rA−AC |= C.

The dependency constraints in D express conditions on two
consecutive instances of a relation such that deletion of an
object from one of them leads to the other instance by dele-
tion of possibly more objects (based on the :dependent op-
tion). So, in order to determine if a dependency constraint
holds, we need two instances of the same relation, say r and
r′, one denoting the instance before the deletion, and one de-
noting the instance after the deletion, respectively. Then, if
the pair of relations (r, r′) satisfy the dependency constraint,
we write (r, r′) |= D.

A data model instance is a tuple I = 〈O, R〉 where O = {o1,

o2, . . . onO
} is a set of object classes and R = {r1, r2, . . . rnR

}
is a set of object relations and for each ri ∈ R there exists
oj , ok ∈ O such that ri ⊆ oj × ok.

Given a data model instance I = 〈O, R〉, we write R |= C to
denote that the relations in R satisfy the constraints in C.
Similarly, given two instances I = 〈O, R〉 and I ′ = 〈O′, R′〉
we write (R, R′) |= D to denote that the relations in R and
R′ satisfy the constraints in D.

A data model instance I = 〈O, R〉 is an instance of the data
model M = 〈S, C, D〉, denoted by I |= M , if and only if 1)
the sets in O and the relations in R follow the schema S,
and 2) R |= C.

Given a pair of data model instances I = 〈O, R〉 and I ′ =
〈O′, R′〉, (I, I ′) is a behavior of the data model M = 〈S, C, D〉,
denoted by (I, I ′) |= M if and only if 1) O and R and O′

and R′ follow the schema S, 2) R |= C and R′ |= C, and 3)
(R, R′) |= D.

Data Model Properties. Given a data model M = 〈S, C, D〉,
we will define four types of properties: 1) state assertions
(denoted by AS): these are properties that we expect to hold
for each instance of the data model; 2) behavior assertions
(denoted by AB): these are properties that we expect to hold
for each pair of instances that form a behavior of the data
model; 3) state predicates (denoted by PS): these are predi-
cates we expect to hold in some instance of the data model;
and, finally, 4) behavior predicates (denoted by PB): these
are predicates we expect to hold in some pair of instances
that form a behavior of the data model. We will denote that
a data model satisfies an assertion or a predicate as M |= A

or M |= P , respectively. Then, we have the following formal

definitions for these four types of properties:

M |= AS ⇔ ∀I = 〈O, R〉, I |= M ⇒ R |= AS

M |= AB ⇔ ∀(I = 〈O,R〉, I′ = 〈O′, R′〉),

(I, I′) |= M ⇒ (R, R′) |= AB

M |= PS ⇔ ∃I = 〈O, R〉, I |= M ∧ R |= PS

M |= PB ⇔ ∃(I = 〈O,R〉, I′ = 〈O′, R′〉),

(I, I′) |= M ∧ (R, R′) |= PB

Bounded Verification of Data Models. The data model
verification problem is, given one of these types of prop-
erties, determining if the data model satisfies the property.
Since the number of objects in a data model is not bounded,
we cannot enumerate all the instances in a data model. One
possible approach is to use bounded verification where we
check the property for instances within a certain bound.
This is the approach we take in this paper. The main idea
is to bound the set of data model instances to a finite set,
say Ik where I = 〈O, R〉 ∈ Ik if and only if for all o ∈ O

|o| ≤ k. Then given a state assertion AS, we can check the
following condition for example:

∃I = 〈O,R〉, I ∈ Ik ∧ I |= M ∧ R 6|= AS

Note that if this condition holds then we can conclude that
the assertion AS fails for the data model M , i.e., M 6|=
AS. However, if the above condition does not hold, then we
only know that the assertion AS holds for the data model
instances in Ik.

Similarly, given a predicate PS , and a bounded set of in-
stances Ik, we can check the condition:

∃I = 〈O, R〉, I ∈ Ik ∧ I |= M ∧ R |= PS

and if this condition holds we can conclude M |= PS. If
the above condition fails on the other hand, we can only
conclude that the predicate PS does not hold for the data
model instances in Ik. Bounded verification of behavior as-
sertions and behavior predicates can also be done similarly
on bounded data model instances.

An enumerative (i.e., explicit state) search technique is not
likely to be efficient for bounded verification since even for
a bounded domain the set of data model instances can be
exponential in the number of sets in the data model. One
bounded verification approach that has been quite success-
ful is SAT-based bounded verification. The main idea is to
translate the verification query to a Boolean SAT instance
and then use a SAT solver to search the state space. Alloy
Analyzer [16] is a SAT-based bounded verification tool for
analyzing object-oriented data models. Alloy language al-
lows specification of objects and relations and it allows spec-
ification of constraints on relations using first-order logic.
Alloy analyzer supports bounded verification of assertions
and simulation of predicates which correspond to the as-
sertion and predicate checks we described above. In order
to do bounded verification of Rails data models, we im-
plemented an automated translator that translates Active
Record specifications to Alloy specifications. After this au-
tomated translation, we use the Alloy Analyzer for bounded
verification of data model properties. Below we describe
how we translate the Active Record specifications to the Al-
loy language.

4. TRANSLATION TO ALLOY
We implemented a translator that translates data models in
Rails applications to Alloy. The first step of the translation
is parsing the Rails model files (i.e., Active Record files).
We do this using a parser written in and for Ruby source
code called ParseTree [18]. ParseTree extracts the parse tree
for an entire Ruby class and returns it as an s-expression.
S-expressions are generated for each model file that contains
a class that inherits from ActiveRecord. We then create an
s-expression processor (which inherits from SexpProcessor,
the basic s-expression traversal class provided with Parse-
Tree) to traverse the generated s-expressions and translate
them to a single Alloy specification file.

The first step of the Active Record to Alloy translation is to
map each Active Record class to a sig in Alloy, which simply
defines a set of objects in Alloy. The inheritance relation-
ships in Rails, such as class Child < Parent, are translated
to Alloy using the extends keyword, as in class Child ex-

tends Parent.

The Three Basic Relationships. When expressing a bi-
nary relationship in Alloy, one can give it a multiplicity of
one, lone, some, or set which correspond to one, zero or
one, one or more, and zero or more, respectively. Thus, the
mapping of the Rails relationships to Alloy is as follows:

class ObjectA sig ObjectA {

has_one :objectB objectB: lone ObjectB

end }

class ObjectA sig ObjectA {

has_many :objectBs objectBs: set ObjectB

end }

class ObjectA sig ObjectA {

belongs_to :objectB objectB: one ObjectB

end }

class ObjectA sig ObjectA {

has_and_belongs_to_many objectBs: set ObjectB

:objectBs }

end

Furthermore, one has to add a fact block that connects each
pair of declarations. For the one-to-many relationship this
would look as follows:
fact { ObjectA <: objectBs = ~(ObjectB <: objectA) }

where <: is the domain restriction operation such that s <:

r contains the tuples in relation r that start with an element
in s, and the operator ~ is the relational inverse operation
where ~r is the inverse of the relation r [16].

The :through Option. To translate the :through option, we
follow the mapping from the table in the previous paragraph.
However, instead of a separate global fact block, we add a
local fact block immediately following the signature of the
object containing the :through declaration. This is because
all the fields referred to in the fact refer to the those inside
that single signature. So, for the following Rails models:

class Account < ActiveRecord::Base

has_many :account_contacts

has_many :contacts, :through => :account_contacts

end

class Contact < ActiveRecord::Base

has_one :account_contact

has_one :account, :through => :account_contact

end

class AccountContact < ActiveRecord::Base

belongs_to :account

belongs_to :contact

end

the Alloy translation looks as follows:

sig Account {

account_contacts: set AccountContact,

contacts: set Contact

} { contacts = account_contacts.contact }

sig Contact {

account_contacts: lone AccountContact

account: lone Account

} { account = account_contacts.account }

sig AccountContact {

account: one Account,

contact: one Contact

}

fact {

Account <: account_contacts =

~(AccountContact <:account)

Contact <: account_contact =

~(AccountContact <:contact)

}

The :conditions Option. The :conditions option means
that objects from one class only associate with a subset of
objects from another class rather than with the entire set.
Thus, to translate the :conditions option we create a sub-
set of objects in Alloy which the object with the condition
statement can map to. Therefore if we had the following
Rails models:

class Account < ActiveRecord::Base

has_one :address,

:conditions => "address_type=’Billing’"

end

class Address < ActiveRecord::Base

belongs_to :account

end

we translate it to Alloy by abstracting the set of addresses
for which the condition address_type=’Billing’ holds, to the
set Billing_Address as follows:

sig Account { address: lone Billing_Address }

sig Address { account: one Account

sig Billing_Address in Address { }

fact {

Account <: address = ~(Billing_Address <: account)

}

The in keyword in Alloy creates a subset; it is used above
to create the Billing_Address signature. Since we are not
modeling the data fields of the Rails classes, we create this
arbitrary subset of Address without specifying exactly which
elements of Address belong in the subset (i.e. the ones which
have ’Billing’ as the address_type). The address element
in Account can now map to just this subset of Address. The

global fact block establishes this mapping by confirming the
address and account fields of the two signatures refer to the
same set of objects.

The :polymorphic Option. In polymorphic relations, there
is a base class that can be related to one of many target
classes. Moreover, this relationship is expressed via a sin-
gle field in the base class. So, to translate the polymorphic
relation, we need to enclose the target classes inside a sin-
gle supertype which the relation in the base class can refer
to. However the translation for polymorphic relations is not
straightforward since a target class can have polymorphic
relations with multiple classes. Modeling these kinds of sce-
narios requires multiple inheritance.

To understand how to simulate multiple inheritance in Al-
loy, let us assume that the class Contact needs to inherit
from both Addressable and Subject. In order to simulate
multiple inheritance, all Active Record classes are made a
subset of some other superclass, say ActiveRecord. We will
use the extends keyword in Alloy to ensure the subsets are
disjoint. Then statements are added to the global fact block
which will say Contact is a subset of both Addressable and
Subject; but this time we will use the in keyword to declare
the subset, which will allow overlapping (as opposed to the
extends keyword, which forces the subsets to be disjoint).

Let us take a look at a concrete example from FatFreeCRM.
Below are a set of Rails models with a polymorphic asso-
ciation. Address has an addressable association that both
Account and Contact refer to:

class Address < ActiveRecord::Base

belongs_to :addressable, :polymorphic => true

end

class Account < ActiveRecord::Base

has_one :address, :as => :addressable

end

class Contact < ActiveRecord::Base

has_one :address, :as => :addressable

end

The first step in translating these models is to create a com-
mon base class that all classes extend, as follows:
abstract sig ActiveRecord { }

The abstract keyword tells Alloy that this signature has
no elements except those belonging to its extensions. All
signatures will either inherit from this class or the parent
class if one is specified in the corresponding Rails model.

The next step is to create a supertype for the target classes
to be enclosed in. The supertype will be called Address-

able and it will contain the has_one relation, translated as
described earlier:

sig Addressable extends ActiveRecord {

address: lone Address

}

Next, the relationship between Addressable and the target
classes (Contact and Account) will be established via facts.
Specifically, we will state that the target classes are subsets
of Addressable, using the in keyword.

Further, Alloy does not allow subsets to be abstract if the
superset is abstract, like we have made ActiveRecord. Thus
we will also have to specify as facts that there are no ele-
ments in Addressable except those belonging to the target
classes. Finally, since our design requires all signatures to
extend ActiveRecord, we also have to add facts to state
that Addressable is disjoint from all other non-target classes
in ActiveRecord. The final Alloy translation is given below.

abstract sig ActiveRecord {}

sig Address extends ActiveRecord {

addressable: one Addressable

}

sig Account extends ActiveRecord {}

sig Contact extends ActiveRecord {}

sig Addressable in ActiveRecord {

address: lone Address

}

fact {

Account in Addressable

Contact in Addressable

all x0: Addressable | x0 in Account or

x0 in Contact

no Address & Addressable

}

4.1 Translating the Dependency Constraints
Finally we have the :dependent option, which specifies what
behavior to take on deletion of an object with regards to
its associated objects. To incorporate this dynamism, the
model must allow analysis of how sets of objects and their
relations change from one state to the next. Thus we need a
slightly different translation algorithm from the one we have
been presenting so far.

In order to handle the :dependent option, we will be creat-
ing invokable constraints, or predicates in Alloy, which will
model the deletion of an object. We will also need Alloy
signatures to represent the state of a data model instance,
i.e. the set of all objects and their relations. In particular,
we will have a PreState signature to represent the state of
objects before the deletion operation, and a PostState signa-
ture to represent the state after the deletion. We can then
use these signatures to check whether some invariant holds
after an object is deleted.

Basic Translation. We will use snippets of the running ex-
ample to explain each piece of this new translation algo-
rithm. Let us begin with the following portion of the Rails
data model for FatFreeCRM:

class Account < ActiveRecord::Base

belongs_to :user

end

class User < ActiveRecord::Base

has_many :accounts

end

As before, the Alloy specification for this model will contain
a signature for each class. It will also contain a PreState and
a PostState signature, as just discussed. Since the PreState

and PostState signatures represent the whole data model
instance, they will need references to all object types and
relations. Thus we obtain the following Alloy specification:

sig Account {}

sig User {}

one sig PreState {

accounts: set Account,

users: set User,

relation1: Account set -> one User

}

one sig PostState {

accounts’: set Account,

users’: set User,

relation1’: Account set -> set User

}

The PreState sig contains fields accounts and users to hold
objects of each type in the system. Next, it contains a field
relation1 to hold the related Account and User objects. The
product operator, ->, produces a mapping between Accounts
and Users. The multiplicity keyword set tells Alloy that
relation1 maps each User object to zero or more Account

objects, and the keyword one tells Alloy that every Account

object is mapped to exactly one User object. Note that in
the translation of relations, the multiplicity keywords are
the same as the ones used in the earlier translation (e.g.
belongs_to :user produces one User and has_many :accounts

produces Account set). Also note the one preceding sig

PreState. This tells Alloy that there will be exactly one
instance of PreState in any data model instance.

The definition of PostState is exactly the same. The only
difference is that its relations always map a set of objects
to another set of objects. The reason to not specify the
relation cardinalities here as well is because when the cardi-
nality is one, it forces the mapping to be total. However once
an object has been deleted, we need to remove it from the
relation, causing the need for a partial mapping in the Post-

State. Since the relations in PostState will be defined in the
delete predicates using the PreState relations, the cardinal-
ities among the remaining (live) objects will be preserved.

Let us now turn to the definition of the delete predicates.
As an example, let us generate the predicate that deletes an
Account. To start, we define the deleteAccount predicate to
accept a PreState object, a PostState object and an Account

object as parameters. The body of the predicate begins
by stating that s, the PreState object, contains all existing
objects:

pred deleteAccount [s: PreState, s’: PostState,

x: Account] {

all x0: Account | x0 in s.accounts

all x1: User | x1 in s.users

Finally, we describe the data model instance after the dele-
tion:

s’.accounts’ = s.accounts - x

s’.users’ = s.users

s’.relation1’ = s.relation1 - (x <: s.relation1)

}

Here we have deleted x, the Account object, by removing it
from the set of Account objects in PostState. We have also
updated the relation by setting the PostState relation to be
the PreState relation minus all the tuples whose domain is

x (using the scoping operator <: described earlier). This
removes all of x’s relations from relation1’.

It is important to note here that the relation is only updated
if it is a :belongs_to or :has_and_belongs_to_many relation-
ship in the Rails model. (So in the delete predicate for User

which contains the has_many declaration, relation1 would re-
main unchanged: s’.relation1’ = s.relation1.) This is due
to the way the relationships are implemented in Rails. In the
database, the foreign key is stored with the object that has
the :belongs_to relationship (for the one-to-one and one-to-
many relations) or in a join table for the
:has_and_belongs_to_many relationships. Thus, an object’s
has_one andhas_many relations are not affected when an ob-
ject is deleted. Note that deleting an object on the has_one

or has_many side may cause a dangling reference if the :de-

pendent option is not set; our model can be used to check
for such cases (as we did in our case studies).

The :through Option. Next, let’s analyze the following
partial Rails model to understand how to translate the :through

option for the dynamic Alloy specification.

class Account < ActiveRecord::Base

has_many :account_contacts

has_many :contacts, :through => :account_contacts

end

class AccountContact < ActiveRecord::Base

belongs_to :account

belongs_to :contact

end

class Contact < ActiveRecord::Base

has_one :account_contact

end

The basic setup for the Alloy specification is the same: a
signature for each class, a PreState and PostState signature,
each with a field for every set of objects and relations be-
tween them.

sig Account {}

sig AccountContact {}

sig Contact {}

one sig PreState {

accounts: set Account,

account_contacts: set AccountContact,

contacts: set Contact,

relation1: Account one -> set AccountContact,

relation2: AccountContact lone -> one Contact,

thru_relation = relation1.relation2

}

one sig PostState {

accounts’: set Account,

account_contacts’: set AccountContact,

contacts’: set Contact,

relation1’: Account set -> set AccountContact,

relation2’: AccountContact set -> one Contact,

thru_relation’ = relation1.relation2

}

The new idea is the translation of the relation with the
:through option set, the one between Account and Contact.
We use the join operator, ., to define thru_relation to be
the join of the other two relations.

The definition of the delete predicate (provided below) is
also basically the same. Let’s say we want to delete an Ac-

countContact. We delete the object from PostState’s set of
account_contacts. We also delete it from any of the object’s
:belongs_to or :has_and_belongs_to-many relations. Inciden-
tally, both of its relations are :belongs_to; thus, tuples con-
taining x in both the relations relation1 and relation2 are
removed. Note that thru_relation does not need to be up-
dated explicitly; it will be updated automatically because it
is defined using relation1 and relation2.

pred deleteAccountContact [s: PreState, s’: PostState,

x: AccountContact] {

all x0:Account | x0 in s.accounts

all x1:AccountContact | x1 in s.account_contacts

all x2:Contact | x2 in s.contacts

s’.accounts’ = s.accounts

s’.account_contacts’ = s.account_contacts - x

s’.contacts’ = s.contacts

s’.relation1’ = s.relation1 - (s.relation1 :> x)

s’.relation2’ = s.relation2 - (x <: s.relation2)

}

The :conditions, :polymorphic, and :dependent Options.
The translation of the :conditions and the :polymorphic op-
tions remain the same as described in the previous transla-
tion, except that they contain the PreState and PostState

sigs. A relation with the :dependent option is translated us-
ing the guidelines we discussed above; the only change is
in the delete predicate. When updating the relations by
removing those belonging to the deleted object, we also up-
date relations of its associated object(s) based on the use of
the :dependent option.

5. EXPERIMENTATION
We used our Active Records to Alloy translator tool and the
Alloy Analyzer to analyze data models of two open source
Ruby on Rails applications, TRACKS [21] and Fat Free
CRM [12].

TRACKS is an application to manage things-to-do lists. It
has 6062 lines of code, with 44 total classes and 13 data
model classes. TRACKS allows users to organize to-do items
by context or project. Notes can be added to to-do lists
and projects. TRACKS is also multi-user. The Alloy spec-
ification that our translator produced for this application
contains 444 lines of code.

Fat Free CRM is roughly twice as big as TRACKS, with
12069 lines of code, 54 classes and 20 data model classes.
The Alloy translation has 1518 lines of code. Fat Free CRM
aims to be a lightweight solution to customer relationship
management (CRM). Fat Free CRM, offers the management
of leads (a person who is a potential customer), accounts,
opportunities and campaigns All of this is handled within a
multi-user environment.

Property Classification. The model files of these two ap-
plications were fed into our automatic translator, which gen-
erates an Alloy specification. To this, we added properties
about the data model and relations between objects. We had
four basic classes of properties, which we describe below:

I. Relationship Cardinality: These properties check the car-
dinality of a relationship. For instance, the application spec-
ification may require there be a one-to-one relationship be-
tween two objects. This can be the cause of bug if the Rails
programmer is not aware that Ruby on Rails’ one-to-one
relationship is actually a one-to-zero-or-one relationship.

II. Transitive Relations: This class of properties check
whether the set of objects in a direct relationship between
two objects is the same as the set of objects obtained from
an indirect, or transitive, relationship. This class of proper-
ties can fail due to incorrect usage of the :through option.
In TRACKS for instance, Notes belong to Users; Notes also
belong to Projects, and Projects belong to a User. So one
can check whether the User of a Note is the same as the
Note’s Project’s User, for all Notes.

III. Deletion Does Not Create Orphans: We also verified
properties that checked whether deleting an object caused
a related object to be orphaned. This happens when se-
mantically two objects should always be related, but the
application allows one of them to be deleted.

IV. Deletion Does Not Cause Dangling References: Another
class of properties we checked were whether deleting an ob-
ject caused dangling references. This may happen due to
forgotten :dependent declarations on the has_many or has_one

side of a relationship.

V. Deletion Propagates to Associated Objects: Finally, we
checked whether deleting an object also caused certain re-
lated objects to be deleted (or that the associated objects
did not get deleted if they should not have). Again, this type
of properties may fail due to incorrect usage of the :depen-

dent option. One can also verify that an associated object
still exists after the delete.

The complete list of properties verified for both applications
is shown in Table 1. It includes a description of the property,
whether it passed or failed during verification, and which of
the above categories it belongs to. It also includes the type
of property based on the types we defined in Section 3.

Property Classification. In the TRACKS Application, a
total of ten properties were checked. Of the ten properties,
five failed. Of these that failed we considered it a data mod-
eling error if the property could have been enforced by the
data model but was not.

The first property that failed is property T4. Inspection
of the data models reveals that the relationship between a
Todo and Projects is one-to-many; the has_many/belongs_to

declaration pair is used. However, the application actually
requires a zero-or-one-to-many relationship between Todo
and Projects. Looking at the data models shows that to
make up for Rails’ limited expressive power for relations,
the application programmer has enforced this property in
the data model by adding code to return a NullProject.2

This code is not part of the static data model so our analysis
does not model it. Since this property cannot be enforced

2An empty Project that represents the absence of an object.
This is preferable over a null reference in some cases.

Type TRACKS Properties

I,AS T1 Every Todo has a Context P
I,PS T2 A Context may have no Todos P
I,AS T3 A Todo must have a Context P
I,PS T4 A Todo can have no Project F
II,AS T5 Note’s User = Note’s Project’s User F
I,AS T6 Every User has a Preference F
IV,AB T7 No dangling Todos after User delete P
III,AB T8 No orphan User after Preference delete F
IV,AB T9 No dangling Todos after Context delete P
IV,AB T10 No dangling Todos after User delete F

Type FFCRM Properties

I,AS F1 An Opportunity must have a Campaign P
I,AS F2 A Task must have a User P
I,PS F3 An Account may have no Activities P
I,AS F4 At most one User per Lead P
II,AS F5 A ContactOpportunity’s Opportunity =

ContactOpportunity’s Contact’s Opportunity P
I,PS F6 A Contact may have no Tasks P
I,AS F7 A Contact cannot have two Accounts P
II,AS F8 User’s Opportunities =

User’s Campaigns’ Opportunities F
II,AS F9 Lead’s User = Lead’s Activities’ User P
IV,AB F10 No dangling Contacts after Account delete P
V,AB F11. Deleting an Account does not delete its

Contacts P
V,AB F12 Deleting an Account deletes its Todos P
V,AB F13 Deleting a Campaign deletes its Leads P
V,AB F14 Deleting a Campaign deletes its

Opportunities P
V,AB F15 Deleting Campaign deletes its Leads’ Tasks P
IV,AB F16 No dangling Contacts after Lead delete F
V,AB F17 Deleting a Lead does not delete its

Contacts P
IV,AB F18 No dangling Users after Lead delete P
V,AB F19 Deleting a Lead does not delete its User P
V,AB F20 Deleting a User means its associated

Activities are also deleted P

Table 1: Verification Results (P:Pass, F: Fail)

in a Rails data model we do not consider this failure a data-
modeling error.

The next property to fail is T5. In the TRACKS application,
there is a relationship between Users and Projects, Users and
Notes, and Notes and Projects. This property checks that
the User a Note belongs to is the same User that the Note’s
Project is associated with. Analysis of the failure of this
property shows that there is a flaw in the design of the data
model. The user field is duplicated in the Project and Note
classes. This was probably done for ease of access of the User
from the Note class, as opposed to going through the Project
class. Currently, this property is being upheld in the appli-
cation by the code placed in the controller. However, in the
future if the controller code is changed and the programmer
is unaware of this invariant, a bug may be introduced into
the application. This property could have been enforced in
the data model using the :through option, hence we consider
this failure a data-modeling error.

The third property that failed verification in TRACKS is
property T6. In the data models, one observes that the
relationship between User and Preference is set up using
has_one and belongs_to. Recall that this is a one-to-zero-or-

one relationship. However, in TRACKS, this relationship is
actually one-to-one. Once again we observe the limitation of
Rails’ ability to express relationships of this kind. Although
this constraint is being enforced in the controller, there are
ways of enforcing the one-to-one relationship in the data
models. For example, the User and Preferences tables can
be merged or a construct in Rails called callbacks may be
used. Consequently, this property failure also points out a
data-modeling error in the application. Property T8 failed
due to this same data modeling error. A User should always
be related to a Preference, but allowing a Preference to be
deleted breaks this property.

The final property that failed verification in TRACKS is
property T10. In the data models, we see that there is a
relationship where a User has_many Contexts, and a Con-
text has_many Todos. Because the has_many relation in User
has the :dependent option set to :delete_all, the associated
Context objects will be deleted, but Rails will not go into
Context and look at its relations. Thus, the User deletion
does not get propagated into the relations of the Context ob-
ject, including the Todos that this property is checking for.
Hence, this property pinpoints another data-modeling error.
However, the User object itself also is related to Todos, and
since the application has controller logic that enforces this
set of Todos is the same as the ones obtained by navigating
through the Context relation, the application currently does
not manifest this data modelling error.

For the Fat Free CRM application, twenty properties were
verified. Of these, two did not pass the verification. The
first is F8, and the situation for this property is the same as
property T5 of TRACKS. Hence this property points to a
data-modeling error.

The other property that fails for Fat Free CRM is prop-
erty F16. Leads and Contacts are associated such that a
Lead has_one Contact, with no :dependent option set on the
association. Thus, when a Lead is deleted, the associated
Contact still exists. A comment next to the relation dec-
laration confirms that the application programmer wanted
the Contact to remain alive. However, this Contact now has
a null reference and thus breaks the model design; the use
of the has_one/belongs_to declaration pair signifies a one-
to-zero-or-one relationship, whereas it seems as if the ap-
plication programmer wanted a zero-or-one-to-zero-or-one
relationship. Further inspection of the code reveals that
this relationship serves no purpose. In the application logic,
some Leads may be upgraded to Contacts, which means (in
the code) that a Contact object is created from a Lead ob-
ject by copying many of the fields over. Hence, a Contact
never refers back to the Lead that created it, nor the Lead
to the Contact it created. Perhaps this relationship seemed
necessary during the initial drafts of the data model design;
however, it is now extraneous and only allows room for fu-
ture bugs. Thus, the violation of this property uncovers a
data-modeling error.

Performance. To measure performance, we recorded the
amount of time it took for Alloy to run and check the prop-
erties on a bounded number of instances, as well as the
number of variables and clauses generated in the boolean
formula generated for the SAT-solver. The time, number of

variables and number of clauses are averaged over the prop-
erties for each application. These performance measures are
taken over an increasing bound, from at most 10 objects for
each class to at most 35 objects for each class. This means
that each property was checked by instantiating up to 10
instances of each object, up to 15 of each object, etc The re-
sults are summarized in Figure 2. We see that the number of
variables and clauses, and verification time increase with in-
creasing bound as expected. In the worst case, this increase
could be exponential. However, the slowest verification time
(for a bound of 35 objects) being only 22 seconds confirms
that the bounded analysis we are performing is feasible for
analyzing properties of real-world web applications.

6. RELATED WORK
Formal modeling and automated verification of web appli-
cations has been investigated before. There has been some
work on analyzing navigation behavior in web applications,
focusing on correct handling of the control flow given the
unique characteristics of web applications, such as the use
of a browser’s “back”button combined with the stateless na-
ture of the underlying HTTP protocol [17]. Prior work on
formal modeling of web applications mainly focuses on state
machine based formalisms to capture the navigation behav-
ior. Modeling web applications as state machines was sug-
gested a decade ago [20] and investigated further later on [14,
2, 13]. State machine based models have been used to au-
tomatically generate test sequences [23], perform some form
of model checking [19] and for runtime enforcement [13]. In
contrast to these previous efforts, we are focusing on analysis
of the data model rather than the navigational aspects.

There has been some prior work on formal modeling of web
applications using UML [7] and extending UML to capture
complex web application behavior such as browsing and op-
erations on navigation states [1]. WebML [5] is a model-
ing language developed specifically for modeling web appli-
cations. Formal specification of access control policies in
conjunction with a data model using Alloy has also been
studied, where an implementation is automatically synthe-
sized from the formal specification [6]. These efforts focus
on model driven development whereas our approach is a re-
verse engineering approach that extracts the model of an
already-existing application and analyzes it to find errors.

The verification of traditional, non-MVC web applications,
has also been investigated in recent years [15, 9, 10, 11]. In
this paper, by focusing on MVC style web applications we
are able to exploit the modularity in the MVC architecture
and extract formal data models from existing applications.

There has been some prior work on using Alloy for data
model analysis. For example, mapping relational database
schemas to Alloy has been studied before [8]. Also, trans-
lating ORA-SS specifications (a data modeling language for
semi-structured data) to Alloy and using Alloy analyzer to
find an instance of the input data model has been investi-
gated [22]. However, unlike our work, the translation to Al-
loy is not automated in these earlier efforts. Finally, Alloy
has also been used for discovering bugs in web applications
related to browser and business logic interactions [3]. This
is a different class of bugs than the data model related bugs
we focus on in this paper.

Figure 2: Verification Performance with Increasing Bound (Scope)

7. CONCLUSIONS
We presented techniques for bounded verification of Ruby
on Rails data models. We showed that by exploiting the
inherent modularity in MVC frameworks it is possible to
extract a static data model from a Rails application. We
formalized the bounded verification problem for Rails data
models and realized a bounded verification framework by im-
plementing an automated translator from Rails data models
to Alloy language. The Alloy specification that our trans-
lator outputs can then be appended with properties about
the data relationships and checked by the Alloy Analyzer.
We applied this approach to two open source web applica-
tions and demonstrated that this type of bounded verifica-
tion is feasible and can discover data modeling errors in real
applications. As future work we plan to investigate fusing
the data model investigated in this paper with a navigation
model in order to analyze dynamic data model behavior.

8. REFERENCES
[1] L. Baresi, F. Garzotto, and P. Paolini. Extending

UML for modeling web applications. In Proc. 34th
Ann. Hawaii Int. Conf. Sys. Sci. (HICSS), 2001.

[2] M. Book and V. Gruhn. Modeling web-based dialog
flows for automatic dialog control. In Proc. 19th Int.
Conf. Automated Software Engineering (ASE), pages
100–109, 2004.

[3] B. Bordbar and K. Anastasakis. MDA and analysis of
web applications. In Proc. VLDB Workshop on Trends
in Enterprise Application Architecture, pages 44–55,
2005.

[4] F. Buschmann et al. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley and
Sons, 1996.

[5] S. Ceri, P. Fraternali, and A. Bongio. Web modeling
language (WebML): a modeling language for designing
web sites. Computer Networks, 33(1-6):137–157, 2000.

[6] F. Chang. Generation of Policy-rich Websites from
Declarative Models. PhD thesis, MIT, 2009.

[7] J. Conallen. Modeling web application architectures
with UML. Commun. ACM, 42(10):63–70, 1999.

[8] A. Cunha and H. Pacheco. Mapping between Alloy
specifications and database implementations. In Proc.
7th Int. Conf. Engineering and Formal Methods
(SEFM), pages 285–294, 2009.

[9] L. Desmet, P. Verbaeten, W. Joosen, and F. Piessens.
Provable protection against web application
vulnerabilities related to session data dependencies.
IEEE Trans. Software Eng., 34(1):50–64, 2008.

[10] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A system
for specification and verification of interactive,
data-driven web applications. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 772–774,
2006.

[11] F. M. Donini, M. Mongiello, M. Ruta, and R. Totaro.
A model checking-based method for verifying web
application design. Electr. Notes Theor. Comput. Sci.,
151(2):19–32, 2006.

[12] Fat free crm. http://www.fatfreecrm.com/.

[13] S. Hallé, T. Ettema, C. Bunch, and T. Bultan.
Eliminating navigation errors in web applications via
model checking and runtime enforcement of navigation
state machines. In Proc. 25th Int. Conf. Automated
Software Engineering (ASE), pages 235–244, 2010.

[14] M. Han and C. Hofmeister. Relating navigation and
request routing models in web applications. In 10th
Int. Conf. on Model Driven Engineering Languages
and Systems (MoDELS), pages 346–359, 2007.

[15] M. Haydar. Formal framework for automated analysis
and verification of web-based applications. In Proc.
19th Int. Conf. Automated Software Engineering
(ASE), pages 410–413, 2004.

[16] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, Cambridge,
Massachusetts, 2006.

[17] S. Krishnamurthi, R. B. Findler, P. Graunke, and
M. Felleisen. Modeling Web Interactions and Errors,
pages 255–275. Springer, 2006.

[18] Parsetree. http://rubyforge.org/projects/parsetree/.

[19] E. D. Sciascio, F. M. Donini, M. Mongiello, R. Totaro,
and D. Castelluccia. Design verification of web
applications using symbolic model checking. In Proc.
5th Int. Conf. Web Engineering (ICWE), pages 69–74,
2005.

[20] P. D. Stotts, R. Furuta, and C. R. Cabarrus.
Hyperdocuments as automata: Verification of
trace-based browsing properties by model checking.
ACM Trans. Inf. Syst., 16(1):1–30, 1998.

[21] Tracks. http://getontracks.org/.

[22] L. Wang, G. Dobbie, J. Sun, and L. Groves.
Validating ORA-SS data models using Alloy. In 17th
Australian Software Engineering Conference
(ASWEC), pages 231–242, 2006.

[23] S. Yuen, K. Kato, D. Kato, , and K. Agusa. Web
automata: A behavioral model of web applications
based on the MVC model. Information and Media
Technologies, 1(1):66–79, 2006.

