
University of California
Santa Barbara

Software Side-Channel Analysis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Lucas A. Bang

Committee in charge:

Professor Tevfik Bultan, Chair
Professor Ömer Eğecioğlu
Professor Ben Hardekopf

June 2018

The Dissertation of Lucas A. Bang is approved.

Professor Ömer Eğecioğlu

Professor Ben Hardekopf

Professor Tevfik Bultan, Committee Chair

June 2018

Software Side-Channel Analysis

Copyright c© 2018

by

Lucas A. Bang

iii

Acknowledgements

First and foremost, I thank my Ph.D. research advisor, Tevfik Bultan. I am grateful

for Tevfik’s guidance, encouragement, and feedback, which were crucial over the many

years I spent in the Verification Lab at UCSB. He is an outstanding advisor, mentor, and

teacher who is always happy to share his academic expertise and experience to ensure

the success of his students.

Many thanks to Ömer Eğecioğlu and Ben Hardekopf for being on my committee,

taking the time to attend my graduate program milestone presentations, and providing

feedback and encouragement throughout the steps of finishing my Ph.D.

Lisa Berry is a fantastic instructor who taught me so much about how to be an

effective teacher and always strive to learn new tools to add to my teaching toolbox.

Tim Sherwood’s mentorship on teaching, research, and academia was especially helpful

during my first years at UCSB.

My research at UCSB could not have happened without collaborations with many

hard-working, brilliant, and inspiring researchers. I am especially thankful to have collab-

orated closely with Baki Aydin and Nicolas Rosner. Collaborating with Corina Psreanu

and Sang Phan during my internship at CMU and afterward during our work in the

STAC program was an inspiring and formative experience.

I will always look back fondly on the time I spent with the people in the Verification

Lab. Bo, Baki, Tegan, Miroslav, Will, Seemanta, Burak, Nestan, Nicolas, and Isaac

have all been such wonderful company. Our wide-ranging conversations, whether serious,

hilarious, or downright absurd, were always something for me to look forward too when

heading into the lab.

Finally, I am ever grateful for my amazing partner, Athena, whose steadfast, unwa-

vering, loving support has been invaluable.

iv

Curriculum Vitæ
Lucas A. Bang

Education

2018 Ph.D. in Computer Science, University of California, Santa Barbara.

2013 M.S. in Computer Science, University of Nevada, Las Vegas.

2010 B.A. in Computer Science, University of Nevada, Las Vegas.

2010 B.S. in Mathematics, University of Nevada, Las Vegas.

Publications

Lucas Bang, Nicolas Rosner, and Tevfik Bultan. “Online Synthesis of Adaptive Side-
Channel Attacks Based On Noisy Observations.” Proceedings of the IEEE European
Symposium on Security and Privacy (EuroS&P 2018).

Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tevfik
Bultan. “Synthesis of Adaptive Side-Channel Attacks.” Proceedings of the 2017 IEEE
Computer Security Foundations Symposium (CSF 2017).

Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bul-
tan. “String Analysis for Side Channels with Segmented Oracles.” Proceedings of the
24th ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (FSE 2016).

Lucas Bang, Abdulbaki Aydin, and Tevfik Bultan. “Automatically Computing Path
Complexity of Programs.” Proceedings of the 10th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2015).

Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. “Automata-Based Model Counting
for String Constraints.” Proceedings of the 27th International Conference on Computer
Aided Verification (CAV 2015).

Lucas Bang, Wolfgang W. Bein, Lawrence L. Larmore. “R-LINE: A Better Randomized
2-server Algorithm on the Line.” Theoretical Computer Science (TCS). Volume 605,
2015.

Lucas Bang, Wolfgang W. Bein, Lawrence L. Larmore. “R-LINE: A Better Randomized
2-Server Algorithm on the Line.” Proceedings of the 10th Workshop on Approximation
and Online Algorithms (WAOA 2012).

v

Abstract

Software Side-Channel Analysis

by

Lucas A. Bang

Software side-channel attacks are able to recover confidential information by observing

non-functional computation characteristics of program execution such as elapsed time,

amount of allocated memory, or network packet size. The ability to automatically de-

termine the amount of information that a malicious user can gain through side-channel

observations allows one to quantitatively assess the security of an application. Since

most software that accesses confidential information leaks some amount of information

through side channels, it is important to quantify the amount of leakage in order to detect

vulnerabilities. In addition, one can prove that a program is vulnerable to side-channel

attacks by synthesizing attacks that recover confidential information.

In this dissertation, I provide methods for (1) quantifying side-channel vulnerabilities

and (2) synthesizing adaptive side-channel attack steps. My approaches advance the

state-of-the-art in automatic software side-channel analysis which I summarize as follows.

I make use of symbolic execution to extract program constraints that characterize the

relationship between secret information, the inputs of a malicious user, and observable

program behaviors. By applying model counting constraint solving to these constraints,

I compute probabilistic relationships among secrets, attacker inputs, and attacker side-

channel observations. These probabilities are used to quantify information leakage for a

program by applying methods from the field of quantitative information flow. Moreover,

by automatically generating a symbolic expression that quantifies information leakage,

I am able to perform numeric maximization over attacker inputs to synthesize optimal

vi

attack steps. The sequence of attack steps serves as a proof of exploitability. I give two

different automatic attack synthesis techniques: a fully static approach and an online

dynamic approach that constructs an attack that takes into account system noise and is

able to execute the attack through the network. I demonstrate the effectiveness of my

approaches on a set of experimental benchmarks.

vii

Contents

Curriculum Vitae v

Abstract vi

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1
1.1 Contributions . 5
1.2 Dissertation Outline . 7

2 Program Analysis for Quantitative Information Flow 9
2.1 Software Side Channels . 9
2.2 Symbolic Execution . 12
2.3 Probabilistic Symbolic Execution . 14
2.4 Quantitative Information Flow . 17
2.5 Chapter Summary . 21

3 Model Counting 23
3.1 Prior Work on Model Counting . 24

3.1.1 Model Counting for Boolean Logic 24
3.1.2 Model Counting for String Constraints 32
3.1.3 Linear Integer Arithmetic . 41

3.2 Automata-Based Model Counting . 46
3.2.1 String Constraints . 47
3.2.2 Automata Construction . 47
3.2.3 Model Counting with Automata 49
3.2.4 Implementation of Automata-Based Model Counting 58
3.2.5 Comparison with Syntax-Based Model Counting 58

viii

3.2.6 Automata-Based Counting for Linear Integer Constraints 60
3.3 Chapter Summary . 63

4 Side-Channel Analysis for Segmented Oracles 64
4.1 Segment Oracles . 66
4.2 Entropy Computation . 68
4.3 Multi-run Analysis of Segment Oracle Attacks 71

4.3.1 Multi-Run Symbolic Execution 75
4.3.2 The Best Adversary Model . 76
4.3.3 Computation of Information Leakage 77

4.4 Multi-Run Analysis Using Single-Run Symbolic Execution 78
4.5 Experiments . 81

4.5.1 Timing Performance of Model Counting 81
4.5.2 Single- and Multi-run Symbolic Execution 82
4.5.3 Password Checker . 83
4.5.4 Text Concatenation and Compression 84

4.6 Chapter Summary . 87

5 Offline Adaptive Attack Synthesis 88
5.1 Multi-Run Adaptive Attacks . 89

5.1.1 Attacker Model . 89
5.1.2 The Attacker’s Knowledge . 90

5.2 Symbolic Execution for Attack Synthesis 93
5.3 Maximizing Channel Capacity . 97
5.4 Maximizing Shannon Entropy . 100

5.4.1 Entropy Maximization: Numeric Optimization 101
5.4.2 Entropy Maximization: Maximal Satisfiable Subsets 103
5.4.3 Greedy Maximization . 104
5.4.4 Optimizations . 104

5.5 Implementation . 105
5.6 Experiments . 106
5.7 Chapter Summary . 110

6 Online Adaptive Attack Synthesis Under Noisy Conditions 112
6.1 Motivating Example . 113
6.2 Overview . 116

6.2.1 System Model . 116
6.2.2 Outline of Attack Synthesis . 119
6.2.3 Measuring Uncertainty . 121

6.3 Offline Profiling . 124
6.3.1 Trace Equivalence Classes . 124
6.3.2 Trace Class Discovery via Symbolic Execution 125
6.3.3 Estimating Observation Noise . 126

ix

6.3.4 Trace Class Merging Heuristic . 128
6.4 Online Attack Synthesis . 129

6.4.1 Adversary Strategy . 129
6.4.2 Trace Class Probabilities via Symbolic Weighted Model Counting 131
6.4.3 Leakage Objective Function . 133
6.4.4 Input Choice via Numeric Optimization 136
6.4.5 Belief Update for Secret Distribution 137
6.4.6 Example . 138
6.4.7 Handling Non-deterministic Programs 140
6.4.8 Detecting Non-vulnerability . 141

6.5 Implementation and Experimental Setup 141
6.6 Experiments . 143

6.6.1 DARPA-STAC Benchmark . 143
6.6.2 Case Study: Law Enforcement Database 153

6.7 Chapter Summary . 158

7 Related Work 159

8 Conclusion 164

Bibliography 166

x

List of Figures

1.1 The Pentagon pizza side channel. 2

2.1 Attacker, program, input, and observation model. 10
2.2 A PIN-checking function. 11
2.3 A constant-time PIN checking function. 11
2.4 Symbolic execution tree for the PIN checking code. 15

3.1 Example of DPLL-based satisfiability check for a Boolean formula. 29
3.2 Example of DPLL-based model counting for a Boolean formula. 31
3.3 Parse tree and generating function construction for a regular expression. 40
3.4 Solution for example integer constraint. 43
3.5 Satisfying solutions for the example constraint parameterized by t. 44
3.6 The syntax tree for the string constraint ¬(x ∈ (01)∗) ∧ len(x) ≥ 1. . . 50
3.7 The automata construction that traverses the syntax tree of Figure 3.6. . 50
3.8 Original and augmented DFA for model counting. 53
3.9 Code for a password changing policy. 57
3.10 Constraints on new password given the old password. 57
3.11 Transfer counting matrix for DFA for all possible values of NEW P. 59
3.12 Automata for the numeric constraint x− y < 1. 62

4.1 Password-checking function F1. 66
4.2 Password-checking function F2. 66
4.3 Entropy after a single guess for functions F1 and F2. 70
4.4 Time comparison for computing single guess entropy using ABC and LattE. 82
4.5 Time for multi-run and single-run symbolic execution. 83
4.6 Information leakage and remaining entropy for password checking function. 84
4.7 A function with a size-based side channel. 85
4.8 Lempel-Ziv algorithm (LZ77) [1], used in the CRIME case study. 86

5.1 Example code with a “binary search” timing side channel. 92
5.2 Symbolic tree for running example. 97
5.3 Computed attack tree. 100

xi

6.1 Example client-server application which contains a side channel. 114
6.2 Example side-channel attack for code in Figure 6.1. 115
6.3 Example distributions of timing measurements. 116
6.4 Model of adaptive adversary, program, inputs, and observations. 117
6.5 Overview of our attack synthesis approach. 120
6.6 Histogram of 1000 timing samples for example trace classes. 128
6.7 Three pairs of probability distributions and their Hellinger distances. . . 129
6.8 Mutual information between secret and observation or trace classe. . . . 136
6.9 Two sequences of attack steps and A’s changing belief about the secret. . 139
6.10 Non-vulnerable (left) and vulnerable (right) versions of STAC–1. 145
6.11 Non-vulnerable (left) and vulnerable (right) versions of STAC–3. 145
6.12 STAC–1(v) attack steps: observation vs. trace class entropy. 146
6.13 STAC–1(v) attack time: observation vs. trace class entropy. 146
6.14 STAC–3(v) attack steps: observation vs. trace class entropy. 146
6.15 STAC–3(v) attack time: observation vs. trace class entropy. 146
6.16 Common code for STAC–11A(v) and STAC–11B(v). 148
6.17 Source code of STAC-11A(v). 149
6.18 Source code of STAC-11B(v). 149
6.19 Source code for STAC–4(v). 150
6.20 Source code of STAC-12(v). 150
6.21 STAC–11(v) atttack steps: two versions. 150
6.22 STAC–11(v) atttack time: two versions. 151
6.23 STAC–4(v) and STAC–12(v) attack steps. 151
6.24 STAC–4(v) and STAC–12(v) attack time. 151
6.25 Extracted search function for LawDB. 156
6.26 Snapshots of A’s belief about the restricted ID for LawDB–1. 157

xii

List of Tables

2.1 Path constraints and model counts for QIF example. 17

3.1 Complete truth table for exhaustive propositional model counting. 26
3.2 Model counting table for strings X. 33
3.3 Log-scaled comparison between SMC and ABC. 60

5.1 Results for MaxCC (full exploration and 1-greedy). 110
5.2 Results for MaxHNumeric and MaxHMarco. 111

6.1 Experimental data for publicly available STAC benchmarks [2]. 144
6.2 Synthesized input strings for STAC-12(v). 152
6.3 Experimental data for 4 different instantiations of the LawDB case study. 155

xiii

List of Algorithms

1 Boolean Unit Propagation . 27

2 DPLL Boolean Satisfiability . 28

3 DPLL Boolean Model Counting . 30

4 Generating Function Construction for Regular Expressions 37

5 DFA Construction Algorithm for Constraint Solving 49

6 Adversary-Function Systems, S(A,F) . 73

7 S = (AB, F), Composed System of Best Adversary and Function 77

8 The k-step Adaptive Attack Model . 90

9 Symbolic k-step Adaptive Attack Model 93

10 Adaptive Attack Synthesis by Channel Capacity 98

11 Adaptive Attack Constraint Computation 98

12 Channel Capacity Mazimization . 99

13 Shannon Entropy Maximization . 101

14 Symbolic-Numeric Shannon Entropy Maximization 103

15 System Trace-Class Profiling . 127

16 Adaptive Adversary Attack Model . 130

17 Noise-Entropy Aware Input Choice . 136

18 Noise-Entropy Agnostic Input Choice . 137

xiv

Chapter 1

Introduction

Since computers are used in every aspect of modern life, many software systems have

access to secret information such as financial and medical records of individuals, trade

secrets of companies, and military secrets of states. Confidentiality, a core computer

security attribute, dictates that a program that manipulates secret information should

not reveal that information. This can be hard to achieve if an attacker is able to observe

different aspects of program behavior such as execution time and memory usage. Side-

channel attacks recover secret information from programs by observing non-functional

characteristics of program executions such as time consumed, memory accesses, or packets

transmitted over a network [3, 4, 5, 6, 7]. The Spectre and Meltdown attacks, two of

the biggest security vulnerabilities in recent history, are side-channel attacks which make

observations on cache usage and use inferences based on speculative execution to steal

secret information [8, 9].

I will begin with an informal answer to the question “What is a side channel?” In

August 1990, Time Magazine published an article, “And Bomb The Anchovies” regarding

an information leak about the work happening inside the United States Pentagon [10, 11].

1

Introduction Chapter 1

Time

P
iz
za

O
rd
er
s

Panama

Attack Granada

Invasion

Kuwait

Invasion

Figure 1.1: The number of pizzas ordered by the Pentagon spikes up around the time
of major political events (note: this figure not based on actual data).

Delivery people at various Domino’s pizza outlets in and around Washington

claim that they have learned to anticipate big news baking at the White

House or the Pentagon by the upsurge in takeout orders. Phones usually start

ringing some 72 hours before an official announcement. “We know,” says one

pizza runner. “Absolutely. Pentagon orders doubled up the night before the

Panama attack; same thing happened before the Grenada invasion.” Last

Wednesday, he adds, “we got a lot of orders, starting around midnight. We

figured something was up.” This time the big news arrived quickly: Iraq’s

surprise invasion of Kuwait.

Those at the Pentagon would like to believe that they are not leaking information

about their future plans. Indeed, it is extremely difficult to learn exactly what they are

up to, since it would require some form of direct observation of the secret information.

On the other hand, by making indirect observations (the number of pizzas ordered),

one is able to infer partial information—that a major geo-political event is about to

2

Introduction Chapter 1

happen, not necessarily what the event will be. (I have heard that both the Pentagon

and the Whitehouse have since opened internal 24-hour pizza kitchens so that their pizza

consumption is no longer externally measurable.)

The Pentagon-Pizza side channel is an example of how the correlation between secret

information and an unexpectedly observable signal can result in a vulnerability. Next, I

will provide a brief tour through the history of side-channel vulnerabilities as they relate

to electrical and computational processing of secret information. Arguably, the first

documented electromagnetic signal-based side-channel vulnerability was the TEMPEST

attack, the codename of a vulnerability kept secret by the National Security Agency until

2007 when it was partially declassified [12].

The TEMPEST vulnerability was discovered during World War II. Bell Labs had

developed a teletype device for sending secure messages and sold it to the military. An

operator could type the plain text of the message, it would be encrypted, and then sent to

the recipient, who could then decrypt it using an agreed-upon system of cryptographic

keys. Bell Labs had claimed that the device was guaranteed to be secure. However,

a research engineer happened to notice that a nearby oscilloscope would display a faint

signal each time the encryption device took a step. The operation of the encryption device

included several electromechanical relays and switches. As was eventually discovered, the

small bursts of electrical radiation generated by these components was measurable at least

100 feet away from another building. Even worse, the signals could be reliably correlated

with the operators original teletype keystrokes!

Since that time, various other forms of side-channel vulnerabilities have been discov-

ered. The acoustic emanations of dot-matrix printers—still used widely in doctor and

legal practices for their high reliability—can be correlated with the content of the result-

ing printed page [13]. Inter-keypress timing differences can be measured by a network

eavesdropper to determine an SSH user’s encrypted password [14]. I was surprised to

3

Introduction Chapter 1

read of a vulnerability in which a person’s hands typing on a keyboard can distort the wifi

signal from their laptop enough so that somebody with very inexpensive radio equipment

can determine their keystrokes from a distance with high accuracy [15].

While these side channels are certainly related to the software that runs the printer,

sends SSH packets, or controls the wifi card, they are more the result of the physical

characteristics of the device or the predictable behavior of the human operator. Other

side-channel vulnerabilities result from measurable hardware properties while performing

specific computations. For instance, by measuring power usage, Paul Kocher showed

that one can extract secret keys from a cryptographic device pair (e.g. a smart card and

reader), since different instructions executed by the microprocesser have different power

usage profiles. Measuring these profiles with standard signal processing equipment can

reveal cryptographic keys used during DES, AES, and RSA encryption [16].

In this dissertation, I will specifically address how software implementations can be

analyzed to discover and analyze side-channel vulnerabilities. For example, in Chapter 4

I will analyze implementations of password checking functions and the LZ77 compression

algorithm. These two programs exemplify a type of side-channel vulnerability known as

a segment oracle. At a high level, these side channels result from developers attempting

to optimize code. In the case of the password checker, the function returns as soon as

it knows that a password guess does not match. This results in a correlation between

the execution time of the function and the size of the matching prefix of a user input,

which can be exploited to efficiently reveal passwords [17, 18, 6]. This type of behavior is

also present in the C implementation of memcmp, which was shown the be exploitable to

leak hashed message authentication codes in the XBox—a serious security flaw [5]. The

LZ77 compression algorithm, on the other hand, attempts to optimize the length of a

message to be sent. This results in a correlation between the resulting message size and

the length of a matching segment of attacker injected input [19]. This was also a serious

4

Introduction Chapter 1

security flaw called Compression Ratio Info-leak Made Easy (CRIME) [20]. These are

two intuitive examples of software side-channel vulnerabilities, and other programs are

analyzed in later chapters.

The techniques I will describe in this dissertation use symbolic execution for the

systematic analysis of program behaviors under different input values [21, 22, 23]. Fur-

thermore, I use model counting [24, 25] over the constraints collected with symbolic

execution to quantify the leakage of the detected side channels. Leakage quantification is

accomplished by combining the results of model counting with concepts from information

theory [26, 27]. The major contribution of this dissertation is to go beyond the current

state-of-the-art in quantitative information flow (QIF). By casting the QIF problem as

an objective function maximization problem over attacker interactions, one can synthe-

size side-channel attacks that cause the greatest amount of information to flow from

secret program values to the attacker through side-channel observations. This allows

me to demonstrate the vulnerability of a program, which brings me to my statement of

contributions.

1.1 Contributions

By combining static program analysis, parameterized model counting, and optimiza-

tion techniques, I quantify a program’s vulnerability to side-channel attacks. Further-

more, I present a method that synthesizes an adaptive side-channel attack for a given

function which demonstrates the functions’s vulnerability. I make the following claims

as novel research contributions contained in this dissertation.

1. Automata-based model counting. I developed automata-theoretic methods

for counting the number of solutions to string and arithmetic constraints. I give a

solution based on methods from algebraic graph theory, enumerative combinatorics,

5

Introduction Chapter 1

and generating functions. I implemented that technique as part of a model counting

constraint solving tool, ABC (Automata-Based model Counter). Model counting

is a crucial component in quantitative program analysis.

2. Quantitative information flow analysis for segment oracles. One type of

vulnerability is known as a segment oracle side channel. In Chapter 4, I describe a

technique for automatically performing QIF for programs with this type of vulner-

ability. I give a combinatorial expression that can be used to efficiently quantify

information leakage from segment oracle observations.

3. Offline static side-channel attack synthesis. One can demonstrate a program’s

vulnerability to side-channel attacks by providing an attack. I give a technique for

synthesizing an attack tree that an adversary can use to exploit a side channel.

Furthermore, I quantify the expected information gain for the attack. My approach

makes use of symbolic representations of program and attacker behaviors, symbolic

model counting, and numeric optimization.

4. Online dynamic attack synthesis for noisy side channels. The static attack-

synthesis approach cannot account for the dynamic and noisy behavior of real sys-

tems. This final contribution is a method for synthesizing side-channel attacks

that take into account system and network noise. I implemented a system that

automatically generates a symbolic information-theoretic objective function that is

numerically maximized in order to synthesize optimal attacker inputs. The ability

to synthesize an attack for a function running on a live server proves the vulnera-

bility of the function.

6

Introduction Chapter 1

1.2 Dissertation Outline

In Chapter 2, I cover symbolic program analysis and the relevant ideas from quanti-

tative information flow (QIF). I provide examples of symbolic QIF and demonstrate how

it can be used to compare the security of different functions with respect to side-channel

information leakage.

Chapter 3 covers techniques for model counting, enabling one to count the number

of solutions for the constraints generated from symbolic execution. Counting constraint

solutions allows one to compute probabilities of program behaviors. Those probabilities

lead directly into methods for quantifying information flow of probabilistic systems. My

earliest research at UCSB was in model counting for string constraints and this is the

primary focus of the chapter. In addition, I discuss model counting for Boolean formulas

(to server as a warm-up for more complex constraints), as well as model counting for

integer constraints.

In Chapter 4, I present specialized techniques for segmented oracle side channels in

which an attacker is able to explore each segment of a secret, for example each character

of a password, independently. This technique can answer questions such as “what is the

probability of discovering a password in k runs?” or “what is the leakage (in the number

of bits) after k runs?” through side channels.

Quantifying information leakage is useful for measuring a program’s vulnerability to

side-channel attacks. However, I would like to answer questions like “what can an opti-

mal attacker learn from the side channel?” In order to address these types of questions,

in Chapter 5, I provide a method for synthesizing adaptive side-channel attacks, which

reduces the attack synthesis problem to an information-theoretic optimization problem.

This approach assumes an ideal discrete model of side-channel measurements. The re-

sulting attack is a precomputed decision tree with branch decisions based on attacker-

7

Introduction Chapter 1

controlled inputs and the corresponding idealized system observations. The attack tree

tells the attacker what interaction to make with the system based on previous interactions

and side-channel observations.

The attack synthesis framework described in Chapter 5 attempts to synthesize an

attack strategy for all possible secret values. This quantification over all secret values

results in scalability issues. However, in realistic scenarios, a system under attack can be

considered to have a single, constant secret value (like a persistent database entry) that an

attacker would like to reveal. Thus, an attacker can synthesize attack steps in an adaptive

online fashion which eventually reveal that secret, rather than precomputing an entire

attack tree over all secret values. Intuitively, this corresponds to an attacker performing

an online discovery of a single path in the attack tree which is consistent with the unknown

secret. However, in a real system, side-channel observations are far from ideal and are

perturbed by noise (like random network delays). Thus, in Chapter 6, I provide a method

for online adaptive attack synthesis in the presence of noisy observations. I make use of

symbolic model counting, numeric optimization, and Bayesian belief updating to solve

the side-channel attack synthesis problem. Finally, I discuss related work and I make

observations on the application of these techniques in the final two chapters.

8

Chapter 2

Program Analysis for Quantitative

Information Flow

In this chapter, I first give a high-level idea of what software side channels are and then

discuss how symbolic execution is used to analyze a program. I then discuss probabilistic

symbolic execution and how it can be used to quantify a program’s vulnerability to side-

channel attacks. I give some background on information theory and show how to apply

it to the side-channel quantification problem.

2.1 Software Side Channels

In order to build up some intuition for software side-channel analysis, I will first give

an informal discussion accompianied by an example. The reader may refer to Figure 2.1.

We will consider systems in which a program P takes as input some high-security value

h and a low-security value l. The value of h is intended to be secret and not publicly

accessible. We shall assume that the low security input is under the control of a mali-

cious attacker, A. As an example, consider the code in Figure 2.2, and suppose that h

9

Program Analysis for Quantitative Information Flow Chapter 2

Adversary, A

secret, h

Secret
Program, P

h

l

o

v

Figure 2.1: Model of the attacker A, program P , secret input h, attacker-controlled
input l, and side-channel observation o. The cloud represents the knowledge about
the secret that the attacker gains by making input l and observing o.

represents an ATM PIN.

When an attacker A runs the system by providing input l (a guess for a PIN), the

system accesses the secret input h (the stored PIN in the database). The program then

performs some computation (comparing the input PIN to the stored PIN digit by digit),

and outputs a value v (like true, the PINs match, or false, the PINs do not match).

However, we will suppose that the attacker is able to observe some characteristics of the

program execution, like running time. We call this the side-channel observation o.

Now, assume that the attacker knows the source code of the application, but does

not know the secret. By performing analysis on the code, the attacker can determine

correlations between the secret input h, the attacker’s input l, and the side-channel

observation o. Thus, by observing o the attacker can make inferences at h.

Returning to the example code in Figure 2.2, observe that there is a loop which

compares h and l as arrays, element by element. Inside that loop, if a mismatch is ever

detected, the function immediately returns false. Consequently, the running time of

the function is correlated with the length of the longest matching prefix shared between

h and l. When an attacker runs the program, and measures the running time, a longer

running time indicates a longer prefix match with the unknown secret value. So, although

the program appears safe, by only returning true for a complete match or false for any

10

Program Analysis for Quantitative Information Flow Chapter 2

1 public Boolean checkPIN(int[] h, int[] l){

2 for(i = 0; i < 4; i++){

3 if(h[i] != l[i])

4 return false;

5 }

6 return true;

7 }

Figure 2.2: A PIN-checking function.

1 public Boolean checkPIN(int[] h, int[] l){

2 Boolean matched = true;

3 for(i = 0; i < 4; i++){

4 if(h[i] != l[i]){

5 matched = false;

6 } else {

7 matched = matched;

8 }

9 }

10 return matched;

11 }

Figure 2.3: A PIN checking function that does not have a segment oracle side channel.

incomplete match, additional information about the prefix of h is leaked through running

time measurements.

In fact, the above described side-channel vulnerability is us due to a common pattern.

When comparing two pieces of data in the form of sequences, the individual elements

are compared one at a time until the first mismatch is detected. This pattern exists in

Java’s Arrays.equal() and String.equal() functions, C’s memcmp library function, as

well as Python and JavaScript implementations of array and string equality and order

comparisons. These implementations have lead to real vulnerabilities in the Xbox and

the OAuth framework used by Google and Facebook [5, 28, 6, 18]. These patterns

of side-channel vulnerabilities, in which side-channel measurements reveal information

about prefixes of secrets, are known as segmented oracle channels. I give an extensive

treatment of QIF for segmented oracle side channels in Chapter 4. Now that we have

gained some intuition for side channel vulnerabilities, I begin our discussion of how to

perform automatic side channel analysis of software.

11

Program Analysis for Quantitative Information Flow Chapter 2

2.2 Symbolic Execution

In order to perform automatic side-channel analysis, we need a way to automatically

reason about the possible behaviors of programs. While there are many program analysis

techniques at our disposal, I make use of symbolic execution throughout this dissertation.

Symbolic execution [21] is a static analysis technique by which a program is executed

on symbolic (as opposed to concrete) input values which represent all possible concrete

values. If the set of actual variables of the program is {x1, . . . , xn}, we associate a

symbolic variable Xi to each variable xi. Symbolically executing a program yields a set

of path constraints Φ = {φ1, φ2, . . . , φn}. A path constraint is a logical formual over

symbolic program variables and we write φi(X1, . . . , Xn). Each φi is a conjunction of

constraints on the symbolic inputs that characterize all concrete inputs that would cause

a path to be followed. All the φi’s are disjoint. Whenever symbolic execution encounters a

branch condition c, both branches are explored and the constraint is updated: φ becomes

φ ∧ c in the true branch and φ ∧ ¬c in the false branch. Path constraint satisfiability

is checked using constraint solvers such as Z3 [29]. If a path constraint is found to be

unsatisfiable, that path is no longer analyzed. For a satisfiable path constraint, the solver

can return a model (concrete input) that will cause that path to be executed. To deal

with loops and recursion, a bound is typically enforced on exploration depth. The path

constraint updates can be thought of a generating a symbolic execution tree, as I illustrate

in the following example discussion.

In order to use symbolic execution for side-channel analysis, we must incorporate a

model of the side-channel observations into the symbolic program exploration; the path

constraints contain only information about how the control flow of the program depends

on the symbolic inputs and do not tell us anything about, say, running time. Thus, we

augment symbolic execution to maintain a cost model during the symbolic exploration.

12

Program Analysis for Quantitative Information Flow Chapter 2

The cost model depends on the type of side channel we are interested in analyzing. If

we are concerned about memory side channels, we must keep track of calls to memory

allocation functions. In my work, I am primarily concerned with timing channels. A very

simple model of timing channels is to keep track of the number of executed instructions

during execution. Although this is a very course model, it is useful to quantify how much

information an attacker can gain in principle. We will see the usefulness of this model

in Chapters 4 and 5, which make use of Java Symbolic Path Finder [30] for QIF via

symbolic execution. We extend the model further in Chapter 6 to handle more realistic

scenarios in which an attacker interacts with the system through a network and must

overcome observation noise.

Symbolic Execution Example

In order to give some more intuition about how symbolic execution works, recall the

example pseudo-code in Figure 2.2. For the purpose of this example, we will model the

side channel observation o using the number of lines of code executed as a proxy for

execution time. This makes intuitive sense, as more lines of executed code means longer

running time. Although this is clearly not always the case, I temporarily make this

simplifying assumption to illustrate the main idea.

In order to perform symbolic execution, we identify symbolic variables H and L

to represent the concrete program variables h and l, where h represents a secret PIN

number stored in a database, and l represents some guess for the PIN. The reader can

follow along with the symbolic execution tree in Figure 2.4. When checkPIN is called, the

first iteration of the loop is explored. Symbolic execution encounters a branch condition,

if(h[0] != l[0]), and explores both the true and false branch, as in the first diamond-

shaped decision node in the figure. If the condition is true, then the function will return

false, the path condition is φ0 ≡ H[0] 6= L[0], and o0 = 4 lines of code have been executed.

13

Program Analysis for Quantitative Information Flow Chapter 2

If the condition is false, then it must be that H[0] = L[0], the next iteration of the loop

is executed, where i is incremented to 1, and we compare H[1] and L[1]. Again if the

condition is true then the function returns false. Symbolic execution determines that the

path constraint for this execution path is φ1 ≡ H[0] = L[0] ∧ H[1] 6= L[1] and o1 = 7

lines of code have been executed. This continues until the path conditions and complete

symbolic execution tree have been generated as shown in Figure 2.4. This serves as a

simple example of how symbolic execution is used to automatically explore a program

and summarize program behaviors in terms of path constraints. Next I will discuss an

extension to symbolic execution that can be used to compute probabilities of program

paths.

2.3 Probabilistic Symbolic Execution

Side-channel analysis can be accomplished using information theory (which I will

addressed in Section 2.4), which in turn relies on computing probabilities. In the realm

of quantitative program analysis, what we seek is the ability to compute the probability

of all program paths that lead to the same observations. We will see how this can be

used to quantify a program’s vulnerability to side-channel attacks in the coming sections.

For now, I describe the basic idea behind probabilistic symbolic execution [31, 32, 33].

The goal of probabilistic symbolic execution (PSE) is to answer questions of the form:

“how likely is a certain program behavior?” or, “what is the the probability of a particular

program execution path?” Intuitively, we may reason as follows: the probability that a

program execution follows a particular path is equal to the number of inputs that cause

that path to be taken, divided by the total possible number of inputs. To formalize this

more, first let #(φi) be the number of solutions to a path constraint φi and let #(D)

be the size of the program’s finite input domain D. Assuming that inputs from D are

14

Program Analysis for Quantitative Information Flow Chapter 2

call PINcheck(H,L)

H[0] 6= L[0] return falseT H[0] 6= L[0]

o0 = 4

H[1] 6= L[1]

F

return false
H[0] = L[0]
H[1] 6= L[1]

o1 = 7

T

H[2] 6= L[2]

F

return false

H[0] = L[0]
H[1] = L[1]
H[2] 6= L[2]

o2 = 10

T

H[3] 6= L[3]

F

return false

H[0] = L[0]
H[1] = L[1]
H[2] = L[2]
H[3] 6= L[3]

o3 = 13

T

return true

H[0] = L[0]
H[1] = L[1]
H[2] = L[2]
H[3] = L[3]

o4 = 15

F

Figure 2.4: Symbolic execution tree and path constraints for the PIN checking code
from Figure 2.2.

15

Program Analysis for Quantitative Information Flow Chapter 2

chosen uniformly at random, we can compute the probability of a path constraint as

p(φi) =
#(φi)

#(D)
(2.1)

Recall that for the purposes of side-channel analysis, we associate path constraints

with a model of side-channel observations. The assumption (which is addressed in detail

and subsequently relaxed in Chapter 6), is that inputs that satisfy the same path condi-

tion will result in the same observation. Thus, the probability that an attacker can make

a particular observation is given by the above-described path-constraint probability, and

so for each observation oi we have that p(oi) = p(φi). This analysis relies on comput-

ing the number of solutions to a path constraint, a problem know as model counting. I

dedicate Chapter 3 to explaining how to perform model counting.

Probabilistic Symbolic Execution Example

I will continue to use the example of the PIN checking function from Figure 2.2 and

corresponding symbolic execution tree from Figure 2.4. I have organized the data from

symbolic execution into Table 2.1. We will discuss how the final row, p(φi) is computed.

To make the example simple, suppose that the PIN number H is an array of 4 bits,

as well as the attacker’s guess L. Thus, the total input domain size is #(D) = 28 = 256.

We would like to know how many inputs are consistent with each program path. Recall

the first path condition: H[0] 6= L[0]. There are 8 possible bits which can take on values

0 or 1, and the path constraint restricts one bit to be not equal to another. Thus, there

are 27 = 128 possible assignments of bits to H and L. So p(o0) = p(φ0) = 128/256 = 1/2.

Similar reasoning applies to the remaining path constraints to compute the remaining

probabilities. We can consider this table as our first way to quantify the vulnerability of

checkPIN to side-channel attacks. The probability that an adversary can guess a prefix

16

Program Analysis for Quantitative Information Flow Chapter 2

i 0 1 2 3 4

φi H[0] 6= L[0] H[0] = L[0] H[0] = L[0] H[0] = L[0] H[0] = L[0]
H[1] 6= L[1] H[1] = L[1] H[1] = L[1] H[1] = L[1]

H[2] 6= L[2] H[2] = L[2] H[2] = L[2]
H[3] 6= L[3] H[3] = L[3]

return false false false false true
#(φi) 128 64 32 16 16
oi 3 5 7 9 10

p(φi) 1/2 1/4 1/8 1/16 1/16

Table 2.1: Each path constraint, φi, for the code in Figure 2.2, the corrsponding
solution count, #(φi), observation oi, and observation probability p(oi).

of the secret PIN of length i in 1 guess is given by pi. I show in the following two sections

how to apply information theory for leakage quantification.

2.4 Quantitative Information Flow

Program analysis methods in the area of secure information flow (SIF) track the

propagation of sensitive information through a program. SIF detects insecure information

flows, commonly known as information leaks. These methods produce a binary answer:

yes, there is an information leak, or no, there is not, and these methods have seen success

in verifying anonymity protocols [34] and firewall protocols [35], and network security

protocols [36].

Requiring that a program does not leak any information is too strict to be a useful

filter for determining program security. The canonical example is that of a password

checking function. Each time the password checker rejects an incorrect password, some

information about the password is leaked; namely, the number of possible correct pass-

words is reduced by 1. Indeed, SIF methods will tell us that this program leaks. On

the other hand, one can reason that for a sufficiently long password, a brute-force at-

17

Program Analysis for Quantitative Information Flow Chapter 2

tempt which reduces the search space by 1 with each query to the password checker is an

infeasible attack. Hence, contrary to SIF’s insecure classification, we would like to say

that such a password checking function is in fact secure because the information leakage

is small relative to the search space. In a more general setting, the question becomes:

given a program, how much information is leaked? The ability to answer this question

allows us to tolerate small leaks and compare the information leakage of two different

implementations. This “how much” question led to the development of Quantitative In-

formation Flow (QIF), which gives a foundational framework in which we can measure

information leakage [37].

In order to explain how information leakage is quantified, I remind the reader of some

terminology and introduce a simple model. We shall consider a program P , which accepts

a public low-security input l, a private high security input h, and produces a observation

o. In addition, it is customary to introduce the concept of an adversary, A. In this model

setting, the adversary invokes P with input l and records observation o. A does not have

direct access to h, but would like to learn something about its value. Before invoking

P , A has some initial uncertainty about the value of h, while after observing o, some

amount of information is leaked, thereby reducing A’s uncertainty about H. A popular

intuitive adage in this setting was popularized by Geoffrey Smith [37]:

“information leaked = initial uncertainty - remaining uncertainty”

The field of QIF formalizes the intuitive statement above by casting the problem

in the language of information theory. The field of information theory traces its ori-

gins to Claude Shannon’s landmark 1948 paper “A Mathematical Theory of Commu-

nication” [38], which adapted the concept of entropy for the purpose of measuring the

amount of information that can be transmitted over a channel, measuring information

transmission in bits of entropy. In the context of QIF, the information entropy of h is

considered a measurement of the adversary’s uncertainty about h.

18

Program Analysis for Quantitative Information Flow Chapter 2

I briefly give three relevant information entropy measures [39]. Given a random

variable X which can take values in {x1, . . . , xn} with probabilities p(xi), the information

entropy of X, denoted H(X) is given by

H(X) =
∑
xi∈X

p(xi) log2(1/p(xi)) (2.2)

Given another random variable Y and a conditional probability distribution p(X|Y), we

have the conditional entropy of X given knowledge of Y :

H(X|Y) =
∑
yi∈Y

p(yi)H(X|Y = yi) (2.3)

Given these two definitions, the mutual information of X and Y is given by

I(X;Y) = H(X)−H(X|Y) (2.4)

In the context of QIF, we consider random variables H, L, and 0 for the high-security

input h, low-security input l, and observation o. We can then interpret, for instance,

p(H) to be the adversary’s initial belief about H, and the initial uncertainty to be

H(H). The conditional entropy H(H|O,L) quantifies A’s remaining uncertainty after

providing input L and observing output O. We can then write

I(H;O,L) = H(H)−H(H|O,L) (2.5)

and interpret I(H;O,L) as the amount of information leaked. These formal definitions

are then in line with Smith’s intuitive statement of QIF. In addition, if we asssume that

the secret and attacker inputs are chosen independently and uniformly at random, we

19

Program Analysis for Quantitative Information Flow Chapter 2

can make use of well-known indentities of information theory [26] to observe that

I(H;O,L) = H(H)−H(H|O,L) = H(O|H,L) (2.6)

Notice that the right hand side of Equation 2.6 is defined in terms of p(O|H,L), and

this probability distribution is exactly that which is determined by the path condition

probabilities defined in Equation 2.1. For instance, looking at the final row of Table 2.1,

we see that the probabilistic symbolic execution table defines a conditional probability

distribution of the observation oi given choices of h and l. Information leakage can be

computed from the probabilities that result from symbolic execution and model counting.

I will make extensive use of these concepts of entropy throughout the reset of the

dissertation. Later, in Chapter 6, we will require a slightly different formulation of

entropy, using the Kullback-Leibler divergence [26]. In the meantime, I will conclude

this chapter with an example of how information theory can be used to quantify the

information leakage for the two example programs shown earlier.

Side Channel Quantification Example

Using the ideas of probabilistic symbolic execution (Section 2.3) and quantitative

information flow (Section 2.4), we can compute the amount of information gained by

an attacker for a given program. I illustrate this idea using the running example of

Figures 2.2 and 2.4 and Table 2.1.

For the function checkPIN we have a set of 5 possible side-channel observations,

{o0, o1, o2, o3, o4, o5}. In addition we have a probability distribution over these observa-

tions given by the probabilities
{

1
2
, 1

4
, 1

8
, 1

16
, 1

16

}
. We can plug these directly into Equa-

20

Program Analysis for Quantitative Information Flow Chapter 2

tion 2.6 to compute

I(H;O,L) =
1

2
log2 2 +

1

4
log2 4 +

1

8
log2 8 +

1

16
log2 16 +

1

16
log2 16 = 1.875 bits

Intuitively this makes sense. Half the time, an attacker will learn the first bit, for

which there are 2 possibilities, in which case they gain log2(2) = 1 bit of information.

One quarter of the time, an attacker will learn the first two bits, for which there are 4

possibilities, in which case they gain log2(4) = 2 bits of information, and so on. Com-

puting the weighted sum of these information gains tells us the amount of information

that an attacker can gain on average. What I have illustrated is that this can be com-

puted automatically with symbolic execution, so long as we can compute the number

of solutions to a constraint, which I address in the following chapter on model counting

techniques.

Now, compare the leakage we just computed to the leakage for the “safe” PIN checking

function of Figure 2.3. Since, all executions take the same amount of time, no information

can be gained from the side channel. But how much information can be gained from the

main channel? The function will return true only if all bits match. Since there are 16

possible secrets, this happens with probability pT = 1
16

, and the function returns false

with probability pF = 15
16

. Computing the entropy for this distribution gives us 0.33729

bits of information. Thus, we have a way to quantify the relative vulnerability of two

implementations which are functionally equivalent.

2.5 Chapter Summary

In this chapter I introduced the side channel problem and gave some intuition for how

it leads to security vulnerabilities. I described how symbolic execution, model counting,

21

Program Analysis for Quantitative Information Flow Chapter 2

and information theory can be used to automatically quantify side-channel leakage. The

rest of this dissertation will explore these ideas in greater detail.

22

Chapter 3

Model Counting

In this chapter, I discuss the problem of computing the number of solution to a formula,

which is known as model counting. As described in Chapter 2, model counting can be

used to determine the number of program inputs that satisfy a path condition, which al-

lows us to compute a probability distribution over program side-channel observations and

quantify the amount of information an adversary can gain through side-channel attacks.

Similar to the way that SMT solvers have been the enabling technology for automated

program analysis, model counting is the crucial, enabling technology for automatic quan-

titative analysis. Many works make use of model counting as the underlying driver be-

hind program analyses and automated reasoning and inference including information flow

analysis, execution time estimations, cache analysis, load balancing, reliability analysis,

and Bayesian inference [40, 41, 42, 24, 43, 44, 45, 46, 32, 47, 48, 49, 50].

In order to provide background and context for the model counting problem, I will

first begin by discussing the classical, historical model counting problem—determining

the number of solutions to formulas in propositional logic. I follow that discussion with

a description of existing work in model counting for string constraints and then cover

work on counting for integer constraints.

23

Model Counting Chapter 3

In this chapter, I give an overview of those existing techniques before describing my

contributions to model counting using automata based methods (Section 3.2.3). My ap-

proach to model counting is based on ideas from algebraic graph theory and enumerative

combinatorics. Given a deterministic finite automaton that represents all of the solutions

to a constraint, I automatically generate a counting function that can be used to compute

the number of models of given size.

All of the remaining core chapters of this dissertation utilize model counting as a core

component of automated side-channel analysis. We make use of automata-based and

polytope-based model counting in Chapter 4 to quantify information leakage for programs

with segment oracle side channels. In Chapters 5 and 6 I make use of parameterized

polytope-based model-counting methods to derive an objective function for synthesizing

side-channel attacks.

3.1 Prior Work on Model Counting

In this first section on model counting, I give some background on existing model-

counting techniques for propositional logic, strings, and linear integer arithmetic.

3.1.1 Model Counting for Boolean Logic

First, recall the Boolean (propositional logic) satisfiability problem. Given a formula

φ from propositional logic, is it possible to assign all variables the values T (true) or F

(false) so that φ evaluates to true? For example, consider the Boolean formula

φ = (x ∨ y) ∧ (¬x ∨ z) ∧ (z ∨ w) ∧ x ∧ (y ∨ v) (3.1)

We can observe that φ is satisfiable by setting the tuple of variables from φ with the

24

Model Counting Chapter 3

assignment (x, y, z, w, v) = (T, F, T, F, T). In general, a satisfying assignment for φ is

called a model for φ. Given a formula φ, the model counting problem is to determine

how many models are there are for φ, and we write #(φ) for the model count. Observe

that model counting is at least as hard as satisfiability checking, since |φ| > 0 if and only

if φ is satisfiable.

Exhaustive Enumerative Boolean Model Counting

The most obvious way to count the number of models of a boolean formula is to

compute the entire truth table and count the rows which evaluate to true. The truth

table for φ given in Equation 3.1 is shown in Table 3.1. We can see that there are 6

models for this formula. However, this naive, brute-force method is clearly guaranteed to

be exponential in the number of variables. We had to compute 25 = 32 rows in order to

count 6 models. Thus, for Boolean formulas, as well as for formulas from other theories,

we hope to find methods which do not rely on exhaustive enumerative approaches.

Boolean Model Counting with DPLL

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm (Algorithm 2) is a com-

plete, backtracking-based search algorithm for deciding the satisfiability of propositional

logic formulas in conjunctive normal form [59, 60]. First I will give the DPLL algorithm

and an example execution. Then I discuss how the DPLL algorithm can be adapted to

perform model counting for Boolean formulas.

The DPLL algorithm makes use of a simplification subroutine called unit propagation

(Algorithm 1), which I briefly describe. Unit propagation reduces a CNF Boolean formula

φ to a simpler CNF formula φ′ that is equisatisfiable with φ. A unit clause is a clause

that is composed of a single literal, u. Since the entire formula must be satisfied, we know

that u must be true. In addition, any other clause u′ that contains u is automatically

25

Model Counting Chapter 3

Table 3.1: Complete truth table for φ. Rows of the truth table that correspond to
models of φ are shown in bold.

x y z w v φ = (x ∨ y) ∧ (¬x ∨ z) ∧ (z ∨ w) ∧ x ∧ (y ∨ v)

F F F F F F
F F F F T F
F F F T F F
F F F T T F
F F T F F F
F F T F T F
F F T T F F
F F T T T F
F T F F F F
F T F F T F
F T F T F F
F T F T T F
F T T F F F
F T T F T F
F T T T F F
F T T T T F
T F F F F F
T F F F T F
T F F T F F
T F F T T F
T F T F F F
T F T F T T
T F T T F F
T F T T T T
T T F F F F
T T F F T F
T T F T F F
T T F T T F
T T T F F T
T T T F T T
T T T T F T
T T T T T T

26

Model Counting Chapter 3

Algorithm 1 Boolean Unit Propagation
Input: CNF formula φ, Variable set V , n = |V |.
Output: φ′ equisatisfiable with φ

1: procedure UnitPropagate(φ, V)
2: u← ChooseUnitClause(φ)
3: delete from φ every clause that contains u (other than u)
4: delete ¬u from every clause in φ that contains ¬u
5: repeat until φ does not change
6: return φ

satisfied if u is true, and so u′ can be removed. Furthermore, in any clause u′′ that

contains ¬u, the term ¬u cannot contribute to the satisfiability of u′′, and so u can safely

be deleted from u′′. This process can be repeated for all unit clauses until φ cannot be

further reduced (see Algorithm 1). I demonstrate unit propagation with an example.

Recall formula 3.1. Let us rewrite φ as a list of conjunctive terms for convenience.

φ = {x ∨ y,¬x ∨ z, z ∨ w, x, y ∨ v}

Notice that x is a unit clause. So we may remove x ∨ y. We may also remove ¬x from

¬x ∨ z to have

φ = {z, z ∨ w, x, y ∨ v}

Now z has become a unit clause, and so we can also remove z∨w. Thus, we have reduced

φ to a simpler set of clauses that has the same models:

φ = {z, x, y ∨ v}

Notice that φ no longer contains the variable w. Unit propagation is able to completely

remove variables which do not effect the satisfiability of the formula.

Unit propagation is an optimization for the DPLL Boolean satisfiability procedure.

27

Model Counting Chapter 3

Algorithm 2 DPLL Boolean Satisfiability
Input: CNF formula φ, Variable set V , |V | = n.
Output: true or false (SAT or UNSAT)

1: procedure DPLL(φ, V)
2: φ← UnitPropagate(φ)
3: if φ contains a false clause then
4: return false
5: else if all clauses of φ are satisfied then
6: return true
7: else
8: x← SelectBranchVariable(V)
9: V ← V \ {x}

10: return DPLL(φ[x 7→ true, V]) ∨DPLL(φ[x 7→ false, V])

DPLL would still work if we did not perform unit propagation, but perhaps more slowly.

Regardless, we can now describe the DPLL algorithm (Algorithm 2).

The DPLL algorithm is a search procedure for satisfying assignments for variables of a

Boolean formula. DPLL assigns true or false to a variable x and recursively investigates

the effect of that assignment on the satisfiability of φ. If a recursive branch find a clause

that is determined to be false, then that branch is terminated and returns false. On

the other hand, if all clauses of φ are satisfied, then that recursive branch determines a a

satisfying assignment of the variables in φ, and that branch of recursion can return true.

Otherwise, we combine recursive calls with disjunction so that if any recursive branch

returns true then the entire formula is satisfiable. A sample recursion tree of applying

the DPLL satisfiability algorithm is shown in Figure 3.1.

Recall that we sought to find a method for counting the number of solutions to φ

without performing the exhaustive enumerative search, as in Table 3.1. We are in luck,

because the DPLL satisfiability procedure can be converted into a procedure for model

counting (Algorithm 3) [59]. We add an extra variable t to keep track of how many

variables in the formula have not been assigned. If a recursive branch of DPLL finds

a clause that is false then that branch of exploration is unsatisfiable and returns 0 as

28

Model Counting Chapter 3

{z, x, y ∨ v}

{z, F, y ∨ v}
false

x 7→ F

{z, T, y ∨ v}

x 7→ T

{F, T, y ∨ v}
false

z 7→ F

{T, T, y ∨ v}

z 7→ T

{T, T, F ∨ v}

y 7→ F

{T, T, F ∨ F}

v 7→ F

false

{T, T, F ∨ T}

v 7→ T

true

{T, T, T ∨ v}

y 7→ T

true

Figure 3.1: Example of DPLL-based satisfiability check for a Boolean formula.

29

Model Counting Chapter 3

Algorithm 3 DPLL Boolean Model Counting
Input: CNF formula φ, Variable set V , # free variables t.
Output: #φ, the number of models

1: procedure DPLL(φ, V, t)
2: φ← UnitPropagate(φ)
3: if φ contains a false clause then
4: return 0
5: else if all clauses of φ are satisfied then
6: return 2t

7: else
8: x← SelectBranchVariable(V)
9: V ← V \ {x}

10: return DPLL(φ[x 7→ true], V, t− 1) + DPLL(φ[x 7→ false], V, t− 1)

the count for that branch. If instead, all clauses are satisfied, then that branch returns

2t, as each unassigned variable can take on two possible values. Otherwise, as in the

DPLL satisfiability checking algorithm, we recursively explore both branches. Again,

we recursively investigate assigning true or false to a variable of the formula. When

we make a recursive call after assigning true or false, we decrement t. The number of

models is then the sum of the number of models returned by each recursive call (whereas

in the original DPLL algorithm we used disjunction to combine recursive calls). A sample

recursion tree of applying the DPLL satisfiability algorithm is shown in Figure 3.2, which

tells us that the number of models is 6 by summing the values found in the leaves. We

get the same result as in the naive, brute-force approach, but without enumerating all

possible variable assignments.

Now that we have discussed how to perform model counting for Boolean formulas,

we move on to more interesting theories: first strings and then integers.

30

Model Counting Chapter 3

{z, x, y ∨ v} t = 5

{z, F, y ∨ v} t = 40

x 7→ F

{z, T, y ∨ v} t = 4

x 7→ T

{F, T, y ∨ v} t = 30

z 7→ F

{T, T, y ∨ v} t = 3

z 7→ T

{T, T, F ∨ v} t = 2

y 7→ F

{T, T, F ∨ F} t = 1

v 7→ F

0 {T, T, F ∨ T} t = 1

v 7→ T

21 = 2

{T, T, T ∨ v} t = 2

y 7→ T

22 = 4

Figure 3.2: Example of DPLL-based model counting for a Boolean formula.

31

Model Counting Chapter 3

3.1.2 Model Counting for String Constraints

We now turn our attention to counting models for constraints over variables of the

string type. The amount of string-manipulating code in modern software applications has

been increasing. Common uses of string manipulation include: 1) Input sanitization and

validation in web applications; 2) Query generation for back-end databases; 3) Generation

of data formats such as XML and HTML; 4) Dynamic code generation; 5) Dynamic class

loading and method invocation. Due to the growing proliferation of web applications

that make heavy use of string manipulation, there is a growing body of work on string

analysis [51, 52, 53, 54, 55]; however none of these earlier approaches provide model-

counting functionality. In more recent times, due to the importance of model counting in

quantitative program analyses, model counting constraint solvers are gaining increasing

attention. String Model Counter (SMC) [44] is one existing tool for model counting of

string constraints, which we will describe later in this section.

First, in order to motivate this discussion we begin with a simple problem, assuming

that the reader is familiar with regular expressions. One possible simple type of constraint

on a string variable is that it is a member of a regular expression made of constant

characters, concatenations (written here as juxtaposition), alternation (+), and Kleene

closure (∗). Consider a regular expression constraint over the alphabet Σ = {0, 1}:

X ∈ (0|(1(01∗0)∗1))∗

We can now ask ourselves, “how many models are there for X?”, where a model is

an assignment of a string value to X that is in the regular expression. Well, that’s easy;

since the regular expression contains the Kleene closure operator, there are infinitely

many solutions for X. That is not a very satisfying answer. Let us refine the question

we are asking so that we get a more informative answer. Suppose that we want to know,

32

Model Counting Chapter 3

Length, k Strings, X Count, ak

0 ε 1
1 0 1
2 11 1
3 110 1
4 1001, 1100, 1111 3
5 10010, 10101, 11000, 11011, 11110 5

Table 3.2: Model counting table for strings X.

for a given integer K, how many solutions are there for X, of length k?

As in the case of Boolean model counting, we can attempt to begin naively by brute-

force enumeration. First, ε is a model, and it is the only model of string length 0. The

string 0 is also a model, and it is the only model of length 1. Going further, 11 and

110 are the only models of lengths 2 and 3 respectively. Finally, for length 4 there are 3

different strings that satisfy the constraint: 1001, 1100, and 1111 are all models of length

4. It turns out that there are 5 models of length 5. Like we said, there are infinitely

many models, so we won’t continue listing them, bet we can organize our results so far

in a table. If we let ak represent the number of strings of length k then we can see some

partial counting results in Table 3.2.

Clearly, for any constraint C, we can generate all strings of length k and check if

they satisfy C, count how many there are, and build up a counting table. But, just as in

the Boolean model counting problem, we would like a solution that is better than naive

brute-force enumeration, which tells us the number of strings of length k for any k. We

call this string model counting parameterized by length. I will discuss two methods for

solving this problem. The first is based on a set of syntactic transformations and the

second, discussed in the following section, is based on constructing deterministic finite

automata (DFA) that represent the set of solutions to a string constraint. Both methods

make use of generating functions which I now cover briefly.

33

Model Counting Chapter 3

Generating Functions

Generating functions are a useful mathematical tool for counting combinatorial ob-

jects [61, 62, 63]. Given any (possibly infinite) sequence with integer indices, {ai} =

a1, a2, a3, . . ., the generating function for the sequence is a polynomial g(x) where the

coefficient of xi is ai. We sometimes say that g(x) encodes the sequence and we write

g(x) =
∞∑
i=0

aix
i = ao + a1x+ a2x

2 + a3x
3 + . . . (3.2)

Generating functions are useful for string counting because generating functions can

often be written in a compact form as a rational expression. Recall, the Taylor series

expansion formula to expand f about the point x = 0:

∞∑
n=0

f (n)(0)

n!
xn (3.3)

Using power series expansions, g(x) can be written as a ratio of polynomials p and q

such that the Taylor expansion is equal to g.

g(x) =
∞∑
i=0

aix
i =

p(x)

q(x)
(3.4)

Generating functions written as a ratio of polynomials can be systematically composed

to recursively encode counting sequences for subexpressions of string constraints.

Examples of Generating Functions Let us give some simple examples of gener-

ating functions.

Example 1. Constant sequence of 1’s. Consider the infinite sequence where every

ai = 1: {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .}. The generating function for this sequence is

34

Model Counting Chapter 3

g(x) = 1 + 1x+ 1x2 + 1x3 + 1x4 + 1x5 + 1x6 + 1x7 + 1x8 + 1x9 + 1x10 + . . .

This is an infinite polynomial. However, consider the rational expression g(x) = 1
1−x ,

and compute the power series expansion of g′(x) about x = 0 using Equation 3.8:

g(x) = 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + . . .

So, g(x) = 1
1−x is an equivalent expression that encodes the infinite sequence of 1’s by

taking the series expansion.

Example 2. Non-negative integers. Consider the infinite sequence where ai =

i: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .}. Then the generating function for this is an infinite

polynomial which has the finite rational representation shown here:

g(x) = x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10 + . . . =
x

(x− 1)2

Example 3. Alternating +/- 1. The sequence of alternating positive and negative

1’s has the generating function:

g(x) =
1

x+ 1
= 1− x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10 + . . .

Example 4. Powers of base b. Consider the sequence of non-negative integer powers

of a number b, where ai = bi: {1, b, b2, b3, b4, b5, b6, b7, b8, b9, b10}. The generating function

for this sequence is:

35

Model Counting Chapter 3

g(x) =
1

1− bx
= 1+bx+b2x2 +b3x3 +b4x4 +b5x5 +b6x6 +b7x7 +b8x8 +b9x9 +b10x10 + . . .

Example 5. Binary strings of length i. Let ai be the number of binary strings of

length i. That is, ai = |{s : s ∈ (0 + 1)∗ ∧ length(s) = i}|. From our familiarity with

binary numerals, we know that the ith coefficient of the generating function should be 2i.

In fact, this is a special case of the previous example with b = 2. Thus, the generating

function we seek is

g(x) =
1

1− 2x

Syntax-Based Generating Functions for String Counting

Given a constraint C on a string variable X, let L be the language of strings that

satisfy C. We would like a way to construct a generating function that encodes the

number of strings of length k in L. More specifically, a counting sequence for language

L encodes

ak = |{x : x ∈ L ∧ len(x) = k}|

Recall the example constraint C ≡ X ∈ (0|(1(01∗0)∗1))∗ from the introduction of this

section. We constructed the first 5 terms of the counting sequence by brute-force enu-

meration in Table 3.2. So, the corresponding counting sequence is

a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 3, a5 = 5, . . .

From our discussion in the previous section we know that we can encode this sequence

36

Model Counting Chapter 3

Algorithm 4 Regular Expressions Generating Function Construction

1: procedure GeneratingFunction(e)
2: e match
3: case ε
4: return 1
5: case c
6: return z
7: case e1|e2

8: return GeneratingFunction(e1) + GeneratingFunction(e2)
9: case e1 ◦ e2

10: return GeneratingFunction(e1)×GeneratingFunction(e2)
11: case e∗1
12: return 1/(1−GeneratingFunction(e1))

as a generating function that starts off with coefficients corresponding to those 5 terms:

g(z) = 1 + x+ +x2 + x3 + 3x4 + 5x5 + . . .

But how do we compute the remaining terms? Or, how do we compute a generating func-

tion that encodes the entire infinite sequence? This problem is addressed in a classic work

of combinatorial properties of formal languages by Chomsky and Schützenberger [63]. Re-

cent work has shown how to solve this problem for more complex string constraints, and

a tool1 called “String Model Counter” was implemented [44]. Here we give the major

idea behind these works.

The main insight for constructing a counting generating function for an unambiguous

regular expression e is to recursively compute generating function for subexpressions of

e and combine them in the appropriate way, using purely syntactic transformations (see

Algorithm 4).

• The simplest transformation is for the empty string; ε is the only string of length

1SMC Online: https://github.com/loiluu/smc

37

https://github.com/loiluu/smc

Model Counting Chapter 3

0, and so the generating function should be 1z0 = 1.

• For any constant single character c, there is one corresponding string of length 1

(namely c), and so the generating function is 1z1 = z.

• When we compute e = e1|e2, the resulting number of strings of length k in e is

the sum of the numbers of strings of length k in each of e1 and e2, since e was

assumes to be unambiguous. Thus, the generating function for e1|e2 is the sum of

the generating functions for e1 and e2.

• When we compute e = e1 ◦ e2, the resulting number of strings of length k in e is

the product of the numbers of strings of length k in each of e1 and e2, again since

e was assumes to be unambiguous. Thus, the generating function for e1 ◦ e2 is the

product of the generating functions for e1 and e2.

• The final rule says that if e = e∗1 then the generating function is1/(1 − GF (e1)).

This rule can be seen as the generating function for the sequence ai = mi, for

some m, as the i-th term of the series expansion of 1/(1 − mx) is mixi. Thus,

if e1 corresponds to an expression for m strings, then the expression encodes the

number of strings of all possible finite concatenations of strings from e1. In order to

gain more intuition on this rule, one can review examples 1, 4, and 5 in the earlier

discussion of generating functions.

We apply the recursive generating function procedure to the example constraint C ≡

X ∈ (0|(1(01∗0)∗1))∗. The parse tree of the constraint is shown in Figure 3.3. This tree

also corresponds to the recursion tree that results from executing the generating function

construction algorithm of Algorithm 4 on C. One can see that the generating function is

computed bottom-up from the leaves of the parse tree, with the final generating function

at the root of the tree, and shown here:

38

Model Counting Chapter 3

g(z) =
1

1− z − z2

1− z2

1−z

=
1− z − z2

(z − 1) (2z2 + z − 1)

If we compute the series expansion of g(z) we can determine the number of strings of

any length k by computing the kth series coefficient.

g(z) = 1z0 + 1z1 + 1z2 + 1z3 + 3z4 + 5z5 + . . .

I described how syntax-based transformation rules can be used to construct a gener-

ating function for counting the number of solutions to a string constraint that consists of

regular language membership. However, string constraints which come from programs of-

ten have much more complex expressions like x = y.substring(3, 10)∧x.charat(4) = a.

The authors of SMC provide more complex syntactic transformations for constraint op-

erators like substring, charat, indexof, replace, and so on [44]. These remaining

syntax-based generating function rules are beyond the scope of this dissertation and so I

do not discuss them further.

One drawback to the syntax-based transformations is that after a transformation

is applied, the semantics of the constraint are “forgotten”. This leads to problems in

both overcounting and undercounting solutions. The purely syntactic methods of SMC

cannot propagate string values across logical connectives which reduces its precision.

SMC addresses this by providing rules which give generating functions for both an upper

and lower bound for the count. For example, for a simple constraint such as (x ∈

a|b) ∨ (x ∈ a|b|c|d) SMC will generate a model-count range which consists of an upper

bound of 6 and a lower bound of 2, whereas the exact count is 4. The essential problem

here is that of ambiguity. If a string can be generated in more than one way, then

that string will be counted more than once. Moreover, SMC always generates a lower

39

Model Counting Chapter 3

∗

∨

0 ◦

1 ◦

∗ 1

◦

0 ◦

∗ 0

1z

1
1−z z

z
1−zz

z2

1−z

1

1− z2
1−z

z

z

1− z2
1−z

z

z2

1− z2
1−zz

z + z2

1− z2
1−z

1

1−z− z2

1− z2
1−z

Figure 3.3: Parse tree for example regular expression to illustrate recursive construc-
tion of generating function from the leaves up according to the rules in Figure 3.3.

40

Model Counting Chapter 3

bound of 0 for conjunctions that involve the same variable. So, the range generated for

(x ∈ a|b) ∧ (x ∈ a|b|c|d) would be 0 to 2, whereas the exact count is 2. In the next

section I will discuss automata-based model counting methods which retain the semantic

content of a string constraint, allowing for more precise model counting.

3.1.3 Linear Integer Arithmetic

I now discuss methods for counting the number of solutions to constraints from linear

integer arithmetic (LIA). One approach to model counting for constraints from the theory

of linear integer arithmetic is to consider the set of solutions to be the integer lattice points

of Zn located in the interior of a polytope in Rn. These techniques rely on methods for

integrating over discrete domains and generating functions. While the specific details for

the inner workings of these methods is beyond the scope of this dissertation, I discuss

two specific linear integer arithmetic model counting tools and give a high level idea of

what they compute.

LattE (Lattice Enumeration)

LattE determines the number of tuples of points that satisfy a system of linear in-

equalities of the form Ax ≤ b, where Am×n is a matrix of integer coefficients, bn×1 ∈ Zn

is a constant vector, and xn×1 ∈ Zn is the vector of unknown integer values [56, 64].

LattE implements the polynomial time Barvinok algorithm to return the model count,

and is used primarily to count points inside bounded concrete regions. I give an example

to illustrate this idea and contrast with counting for counting inside unbounded sym-

bolic regions in the following discussion about the Barvinok Model counter. Consider

the constraint

41

Model Counting Chapter 3

x ≥ 0 ∧ y ≥ 0 ∧ y ≤ x ∧ 2y ≤ 6 ∧ x ≤ 6

We can write this as a system of inequalities in the desired Ax ≤ b form as



−1 0

0 −1

−1 1

0 2

1 0



x
y

 ≤



0

0

0

6

6


We can visualize the solution space as the integer lattice points contained in the

intersection of half-planes defined by the x-axis, y-axis, and lines l1, l2, and l3 defined by

the system of inequalities (Figure 3.4), including the boundaries. We can see that the

model count is 22 by counting the contained lattice points. LattE computes model counts

for systems of linear inequalities, in an arbitrary dimension using polytope decompositions

and generating functions using the Barvinok polynomial time algorithm.

Barvinok

Similar to LattE, Barvinok is a model counter for linear integer arithmetic constraints,

but with more functionality. Barvinok can generate a symbolic model-counting function

for symbolically defined polytopes as well as perform weighted model counting.

The previous discussions have implicitly assumed that we are interested in unweighted

model counting, i.e., the problem of counting the number of models of a formula where

each model has weight equal to 1. If one assigns an arbitrary weight to each model,

one may compute the sum of the weights of all models. Later in this dissertation I am

interested performing side-channel analysis in which the distribution of the secret input

42

Model Counting Chapter 3

x

y

1 2 3 4 5 6 70
0

1

2

3

4

l1

l2
l3

Figure 3.4: Satisfying solutions for the example constraint are the integer lattice points
contained in the trapezoidal area. There are 22 points.

h is non-uniform. I accomplish this by counting models for φ(h, l) where the weight of

each model p(H = h). I make use of symbolic and weighted-symbolic model counting in

Chapters 5 and 6.

One may compute weighted model counts by summing over all possible h, but this

would be inefficient if the domain of h is very large. Hence, we seek an efficient way to

compute the weighted model count. This is accomplished by using symbolic weighted

model counting. I first give an example.

For now we will assume the unweighted version of the problem, or equivalently, every

model has weight 1. Now, recall the constraint that we previously discussed, but where

we replace the final conjunct x ≤ 6 with x ≤ t, where t is an integer parameter.

x ≥ 0 ∧ y ≥ 0 ∧ y ≤ x ∧ 2y ≤ 6 ∧ x ≤ t

Again, we can write this as a system of inequalities in the desired Ax ≤ b form, where

43

Model Counting Chapter 3

x

y

1 2 3 4 5 6 70
0

1

2

3

4

l1

l2
l3

x

y

1 2 3 4 5 6 70
0

1

2

3

4

l1

l2
l3

Figure 3.5: Satisfying solutions for the example constraint parameterized by t. For
t = 2 (top) there are 6 models and for t = 7 (bottom) there are 26 models.

44

Model Counting Chapter 3

t is included as a symbolic parameter. If we set t = 2 then the model count is 6 (top

figure) and if we set t = 7 the model count is 26.



−1 0

0 −1

−1 1

0 2

1 0



x
y

 ≤



0

0

0

6

t


Now, different values of t result in different intersecting half-planes, thereby resulting

in different model counts, depending on the choice of t. This is what we mean by symbolic

model counting. Consider Figure 3.5, which illustrates the solution space for two different

values of t. For t = 2 (top) there are 6 models and for t = 7 (bottom) there are 26 models.

If we use Barvinok to perform model counting, it tells us that the number of satisfying

solutions for points (x, y) is a piecewise polynomial function of t:

f(t) =



1
2
t2 + t+ 1 0 ≤ t ≤ 3

10 + 4t 0 ≤ t > 3

0 otherwise

Thus, we can evaluate the model count for any value of t that we want without

making further calls to the model counter. However, consider the weighted version where

each point (x, y) has a weight w(x, y). For example, suppose that w(x, y) = y. That is,

the weight of a point is given by the y-coordinate. Then Barvinok will tell us that the

weighted model counting function parameterized by t is given by

45

Model Counting Chapter 3

f(t) =



1
6
t3 + 1

2
t2 + 1

3
t 0 ≤ t ≤ 3

6t− 8 0 ≤ t > 3

0 otherwise

Barvinok performs weighted model counting by representing a linear integer arith-

metic constraint φ on variables X = {x1, . . . , xn} with weight function W (X) as a sym-

bolic polytope Q ⊆ Rn. Let Y ⊆ X be a set of parameterization variables and Y ′ be

the remaining free variables of X. Barvinok’s polynomial-time algorithm generates a

(multivariate) piecewise polynomial F such that F (Y) evaluates to the weighted count

of the assignments of integer values to Y ′ that lie in the interior of Q. For side-channel

analysis, we are interested in computing the probability of an observation given a choice

of l and the probability distribution of high security inputs. Thus, we let Y be the set of

low security variables, Y by the set of high security variables, and W be p(H = h).

3.2 Automata-Based Model Counting

In the previous section we described prior, existing work on model counting for propo-

sitional logic, string constraints, and linear integer arithmetic constraints. In this section

I describe our work which gives a method for model counting for a strings constraints.

Given a string constraint, C, this method constructs a deterministic finite automata

(DFA) that represents all solutions to the constraint C. Then, determining the number

of solutions to the constraint reduces to counting the number of accepting paths in the

DFA. This is accomplished using algebraic graph theory and generating functions.

46

Model Counting Chapter 3

3.2.1 String Constraints

We handle string constraints from the following grammar, where C denotes the basic

constraints, n denotes integer values, s ∈ Σ∗ denotes string values, ε is the empty string,

v denotes string variables, ◦ is the string concatenation operator, len(v) denotes the

length of the string value that is assigned to variable v.

F → C | ¬F | F ∧ F | F ∨ F
C → S ∈ R

| S = S
| S = S . S
| len(S) O n
| len(S) O len(S)
| contains(S, s)
| begins(S, s)
| ends(S, s)

S → v | s
R → s | ε | R ◦R | R p R | R∗
O → < | = | >

3.2.2 Automata Construction

I now describe the automata construction algorithm. A Deterministic Finite Automa-

ton (DFA) A is a 5-tuple (Q,Σ, δ, q0, F), where Q = {1, 2, . . . , n} is the set of n states,

Σ is the input alphabet, δ ⊆ Q×Q×Σ is the state transition relation set, q0 ∈ Q is the

initial state, and F ⊆ Q is the set of final, or accepting, states.

Given an automaton A, let L(A) denote the set of strings accepted by A. Given

a constraint F and a string variable v, our goal is to construct a deterministic finite

automaton (DFA) A, such that L(A) = JF, vK where JF, vK denotes the set of strings for

which F evaluates to true when substituted for the variable v in F .

Let us define an automata constructor function A such that, given a string constraint

47

Model Counting Chapter 3

F and a variable v, A(F, v) is an automaton where L(A(F, v)) = JF, vK. Below we discuss

how to implement the automata constructor function A.

Let A(Σ∗),A(Σn),A(s), and A(∅) denote automata that accept the languages Σ∗,

Σn, {s} (constant string s), and ∅, respectively. We construct the automaton A(F, v)

recursively on the structure of the single-variable constraint F . We assume the standard

DFA algorithms for the operations complement, union, intersection, concatenation, and

constructing a DFA from a regular expression (refer to Algorithm 5). Boolean operations

for formulas, ¬, ∨ , and ∧ are handled with DFA complement, union, and intersection

(lines 7 - 12). Regular expression constraints are handled using the DFA construction

algorithm for regular expressions (lines 13 - 14). Equality with a constant string is han-

dled by constructing a DFA that accepts only that string (lines 15 - 16). For constraints

on the length of a string variable we construct DFAs that accept strings according to

that length restriction (lines 17 - 24). For constraints that specify that v begins, ends,

or contains a constant string s, we construct the automata that concatenates A(s) with

Σ∗ in the relevant positions (lines 25-30).

Example DFA Construction

As a simple example of how DFA are recursively constructed, consider the string

constraint F ≡ ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 over the alphabet Σ = {0, 1}. Let us

name the sub-constraints of F as C1 ≡ x ∈ (01)∗, C2 ≡ len(x) ≥ 1, F1 ≡ ¬C1, where

F ≡ F1 ∧ C2. Figures 3.7 and 3.6 demonstrate the automata construction algorithm

on our running example. The algorithm starts from the constraints at the leaves of the

syntax tree (C1 and C2), and constructs automata for them. Then it traverses the syntax

tree towards the root by constructing an automaton for each node using the automata

constructed for its children. The automaton for F1 is constructed using the automaton

for C1. The solution DFA for F is constructed using the automata for F1 and C2.

48

Model Counting Chapter 3

Algorithm 5 DFA Construction Procedure for Constraint F

1: procedure A(F)
2: F match
3: case true
4: return A(Σ∗)
5: case false
6: return A(∅)
7: case ¬F ′
8: return DFAComplement(A(F))
9: case F1 ∨ F2

10: return DFAUnion(A(F1),A(F2))
11: case F1 ∧ F2

12: return DFAIntersect(A(F1),A(F2))
13: case v ∈ R
14: return DFARegEx(R)
15: case v = s
16: return A(s)
17: case len(v) = n
18: return A(Σn)
19: case len(v) < 1
20: return A(Σ)
21: case len(v) < n
22: return DFAUnion(A(Σn),A(len(v) < n− 1))
23: case len(v) > n
24: return DFAConcatenate(A(Σn+1),A(Σ∗))
25: case contains(v, s)
26: return DFAConcatenate(A(Σ∗),A(s),A(Σ∗))
27: case begins(v, s)
28: return DFAConcatenate(A(s),A(Σ∗))
29: case ends(v, s)
30: return DFAConcatenate(A(Σ∗),A(s))

3.2.3 Model Counting with Automata

Once we have translated a set of constraints into an automaton we employ algebraic

graph theory [66] and analytic combinatorics [62] to perform model counting. In our

method, model counting corresponds exactly to counting the accepting paths of the

49

Model Counting Chapter 3

∧

¬ ≥

∈ Len

x x

1

(01)∗

F1

F

C1

C2

Figure 3.6: The syntax tree for the string constraint ¬(x ∈ (01)∗) ∧ len(x) ≥ 1.

0

1
0

0,1

1

1 2 3

0

1
0

0,1

1

1 2 3 0,1

0,1

1 2

0

1

1 2

A(F, x)

A(F1, x) A(C2, x)

A(C1, x)

Figure 3.7: The automata construction that traverses the syntax tree of Figure 3.6
from the leaves upward. The solution DFA is at the root.

constraint DFA up to a given length bound k. This problem can be solved using dynamic

programming techniques in O(k · |δ|) time where δ is the DFA transition relation [67, 68].

However, for each different bound, the dynamic programming technique requires another

traversal of the DFA graph.

A preferable solution is to derive a symbolic function that given a length bound k

50

Model Counting Chapter 3

outputs the number of solutions within bound k. To achieve this, we use the transfer

matrix method [61, 62] to produce an ordinary generating function which in turn yields

a linear recurrence relation that is used to count constraint solutions. We will briefly

review the necessary background and then describe the model counting algorithm.

Given a DFA A, consider its corresponding language L. Let Li = {w ∈ L : |w| =

i}, the language of strings in L with length i. Then L =
⋃

i≥0 Li. Define |Li| to be

the cardinality of Li. The cardinality of L can be computed by the sum of a series

a0, a1, . . . , ai, . . . where each ai is the cardinality of the corresponding language Li, i.e.,

ai = |Li|.

For example, recall the automaton in Fig. 1. Let Lx be the language over Σ = {0, 1}

that satisfies the formula (x 6∈ (01)∗ ∧ LEN(x) ≥ 1). Then Lx is described by the

expression Σ∗ − (01)∗. In the language Lx, we have zero strings of length 0 (ε 6∈ Lx),

two strings of length 1 ({0, 1}), three strings of length 3 ({00, 10, 11}), and so on. The

sequence is then a0 = 0, a1 = 2, a2 = 3, a3 = 8, a4 = 15, etc. For any length i, |Lx
i |, is

given by a 3rd order linear recurrence relation:

a0 = 0, a1 = 2, a2 = 3

ai = 2ai−1 + ai−2 − 2ai−3 for i ≥ 3
(3.5)

In fact, using standard techniques for solving linear homogeneous recurrences, we can

derive a closed form solution to determine that

|Lx
i | = (1/2)(2i+1 + (−1)i+1 − 1). (3.6)

In the following discussion we give a general method based on generating functions for

deriving a recurrence relation and closed form solution that we can use for model counting.

Generating Functions: Given the representation of the size of a language L as a sequence

51

Model Counting Chapter 3

{ai} we can encode each |Li| as the coefficients of a polynomial, an ordinary generating

function (GF). The ordinary generating function of the sequence a0, a1, . . . , ai, . . . is the

infinite polynomial [61, 62]

g(z) =
∑
i≥0

aiz
i (3.7)

Although g(z) is an infinite polynomial, g(z) can be interpreted as the Taylor series of a

finite rational expression. I.e., we can also write g(z) = p(z)/q(z), where p(z) and q(z)

are finite degree polynomials. If g(z) is given as a finite rational expression, each ai can

be computed from the Taylor expansion of g(z):

ai =
g(i)(0)

i!
(3.8)

where g(i)(z) is the ith derivative of g(z). We write [zi]g(z) for the ith Taylor series

coefficient of g(z). Returning to our example, we can write the generating function for

|Lx
i | both as a rational function and as an infinite Taylor series polynomial. The reader

can verify the following equivalence by computing the right hand side coefficients via

equation (3.8).

g(z) =
2z − z2

1− 2z − z2 + 2z3
= 0z0 + 2z1 + 3z2 + 8z3 + 15z4 + . . . (3.9)

Generating Function for a DFA: Given a DFA A and length k we can compute the

generating function gA(z) such that the kth Taylor series coefficient of gA(z) is equal to

|Lk(A)| using the transfer-matrix method [61, 62].

We first apply a transformation and add an extra state, sn+1. The resulting automa-

ton is a DFA A′ with λ-transitions from each of the accepting states of A to sn+1 where

λ is a new padding symbol that is not in the alphabet of A. Thus, L(A′) = L(A) · λ

and furthermore |Li(A)| = |Li+1(A′)|. That is, the augmented DFA A′ preserves both

52

Model Counting Chapter 3

1 2 31

0

1

0 0, 1 1 2 3

4

1
0

1

0 0, 1

λ λ

λ

Figure 3.8: The original DFA A (left) and the augmented DFA A′ (right) used for
model counting (sink state omitted).

the language and count information of A. Recalling the automaton from Fig. 1, the

corresponding augmented DFA is shown in Fig. 2(b). (Ignore the dashed λ transition

for the time being.)

From A′ we construct the (n + 1) × (n + 1) transfer matrix T . A′ has n + 1 states

s1, s2, . . . sn+1. The matrix entry Ti,j is the number of transitions from state si to state

sj. Then the generating function for A is

gA(z) = (−1)n
det(I − zT : n+ 1, 1)

z det(I − zT)
, (3.10)

where (M : i, j) denotes the matrix obtained by removing the ith row and jth column

from M , I is the identity matrix, detM is the matrix determinant, and n is the number

of states in the original DFA A. The number of accepting paths of A with length exactly

k, i.e. |Lk(A)|, is then given by [zk]gA(z) which can be computed through symbolic

differentiation via equation 3.8.

For our running example, we show the transition matrix T and the terms (I − zT)

and (I − zT : n, 1). Here, T1,2 is 1 because there is a single transition from state 1 to

state 2, T3,3 is 2 because there are two transitions from state 3 to itself, T2,4 is 1 because

53

Model Counting Chapter 3

there is a single (λ) transition from state 2 to state 4, and so on for the remaining entries.

T =



0 1 1 0

1 0 1 1

0 0 2 1

0 0 0 1


, I−zT =



1 −z −z 0

−z 1 −z −z

0 0 1− 2z −z

0 0 0 1


, (I−zT : n, 1) =


−z −z 0

1 −z −z

0 1− 2z −z



Applying equation (3.10) results in the same GF that counts Li(A) given in (3.9).

gA′(z) = −det(I − zT : n, 1)

z det(I − zT)
=

2z − z2

1− 2z − z2 + 2z3
. (3.11)

Suppose we now want to know the number of solutions of length six. We compute the

sixth Taylor series coefficient to find that |Lx
6(A)| = [z6]g(z) = 63.

Deriving a Recurrence Relation: We would like a way to compute [zi]g(z) that is more

direct than symbolic differentiation. We describe how a linear recurrence for [zi]g(z)

can be extracted from the GF. Before we describe how to accomplish this in general, I

demonstrate the procedure for our example. Combining equations (3.7) and (3.11) and

multiplying by the denominator, we have

2z − z2 = (1− 2z − z2 + 2z3)
∑
i≥0

aiz
i.

Expanding the sum for 0 ≤ i < 3 and collecting terms,

2z − z2 = a0 + (a1 − 2a0)z + (a2 − 2a1 − a0)z2 +
∑
i≥3

(ai − 2ai−1 − ai−2 + 2ai−3)zi.

Comparing each coefficient of zi on the left side to the coefficient of zi on the right side,

54

Model Counting Chapter 3

we have the set of equations

a0 = 0

a1 − 2a0 = 2

a2 − 2a1 − a0 = −1

ai − 2ai−1 − ai−2 + 2ai−3 = 0, for i ≥ 3

One can see that this results in the same solution given in equation (3.5).

This idea is easily generalized. Recall that g(z) = p(z)/q(z) for finite degree polyno-

mials p and q. Suppose that the maximum degree of p and q is m. Then

g(z) =
bmz

m + . . .+ b1z + b0

cmzm + . . .+ c1z + c0

=
∑
i≥0

aiz
i.

Multiplying by the denominator, expanding the sum up to m terms, and comparing

coefficients we have the resulting system of equations which can be solved for {ai : 0 ≤

i ≤ m} using standard linear algebra:

i∑
j=0

cjai−j =

 bi, for 0 ≤ i ≤ m

0, for i > m

For any DFA A, since each coefficient ai is associated with |Lk(A)|, the recurrence

gives us an O(kn) method to compute |Lk(A)| for any string length bound k. In addition,

standard techniques for solving linear homogeneous recurrence relations can be used to

derive a closed form solution for |Li(A)| [69].

Counting All Solutions within a Given Bound: The above described method gives a

generating function that encodes each |Li(A)| separately. Instead, we seek a generating

function that encodes the number of all solutions within a bound. To this end we define

55

Model Counting Chapter 3

the automata model counting function

MCA(k) =
k∑

i≥0

|Li(A)|. (3.12)

In order to compute MCA(k) we make a simple adjustment. All that is needed is

to add a single λ-cycle (the dashed transition in Fig. 2(b)) to the accepting state of

the augmenting DFA A′. Then Lk+1(A′) =
⋃k

i=0 Li(A) · λk−i and the accepting paths of

strings in Lk+1(A′) are in one-to-one correspondence with the accepting paths of strings

in
⋃k

i=0 Li(A). Consequently, |Lk+1(A′)| =
∑k

i=0 |Li(A)| and so MCA(k) = |Lk+1(A′)|.

Hence, we can compute MCA using the recurrence for |Li(A
′)| with the additional λ-

cycle.

Case Study: Strength of Password Changing Policy

Consider a scenario in which a system user’s password has been compromised and

they must select a new password. However, the password changing policy will reject

the new password if it is too similar to the old password. This similarity comparison is

performed with the function in Figure 3.9. Furthermore, suppose an attacker knows the

old password, knows, that the user must change their password, and also knows the new

password policy. With this information, an attacker can rule out many possibilities for

the user’s updated password. How much can an attacker rule out? I demonstrate how

automata-based model counting can answer these types of questions.

Suppose an adversary knows old p = "abc-16". By performing symbolic execution,

we can extract constraints on the value of the new password, as shown in Figure 3.10,

with symbolic variable NEW P. Using automata-based solving we construct a DFA that

56

Model Counting Chapter 3

1 public Boolean NewPWCheck(String new_p, String old_p){

2 if(old_p.contains(new_p) || ...

3 new_p.contains(old_p) || ...

4 old_p.reverse().contains(new_p)) || ...

5 new_p.contains(old_p.reverse())){

6 System.out.println("Too similar.");

7 return false;

8 } else

9 return true;

10 }

Figure 3.9: Code for a password changing policy. If the new password is too similar
to the previous password it, the change is rejected.

(not (contains (toLower NEW_P) "abc-16"))

(not (contains (toLower NEW_P) "61-cba"))

(not (contains "abc-16" (toLower NEWP)))

(not (contains "61-cba" (toLower NEWP)))

Figure 3.10: Constraints on new password given the old password (“abc-16”) and the
password updating policy.

characterizes all solutions for NEW P which has 36 states (not counting the sink state)—

too large to illustrate in this dissertation. The transfer matrix for the DFA is shown in

Figure 3.11. Although the DFA has 36 states, the transition matrix is very sparse. We

observe that this is often the case in practice. Given the transition matrix, we can then

compute the generating function which enumerates NEW P, and the series expansion of

the first few terms:

g(z) =
8096z12 − 8128z11 + 32z10 + 16z7 − 16z6 − 256z2 + 257z − 1

194304z17 + 225920z16 + 241984z15 + . . .+ z5 − 6114z4 − 2280z3 − 247z2

g(z) = 247z2 + 65759z3 + 16842945z4 + 4311810213z5 + 1103823437965z6 + . . .

57

Model Counting Chapter 3

If the length of the password is n, then there are |Σ|n possible passwords, but know-

ing the policy, the search space is reduced to the number of models for the extracted

constraints, given by the n-th series coefficient of g(z). For instance, for passwords of

length 6 brute force searching all possible passwords has a search space of 2566 = 248. If

adversary knows old p and the policy, then there are [z6]g(z) = 1103823437965 ≈ 240.0056

passwords. Thus, the search space is reduced by about a factor of 27.9944.

3.2.4 Implementation of Automata-Based Model Counting

We implemented Automata-Based model Counter for string constraints (ABC) using

the symbolic string analysis library provided by the Stranger tool [70, 71, 72]. We used

the symbolic DFA representation of the MONA DFA library [73] to implement the con-

structions given in Algorithm 5. In MONA’s DFA library, the transition relation of the

DFA is represented as a Multi-terminal Binary Decision Diagram (MBDD) which results

in a compact representation of the transition relation.

ABC supports the SMT-LIB 2 language syntax. We implemented automata-based

model counting by passing the automaton transfer matrix to Mathematica for computing

the generating function, corresponding recurrence relation, and the model count for a spe-

cific bound. Because the DFAs we encountered in our experiments typically have sparse

transition graphs, we make use of Mathematica’s powerful and efficient implementations

of symbolic sparse matrix determinant functions [74].

3.2.5 Comparison with Syntax-Based Model Counting

SMC Examples. For a comparative evaluation of our tool with SMC, we used the

examples that are listed on SMC’s web page. We translated the 6 example constraints

listed in table 3.3 into SMT-LIB2 language format that we support. We compare our

58

Model Counting Chapter 3



0 1 1 1 2 2 2 0
0 0 0 0 0 0 0 0 1 2 0 1
0 0 0 0 0 0 0 0 1 2 1 2 0
0 0 0 0 0 0 0 0 0 2 0 0 1 1 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 0 0 1 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 2 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 2 0 2 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 1 0 0 0
0 0 0 0 0 0 0 0 1 2 0 2 0 1
0 0 0 0 0 0 0 0 1 2 0 1 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 2 0 1
0 1


Figure 3.11: Transfer counting matrix for DFA for all possible values of NEW P. Notice
the sparsity.

59

Model Counting Chapter 3

results with the results reported in SMC’s web page. The first column of the Table 3.3

shows the file names of these example constraints. The second column shows the string

length bounds used for obtaining the model counts. The next two columns show the

log-scaled SMC lower and upper bound values for the model counts. The last column

shows the log-scaled model count produced by ABC . We omit the decimal places of

the numbers to fit them on the page. For all the cases ABC generates a precise count

given the bound. ABC’s count is exactly equal to SMC’s upper bound for four of the

examples and is exactly equal to SMC’s lower bound for one example. For the last

example ABC reports a count that is between the lower and upper bound produced by

SMC. Note that these are log-scaled values and actual differences between a lower and

an upper-bound values are huge. Although SMC is unable to produce an exact answer

for any of these examples, ABC produces an exact count for each of them.

Table 3.3: Log-scaled comparison between SMC and ABC.

bound
SMC

lower bound
SMC

upper bound
ABC
count

nullhttpd 500 3752 3760 3760
ghttpd 620 4880 4896 4896
csplit 629 4852 4921 4921
grep 629 4676 4763 4763
wc 629 4281 4284 4281
obscure 6 0 3 2

3.2.6 Automata-Based Counting for Linear Integer Constraints

In order to handle LIA constraints in ABC, we implemented automata construction

techniques for linear arithmetic constraints on integers [75]. The approach we use can

handle arithmetic constraints that consist of linear equalities and inequalities (=, 6=, >

,≥,≤, <) and logical operations (∧,∨,¬). As these constraints can always be written in

the form Ax ≤ b, our method handles the same language of constraints that LattE and

60

Model Counting Chapter 3

Barvinok can handle (although we do not support symbolic model counting in the same

way that Barvinok does.)

Similar to string-constraint solving, the goal is to create an automaton that accepts

solutions to the given formula. However, for numeric constraints, it is necessary to

keep relationships between multiple integer variables in order to preserve precision. For

example, given a numeric constraint such as 2x − y = 0, we would like the automaton

to recognize the tuples (x, y) such that (x, y) ∈ {(0, 0), (1, 2), (2, 4), (3, 6), . . .}. If we

separate the set of values for x and y and recognize the set 0, 1, 2, 3, . . . for x and the

set 0, 2, 4, 6, . . . for y, then we would get tuples such as (2, 2), which are not allowed by

the constraint 2x − y = 0. To address this, we use multi-track automata which are a

generalization of finite state automata. A multi-track automaton accepts tuples of values

by reading one symbol from each track in each transition. I.e., given an alphabet Σ, a

k-track automaton has an alphabet Σk.

For numeric constraints, we use the alphabet Σ = {0, 1}. The numeric automata

accept tuples of integer values in binary form, starting from the least significant digit.

We implement an automata constructor function A for numeric constraints, such

that, given a numeric constraint F , A(F) is an automaton where L(A(F)) = JF K. Note

that, for numeric constraints, A(F) accepts tuples of integer values, one for each variable

in the constraint F . Each variable in F is mapped to a unique track of the multi-track

automaton that we construct.

The automata constructor A for numeric constraints handles the boolean operators

¬,∧,∨ the same way as the automata constructor for string constraints. Each basic

numeric constraint is in the form
∑n

i=1 ai ·xi + a0 op 0, where op ∈ {=, 6=, >,≥,≤, <}, ai

denote integer coefficients and xi denote integer variables. The automata construction for

basic numeric constraints relies on a basic binary adder state machine construction [75].

The state machine starts from a state labeled with the constant term a0. It reads the first

61

Model Counting Chapter 3

−1 0 1

(
0
0

)
,

(
0
1

)
,

(
1
1

) (
0
0

)
,

(
1
1

) (
1
0

)
(

1
0

)

(
0
1

)

(
1
0

)

(
0
0

)
,

(
0
1

)
,

(
1
1

)

Figure 3.12: Automata for the numeric constraint x− y < 1.

binary digit of all the variables, computes the result of the sum for the first digit and the

carry. The next state is the state that corresponds to the new carry. Using each digit and

the current carry, it is possible to compute the next carry which define the transitions

of the state machine. Accepting states are determined based on the operation op. For

example, if the operation is =, then all the resulting digits should be equal to 0 and the

carry should also be 0. So the state 0 is accepting and all transitions that result in a

non-zero digit go to the sink state. In order to handle negative values, 2’s-complement

representation is used.

As an example, in Figure 3.12 we show the multi-track automaton that accepts tuples

of integer values that satisfy the constraint x − y < 1 (the transitions are labeled with

the digit for variable x on top of the digit for variable y).

Once a numeric DFA is constructed for an LIA constraint, model counting is ac-

complished in the same way as for strings, but with a slightly different interpretation.

Counting the number of accepting paths of length k in the DFA corresponds to counting

the number of solutions to the constraint that use k bits to represent integers. Thus,

our counting method prodces a generating function such that [zk]g(z) is the number of

solutions to C that contain at most k bits. For the example DFA in Figure 3.12, the

transfer matrix and generating function are given below.

62

Model Counting Chapter 3

T =


3 1 0

1 2 1

0 3 1

 g(z) =
3

3z2 − 4z + 1

3.3 Chapter Summary

In this chapter I discussed previous work in model counting for Boolean, integer, and

string constraints using a variety of methods. Then I discussed automata-based methods

for model counting string and integer constraints using linear algebra, graph theory, and

generating functions. In the next chapters, we will see how model counting can be used

along with symbolic execution and information theory in order to quantify side-channel

vulnerabilities and synthesize optimal side-channel attacks.

63

Chapter 4

Side-Channel Analysis for

Segmented Oracles

This chapter addresses functions which behave as segmented oracles. Segmented oracle

side channels occur when a side-channel observation allows an attacker to infer informa-

tion about segments of secret data, like a string prefix or an array slice. The segments

can be adaptively explored and information about each segment combined which results

in efficient side-channel attacks. Time-based segmented oracles can result from library

functions that use early termination optimizations for string, array, and memory equal-

ity comparisons, which are present in many programming languages including C, C++,

Java, Python, Ruby, and PHP [18, 28, 76, 17]. As described in [77], these types of li-

brary functions have enabled real-world segmented oracle attacks against the Xbox 360

operating system [5], and the hash-message authentication code (HMAC) comparisons

in the Google Keyczar cryptographic library [6] and the open authorization standards

OAuth [78, 79] and OpenID [80]. I demonstrate the applicability of the approach given

in Section 4.3 on a password verification function as an example of an early termination

segmented oracle and this analysis applies equally well to the other examples just de-

64

Side-Channel Analysis for Segmented Oracles Chapter 4

scribed. On the other hand, size-based segmented oracles can arise from text compression

functions [19] resulting in leakage of confidential web-session information by measuring

the sizes of files and network communications [20]. I demonstrate this approach for this

type of segmented oracle using LZ77 compression [1]. Although the approach I present

in Section 4.2 requires an ordered traversal of the secret’s segments (which is the case

for all the examples listed above), I believe that, in the future, it can be generalized to

handle oracles which do not require a specific ordering of segments.

The research contributions of this chapter can be summarized as follows: 1) Single-

run side-channel analysis using SPF that computes the information leakage in terms

of Shannon entropy using probabilistic symbolic execution and listeners that track the

observable values such as execution time, file size, or memory usage. 2) Two types of

multi-run side-channel analysis for segmented oracles based on a best-adversary model.

The first approach composes the adversary model and the function under analysis within

a loop and conducts the multi-run analysis on the composed system. However, this

approach leads to path explosion. I also present a second, more efficient, approach for

multi-run side-channel analysis for segmented oracles that uses path constraints generated

for only a single-run symbolic execution of the function. 3) I extend SPF to enable

analysis of Java programs that manipulate strings using two approaches. One of them

traces the implementations of string manipulation functions and treats strings as bounded

arrays of characters that are represented as bit-vectors, and checks satisfiability of path

constraints using the SMT solver Z3. The second approach generates constraints in the

theory of strings and uses the string constraint solver ABC, described in Chapter 3. 4)

I use two model counting constraint solvers for computing information leakage. One of

them is LattE, which has been used for analyzing numeric constraints in SPF before.

In this chapter, I desctibe our extension of the SPF+LattE framework to the analysis

of string constraints by viewing strings as arrays of characters. I also integrate the

65

Side-Channel Analysis for Segmented Oracles Chapter 4

1 public F1 (char[] h, char[] l){

2 for (int i = 0; i < h.length; i++)

3 if (h[i] != l[i]) return false;

4 return true;

5 }

Figure 4.1: Password-checking function F1.

1 public F2 (char[] h, char[] l){

2 matched = true;

3 for (int i = 0; i < h.length; i++) {

4 if (h[i] != l[i]) matched = false;

5 else matched = matched;

6 }

7 return matched;

8 }

Figure 4.2: Password-checking function F2.

model-counting string constraint solver ABC with SPF. 5) I conduct experiments on two

side-channel examples, demonstrating the performance of different approaches.

4.1 Segment Oracles

Consider a password-based authentication function. The password checking function

has two inputs: 1) a password, which is secret, and 2) a user input, which is public. The

function should compare the password and the user input and return true if the input

matches the password and return false otherwise; it should not leak any information

about the password if the input does not match.

Let us consider two password checking functions F1 and F2 whose implementations

are shown in Figures 4.1 and 4.2, respectively. I assume that functions F1 and F2 are

executed on inputs h and l, where I follow the typical notation used in the security

literature: h denotes the high value, i.e. the secret password, and l denotes the low value,

i.e. the public input that the function compares with the password.

Both functions return true or false indicating if the input (l) matches the secret (h).

66

Side-Channel Analysis for Segmented Oracles Chapter 4

Note however that the functions may leak some information about the secret through

side channels, in this case an adversary may infer some information about the secret

h by measuring the execution time (as explained below). In general, let us assume

that function F (h, l) returns an observable value o which represents the side-channel

measurements of the adversary after executing F (h, l). The observable value o can be

one of a set of observable values O. Let us assume that the observable values are noiseless,

i.e., multiple executions of the program with the same input value will result in the same

observable value.

For the functions F1 and F2 above, let us use the execution time as an observable.

For function F1 this will result in n+ 1 observable values where n is equal to the length

of h, i.e., o ∈ {o0, o1, . . . on}, since function F1 will have a different execution time based

on the length of the common prefix of h and l. If h and l have no common prefix, then F1

will have the shortest execution time (let us call this observable value o0) since the loop

body will be executed only once (assuming the password length is not zero). If h and

l have a common prefix of one character (and assuming that password length is greater

than or equal to two), then F1 will have a longer execution time since the loop body

will be executed twice (let us call this observable value o1). In fact, for each different

length of the common prefix of h and l, the execution time of F1 will be different. Let

observable value oi denote the execution time of F1 for the common prefix of size i. Note

that on corresponds to the case where h and l completely match where n is the length of

the password. On the other hand, execution time of F2 is always the same, so F2 does

not have a side channel.

Side-channel analysis can be used to answer following type of questions: Are F1 and

F2 leaking information about the secret through side channels, and, if so, how much?

Based on the above discussion, we can see that F1 is leaking information about h even

when h and l do not completely match. By observing the execution time of F1, an

67

Side-Channel Analysis for Segmented Oracles Chapter 4

adversary can deduce the length of the common prefix of h and l.

F2 on the other hand leaks no information through the side channel. Note that an

attacker learns that h is not equal to the value of l. However, the information leakage

for F2 is pretty small compared to the information leakage by F1 (which has the timing

side channel). For example, assuming the secret is a four digit PIN, an attacker needs

at most 104 tries to guess the password using F2 but at most 40 tries using F1 (as the

adversary can try to first guess the first digit in the PIN, then secod digit etc. using the

side-channel information). The question is: can we formalize the amount of information

leaked and can we automatically compute it?

4.2 Entropy Computation

I introduced Shannon entropy in Chapter 2 and now describe how it applies to the

current problem at hand. The observables produced by a function F can be considered

the messages that an adversary receives by executing F ; they correspond to messages

about the secret. Hence, we can use the Shannon entropy to measure the amount of

information conveyed by each execution of F , i.e., the amount of information leaked by

function F . Define the Shannon entropy of a function F as:

H(F) = −
∑
oi∈O

p(oi)× log2(p(oi))

where p(oi) is the probability of observing the value oi after executing F . In order to

compute the Shannon entropy, we need to compute the probability of observing each

value oi. We can compute these probabilities using probabilistic symbolic execution with

model counting [81], (see Chapter 2.

In this analysis I perform symbolic execution (where both h and l are symbolic) to

68

Side-Channel Analysis for Segmented Oracles Chapter 4

systematically analyze all paths through the code. In this way, we collect each path con-

dition and corresponding observable as an ordered pair (oi, PCi). For example, symbolic

execution of function F1 results in a set of n + 1 path conditions, each with a different

time observation: {(o0, PC0), (o1, PC1), . . . (on, PCn)}, with o0 < o1 < . . . < on+1, and

path conditions of the form:

PC0 ≡ h[0] 6= l[0]
PC1 ≡ h[0] = l[0] ∧ h[1] 6= l[1]
PC2 ≡ h[0] = l[0] ∧ h[1] = l[1] ∧ h[2] 6= l[2]

...
PCn−1 ≡ h[0] = l[0] ∧ h[1] = l[1] ∧ . . . ∧ h[n] 6= l[n]
PCn ≡ h[0] = l[0] ∧ h[1] = l[1] ∧ . . . ∧ h[n] = l[n]

Each path condition PCi encodes the fact that a prefix of the public input l matches

a prefix of the secret h. For example (o1, PC1) indicates that the first character in the

public input matches the first charter in the secret and the second character does not

match. For the largest observable, we see that (on, PCn) indicates that the public and

private inputs match on all segments.

One can compute the probability p(oi) for each observable value oi, using model

counting over the path conditions, in the following way. Let D denote the input domain

(i.e., the set of possible values for h and l, assumed to be finite) and let |D| denote the

size of the input domain. Let us write |PC| to denote the number of solutions over D

that satisfy the path constraint PC. One can compute |PC| using a model counting

constraint solver [24, 25]. Assuming a uniform distribution for h and l the probability

of observing oi is p(oi) = |PCoi |/|D| where the probability of the input value completely

matching the password h is p(on).

For function F2 there are only two observable values through the main channel, i.e.

the boolean values returned by the function, and the corresponding path constraints are:

69

Side-Channel Analysis for Segmented Oracles Chapter 4

• ¬(h[0] = l[0] ∧ h[1] = l[1] ∧ .. ∧ h[n− 1] = l[n− 1])

• h[0] = l[0] ∧ h[1] = l[1] ∧ .. ∧ h[n− 1] = l[n− 1]

Figure 4.3 shows the Shannon entropy computed for F1 and F2 as described above

using probabilistic symbolic execution and model counting. Note that as the size of the

password increases, the entropy gets very close to 0 for function F2. So, for a reasonable

sized password, F2 does not leak information. However, for F1 we observe that the

information leaked remains slightly above 1 bit even if we keep increasing the length of

the password. Independent of the size of the password, F1 leaks information about the

first digit of the password due to the timing side channel.

1 2 3 4 5 6 7 8 9 10

0

0.25

0.5

0.75

1

1.25

Password Length

E
n
tr

op
y

(b
it

s)

F1

F2

Figure 4.3: Entropy after a single guess for functions F1 and F2, for password length
ranging from 1 to 10.

The analysis I presented above computes the amount of information leaked by a single

execution of a function. One can also easily determine the amount of initial information

70

Side-Channel Analysis for Segmented Oracles Chapter 4

in the system by assuming that h is picked using a uniform distribution from the domain

Dh. Then the amount of information in the system initially is:

H(h) = −
∑
v∈Dh

1/|Dh| × log2(1/|Dh|) = log2(|Dh|)

An execution of the function leaks the amount of information given by the Shannon

entropy of the function H(F) and the remaining entropy in the system is H(h)−H(F).

An interesting question to answer is the following: How many tries would it take an

adversary to figure out the password? We can try to estimate the attack sequence length

using the information leakage. When the amount of information in the system reaches

zero, then, we can conclude that the adversary has figured out the password.

Based on the amount of initial information and the Shannon entropy for the function,

one can try to estimate the amount of runs it would take an adversary to determine the

secret. However, this analysis would not be accurate since an adversary could learn

from previous tries and choose the l values accordingly based on earlier observations.

So, except for the first run, the adversary would not pick the l values with a uniform

distribution from the domain of l. In order to do a more precise analysis one needs to

model the adversary behavior. I discuss how to do this for a particular class of problems

called segmented oracles in the following section.

4.3 Multi-run Analysis of Segment Oracle Attacks

Segmented oracle side channels provide observations about “segments” of the secret.

For example, a segmented oracle side channel can provide an observable value (such as

execution time) that enables an adversary to determine if the first character of the secret

value (for example a password) matches to the public value (the input provided by the

71

Side-Channel Analysis for Segmented Oracles Chapter 4

adversary). In general, a segmented oracle provides a distinct value for each matched

segment (such as the matching the first character in the password, matching the first 2

characters, the first 3 characters, etc.) I relaxe this assumption in Chapter 6.

Note that for the function F1 shown in Figure 4.1, execution time serves as a seg-

mented oracle side channel. The function terminates the execution immediately if it

determines that the first character of the secret does not match the input and the execu-

tion time increases linearly with the number of segments that match. I.e., by observing

the execution time, an adversary can figure out how many characters of the secret match

the public input. Hence, for the function F1, execution time acts as a segmented oracle

side channel.

The function F1 is a particular instance of an early termination optimized equality

comparison. It returns false as soon as it discovers a mismatch in order to avoid un-

necessary comparisons. This is a common programming pattern found in many library

functions which results in segmented oracle timing attacks [18, 28, 76, 17, 77]. These

vulnerabilities are remedied by implementing constant time functionally equivalent ver-

sions of those comparison functions that operate over sensitive data, for example F2, in

order to remove the timing side channel [76, 6, 28, 17]. The approach in this chapter

provides a method for automatically quantifying the amount of information an advesary

can gain by a function under a segmented oracle side channel attack, indicating whether

a constant time implementation is necessary.

Now, let us discuss the adversary model. Let us assume that the adversary runs

a function F multiple times with different l values (but the secret h stays the same)

and records the corresponding observables, while trying to figure out h. Further let us

assume that the analyzed programs are deterministic, i.e. given h and l values, F (h, l)

returns one observable value o which represents the observations of the adversary after

executing F (h, l). For segmented oracles the observable values consist of a set of values

72

Side-Channel Analysis for Segmented Oracles Chapter 4

Algorithm 6 Adversary-Function Systems, S(A,F)

1: procedure S(A,F)
2: seq ← nil
3: repeat
4: l← A(seq)
5: o← F (h, l)
6: seq ← Append(seq, 〈l, o〉)
7: until (o = on)

o ∈ {o0, o1, . . . on} where o0 denotes no segments of the input (l) and secret (h) match, oi

denotes i segments of the secret match the input, and on denotes the secret completely

matches the input.

Let us call each execution of F a run. So, the adversary is generating a sequence

of l values to run the program multiple times, the intuition being that each run reveals

some new information about the secret. We can formalize the adversary as a function A

that takes all the prior history as input (which is a sequence of tuples where each tuple

is a l value and the corresponding observable for the execution of function F with that l

value). Note that the h value is constant and does not change from one execution to the

other.

One can model the whole system S = (A,F), where the adversary A generates l

values for multiple executions of the function F in order to determine the secret h, as in

Algorithm 6. Given the system S = (A,F) one may want to compute the probability of

determining the secret after k runs, i.e., having |seq| = k when S terminates. Or, one

may want to compute the information leakage (i.e., entropy) for k runs. One approach

would be to analyze the system S without restricting the adversary. However, this would

take into account behaviors such as the adversary trying the same l value over and over

again even though it does not match the secret. When analyzing vulnerabilities of a

software system, we have to focus on the behavior of the best adversary.

For the segmented oracles, it is easy to specify the best adversary AB [3]. This adver-

73

Side-Channel Analysis for Segmented Oracles Chapter 4

sary works as follows: Let 〈l1, o1〉, 〈l2, o2〉, . . . , 〈lk, ok〉 be the run history. The adversary

generates lk+1 for the k + 1st run as follows:

• If ok 6= ok−1 and ok = oi, then the adversary constructs lk+1 as follows: ∀j, 1 ≤ j <

i : lk+1[j] = lk[j] (part of l that already matched remains the same), lk+1[i] 6= lk[i],

(use a different value for the first part that did not match in the last try) and rest

of the lk+1 is randomly generated.

• If ok = ok−1, then let m be the smallest number where om = ok and let ok = om = oi,

then the adversary constructs the lk+1 as follows: ∀j, 1 ≤ j < i : lk+1[j] = lk[j]

(part of l that already matched remains the same) and ∀j,m ≤ j < k : lk+1[i] 6=

lj[i] (use a different value then the values that have already been tried for the first

part that does not match) and rest of the lk+1 is randomly generated.

Let Sk denote the execution of the system S = (AB, F) where the function F is

executed k times, i.e., |seq| = k. One can ask the following question: What is the

probability of the adversary AB guessing the password in exactly k tries?

Note that, execution of Sk will generate observable sequences o1, o2, . . . , ok where for

all 1 ≤ t ≤ k, ot = oi ∧ ot+1 = oj ⇒ j ≥ i. I.e., since we are using the best adversary

model AB, the observable values in the sequence will be non-decreasing. The adversary

will never produce a worse match than the one in the previous try. Another constraint for

the observable sequences is that if on appears in a sequence, then on is the last observable

of the sequence since S terminates when on is observed.

One can calculate the probability of determining the password in exactly k tries as the

probability of generating the observable sequences o1, o2, . . . , ol where l ≤ k, observable

values in the sequence are non-decreasing, and ol = on.

Let p(o1, o2, . . . , ok) denote the probability of Sk generating that particular observable

sequence. Then one can compute the entropy for Sk (i.e., the information leakage within

74

Side-Channel Analysis for Segmented Oracles Chapter 4

the first k runs) as follows:

H(Sk) = −
∑

o1,o2,...,ol∈SEQk

p(o1, o2, . . . , ol)× log2(p(o1, o2, . . . , ol))

where SEQk is the set of all non-decreasing observable sequences that can be generated

by the first k iterations of S = (AB, F). For every sequence o1, o2, . . . , ol ∈ SEQk: 1)

l ≤ k, 2) the observable values in the sequence are non-decreasing, 3) if on appears in

the sequence, then it is the last observable in the sequence, and 4) if on does not appear

in the sequence, then l = k.

Here I present two approaches to multi-run analysis of segmented oracles. The first

approach is intuitive and more general; it is applicable to any adversary model. How-

ever, this approach requires the probabilistic symbolic execution of an adversary model

which executes the program multiple times, and thus it suffers from the path explosion

problem. To address this problem, for the best adversary model, I propose a more scal-

able approach with a novel computation of the leakage which requires the probabilistic

symbolic execution on only one run of the program.

4.3.1 Multi-Run Symbolic Execution

The first approach for multi-run side-channel analysis is described with the following

two steps. First, let us create a model of the attack scenario, explained in Section 4.1,

where an adversary can provide the low inputs, and execute the program a number

of times. Then, one can use probabilistic symbolic execution to explore all possible

observations of the model and compute the probability for each observation. Shannon

entropy and channel capacity of the leaks are easily derived from the probabilities.

In this work, a model in the analysis is a Java bytecode program, written as a driver

for the program under test. Since the secret h and the inputs of the adversary l1, . . . lk are

75

Side-Channel Analysis for Segmented Oracles Chapter 4

not known in advance, they are modeled by symbolic variables in symbolic execution.

Without any constraints on l1, . . . lk, this is a model for a very naive adversary, who

repeatedly tries to guess the secret with random values, and learns nothing from the

previous attempts.

To model an adversary who gains information through observing program executions

and revises the input domain accordingly, let us use the assume-guarantee reasoning in

symbolic execution to impose the constraints on the inputs. Let us illustrate the approach

by implementing a particular adversary model.

4.3.2 The Best Adversary Model

Algorithm 7 depicts a driver S modeling the best adversary described in section 4.1.

Here an observation oi of the adversary indicates how many segments in the low input

matched with the secret. The adversary is allowed to make k executions of F (h, l) but

stops early if all the segments are matched, i.e. oi = |h|. The instruction assume ,

implemented by the built-in API Debug.assume in SPF, is used to impose constraints

on the inputs.

The best adversary is characterized by two sets of assumptions. The first set of

assumptions reflect the fact that, for the segment being search s, the best adversary

selects an input different from the ones in the previous executions. When the adversary

discovers more segments of the secret, i.e. when oi > oi−1, they keep these constant

segments for the inputs of the following executions, and move on to search for the next

segment. This is modeled by the second set of assumptions in the procedure.

76

Side-Channel Analysis for Segmented Oracles Chapter 4

Algorithm 7 S = (AB, F), Composed System of Best Adversary and Function

1: s: the current segment of h being searched
2: b: the first time s is searched
3: o0, o1, . . . ok: observations of the adversary
4: s← 1, b← 1, o0 ← 0
5: for all i ∈ [1..k] do
6: for all j ∈ [b..i) do assume (li[s] 6= lj[s])

7: oi ← F (h, li)
8: if (oi = |h|) then return

9: if (oi > oi−1) then
10: for all j ∈ [i+ 1..k] do
11: for all n ∈ [s..oi] do assume (lj[n] = li[n])

12: s← oi + 1, b← i+ 1

4.3.3 Computation of Information Leakage

In this approach, the computation of leakage does not depend on any particular

adversary model S = (A,F), i.e. it can be applied to any model with any assumptions

made by the adversary, or even no assumptions at all.

For this analysis, we extend classical symbolic execution to keep track of the assump-

tions ASM in a symbolic path. At a low level, ASM is implemented with exactly the

same data structure as the path condition. When executing the instruction assume(c),

symbolic execution updates the path condition PC ← PC ∧ c, and checks satisfiabil-

ity with a constraint solver. Symbolic execution advances to the next instruction if the

updated PC is satisfiable, and it backtracks otherwise. This extension for symbolic exe-

cution updates ASM ← ASM ∧ c only when the updated PC is satisfiable. Thus, there

is no constraint solving overhead for ASM .

SPF performs symbolic execution, with the extension, on the model S = (A,F) to

explore all possible observations. Each observation of S is a sequence of observations

of F : −→oi = 〈o1, o2 . . . on〉 where 1 ≤ n ≤ k. For each −→oi , we also obtain from symbolic

execution the path condition PCi that leads to that observation, and the assumptions

77

Side-Channel Analysis for Segmented Oracles Chapter 4

ASMi on that path.

Let us denote by Dh, D1, D2 . . . Dk the domains of h, l1, l2 . . . lk respectively. The input

space is then D = Dh×D1×· · ·×Dk. If there is no assumptions on the low inputs, li can

take any value Di. Hence, the search space of the adversary is D, and the probability of

observing −→oi is computed by

p(−→oi) =
|PCi|
|D|

In the case the adversary has some knowledge about the input, modeled by the

assumptions, the revised domain of −→oi is |ASMi|, and hence its probability is

p(−→oi) =
|PCi|
|ASMi|

Both |PCi| and |ASMi| are computed by model counting tools integrated in proba-

bilistic symbolic execution as discussed in the following sections.

4.4 Multi-Run Analysis Using Single-Run Symbolic

Execution

As shown in the previous section, one is able to compute the probabilities of observa-

tion sequences by performing a complete symbolic execution of a program which simulates

the adversary strategy of repeated guessing. However, performing a complete symbolic

execution over all iterations of adversary behavior can become prohibitively expensive.

Therefore, I seek to avoid this expensive computation. In this section, I describe how to

compute the sequence probabilities using symbolic execution and model counting from

only a single iteration of the adversary strategy, by taking advantage of the segmented

nature of observations which reveal the secret.

Notation. For a segmented oracle the low (l) and high (h) inputs are compared incre-

78

Side-Channel Analysis for Segmented Oracles Chapter 4

mentally. The n segments of l and h are denoted by l[0], . . . , l[n−1] and h[0], . . . , h[n−1],

respectively. We write h[i : j] for the “slice” of h from index i to index j, and similarly

for l. Let Di be the domain size of l[i], or equivalently, the domain size of h[i], and write

D = 〈D0, D1, . . . , Dn−1〉 for the vector of these domain sizes. Le us write Di:j to denote

the subvector of D of indices i through j, and
∏

D for the product of all elements of D.

Probability Computation. By performing a symbolic execution of a single run of

F (h, l) one can automatically generate the set of observables and corresponding path

conditions, {(oi, PCi) : 0 ≤ i ≤ n}. Without loss of generality assume an order of

observables, o0 < o1 < . . . < on+1, and assume that the path conditions are in the form

given below, a generalization of the path conditions given in Section 2. Path constraints

of this form result from symbolic execution of comparison functions which utilize the

early termination optimization programming pattern, as described in Section 2.

PCi ≡


(l[i] 6= h[i]) ∧

(
i−1∧
j=0

h[j] = l[j]

)
if i < n

n−1∧
j=0

h[j] = l[j] if i = n

Due to the segmented nature of the comparison between l and h, one can consider the

size of the domain Di for each segment, that is, the number of possible values to which

each segment can be assigned, independently. Then each PCi determines a combinatorial

restriction on the set of D.

• In the case of PCn where each h[i] = l[i], for any of the Di values for l[i], the value

of h[i] is constrained to a single value. Therefore, the product of the domain sizes

must be equal to |PCn|.

• For PCi (i < n), h[j] = l[j] for j < i, and so for any of the Di values for l[j], h[j] is

constrained to be a single value. Since, h[i] 6= l[i], for any of the Di values for l[i],

there are Di − 1 possible values for h[i]. Finally for j > i there is no constraint on

79

Side-Channel Analysis for Segmented Oracles Chapter 4

the relationship between l[i] and h[i] and so there are Di possible values for each

of them.

The combinatorial argument above can be summarized by the following system of equa-

tions: 
∏

D = |PCn|∏
D · (wi − 1) ·

∏
Di+1:n−1 = |PCi|

This system of equations can be solved for each wi via reverse substitution using the

following recurrence:

Di =
|PCi|

|PCn| ·
∏

Di+1:n−1

+ 1

Once we have determined the domain sizes of the individual segments, we are in a

position to compute the probability any particular observation sequence. Let p(−→o |D)

be the probability of observation sequence −→o given a vector of segment domains D.

In addition, define D′i to be the vector of domains constrained by PCi. That is D′i =

〈1, 1, . . . , Di − 1, Di + 1, . . . , Dn〉. Then p(−→o |D) can be computed recursively using the

following logic:

• Base Case: if−→o = oi is a sequence of length 1, the probability of oi is (
∏

D′i) / (
∏

D),

that is, the number of remaining possible inputs that are consistent with (oi, PCi),

out of the total number of inputs in the domain.

• Recursive Case: if −→o = 〈o1, o2, . . . ok〉 is a sequence of length k one can think of it

as o1 followed by a sequence of length k − 1. Then computing p(−→o |D) reduces to

computing the probabilities of p(o1|D′i) and p(〈o2, . . . , ok〉|D′i) and multiplying.

The above presented computation results in the same probabilities that are computed

by a full probabilistic symbolic execution analysis of the adversary’s complete attack

80

Side-Channel Analysis for Segmented Oracles Chapter 4

behavior. Given the probabilities, one can simply apply the entropy formula. Both

methods have been implemented and it was experimentally verified that they produce

the same results. However, the second method is significantly faster. I discuss this in

Section 4.5 containing the experimental results.

4.5 Experiments

To validate the effectiveness of these methods, we first evaluated ABC by comparing

it with LattE. Next we compare the efficiency of using multi-run vs. single-run sym-

bolic execution for computing the entropy after a sequence of observations. Lastly, we

have tested this side-channel analysis on: 1) the password checking function described in

Section 3 which is susceptible to a timing attack, and 2) a compression function which

contains a side channel based on the size of the compressed output file.

4.5.1 Timing Performance of Model Counting

Symbolic PathFinder already contained an implementation of path constraint model

counting using LattE [32]. In addition, we integrated ABC in SPF for counting solutions

to path constraints. The experiments show that ABC and LattE produce identical model

counting results. To compare running time, we analyzed the password checking function.

We compare the end-to-end running time of performing symbolic execution, collecting

path constraints, and performing model counting on all generated constraints in order

to compute the information leakage of a single run by the adversary. We find that the

implementation using ABC is significantly faster than the previous implementation that

uses Latte. As shown in Figure 4.4, for a fixed alphabet size of 4, we see that the running

time increases with the password length for both ABC and LattE, and that the ABC

81

Side-Channel Analysis for Segmented Oracles Chapter 4

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

Password Length

T
im

e
(s

)

LattE
ABC Numeric
ABC String

Figure 4.4: Time comparison for computing single guess entropy using ABC and LattE.

Numeric implementation is significantly faster, with ABC String second fastest, and the

Latte implementation slowest.

However, I do not claim that ABC is faster than Latte. ABC is implemented as a

shared library in SPF allowing for direct function calls to the model counter. On the

other hand, in order for SPF to pass constraints to Latte, they are first preprocessed and

simplified using the Omega library and then saved to a set of files. Latte is then invoked

on these files and the model counts are parsed back into JPF. In order to make any claims

about the relative efficiency of ABC and LattE one would need to do a comparison of

the constraint model counting capabilities directly. This is future work.

The remaining experiments were conducted using ABC Numeric as the model counter,

due to the relative execution speed of the implementation within SPF.

4.5.2 Single- and Multi-run Symbolic Execution

As described in Section 4, I have given two methods for computing the entropy

after the adversary makes k observations: performing symbolic execution over the k-

composition of the program under an adversary model (Section 4.1.1) and performing

82

Side-Channel Analysis for Segmented Oracles Chapter 4

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

Observation Sequence Length

R
u
n
n
in

g
T

im
e

(s
)

Single-run SE
Multi-run SE

Figure 4.5: Time for multi-run and single-run symbolic execution.

symbolic execution over a single copy of the program and then using mathematical for-

mula to infer the multi-run entropies (Section 4.2).

We ran both analyses on the password checking example and, as expected, we see in

Figure 4.5 that the multi-run analysis takes much longer, due to the exploration of many

more paths generated by symbolic execution. Both analyses give the same results.

4.5.3 Password Checker

I also present results on the timing analysis of the password checking function. I

present results only for multi-run analysis using single-run execution here, as we have

just described that it is much faster and produces the same results. I first describe results

for a small configuration where we fix the alphabet size to 4 and the password length to 3.

Let us assume that the adversary can make k guesses, and let us compute the remaining

entropy and the information leakage as shown in Figure 4.6. There are 43 = 64 possible

inputs for h giving log2 64 = 6 bits for the initial entropy. As the adversary makes more

guesses, the remaining entropy decreases from 6 to 0. Indeed, the analysis shows that

the entropy is 0 for k ≥ 10. Symmetrically, one can see that the information leakage

83

Side-Channel Analysis for Segmented Oracles Chapter 4

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

Observation Sequence Length

E
n
tr

op
y

(b
it

s)

Initial Entropy
Leakage
Remaining Entropy

Figure 4.6: Information leakage and remaining entropy for password checking function.

increases with more guesses, from 0 to 6, indicating that all information about the secret

is leaked after 10 guesses. Thus, we conclude that the adversary needs at most 10 guesses

to fully determine the secret.

I also analyzed a larger configuration. For a password of length 10 and an alphabet of

size 128, I incrementally increased the guessing budget of the adversary and determined

that 15 guesses are required to reveal 1 bit of information. This analysis took 135.34

seconds.

4.5.4 Text Concatenation and Compression

I further analyzed side channels that depend on the size of the output. One example

of such an attack is known as “Compression Ratio Info-leak Made Easy” (CRIME)[20].

The function concatAndCompress() shown in Figure 4.7 accepts an input low which

is controlled by the adversary, concatenates it with a secret value high, and then uses

the Lempel-Ziv (LZ77) [1] compression algorithm on the resulting string. The code for

LZ77compress is shown in Figure 4.8.

The basic idea behind the attack is that if the adversary provides a value for low that

84

Side-Channel Analysis for Segmented Oracles Chapter 4

1 public concatAndCompress (String low){

2 return LZ77compress(high.concat(low));

3 }

Figure 4.7: A function with a size-based side channel.

does not have a common prefix with high, then there will be little compression. However,

if low and high do share a prefix, this will result in a higher compression ratio. This is

real-world vulnerability that can be used to reveal secret web session tokens to a malicious

user by observing compressed network packet size [19]. Such a user is able to control input

through, say, a web form, which is later concatenated with session information and sent

to the server. For instance, suppose the secret value high is the text sessionkey:xb5du.

If the malicious user sets the value of low to be the text string sessionkey:abcde he will

observe less compression than if he sets low to be sessionkey:xb5da. In this way, the

attacker is able to make repeated guesses and incrementally learn more information about

prefixes of the secret. Thus, the concatAndCompress() function acts as a segmented

oracle with a side channel on the size of the output.

We applied the analysis to concatAndCompress() and were able to compute the

information leakage for a given budget on the number of guesses used by the adversary.

Due to the complexity of the LZ77 algorithm, symbolic execution becomes more expensive

than in the case of the password checking function. For a secret of length 3 and alphabet

size 4 single-run symbolic execution generates 187 path conditions leading to 4 different

observables. For each observable oi, we built the disjunction of all the PCs that result

in oi and we used Z3 to prove logical equivalence to the PC formulation in Section 4.2.

Using the single-run method we then determined that the concatAndCompress() function

leaks all information about the secret after 10 executions by the adversary. Using ABC

Numeric for model counting, the total running time of this analysis is 8.695 seconds.

We repeated this experiment using ABC String as the model counter. The same results

85

Side-Channel Analysis for Segmented Oracles Chapter 4

1 public static byte[] compress(final byte[] in) throws IOException {

2
3 StringBuffer mSearchBuffer = new StringBuffer (1024);

4 String result = "";

5
6 String currentMatch = "";

7 int matchIndex = 0;

8 int tempIndex = 0;

9 int nextChar;

10 for (int i = 0; i < in.length; i++){

11 nextChar = in[i];

12
13 tempIndex = mSearchBuffer.indexOf(currentMatch + (char)nextChar);

14 if (tempIndex != -1) {

15 currentMatch += (char)nextChar;

16 matchIndex = tempIndex;

17 }

18 else {

19 final String codedString = new StringBuilder (). append("~")

20 .append(matchIndex). append("~"). append(currentMatch.length ())

21 .append("~"). append ((char)nextChar). toString ();

22 final String concat = currentMatch + (char)nextChar;

23 if (codedString.length () <= concat.length ()) {

24 result = result + codedString;

25 mSearchBuffer.append(concat);

26 currentMatch = "";

27 matchIndex = 0;

28 }

29 else {

30 for (currentMatch = concat , matchIndex = -1;

31 currentMatch.length () > 1 && matchIndex == -1;

32 currentMatch = currentMatch.substring(1, currentMatch.length ()),

33 matchIndex = mSearchBuffer.indexOf(currentMatch)) {

34 result=result+currentMatch.charAt (0);

35 mSearchBuffer.append(currentMatch.charAt (0));

36 }

37 }

38 if (mSearchBuffer.length () <= 1024) {

39 continue;

40 }

41 mSearchBuffer = mSearchBuffer.delete(0, mSearchBuffer.length () - 1024);

42 }

43 }

44 if (matchIndex != -1) {

45 final String codedString = new StringBuilder (). append("~"). append(matchIndex)

46 .append("~"). append(currentMatch.length ()). toString ();

47 if (codedString.length () <= currentMatch.length ()) {

48 result = result + new StringBuilder (). append("~"). append(matchIndex). append("~")

49 .append(currentMatch.length ()). toString ();

50 }

51 else {

52 result = result + currentMatch;

53 }

54 }

55 final byte[] bytes = result.getBytes ();

56 return bytes;

57 }

Figure 4.8: The implementation of the the Lempel-Ziv algorithm (LZ77) [1], used in
the CRIME case study.

86

Side-Channel Analysis for Segmented Oracles Chapter 4

took 152.332 seconds to compute, due to the complex nature of the string operations

contained in the LZ77 compression algorithm.

4.6 Chapter Summary

I presented a symbolic execution approach for side channel analysis. The approach

quantifies the leakage of the secret information through side channels, which is achieved

by computing path probabilities using model counting over symbolic constraints. I il-

lustrated this approach on side channels with segmented oracles and I gave an efficient

computation of leakage over multiple attack steps. This technique leverages satisfiability

checking and model counting over complex constraints involving both string and numeric

operations. In Chapter 6, I extend this side-channel analysis with segmented oracles in

the presence of noisy observations and show how to synthesize segment oracle attacks in

this setting.

87

Chapter 5

Offline Adaptive Attack Synthesis

In this chapter I present symbolic analysis techniques for detecting vulnerabilities that are

due to adaptive side-channel attacks and synthesizing inputs that exploit the identified

vulnerabilities. I start with a symbolic attack model that encodes succinctly all the side-

channel attacks that an adversary can make. Using symbolic execution over this model,

I generate a set of mathematical constraints where each constraint characterizes the set

of secret values that lead to the same sequence of side-channel measurements. I then

compute the optimal attack, i.e, the attack that yields maximum leakage over the secret,

by solving an optimization problem over the computed constraints. I use information-

theoretic concepts such as channel capacity and Shannon entropy to quantify the leakage

over multiple runs in the attack where the measurements over the side channels form the

observations that an adversary can use to try to infer the secret. I also propose greedy

heuristics that generate the attack by exploring a portion of the symbolic attack model

in each step. This technique was implemented in Symbolic PathFinder and applied to

Java programs, demonstrating how to synthesize optimal side-channel attacks.

88

Offline Adaptive Attack Synthesis Chapter 5

5.1 Multi-Run Adaptive Attacks

Let P (H,L) be a deterministic program, where H denotes the high input (secret)

and L the low input (public). Similar to previous work [82], Let us assume that the

attacker can make one side-channel observation at a time and that there are no errors

in the measurements. Let us also assume that the attacker knows the implementation of

P . These are strong assumptions that are justified since we are interested in computing

the “strongest” possible attack.

In general, the attacker can not learn all the secret from only one round of observation.

We are interested in computing the low values for estimating the maximum leakage after

the attacker runs the program multiple times and makes multiple side-channel observa-

tions to gradually uncover information on the secret. One can try to infer this maximal

leakage based on the computation of leakage on a single run, but this computation would

not be accurate, since the attacker can learn from previous tries and will try to pick

different low values that uncover different information in each round.

5.1.1 Attacker Model

The attacker can be defined as a (partial) function A that takes the history of ob-

servations as input and returns the low value l to be used in the next attack step. One

can model the interaction, up to k steps, between the attacker and the program as a

system S = (A,P, k, cost(·)), where the attacker A generates values of l for multiple ex-

ecutions of program P in order to determine the secret h. Parameter cost(·) determines

the side-channel observations for program executions. See Algorithm 9.

Let us assume that each path can give only one observable. Our work is done in the

context of a project that targets side-channels for Java programs, where this assumption

holds. I relax this restriction in Chapter 6. This work is also applicable to more general

89

Offline Adaptive Attack Synthesis Chapter 5

Algorithm 8 The k-step Adaptive Attack Model

1: procedure S(A,P, k, cost(·))
2: seq ← ∅
3: for i from 1 to k do
4: l← A(seq)
5: o← Cost(P (h, l))
6: seq ← Append(seq, o)

quantitative information flow analysis where the same assumption holds.

The attacker is adaptive as it picks a new low value with each observation made.

In contrast, a non-adaptive attacker would only pick one low value at each attack step,

regardless of the observations made in previous runs, i.e. the attack function A would be

a function of attack step i (and the low value would be l← A(i)). Thus adaptive attacks

can be more powerful, since the attacker can pick different low values at same step.

5.1.2 The Attacker’s Knowledge

Suppose that the attacker observed o1, o2, .. ok after picking values L1, L2 .. Lk and

executing the program k times. The initial domain of the secret is D. At each step i, the

attacker learns that the secret leads to oi under Li and revises the domain to contain those

secrets that are consistent with this new observation. The attacker successfully reveals

the secret when she can deduce the domain to consist of only one value. However, if

after an attack step, the revised domain stays the same, the adversary does not learn

new information with this low input.

In general, an adaptive attack can lead to different sequences of observations, de-

pending on the secret value. Following [82] let us say that two secrets H and H ′ are

indistinguishable under the attack A (written as H ≈ H ′) if for all observation sequences

seq, cost(P (H,A(seq))) = cost(P (H ′, A(seq))). Observe that the indistinguishability re-

lation under attack A forms an equivalence relation on the secret values. Thus the attack

90

Offline Adaptive Attack Synthesis Chapter 5

A induces a partition on the secret values. Each block in the partition contains the secret

values that lead to the same observations, under an attack A. Furthermore, the size of

the partition is equal to the number of different k-sized observation sequences produced

under A.

Given the system S = (A,P, k, cost(·)) one can extend the classical definitions of

Channel Capacity and Shannon entropy to reasoning about sequences of observations in

S (henceforth called k-observables). The channel capacity theorem [83, 84] states that

the leakage for a program (in number of bits on the secret) is always less than or equal

to the log of the number of possible distinct observations that an attacker can make.

The result states in essence that leakage computation reduces to counting the number of

different observable outputs for the program.

Thus, if running system S for a particular attack A results in NkObs k-observables,

the information leaked by P after k runs is:

Information leaked after k runs ≤ CCk(P) = log2(NkObs)

For deterministic systems, the Shannon entropy gives a measure of the leakage of

the side-channel, corresponding also to the observation gain (on the secret) after an

observation. Let us extend this result to multiple observations as follows. For each

sequence of observations oki = 〈o1, o2, ..ok〉, let p(oki) denote the probability of observing

oki . Then the Shannon entropy is:

Hk(P) = −
∑
oki

p(oki) log2(p(oki)) (5.1)

Different attacks A lead to different leakage. The most powerful attacker will want to

pick the low values that will leak the most information about the secret. In particular we

91

Offline Adaptive Attack Synthesis Chapter 5

1 int secret;

2 int public_input;

3
4 if(secret >= public_input)

5 ... perform some computation; // cost =1

6 else

7 ... perform some other computation; // cost =2

Figure 5.1: Example code with a “binary search” timing side channel.

are interested in synthesizing function A that maximizes Channel Capacity or Shannon

entropy. Our work generalizes to other information theoretic measures such as computing

the probability of guessing the secret or the Min entropy.

Symbolic Attack Tree Example

I illustrate our approach on the example from Fig. 5.1. The program performs two

kinds of operations (of costs 1 or 2) according to the branching condition in the code.

Assume that the domain of the secret is D = 1..6. Consider a 2-step attack that picks

low value 4 in the first step, low value 5 after seeing cost 〈1〉 and low value 3 after seeing

cost 〈2〉, i.e. A(∅) = 4, A(〈1〉) = 5, A(〈2〉) = 3. Suppose the attacker first observes

〈1〉. She can then deduce that the value of the secret is greater or equal than 4, thus

narrowing down the possible values of the secret to {4, 5, 6}. Running the program again

(on A(〈1〉) = 5) and after observing 〈2〉, she can deduce that the secret is less than

5, narrowing down the possible secret values to {4}. Thus the attacker is able to fully

recover the secret along this path. If on the other hand the second observation is 〈1〉,

this means that the secret is greater or equal than 5, so the attacker is able to narrow

down the secret to two values {5, 6} etc.

92

Offline Adaptive Attack Synthesis Chapter 5

Algorithm 9 Symbolic k-step Adaptive Attack Model

1: procedure Ssym(P, k, cost(·))
2: seq ← ∅
3: h←MakeSymbolic(‘h’)
4: for i from 1 to k do
5: l←MakeSymbolic(N (seq))
6: o← Cost(P (h, l))
7: seq ← Append(seq, o)

8: return seq

5.2 Symbolic Execution for Attack Synthesis

Let us use symbolic execution, as described in previous chapters, to synthesize the

attack that maximizes Channel Capacity and Shannon Entropy. Let us first create a

symbolic model of the attack scenario described in the previous section where we model

the secret using a symbolic variable. Furthermore, since we do not know in advance the

low values that give the maximal leakage, let us model them as fresh symbolic variables,

as well. The resulting system, Ssym is described below:

The code is similar to the procedure S shown in Section 5.1 except that we use

directive makeSymbolic(name) to create high and low symbolic values with the specified

name. Notably, at each iteration we create a symbolic value for low (N (seq)), whose name

is a function of observation sequence seq. Intuitively, this mimics the fact that after

observing sequence seq, the attacker learns the information about h that is consistent

with these observations, and chooses the next low value accordingly. However, instead

of fixing an attack A a-priori and choosing concrete low values based on it, we leave the

low values symbolic, encoding all the possible concrete values at each attack step.

Running symbolic execution on Ssym will generate a set of symbolic paths correspond-

ing to the k invocations of program P . These paths represent all the possible attacks of

an adaptive adversary up to k runs, since the symbolic values introduced in Ssym repre-

sent all the possible concrete values (of high and low). Furthermore, the symbolic paths

93

Offline Adaptive Attack Synthesis Chapter 5

generated with a symbolic execution of a system represent all the possible concrete paths

through that system [21].

For simplicity let us assume that all the paths terminate within the prescribed bound.

As this is not always the case in general, in practice one can use a notion of confidence

(similar to [81]) that quantifies the impact of the execution bound on the quality of the

analysis.

Each path π is a composition of paths π1; π2..πk, where each πi is a path in the i-

th invocation of P . The cost of π is a k-observable, i.e., a sequence of k side-channel

measurements made during the attack. Each path has a corresponding path condition,

PCk(h, l̄), which in turn is a conjunction of k path conditions obtained from single

invocations of P (as prescribed by Ssym). Here h denotes the symbolic value of the secret

while l̄ denotes a tuple of symbolic low values as created by Ssym. Note that there is a

one-to-one correspondence between paths and path conditions. Let us write cost(PCk)

to denote the k-observable for the corresponding path.

A value assignment for the symbolic low variables defines a concrete attack. In

particular, let V be a function that assigns to each symbolic low variable a value from

low input’s domain. We synthesize A by defining, for each low variable of the form

N (seq),

A(seq) = V(N (seq))

Different value assignments result in different attacks. For each concrete attack we can

compute the channel capacity and Shannon entropy as follows. Let L̄ = 〈V(l1),V(l2), ...〉

denote a value assignment for a concrete attack. For each k-observable oki let us build a

clause Ci:

94

Offline Adaptive Attack Synthesis Chapter 5

Ci(h, L̄) =
∨

cost(PCk
j)=oki

PC k
j (h, L̄)

Intuitively each clause characterizes all the secrets that are indistinguishable under

the attack defined by L̄. Let C be the set of all satisfiable clauses. The channel capacity

is then:

CCk(P) = log2(|C|)

Further, let us compute the Shannon entropy using model counting over the clauses

to compute the probabilities for each observation. For a uniform distribution over the

secret, the probability of observing oki is given by:

p(oki) =
](Ci(h, L̄))

]D
.

Here](c) denotes the number of solutions, i.e., possible values satisfying the constraint

c. This count can be computed with an off-the-shelf model-counting procedure such as

Barvinok [57]. Let us use]D to denote the size of the secret domain D assumed to be

(possible very large but) finite. Then leakage according to Shannon entropy is defined as

follows:

Hk(P) = −
∑
i=1,m

](Ci(h, L̄))

]D
log2

(
](Ci(h, L̄))

]D

)
We are interested in finding the assignment L̄ of low variables that yield the maximal

leakage according to the two formulas above. Intuitively this value assignment will allow

us to compute bounds on the information leakage that an attacker can achieve. We

reduce the problem of finding this value assignment to optimization problems over the

set of clauses, as described later in this section.

95

Offline Adaptive Attack Synthesis Chapter 5

Consider our running example. The result of symbolically executing Ssym for the

program is a set of symbolic paths which can be organized in a tree as shown in Figure 5.2

(for k = 3). In the tree, nodes depicted with bold rectangles represent “attacker moves”,

i.e., choosing low values based on the history of observations. Nodes depicted with light

rectangles represent “system responses”, i.e., the side-channel measurements made along

program runs. Let us also depict the intermediate path conditions computed for the

different observations. The path conditions encode the constraints on the secret that the

attacker is learning with each observation, while attempting to narrow down the values of

the secret. The path constraints on the leaves represent the knowledge that the attacker

has learned after k steps.

The tree is interpreted as follows. In a first step the attacker chooses symbolic value

l for low and runs the program once obtaining observations 〈1〉 and 〈2〉, with path

conditions h ≥ l and h < l respectively. The attacker, then runs the program a second

time, using a new symbolic value l1 if the observed cost is 〈1〉 and a new symbolic value

l2 if the observed cost is 〈2〉. This second execution results in more constraints on the

secret, that help the attacker narrow down its values. For example, if the observed cost

sequence is 〈1, 2〉, one can determine that the secret satisfies the constraint h ≥ l∧h < l1.

Note that the tree encodes multiple concrete attacks all at once. For example, consider

an attack that in the first run picks low value 4, while in the second run it picks 5 after

observing 〈1〉 and 3 after 〈2〉. This corresponds to variable assignment: l = 4, l1 = 5, l2 =

3. After 〈1, 2〉 the attacker has learned that h ≥ 4 ∧ h < 5 which narrows down the

possible values of h to only one value (4). Consider now a different variable assignment:

l = 4, l1 = 6, l2 = 3. After 〈1, 2〉 the attacker has learned that h ≥ 4 ∧ h < 6 which

narrows down the possible values of h to two (4 and 5) etc.

96

Offline Adaptive Attack Synthesis Chapter 5

True

L = l

cost〈1〉
h ≥ l

L = l1

cost〈1〉
h ≥ l
h ≥ l1

L = l11

cost〈1〉
h ≥ l
h ≥ l1
h ≥ l11

cost〈2〉
h ≥ l
h ≥ l1
h < l11

cost〈2〉
h ≥ l
h < l1

L = l12

cost〈1〉
h ≥ l
h < l1
h ≥ l12

cost〈2〉
h ≥ l
h < l1
h < l12

cost〈2〉
h < l

L = l2

cost〈1〉
h < l
h ≥ l2

L = l21

cost〈1〉
h < l
h ≥ l1
h ≥ l11

cost〈2〉
h < l
h ≥ l1
h < l11

cost〈2〉
h < l
h < l2

L = l22

cost〈1〉
h < l
h < l1
h ≥ l11

cost〈2〉
h < l
h < l1
h < l11

Figure 5.2: Symbolic tree for running example.

5.3 Maximizing Channel Capacity

Let us compute the optimal strategy with respect to channel capacity using MaxSMT

solving [85], an extension of the result from [33] which, however, only applied to non-

adaptive attacks. MaxSMT [86] is an extension of SMT (satisfiability modulo theories)

solving to optimization: given a weighted first-order formula composed of a set of clauses,

each with a weight (positive or infinity), MaxSMT finds the assignment that minimizes

the sum of the weights of the falsified clauses, or alternatively maximizes the sum of

satisfied clauses.

In this setting, consider a set C = {C1, C2 . . . Cn} of clauses, where each Ci has the

weight 1. The MaxSMT problem is then to find a subsetM⊆ C with largest cardinality,

such that M is satisfiable.

The approach is illustrated in Algorithm 10. Procedure ComputeConstraints builds

a set C of clauses, where, as before, each clause Ci(h, l̄) is a disjunction of the path

conditions leading to the same k-observable. Note, however, that the values of low are

left symbolic. This set is processed by procedure MaxCC as follows. Let us transform

97

Offline Adaptive Attack Synthesis Chapter 5

Algorithm 10 Adaptive Attack Synthesis by Channel Capacity

1: procedure AdaptiveMaxLeakCC(P, k, cost(·))
2: C ← ComputeConstraints(P, k, cost(·))
3: (w, L̄)←MaxCC(C) return (log2w, L̄)

Algorithm 11 Adaptive Attack Constraint Computation

1: procedure ComputeConstraints(P, k, cost(·))
2: O ← ∅, C ← ∅
3: PC ← SymbolicExecution(Ssym(P, k, cost(·)))
4: for all PCk

i (h, l̄) ∈ PC do
5: O ← O ∪ {costk(PCk

i (h, l̄))}

6: for all oki ∈ O do

7: Ci(h, l̄)←
∨

cost(PCk
j)=oki

PC k
j (h, l̄)

8: C ← C ∪ {Ci(h, l̄)}
9: return C

Ci(h, l̄) into Ci(hi, l̄) by renaming h with fresh hi in each clause Ci, respectively. The

intuition is the same as in [33]: the clauses are renamed to define constraints on low

variables, while the high variables are left unconstrained and the goal is to find the low

input value that leads to the maximum number of observations for any value of the secret.

Applying MaxSMT to the set of renamed clauses will yield the maximal number of

clauses that are together satisfiable, and thus yield the maximum number of observa-

tions possible (up to k), giving maximum leakage in terms of channel capacity. Further,

MaxSMT gives a solution, i.e., an assignment L̄ to symbolic variables l̄ that satisfies the

maximum satisfiable clauses, meaning that it induces the partitioning on the secret with

the maximum number of equivalence indistinguishability classes, and thus it defines the

best k-step attack. Algorithm AdaptiveMaxLeakCC computes the k-step adaptive attack

that is optimal w.r.t. Channel Capacity.

As an illustration, consider again the running example. The analysis (up to k=3)

yields 8 path conditions, corresponding to cost sequences: 〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉,

98

Offline Adaptive Attack Synthesis Chapter 5

Algorithm 12 Channel Capacity Maximization

1: procedure MaxCC(C)
2: C ′ ← Rename(C)
3: (w, L̄)←MaxSMT(C ′)
4: return (w, L̄)

〈1, 2, 2〉, 〈2, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 1〉, 〈2, 2, 2〉. Each symbolic path yields different cost,

thus each path condition corresponds to a clause, giving the following clauses (after

renaming):

h1 ≥ l ∧ h1 ≥ l1 ∧ h1 ≥ l11 h2 ≥ l ∧ h2 ≥ l1 ∧ h2 < l11

h3 ≥ l ∧ h3 < l1 ∧ h3 ≥ l12 h4 ≥ l ∧ h4 < l1 ∧ h4 < l12

h5 < l ∧ h5 ≥ l2 ∧ h5 ≥ l21 h6 < l ∧ h6 ≥ l2 ∧ h6 < l21

h7 < l ∧ h7 < l2 ∧ h7 ≥ l22 h8 < l ∧ h8 < l2 ∧ h8 < l22

Solving with MaxSMT gives that the maximum number of satisfiable clauses, corre-

sponding to maximum number of observables after 3 steps, is 6, which is equal to the

domain of the secret. Thus, no matter what the value of the secret is (in domain 1..6) an

attacker can guess it in maximum 3 steps. Furthermore, MaxSMT provides a satisfying

assignment to the values in l̄: l = 3, l1 = 5, l2 = 2, l11 = 6, l12 = 4 defining an attack as

illustrated in Figure 5.3. The leaves in the tree define the partition on the secret induced

by this attack. All the blocks in the partition have size 1, confirming that the attacker

can always guess the secret for this example. Note that the partitions on the right sub-

tree in the figure already have size 1 after two steps. Thus, a third attack step is not

necessary – in the implementation one can exploit such situations to perform pruning of

the attack tree, as explained later in this section.

99

Offline Adaptive Attack Synthesis Chapter 5

h ∈ {1...6}

L = 3

cost〈1〉
h ∈ {3, 4, 5, 6}

L = 5

cost〈1〉
h ∈ {5, 6}

L = 6

cost〈1〉
h ∈ {6}

cost〈2〉
h ∈ {5}

cost〈2〉
h ∈ {3, 4}

L = 4

cost〈1〉
h ∈ {4}

cost〈2〉
h ∈ {3}

cost〈2〉
h ∈ {1, 2}

L = 2

cost〈1〉
h ∈ {2}

L = 2

cost〈1〉
h ∈ {2}

cost〈2〉
h ∈ {1}

L = 1

cost〈1〉
h ∈ {1}

Figure 5.3: Computed attack tree.

5.4 Maximizing Shannon Entropy

Computing the low inputs (i.e., the attack) that maximize the number of observations

does not necessarily lead to the optimal attack with respect to Shannon entropy. I

propose alternative strategies that aim to maximize Shannon entropy instead of simply

the number of observations.

As described earlier, an attack consists of an assignment of concrete values to symbolic

low inputs, L̄ = 〈V(l1),V(l2), ...〉. Our goal is to choose L̄ which maximizes the Shan-

non entropy given that choice of L̄, which I denote Hk(P |L̄). Maximizing this entropy

thereby maximizes the expected information leakage after k steps. To achieve this I de-

veloped two different methods, MaxHMarco and MaxHNumeric, which are both phrased

as combinatorial optimization problems over l̄ with objective function Hk(P |l̄). These

two methods are complementary: MaxHMarco is guaranteed to return the partition with

highest entropy but it is sensitive to the size of the input domain; MaxHNumeric uses

numeric optimization methods that are approximate and therefore can not provide full

guarantees but they can potentially scale to larger input domains.

Algorithm 13, AdaptiveMaxLeakH, outlines the approach. We first use symbolic

execution to compute the set of clauses C which partitions the input. I then compute

100

Offline Adaptive Attack Synthesis Chapter 5

Algorithm 13 Shannon Entropy Maximization

1: procedure AdaptiveMaxLeakH(P, k, cost)
2: C ← ComputeConstraints(P, k, cost(·))
3: L̄←MaxH(C, true)
4: return (Hk(P |L̄), L̄)

the value of L̄ which maximizes the entropy by setting the function MaxH to be either

MaxHMarco or MaxHNumeric, and finally return the maximum entropy value, which

gives the information leakage. The two methods are detailed in the subsequent sections.

5.4.1 Entropy Maximization: Numeric Optimization

Our approach generates a symbolic entropy function and attempts to directly max-

imize that function using numeric techniques. This method relies on parameterizing

observation sequence probabilities by the choice of low input values, computed via model

counting.

A model counting function for Ci(h, l̄) is a function Fi(l̄) that computes the number

of possible secrets h that satisfy Ci, given a choice of l̄. For instance, recall the running

example from Fig. 5.1 with a secret domain 1 ≤ h ≤ 6 and suppose one is interested in

an attack for 2 steps. The adversary will input an initial guess l, and then input l1 or

l2 depending on if cost 〈1〉 or cost 〈2〉 is observed. Then there are 4 possible constraints

over the vector l̄ = 〈l, l1, l2〉 corresponding to the leaves of the symbolic attack tree.

C1 = h < l ∧ h < l1 C2 = h < l ∧ h ≥ l1

C3 = h ≥ l ∧ h < l2 C4 = h ≥ l ∧ h ≥ l2

Consider the number of secrets h that are consistent with C1 for a given choice of

l̄ and the domain of h. If both l > 6 and l1 > 6 then h can take on any value in the

101

Offline Adaptive Attack Synthesis Chapter 5

domain and there are 6 solutions. If 1 ≤ l ≤ 6∧ l ≤ l1 then there are exactly l− 1 values

of h that satisfy C1. Symmetrically, if 1 ≤ l1 ≤ 6 ∧ l1 < l then there are l1 − 1 possible

values for h. Otherwise, C1 has no solutions. One can write a counting function for this

and the 3 remaining constraints as piecewise functions (where it is assumed that if none

of the piecewise conditions apply then the function is 0.)

F1(l̄) =


6 : l > 6 ∧ l1 > 6

l − 1 : 1 ≤ l ≤ 6 ∧ l ≤ l1

l1 − 1 : 1 ≤ l1 ≤ 6 ∧ l1 < l

F2(l̄) =



6 : l1 < 1 ∧ 6 < l

l − l1 : 1 ≤ l1 ≤ l ≤ 6

l − 1 : l1 < 1 ≤ l ≤ 6

7− l1 : 1 ≤ l1 ≤ 6 < l

F3(l̄) =



6 : l < 1 ∧ 6 < l2

l2 − l : 1 ≤ l ≤ l2 ≤ 6

l2 − 1 : l < 1 ≤ l2 ≤ 6

7− l : 1 ≤ l ≤ 6 < l2

F4(l̄) =


6 : l < 1 ∧ l2 < 1

7− l : 1 ≤ l ≤ 6 ∧ l2 < l

7− l2 : 1 ≤ l2 ≤ 6 ∧ l ≤ l2

I use the parameterized model counter Barvinok [57] to automatically produce each

Fi(l̄). Barvinok performs parameterized model counting by representing a constraint

C on variables l̄ and h as a symbolic polytope Q ⊆ Rn. Barvinok’s algorithm gener-

ates a multivariate piecewise polynomial F such that F (l̄) evaluates to the number of

assignments of integer values to h that lie in the interior of Q.

Using each Fi(l̄) one can compute the probability of an observation sequence given

the values of the low inputs as p(oki |l̄) = Fi(l̄)/#D. One can then plug these symbolic

probability functions into Equation 6.1:

102

Offline Adaptive Attack Synthesis Chapter 5

Algorithm 14 Symbolic-Numeric Shannon Entropy Maximization

1: procedure MaxHNumeric(C, D)
2: for all Ci ∈ C do
3: Fi(l̄)← SymbolicModelCount(Ci, l̄, h)
4: p(oki |l̄)← Fi(l̄)/#D

5: Hk(P |l̄)← −
∑m

i=1 p(o
k
i |l̄) log2(p(oki |l̄))

6: L̄ = NMaximize(Hk(P |l̄))
7: return L̄

Hk(P |l̄) = −
m∑
i=1

Fi(l̄)

#D
log2

Fi(l̄)

#D

Then, the attack synthesis can be stated as a non-linear objective function maximiza-

tion problem, defined by L̄ = arg maxl̄Hk(P |l̄). I leverage existing non-linear optimiza-

tion routines to approximate L̄. In the implementation Mathematica’s NMaximize

was used. The overall strategy generation algorithm using numeric entropy maximization

is as follows:

For the example from Figure 5.1, maximizing H(P |l̄) results in the assignment L̄ =

〈4, 2, 5〉 for symbolic inputs 〈l, l1, l2〉. This corresponds to the first two steps of an adap-

tive timing side channel binary search attack.

Note that method MaxHNumeric can also be used, with minimal modifications, for

computing an attack with respect to other measures. Once we have the (parameterized)

probability computations (line 3) one can plug them in the formulas for, e.g., guessability

or Min entropy, and apply numeric optimizations to maximize those measures.

5.4.2 Entropy Maximization: Maximal Satisfiable Subsets

The MaxSMT solution described in the earlier section represents only one maximal

partition on the secret which may not necessarily lead to maximum entropy. One can

103

Offline Adaptive Attack Synthesis Chapter 5

compute all the maximal partitions on the secret and then choose the one that has

maximal entropy using the MARCO algorithm [85]. The MARCO algorithm solves a

generalization of MaxSMT, namely the problem of finding all Maximal Satisfiable Subsets

(MSSs) of clauses that are together satisfiable [87]. The details of using the MARCO

algorithm for entropy maximization are beyond the scope of this dissertation, but I

compare the results of this method with our method for numeric entropy maximization,

described in the previous section.

5.4.3 Greedy Maximization

Generating the symbolic attack tree fully up to depth k will generate up to mk

knowledge states, where m is the number of observables. Thus, the maximization meth-

ods presented so far would involve over mk low variables. Rather than perform the full

exploration up to a given depth, one can use a d-greedy approach, in which the attack is

computed in phases of size d and the l-variables are solved to maximize channel capacity

or entropy for each phase. This reduces the problem to solving k
d

maximization problems

of size md, with the trade off of (possibly) yielding a suboptimal solution. Note that in

the case of a binary search oracle side channel, as in the example, the 1-greedy solution

using Shannon entropy happens to be the optimal solution, requiring solving k optimiza-

tions problems each with 1 free parameter, rather than 1 optimization problem with 2k

parameters. In general a greedy solution can be arbitrarily suboptimal [82].

5.4.4 Optimizations

Procedure ComputeConstraints(P, k, cost(·)) is used to build a set of clauses, each

one corresponding to a k-observable. The simplest and most intuitive implementation is

to run Symbolic Execution on the system Ssym. However, this implementation can be

104

Offline Adaptive Attack Synthesis Chapter 5

optimized by running Symbolic Execution on only one copy of the program to obtain

a set of path conditions. One then obtains the clauses corresponding to k-observables

by systematically combining these path conditions (with appropriate renaming). This

optimization reduces the overhead of symbolically executing the program multiple times.

Further, for the greedy techniques early pruning was implemented to not expand attack

steps for partition blocks that already have size 1, since no new information can be

inferred for those blocks.

5.5 Implementation

The proposed techniques were implmented in the Symbolic PathFinder (SPF) [30]

symbolic execution tool. SPF implements a custom JVM which symbolically executes

Java bytecode instructions. I use Barvinok [57] for (parameterized) model counting

(for linear constraints). For numeric maximization I use Mathematica’s NMaximize

function [88] configured to use Differential Evolution [89] and set to use between 100

and 250 iterations to balance running time and convergence.

Cost Models

Our work is done in the context of a project that specifically addresses side-channels

that are related to time and space consumption in Java programs. To this end, SPF lis-

teners were implemented to monitor the bytecode instructions executed by the program,

and to perform the analysis of side-channels related to time and space consumption. For

timing channels one can compute the execution time of each (symbolic) path by assigning

a time unit to each instruction and aggregating the cost.

To obtain a more realistic cost model, one can also perform statistical measurements

of the execution time of the program ran on a reference hardware platform, as driven by

105

Offline Adaptive Attack Synthesis Chapter 5

the tests that satisfy the corresponding path conditions. Analysis of other types of side

channels can be implemented easily, e.g. one can monitor the memory allocated inside

SPF’s custom JVM to measure memory consumption.

An abstraction layer was also implemented that groups together the costs that have

very close values, as in practice they would be indistinguishable to an adversary. Let omin

and omax be the minimum and maximum values of the costs observed along the paths in

one run. The range is divided into n intervals from 0th to (n − 1)th, where n is a user

supplied parameter. Each interval has equal size, d = omax−omin

n
. One can then map all

the costs obs such that omin + i×d ≤ obs < omin + (i+ 1)×d to the same interval i (omax

belongs to the (n − 1)th interval). These intervals form the abstractions of the concrete

costs and they are used in the analysis. In practice this abstraction can be used to find

optimal attacks, while also providing the benefit of greater scalability (since the number

of observations and hence of clauses can be reduced significantly).

5.6 Experiments

There are three main techniques (for a depth k): (1) MaxCC, (2) MaxHMarco, and (3)

MaxHNumeric, each with two variants: (a) full exploration and (b) 1-greedy approach.

When evaluated, both MaxCC (1a) and (1b) generate effective attacks in reasonable

time which is described in the coming sections. For MaxHMarco and MaxHNumeric, I

find that due to the complexity of composed constraints, (2a) and (3a) are not feasible

in practice. In addition, (2b) and (3b) give optimal or near-optimal attacks. Thus let

us consider the four variants (1a, 1b, 2b, 3b) with the goal of assessing if they can

automatically synthesize attacks and compute leakage for complex, realistic applications.

LawDB—a complex network service application provided to us by DARPA [90]—and

the example of Figure 5.1 were analyzed.

106

Offline Adaptive Attack Synthesis Chapter 5

The results of the experiments for MaxCC (1a and 1b) are shown in Fig. 5.1, while

the results of the experiments for MaxHMarco and MaxHNumeric (2b and 3b) are shown

in Fig. 5.2. In the tables, DOMAIN is the number of possible values of the secret. The

tables show the number of attack steps, the maximum number of observables, maxObs,

the leakage and the analysis time (in seconds). A ’-’ indicates timeout (of 1h). All the

experiments were run on a standard MacBook Pro. I first give a high level description

of the discovered vulnerabilities and then describe in more detail the results displayed in

the tables.

Vulnerabilities

LawDB is a network service application that provides access to records about law

enforcement personnel. The application consists of 41 classes with 2844 line of codes,

and uses the Netty library [91]. On the server side, LawDB stores all employee records

in a database, and each employee is referenced with a unique ID. All IDs are loaded into

a tree data structure when the server starts. There is a group of employees who works

on clandestine activities; their IDs are restricted information. On the client side, there

are several available operations, including a search for all IDs within a chosen range.

Upon receiving the search request, the server delegates it to the tree data structure,

which returns all the IDs in the range. If the ID is non-restricted, it is sent back to the

client immediately in a UDP package; otherwise the server writes to an error log file, and

does not send the restricted ID to the user. To analyze this example the database was

populated with two concrete unrestricted IDs and one symbolic restricted ID, i.e. the

secret h. The adversary performs the search operation by providing a symbolic range

[lmin, lmax].

Our techniques found a timing channel that is due to the fact that the response

time of the server is noticeably longer when there are restricted IDs in the search range

107

Offline Adaptive Attack Synthesis Chapter 5

(due to the writing to the log file). Exploiting this timing channel, an adversary can

perform an adaptive attack to discover a restricted ID. At a high level, this example is

similar to our running example as the optimal attack involves narrowing down a range

of secret values using repeated comparisons with low values. Specifically, the adversary

makes a range request [min, max]. If the secret is in the range, then the execution

time is longer. If the secret is outside the range then the time is slower. The adversary

keeps making range queries smaller and smaller until it gets to size 1. Our techniques

found this attack automatically. Note that for this example an abstraction was used

for the costs. First a symbolic analysis was performed on one run of the program and

we obtained 30 path conditions and 29 observables. We solved the path conditions,

we obtained concrete test inputs and we executed the program (multiple times) on these

inputs. Realtime measurements showed that only two group of observables are noticeably

different. Therefore, we used abstraction to divide the costs into two intervals obtaining

a binary search attack, which we validated by demonstrating it in operation.

Results for MaxCC

The full approach, when it can finish, returns optimal attacks. However, it is expen-

sive, since each analyzed clause encodes what amounts to k copies of path conditions

obtained from a single program run. The greedy approach scales better but may not

be optimal. See, e.g., results for running example from Fig. 5.1. At each attack step,

the adversary provides an input, and can determine from the observation whether the

secret is greater or smaller than her input. An optimal attack is a binary search in the

secret’s domain, which requires log2(DOMAIN) number of steps in the worst case. Fig. 5.1

confirms that, when DOMAIN = 10, the full approach reveals the whole secret in 4 steps

(log2(10) = 3.3, note also that maxObs = DOMAIN so full secret is revealed). In general,

a k-step attack would reveal 2k observables or the whole secret if its domain is less than

108

Offline Adaptive Attack Synthesis Chapter 5

2k. The attacks synthesized by the greedy approach are not optimal. For example, when

DOMAIN = 200 the optimal strategy requires 8 steps to discover the whole secret; the

greedy strategy requires 16 steps. However, it can synthesize this 16-step attack in less

than 1 minute, while the full approach times out.

Note also that with the same number of steps, the full approach times out in small

domains (200 - 500), but returns quickly when the domain is large (106). The reason

is that when the domain is small some of the clauses are unsatisfiable, and UNSAT

instances are usually expensive.

On the other hand, for LawDB and the illustrative example, MaxCC greedy does not

generate the optimal attack, but still scales well and generates tight bounds on the leakage

within a small number of steps as compared to the optimal attacks (see discussion in the

next section).

Results for MaxHMarco and MaxHNumeric – greedy

Computing entropy is more expensive than computing channel capacity. In the re-

sults, observe that MaxCC does not generate the optimal attack for LawDB and the

running example. Thus we apply the MaxH methods to these two examples using a

1-greedy configuration. Results are shown in Fig. 5.2.

In the illustrative example, MaxHMarco can synthesize the optimal strategy for DO-

MAIN up to 500, where MaxCC timed out, and MaxCC greedy is not able to synthesize

the optimal attack. Furthermore MaxHMarco generates an attack for LawDB for a small

domain where 7 steps are enough to reveal all 98 secret values. MaxCC is not able to

analyze more than 4 steps, and MaxCC greedy needs 17 steps to reveal the full secret.

MaxHMarco relies on enumeration of partitions, so when there is a different partition

for each public input it does not scale to large domains, and times out for a domain size of

106. On the other hand MaxHNumeric scales well and discovers attacks which leak only

109

Offline Adaptive Attack Synthesis Chapter 5

Case Study DOMAIN Steps
Full 1-greedy

maxObs CC time maxObs CC time

Example from Fig. 5.1

10 4 10 3.322 3.060 8 3 2.330

200
8 - - - 64 6 10.026
16 - - - 200 7.644 27.225

300
9 - - - 83 6.375 11.561
21 - - - 300 8.229 36.827

400
9 - - - 97 6.600 13.143
20 - - - 400 8.644 49.103

500
9 - - - 71 6.150 10.049
25 - - - 500 8.966 1m1.076

106

10 1024 10 14.578 461 8.849 1m0.702
11 2048 11 2m2.680 752 9.555 1m40.382
12 4096 12 19m32.370 1199 10.228 2m39.689
13 - - - 1903 10.894 4m15.845

LawDB

100 - 2

2 4 2 2.750 4 2 2.441
3 8 3 18.915 7 2.807 3.244
4 16 4 3m8.783 11 3.459 4.160
5 - - - 17 4.087 5.342
17 - - - 98 6.615 21.010

106 - 2

2 4 2 2.762 4 2 2.579
3 8 3 19.493 8 3 3.866
4 16 4 3m21.688 16 4 5.844
5 - - - 32 5 9.212
17 - - - 6070 12.567 18m31.246

Table 5.1: Results for MaxCC (full exploration and 1-greedy).

slightly less information for our examples. We also performed experiments for LawDB

without abstraction, and found that, as expected, the performance of both MaxHMarco

and MaxHNumeric starts to degrade when the number of constraints increases. Thus

the role of the abstraction is essential for the analysis of large systems and I plan to

investigate it further in the future.

5.7 Chapter Summary

In this chapter, I described techniques for synthesizing adaptive side channel attacks

in a fully static, offline manner. I demonstrated the effectiveness of this approach on a

set of benchmarks. In the next chapter I will show how to extend this approach to handle

programs running on a system that contains noise.

110

Offline Adaptive Attack Synthesis Chapter 5

Case Study DOMAIN Steps
MaxHNumeric MaxHMarco

Leakage (bits) time maxObs Leakage (bits) time

Example from Fig. 5.1

200 8 7.207 44.876 200 7.644 2m17.120
300 9 7.560 69.383 300 8.229 3m52.363
400 9 7.743 1m55.212 400 8.644 5m41.539
500 9 7.800 1m24.068 500 8.966 7m36.105

106
10 8.172 3m15.000 - - -
11 8.303 4m55.088 - - -
12 8.357 7m12.280 - - -
13 8.371 9m34.512 - - -
14 8.376 12m20.844 - - -

LawDB

100 - 2

2 1.999 2.552 4 1.999 1m5.234
3 2.999 4.688 8 2.999 1m33.656
4 3.998 10.284 16 3.998 1m49.308
5 4.996 17.604 32 4.996 2m15.564
6 5.921 33.852 64 5.921 2m25.816
7 6.614 57.36 98 6.615 2m36.325

500 - 2

2 1.999 3.128 4 1.999 6m0.768
3 2.999 7.340 8 2.999 8m39.441
4 3.999 10.816 16 3.999 10m33.013
5 4.999 22.828 32 4.999 12m52.701
6 5.997 39.844 64 5.997 15m20.654
7 6.994 1m9.876 128 6.994 15m34.624
8 7.966 2m6.796 256 7.985 17m43.237
9 8.760 3m32.292 497 8.955 18m4.668

106 - 2

2 2. 3.652 - - -
3 3. 7.452 - - -
4 4. 13.3 - - -
5 4.999 25.24 - - -
6 5.999 45.544 - - -
7 6.999 1m26.22 - - -
8 7.996 2m41.136 - - -
9 8.939 4m31.396 - - -
10 9.678 8m38.272 - - -
11 10.06 15m8.224 - - -

Table 5.2: Results for MaxHNumeric and MaxHMarco.

111

Chapter 6

Online Adaptive Attack Synthesis

Under Noisy Conditions

This chapter contains the primary contribution of my dissertation research. In this

chapter, I privide a method for automatically and dynamically synthesizing adaptive

side-channel attacks against code segments that manipulate secret data. I synthesize

attacks in the presence of noisy environments, like a client and server communicating

through a network.

To illustrate the main idea, consider the following scenario. An adversary obtains

the program source code and system specification for a server application, but does not

have access to private values stored on the server on which the application runs. This is

a realistic situation, as many web applications are developed using open-source software

and they run on cloud servers with known characteristics. We show that by analyzing

the source code and performing offline profiling on a mock server under his control, an

adversary can develop a probabilistic model of the relationship between the inputs, side

channel measurements, and secret values. Using this model, the adversary mounts a side-

channel attack against the real platform, adaptively selecting inputs that incrementally

112

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

leak secret values.

In this work, I show how to automate the type of attack just described. I give a widely

applicable solution for the problem based on information theory and Bayesian inference.

I use state-of-the-art tools and techniques including symbolic execution, symbolic model-

counting, and numeric optimization. I implemented this approach, targeting networked

Java server applications, and experimentally show that it works on a set of benchmarks

by either synthesizing an attack or by reporting that an attack was not found.

There has been prior work: on secure information flow providing methods for de-

tecting insecure flows [92]; on quantitative information flow presenting techniques for

measuring the amount of information leaked through indirect flows [37]; and on analy-

sis of adaptive side-channel adversaries providing techniques for automatically reasoning

about malicious users [93]. However, despite influential prior work in these areas, existing

adaptive adversary models for reasoning about malicious users (1) rely on explicit strategy

enumeration via exhaustive approaches [93], (2) attempt to generate an entire strategy

tree [85], and (3) do not address environment measurement noise [85]. The contribu-

tion of this paper is a novel approach based on symbolic execution [21], weighted model

counting [47, 64, 48], and numeric optimization [94] for the online automatic synthesis

of attacks that leak maximum amount of private information, and directly addresses the

above issues by (1) symbolically representing program behaviors, (2) generating strategy

steps dynamically, and (3) using Bayesian inference to model adversary knowledge in a

noisy environment.

6.1 Motivating Example

Consider the pseudo-code in Figure 6.1. A client sends a low security input l and

gets back a response, r. On the other end, a server runs forever waiting to receive l and

113

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Server:
private h = 97014599;

private f(h, l):
if (h ≤ l) log.write(“bound error”);
else process(l);
return;

while(true):
receive l;
f(h, l);
send 0;

Client:
send l;
receive r;

Figure 6.1: Example client-server application which contains a side channel.

calls a private function f(h, l), where h is initialized as a private high security integer

variable representing a secret resource bound, and then responds with 0. The function f

compares h and l, writing to an error log if l is too large.

Suppose a malicious adversary A wants to know the server’s secret resource bound h.

A reasons that sending an input which causes the server to write an error to the log should

cause a longer round-trip time delay between send and receive than an input which does

not cause this error. Now, imagine that the adversary is attacking an idealized system

in which this time difference will always be the same, say, for the sake of the example, 2

ms when nothing is written to the log and 4 ms when there is a write to the log. This

timing difference gives the adversary a side channel in time which can be exploited to

extract the value of h. A can then try different values of l and decide if the value of h

is larger than l or not based on the elapsed time. This enables a binary search on h. In

Figure 6.2 we see pseudo-code for such an attack, assuming h is a 32-bit unsigned integer.

This is an example of an adaptive attack, in which A makes choices of l based on prior

observations. In this paper, we present techniques for automatically synthesizing such

attacks in the presence of system noise.

Existing works on automated adaptive attack synthesis assume idealized conditions [93,

114

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

min = 0; max = 232;
while (min 6= max)

l = dmin+max
2
e

t = time { send l; receive r; }
if (t = 2 ms) min = l;
else max = l;

h = min;

Figure 6.2: Example side-channel attack to reveal the secret value of h stored on the
server in Figure 6.1.

85]. However, due to noise in the server and the network, an attack which works for the

idealized system is not applicable in practice. The observable elapsed time for each path

of f is not a discrete constant value, but follows some probability distribution, thereby

obscuring the distinguishability of program paths.

In our example, suppose that, from the client side, the timing measurements from

each branch follow distributions approximately centered around 2 ms and 4 ms as in

Figure 6.3. If A sends l = 100, observing a 1 ms duration almost certainly implies that

h > 100 and observing a 5 ms duration almost certainly implies that h ≥ 100. But, if A

observes a 2.8 ms duration, it appears to be a toss-up—it could be that either h > 100

or h ≤ 100 with nearly equal likelihood.

We present an approach by which an adversary automatically synthesizes inputs to

extract information about secret program values despite noise in the system observables.

At a high level, we perform offline profiling of a shadow system under our control which

mimics the real system, in order to estimate the observable probability distributions.

Armed with these distributions and some initial belief about the distribution of the secret,

we iteratively synthesize a system input l∗ which yields the largest expected information

gain by solving an information-theoretic objective function maximization problem. In

each attack step, the synthesized adversary 1) invokes the system with l∗, 2) makes an

observation of the real system, 3) makes a Bayesian update on its prior belief about the

115

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Distributions of timing measurements corresponding to the two branches
of the server’s function f from Figure 6.1: h ≤ l (left) and h > l (right).

secret value, and repeats the process for the next attack step.

6.2 Overview

In this section, we give an overview of our model for the adversary-system interaction,

make explicit the program parameters over which we conduct our analysis, provide the

high-level steps of dynamic attack generation, and give a discussion of relevant informa-

tion theory concepts.

6.2.1 System Model

In our approach, we analyze secret-manipulating code executing on a server. Note,

many side-channel vulnerabilities can be localized to a small number of functions, and it is

even very useful to analyze individual functions for vulnerability to side-channel attacks

(memcmp, array.equals(), String.equals()) [5, 6, 18, 28, 65]. Once the suspicious

function is identified, the attack synthesis is fully automatic. For large systems, this

approach can be used to analyze code segments that manipulate the secret, rather than

the whole system. n a realistic scenario, a developer or adversary can identify a suspicious

116

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Secret

Adversary, A
Program, P

h

l

Belief
Update observation, o

main channel

p(H = h)

output, v

Figure 6.4: Model of adversary, program, inputs, and observations as a probabilistic system.

function that might be vulnerable to side-channel attacks and use our approach to identify

such an attack. For the remainder of our discussion we shall assume that P is a program

that contains the suspicious function and a direct entry point to invoking the function.

We use a model in which an adversary A interacts with a system S that is decomposed

into a program P and a noise function N , illustrated in Figure 6.4. The program and

runtime environment form a probabilistic interactive system acting as an information

channel, modeled as the probability of a noisy observation o given the inputs h and l:

p(O = o|H = h, L = l). An attacker who wants to learn the secret input h is interested

in “reverse engineering” that probabilistic relationship. The adversary wants to compute

the probability of a secret input value h given knowledge of his public input l and the side-

channel observation o: p(H = h|O = o, L = l). We use Bayesian inference to formalize

this process of reverse engineering. By solving a numeric entropy optimization problem

at each attack step, an attacker selects optimal input l∗ with the goal that p(H = h)

converges to a distribution that assigns high probability to the actual initially unknown

value of h. Here we define the components of our model.

Program under attack. We assume that P is a deterministic program, which takes

exactly two inputs h and l, and we write P (h, l) to indicate the invocation of P on

its inputs. The ability of our model to handle programs with more than two inputs is

117

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

explained in the definitions of h and l. We explain how our model can be relaxed to

handle non-deterministic programs in Section 6.4.7.

High security inputs. By H we denote the set of possible high security values, with h

being specific member of H, and H being a random variable which ranges over H . These

secret inputs on the real system are not directly accessible to the adversary A whose goal

is to learn as much as possible about the value of h ∈ H. We assume that the choice of

h does not change over repeated invocations of P .

Low security inputs. By L we denote the set of low security values, with l being a

specific member of L, and L the corresponding random variable. These inputs are under

the control of the adversary A who chooses a value for l and invokes P with this input.

A may choose different values of l over repeated invocations of P .

Observations. The adversary is able to make side-channel observations, like time mea-

surements, when the program is run. We denote the set of possible observations by O.

We assume that the set O is continuous for the purpose of modeling timing side channels,

with O a random variable.

Program traces. A trace t is characterization of a single program execution. We

suppose that a run of P according to a trace t is manifested, from A’s point of view, as

a side-channel observation o which may be distorted by noise.

The adversary. The adversary A has some current belief p(H = h) about the value

of the secret, chooses an input l to provide to the system, and makes a side-channel

observation, o, of the system for that input. A then makes a Bayesian update on p(H = h)

based on o and repeats the process. The contribution of this paper is the synthesis of

the optimal inputs, l∗, which cause the system to leak the most information about h.

118

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

6.2.2 Outline of Attack Synthesis

Our attack synthesis method is split into two phases. The reader can refer to Fig-

ure 6.5 for this discussion.

Phase 1: Offline static analysis and profiling. The main goal of the offline phase is

to estimate a probabilistic relationship between program traces and side-channel observa-

tions. Informally, a program trace is a sequence of program states, including control flow

choices at each branch condition. We group program traces into trace classes based on

indistinguishability via observation. We summarize the main points of this phase below,

and provide the detailed discussions in Section 6.3.

1. I use symbolic execution to compute path constraints (PCs) on the secret and

public inputs for the program source code. Path constraints are logical formulas

over inputs that characterize an initial partition estimate for program traces. Each

PC, φi, is associated with a trace class Ti, (Section 6.3.2).

2. For each PC, φi, I generate a witness wi = (hi, li). Each wi is assumed to be a

characteristic representative of all concrete secret and public inputs that cause P

to execute any of the traces in a trace class Ti.

3. For each wi, I repeatedly run the system with wi as input and record observation

samples. From the samples, we estimate the conditional probability of observation

given trace class, denoted P (O|T = Ti) (Section 6.3.3).

4. PCs may generate too fine a partition of program trace classes. That is, there may

be two trace classes Ti and Tj where P (O|T = Ti) and P (O|T = Tj) coincide to such

a degree that the traces are effectively indistinguishable by measuring O. Thus, we

merge PC’s and corresponding distributions which are too similar according to a

metric known as the Hellinger distance (Section 6.3.4).

119

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Symbolic
execution

Witness
generation

Dynamic
profiling

Distribution
merging

Model
counting

Mutual info
function

Numeric
maximization

Program
execution

Bayesian
update

Merged
trace

classes

Trace classes

Witnesses

Estimated noise distributions

Model-counting functions

Objective function

Low input, l *

Observation
Updated

belief
P(H=h)

Source code

Merged
distributions

Initial belief

Offline
profiling

Online attack
synthesis

Figure 6.5: Overview of our attack synthesis approach.

120

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Phase 2: Online dynamic attack synthesis. The second phase mounts an adaptive

attack against the system, making use of the estimated system profile from the offline

phase, assuming that the adversary has some initial belief about the distribution of the

secret. We summarize the main approach for this phase below, with detailed discussions

in Section 6.4.

1. We use the current belief about the secret along with path constraints to compute,

for each φi, a model counting function which is symbolic over the public inputs,

denoted fi(l)(Section 6.4.2).

2. We use the model-counting functions to compute trace class probabilities as sym-

bolic functions over low security inputs. We then apply the mutual information

formula from information theory to get an information leakage objective function,

which is symbolic over the public inputs (Section 6.4.3).

3. We use numeric optimization to compute the public input l∗ that maximizes the

symbolic information leakage objective function (Section 6.4.4).

4. We provide the leakage-maximizing input, l∗, to the system and record the obser-

vation.

5. We use Bayesian updates to refresh the current belief about the secret using the

observation and the noise profile that was estimated during the offline phase (Sec-

tion 6.4.5). We repeat this process starting from Step 1.

6.2.3 Measuring Uncertainty

In order to maximize information leakage we must have a way to quantify it. Here

we give a brief background on standard measures from information theory that are com-

monly used in side-channel analysis. Intuitively, before invoking P , A has some initial

121

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

uncertainty about the value of h, while after observing o, some amount of information

is leaked, thereby reducing A’s remaining uncertainty about h. The field of quantita-

tive information flow (QIF) [37] formalizes this intuition by casting the problem in the

language of information theory using Shannon’s information entropy which can be con-

sidered a measurement of uncertainty [38]. We briefly give three relevant information

entropy measures [39]. Given a random variable X which can take values in X with

probabilities p(X = x), the information entropy of X, denoted H(X) is given by

H(X) =
∑
x∈X

p(X = x) log2

1

p(X = x)
(6.1)

Given another random variable Y and a conditional probability distribution p(X = x|Y =

y), the conditional entropy of X given Y is

H(X|Y) =
∑
y∈Y

p(Y = y)
∑
x∈X

p(X = x|Y = y) log2

1

p(X = x|Y = y)
(6.2)

Intuitively, H(X|Y) is the expected information contained in X given knowledge of Y .

Given these two definitions, we would like to compute the expected information gained

about X by observing Y . In our application, we target timing side channels where we

model time as a continuous random variable, while the secret is a discrete value (i.e.,

an integer or a string). In order to measure the mutual information between a discrete

random variable Y and a continuous random variable X, we use the Kullback–Leibler

(KL) divergence [39].

The KL divergence, DKL(p, q) is a statistical measure of the discrepancy between

two models, p(x) and q(x), for a probabilistic event X over a continuous domain. It is

122

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

computed via the formula:

DKL(p, q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (6.3)

Then, the mutual information between a discrete random variable Y and a continuous

random variable X is defined as the expected information gain with expectation taken

over all possible events in Y :

I(Y ;X) =
∑
y∈Y

p(Y = y)DKL(p(X|Y = y), p(X)) (6.4)

Intuitively, DKL(p(X|Y = y), p(X)) is a measure of information gain between the prior

distribution p(X) and the posterior distribution p(X|Y = y).

We consider the high-security input, low-security input, and observable as random

variables H, L, and O, where H and L are discrete and O is continuous. We interpret

p(H) as the adversary’s initial belief about h and H(H) as the initial uncertainty. The

conditional entropy H(H|O,L = l) quantifies A’s remaining uncertainty after providing

input L = l and observing output O. Finally, we interpret I(H;O|L = l) as the amount

of information leaked.

The goal of the adversary is to maximize the value of I(H;O|L = l) at every step,

which we call the leakage for that step, measured in bits of information. Our attack syn-

thesis technique relies on choosing an optimal input L = l∗ at each step which maximizes

the expression given in Equation 6.4. At a high level, we compute a symbolic expression

for I(H;O|L = l) using symbolic weighted model counting and then use off-the-shelf

numeric maximization routines to choose l∗ (detailed in Section 6.4).

123

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

6.3 Offline Profiling

The first phase of our attack synthesis relies on offline pre-computation of equivalence

classes of program traces and corresponding noise distributions. We accomplish this

through the use of symbolic execution, dynamic profiling using a small representative set

of witness inputs, and statistical measures for merging indistinguishable distributions.

The results of this offline phase are then used during the online attack synthesis phase

described in Section 6.4.

6.3.1 Trace Equivalence Classes

Let T denote the set of execution traces of program P . A trace is a characterization

of a single program execution. From adversary A’s point of view, invoking P induces

execution of a single trace t. Knowing the input l and the executed program trace t, A

can gain information about h. However, A does not which program trace t was executed,

but can make a side-channel observation o ∈ O, which may be distorted by system noise.

In this setting, there are two challenges:

1. Observation Noise: the same execution trace t may lead to different observations

o1 and o2 in different runs of P .

2. Observation Collision: two different traces t1 and t2 may lead to the same

observation o in some runs of P .

We address these two challenges by defining trace classes, which identify observation-

ally equivalent traces in the presence of noise. Let T be a random variable that ranges

over T and p(O|T) be the conditional probability density function on observations con-

ditioned on which trace is executed. We define an equivalence relation ∼= on T in which

t1 ∼= t2 if p(O|T = t1) = p(O|T = t2) and we say t1 and t2 are observationally equivalent.

124

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Let partition T be the set of equivalence classes of T defined by ∼=. Then, we call each

Ti ∈ T a trace class.

A gains information about h by knowing which trace t was executed when P is run

with l. But due to noise and collisions, the best A can hope for with a single run of the

program is to determine the likelihood that t ∈ Ti for each trace class Ti. So, given l and

o, A would like to know p(T ∈ Ti|O = o, L = l). In the remainder of this section we show

how A can compute a characterization of T and efficiently estimate p(O|T ∈ Ti). We

explain in Section 6.4 how p(O|T ∈ Ti) is used during the online attack phase to compute

p(T ∈ Ti|O = o, L = l).

6.3.2 Trace Class Discovery via Symbolic Execution

I now describe how symbolic execution can be used as a first approximation of trace

classes. First, I briefly describe symbolic execution and then explain how symbolic exe-

cution’s path constraints are associated with trace classes.

Symbolic execution [21], as discussed in Chapter 2, is a static analysis technique by

which a program is executed on symbolic (as opposed to concrete) input values which

represent all possible concrete values. Symbolically executing a program yields a set

of path constraints Φ = {φ1, φ2, . . . , φn}. Each φi is a conjunction of constraints on

the symbolic inputs that characterize all concrete inputs that would cause a path to be

followed. All the φi’s are disjoint. Whenever symbolic execution hits a branch condition

c, both branches are explored and the constraint is updated: φ becomes φ∧ c in the true

branch and φ ∧ ¬c in the false branch. Path constraint satisfiability is checked using

constraint solvers such as Z3 [29]. If a path constraint is found to be unsatisfiable, that

path is no longer analyzed. For a satisfiable path constraint, the solver can return a

model (concrete input) that will cause that path to be executed. To deal with loops and

125

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

recursion, a bound is typically enforced on exploration depth.

We use the path constraints generated by symbolic execution as an initial character-

ization of trace classes, where we consider any secret inputs as a vector of symbolic high

security variables h and remaining inputs as a vector of symbolic low security variables

l. Then symbolic execution results in a set of path constraints over the domains H and

L, which we write as Φ = {φ1(h, l), φ2(h, l), . . . , φn(h, l)}. In general, we find it useful to

think of each φi(h, l) as a logical formula which returns true or false, but sometimes it is

convenient to think of φi(h, l) as a characteristic function that returns 1 when the path

constraint is satisfied by h and l and 0 otherwise. A witness wi = (hi, li) for a given φi

is a concrete choice of h = hi and l = li so that φi(hi, li) evaluates to true, and we write

wi � φi(h, l).

We assume that inputs that satisfy the same path condition φi induce traces that are

observationally equivalent, and hence belong to the same trace class Ti. I.e., for inputs

(h, l) and (h′, l′), if (h, l) � φi and (h′, l′) � φi, then running P (h, l) and P (h′, l′) results

in traces t1 and t2 that reside in the same trace class Ti. Thus, our characterization of

trace classes is defined by the set of path constraints Φ, where each path constraint φi is

associated with a trace class Ti. Recalling the example from Figure 6.1, the trace class

characterization based on path constraints is {h ≤ l, h > l}.

In the following two subsections we discuss how we address the issues of observation

noise and observation collision for the trace classes induced by path constraints.

6.3.3 Estimating Observation Noise

In order to estimate the trace-observation noise, for each φi we find a witness that

satisfies φi and profile the program running in the environment with that input. Witness

generation is a common practice in symbolic execution in order to provide concrete inputs

126

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Algorithm 15 System S, Path Constraints Φ, # of Samples m

1: procedure Profile(S, Φ, n)
2: for each φi ∈ Φ
3: (hi, li)← generateWitness(φi)
4: for j from 1 to m
5: sample(i, j)← S(h, l)

that demonstrate a particular program behavior. Many satisfiability solvers support

witness generation. Our method relies on the assumption that any witness wi = (hi, li)

for a path condition φi has a side-channel observation characteristic that is representative

of all other inputs that satisfy φi. That is,

(h, l) � φi ⇒ p(O|H = h, L = l) = p(O|H = hi, L = li)

Trace Class Sampling. Assuming that P is deterministic, every (h, l) pair results in

exactly one trace, and the side-channel observation relationship for every (h, l) pair is

characterized by a witness wi for the path constraint φi that corresponds to trace class Ti.

Hence, we assume that p(O|T ∈ Ti) = p(O|H = hi, L = li). Thus, in order to estimate

the effect of system noise on a trace class, we repeatedly collect observation samples using

wi as a representative input (Procedure 15).

Distribution Estimation. Given a sample set of observations, A can estimate the

probability of an as-yet-unseen observation using well-known density function interpola-

tion methods using smooth kernel density estimation. Suppose {o1, o2, . . . , on} is a set of

independent and identically distributed samples drawn from the unknown distribution

p(O|T ∈ Ti) for a specific trace class Ti. We want to estimate the value of p(O = o|T ∈ Ti)

for an unseen sample o. The kernel density estimator p̂(O|T ∈ Ti) is

p̂(O = o|T ∈ Ti) =
1

nh

n∑
i=1

K
(o− oi

h

)
(6.5)

127

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 2 3 4 5 6
0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

Figure 6.6: Histogram of 1000 timing samples for trace classes T1 and T2 (left) and
the smooth kernel density estimates for p(O|T ∈ Ti) (right).

where K is a smoothing kernel and h is a smoothing parameter called the bandwidth [95,

96]. We use a Gaussian distribution for the smoothing kernel K and we use a bandwidth

that is inversely proportional to the sample size. Using Procedure 15 and Equation 6.5,

we have an estimate for the effect of the noise on each trace class Ti.

For the example from the introduction, there are two trace classes T1 and T2 corre-

sponding to path conditions φ1(h, l) = h ≤ l and φ2(h, l) = h > l. We use a constraint

solver to find witnesses w1 = (4, 10) and w2 = (9, 3) so that w1 |= φ1 and w1 |= φ2. Then,

running the system with w1 and w2 for 1000 timing samples results in the histograms

and the the corresponding smooth kernel estimate distributions shown in Figure 6.6.

6.3.4 Trace Class Merging Heuristic

It is possible that the set of path constraints Φ that characterize T are an over-

refinement of the actual trace classes of P . It may be that two trace classes are effec-

tively indiscernible via observation due to system noise. For this reason, we employ a

heuristic which combines path constraints when their corresponding estimated probabil-

ity distributions are too similar. We measure the similarity of two distributions using

the Hellinger distance dH(p, q) between density functions p and q given by

128

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 2 3 4 5

0.2

0.4

0.6

0.8

(a) dH = 0.068

1 2 3 4 5 6

0.2

0.4

0.6

0.8

(b) dH = 0.491

2 4 6 8

0.2

0.4

0.6

0.8

(c) dH = 0.978

Figure 6.7: Three pairs of probability distributions and their Hellinger distances.
With a threshold of τ = 0.1, the distribution pair in (a) are indistinguishable, while
distributions pairs in (b) and (c) are distinguishable.

dH(p, q) =

√
1

2

∫ ∞
−∞

(√
p(x)−

√
q(x)

)2

dx

The Hellinger distance is such that 0 ≤ dH(p1, p2) ≤ 1. Intuitively, dH(p1, p2) mea-

sures distance by the amount of “overlap” between p and q: dH(p, q) is 0 if there is perfect

overlap and 1 if the two distributions are completely disjoint (see Figure 6.7). We merge

path conditions φi and φj if dH(p̂(O|T ∈ Ti), p̂(O|T ∈ Tj)) ≤ τ for a threshold τ .

6.4 Online Attack Synthesis

In this section we describe how to automatically synthesize an attack for the adversary.

6.4.1 Adversary Strategy

Recall the overall system model from Figure 6.4 in which the adversary A repeatedly

interacts with the system, trying to discover information about h. We define the high

level strategy for the adversary A in Algorithm 16 and summarize the steps taken in our

model of A.

1. Input choice. A executes an attack step by choosing an input l∗ that will max-

imize the expected information leakage. The method for choosing l∗ is the core of

129

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Algorithm 16 System S, Current belief p(H)

1: procedure Attack(S, p(H))
2: l← chooseLowInput(p(H))
3: o← S(h, l)
4: p(H)← p(H|O = o, L = l)
5: Attack(S, p(H))

our technique, involving the numeric maximization of an objective leakage func-

tion which is symbolic over l, computed via symbolic weighted model counting.

Sections 6.4.2, 6.4.3, and 6.4.4 detail this step.

2. Program invocation. The adversary submits input l so that P (h, l) is invoked.

3. Record observation. As a result of invoking the system, A records a side-channel

observation o.

4. Belief update. A uses the current belief p(H) and trace class probabilities to

make a Bayesian update on the current belief about h given input l∗ and obser-

vation o. That is, A sets the current belief p(H = h)← p(H = h|O = o, L = l)

(Section 6.4.5).

5. Repeat. Run the attack on S with the updated belief.

The step l← chooseLowInput(p(H)) is an entropy maximization procedure consisting

of several components. We use weighted model counting to generate expressions that

quantify the probabilities of trace classes given an input l, which is kept symbolic, and

the current belief about the secret, p(H). These probability expressions can be used along

with the estimated noise distributions to express the mutual information I(O;H|L = l).

Alternatively, as a heuristic, one may consider the mutual information with regard to

trace classes, I(T ;H|L = l). In either case, we use numeric maximization routines

to find the input which maximizes I. Our experiments demonstrate that maximizing

130

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

I(T ;H|L = l) is more scalable since it is considerably faster and still generates efficient

attacks.

6.4.2 Trace Class Probabilities via Symbolic Weighted Model

Counting

WhenA selects an input l, the system runs P (h, l) resulting in a trace which cannot be

directly known to A using side-channel observations. However, A can compute the prob-

ability that the trace belongs to trace class Ti, i.e., p(T ∈ Ti|L = l), relative to his current

belief about the distribution of the secret p(H). If P is deterministic, for a concrete choice

of l the probability of a particular trace t relative to the current belief about h is simply

the probability of the particular value of h that induces t; p(T = ti|L = l) = p(H = h).

Furthermore, recall from Section 6.3.2 that each trace class Ti is associated with a path

constraint on the inputs φi(h, l), and think of φi(h, l) as a characteristic function that

returns 1 if running P (h, l) results in a trace t from trace class Ti and returns 0 otherwise.

Then, we have the following equivalence between trace class probabilities with respect to

a choice of l, the current belief p(H) and the path constraints Φ:

p(T ∈ Ti|L = l) =
∑
t∈Ti

p(T = ti|L = l) =
∑
h∈H

p(H = h)φi(h, l) (6.6)

The resulting expression on the right hand side is an instance of a weighted model

counting problem. Unweighted model counting is the problem of counting the number of

models of a formula. If one assigns a weight to each model, one may compute the sum

of the weights of all models. Thus, the unweighted model counting problem is a special

instance of the weighted model counting problem obtained by setting all weights equal

to 1. In our case, we are interested in counting models of φi where the weight of each

model (h, l) is given by p(H = h).

131

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Clearly, one may compute Equation (6.6) by summing over H but this would be

inefficient. For instance, H may be large and Equation (6.6) will need to be recomputed

every time p(H) is updated. In addition, in the numeric maximization procedure, which

we describe later, we would like to be able to evaluate Equation (6.6) for many different

values of l. Hence, we seek an efficient way to compute the weighted model count. This

is accomplished by using symbolic weighted model counting. We first give an example.

Recall the path constraints from the example in Figure 6.1 where φ1(h, l) = h ≤ l

and φ2(h, l) = h > l corresponding to two trace classes T1 and T2. Additionally, suppose

that A’s current belief is that 1 ≤ h ≤ 24 and that larger values of h are more likely to

occur. A models his initial belief as a probability distribution

p(H = h) =


h

300
1 ≤ h ≤ 24

0 otherwise

We can compute symbolic formulas for p(T ∈ Ti|L = l) as functions of A’s choice of

input l:

p(T ∈ T1|L = l) =


0 l < 1

l2+l
600

1 ≤ l ≤ 24

1 l > 24

, p(T ∈ T2|L = l) =


1 l < 1

1− l2+l
600

1 ≤ l ≤ 24

0 l > 24

When A wants to compute the probability that the program will execute a trace

from any trace class for a particular choice of l, he may simply evaluate these functions

for that choice of l. For example, if A inputs l = 10 he expects to observe a trace

from T1 with probability 11/60 and a trace from T2 with probability 49/60. Using trace

class probability functions that depend on l, A can efficiently compare the likelihood

132

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

that the program executes a trace from any trace class depending on the choice of l.

These symbolic probability functions are used in the next section to generate a symbolic

information gain function which is used as the objective of numeric maximization.

We compute a symbolic function for p(T ∈ Ti|L = l) by using a model-counting

constraint solver. Our implementation targets functions whose path constraints can be

represented as boolean combinations of linear integer arithmetic constraints and we use

the model counting tool Barvinok [64, 58] for this purpose. For programs that operate

on strings, we interpret strings as arrays of integers that are bounded to be valid byte

values of ASCII characters.

Barvinok performs weighted model counting by representing a linear integer arith-

metic constraint φ on variables X = {x1, . . . , xn} with weight function W (X) as a sym-

bolic polytope Q ⊆ Rn. Let Y ⊆ X be a set of parameterization variables and Y ′ be

the remaining free variables of X. Barvinok’s polynomial-time algorithm generates a

(multivariate) piecewise polynomial F such that F (Y) evaluates to the weighted count

of the assignments of integer values to Y ′ that lie in the interior of Q. We are interested

in computing the probability of a trace class given a choice of l and the current belief

about the high security inputs. Thus, we let Y = L, Y ′ = H, and W be p(H = h).

6.4.3 Leakage Objective Function

Here we describe how to generate an objective function that quantifies the amount

of information that A can gain by observing o after sending input l. The major point of

this section is to show that it is possible to express the information leakage as a symbolic

function using weighted model counting functions and the estimated noise distributions.

Mutual Information Between Secret and Observation. For a given choice of l we

can quantify I(H;O|L = l) by directly applying the definition of mutual information,

133

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Equation (6.4).

∑
h∈H

p(H = h)DKL(p(O = o|H = h, L = l), p(O = o|L = l))

Because the path constraints Φ are disjoint, and cover all paths of the program, for a

particular l, Φ determines a partition on h. Thus, we can rewrite I(H;O|L = l) by

summing over path conditions:

n∑
i=1

∑
h∈H

p(H = h)φi(h, l)DKL(p(O = o|H = h, L = l), p(O = o|L = l))

Since φi(h, l) = 0 unless input (h, l) induces trace class Ti and the observation probability

is conditioned on the trace class, we rewrite the expression in terms of trace classes:

n∑
i=1

DKL(p(O = o|T ∈ Ti), p(O = o|L = l))
∑
h∈H

p(H = h)φi(h, l)

Observe that the sum over H is exactly that which is computed via symbolic weighted

model counting in Equation (6.6); thus, I(H;O|L = l) can be expressed as

n∑
i=1

DKL(p(O = o|T ∈ Ti), p(O = o|L = l))p(T ∈ Ti|L = l) (6.7)

where DKL is computed with Equation (6.3) and the probability of the observation con-

ditioned on the low input choice is a straightforward conditional probability computation

p(O = o|L = l) =
n∑

i=1

p(O = o|T ∈ Ti) · p(T ∈ Ti|L = l) (6.8)

Thus, I(H;O|L = l) can be computed using Equations (6.7) and (6.8) using only p(O =

o|T ∈ Ti) (estimated via sampling and smooth kernel interpolation) and p(T ∈ Ti|L = l)

(computed via symbolic weighted model counting).

134

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Mutual Information Between Secret and Trace Classes. The approach to mutual

information quantification based on Equation (6.7) relies on integrating over the domain

O, an expensive computation. Alternatively, as a heuristic, one may compute the mutual

information between the secret and the trace classes given low input.

I(H;T |L = l) = H(T |L = l)−H(T |H,L = l)

Note that if P is deterministic, T is completely determined by H and L and so

H(T |H,L = l) = 0. Thus,

I(H;T |L= l) =
n∑

i=1

p(T ∈Ti|L= l) log
1

p(T ∈Ti|L= l)
(6.9)

While this is not guaranteed to give the optimal attack, it can by computed much

more efficiently than Equation (6.7). Equation (6.9) can be quickly evaluated for many

choices of l using the symbolic functions for p(T ∈Ti|L= l) because they are computed

by Barvinok as symbolic weighted model counting functions. In our experiments we will

see that quantifying information leakage in this way allows for more efficient generation

of attack inputs.

Recall the example from Figure 6.1. After using symbolic execution to determine path

constraints associated with trace classes, estimating the noise, and performing symbolic

weighted model counting, we can compute both I(H;O|L = l) and I(H;T |L = l),

plotted in Figure 6.8. Observe that the expected information leakage computed using

Equation (6.7) is strictly less than the one computed using only trace classes based

on Equation (6.9). So, the trace class information gain bounds the actual information

gain. However, both maxima occur at the same value of l∗ = 17. Hence, both methods

agree on the optimal choice of input. While we do not claim that the two maxima

135

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

0 17 24

0

0.2

0.4

0.6

0.8

1

Low Input l

M
u
tu

al
In

fo
rm

at
io

n
(b

it
s)

I(H;O|L = l) I(H;T |L = l)

Figure 6.8: Mutual information between secret H and observation O or trace classes
T as a function of low input L = l for the example from Figure 6.1.

Algorithm 17 Noise-Entropy Aware Input Choice. Current belief p(H), path constraints
Φ, noise p(O|L)

1: procedure chooseLowInput1(p(H), Φ, p(O = o|L = l))
2: for each φi ∈ Φ
3: p(T ∈ Ti|L = l)← Barvinok(p(H),Φ)
4: f(l)← I(H;O|L = l) via Eq. 6.7
5: l∗ ← NMaximize(f(l))
6: return l∗

coincide in general, our experiments support that maximizing I(H;T |L = l) rather than

I(H;O|L = l) is significantly faster per attack step, but may result in slightly longer

attack sequences.

6.4.4 Input Choice via Numeric Optimization

Now, using Equation (6.7) or Equation (6.9), A can apply numeric optimization

procedures to choose an input l∗ that maximizes the information gain. A can compute

136

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Algorithm 18 Noise Entropy Agnostic Input Choice. Current belief p(H), path con-
straints Φ

1: procedure chooseLowInput2(p(H), Φ)
2: for each φi ∈ Φ
3: p(T ∈ Ti|L = l)← Barvinok(p(H),Φ)
4: f(l)← I(H;T |L = l) via Eq. 6.9
5: l∗ ← NMaximize(f(l))
6: return l∗

l∗ = arg max
l
I(H;T |L = l) or l∗ = arg max

l
I(H;O|L = l)

These are non-linear combinatorial optimization problems. We can use black-box ob-

jective function maximization routines to find the values of l that maximize the leakage.

These routines are typically stochastic, and guaranteed to produce a local optimum, but

not necessarily a global one. In our implementation, we use Mathematica’s NMaxi-

mize function, further described in our implementation section. Regardless of how l∗ is

chosen, A can still efficiently and precisely update p(H) based on l∗ and the resulting

system side-channel observation which we detail in Section 6.4.5. The two methods given

as Procedures 17 and 18.

6.4.5 Belief Update for Secret Distribution

After providing input l∗ and making side-channel observation o, A will need to refresh

his current belief about the secret p(H=h) by performing the update p(H=h)← p(H=h|O=o, L= l).

Although this is a straightforward Bayesian update, we provide the formula in order to il-

lustrate how p(T ∈Ti|L= l), computed via weighted model counting, and p(O=o|T ∈Ti),

estimated via Procedure 15, are involved in the update. By applying Bayes’ rule and the

137

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

definitions of conditional probability and summing over trace classes we have that

p(H=h|O=o, L= l∗) =
n∑

i=1

p(H=h)φi(h, l)
p(O=o|T ∈Ti)
p(O=o|L=l∗)

(6.10)

where p(O = o|L= l) is computed from p(T ∈ Ti|L = l) and p(O=o|L= l) using Equa-

tion (6.8). Equation (6.10) allows A to easily update p(H) by simply plugging the value

of l∗ that was used as input and the resulting observation o.

6.4.6 Example

Recall the example from Figure 6.1 and suppose A has an initial belief about the

secret: p(H = h) = h/300 if 1 ≤ h ≤ 24 and 0 otherwise (Figure 6.9, far left). There

are two path constraints φ1(h, l) = h ≤ l and φ2(h, l) = h > l, which result in trace class

probability functions p(T ∈ Ti|L = l) as in Section 6.4.2.

As we saw in Section 6.4.3, the optimal input of the first step of an attack is l∗1 =

17. In Figure 6.9 we show 6 steps of an attack in which the secret is h = 20 and

we start by making input l∗ = 17. Suppose that when making the input, A makes a

timing measurement and observes o1 = 3.1ms Then, A updates his belief about h as

shown in the second step of Figure 6.9. Recalling the noise estimates in Figure 6.6, we

see that for a timing measurement of 3.1ms, it is more likely that a trace from trace

class T2 corresponding to φ2(h, l) = h > 17 occurred, than a trace from trace class T1

corresponding to φ1(h, l) = h ≤ 17. Consequently, after performing the Bayesian update,

the probability mass to the right of h = 17 increases and the probability mass to the left

decreases proportionally according to Equation (6.10).

A continues choosing inputs and making observations for 6 steps. We see that at

different steps of the attack, the optimal input is repeated from a previous step: l4 =

l6 = 19, for instance; this technique automatically performs a form of repeated sampling

138

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 8 16 24
0.0

0.1
H0 = 4.33

l∗1 = 17o1 = 3.1

1 8 16 24
0.0

0.2
H1 = 3.78

l∗2 = 20, o2 = 1.6

1 8 16 24
0.0

0.2
H2 = 3.67

l∗3 = 18, o3 = 4.3

1 8 16 24
0.0

0.5
H3 = 1.49

l∗4 = 19, o4 = 3.2

1 8 16 24
0.0

0.8
H4 = 1.3

l∗5 = 20, o5 = 1.5

1 8 16 24
0.0

0.9
H5 = 0.61

l∗6 = 19, o6 = 3.8

1 8 16 24
0.0

1.0
H6 = 0.07

(a)

1 8 16 24
0.0

0.1
H0 = 4.33

l∗1 = 17, o1 = 2.1

1 8 16 24
0.0

0.2
H1 = 4.15

l∗2 = 12, o2 = 3.5

1 8 16 24
0.0

0.2
H2 = 3.13

l∗3 = 15, o3 = 2.2

1 8 16 24
0.0

0.4
H3 = 2.43

l∗4 = 14, o4 = 3.9

1 8 16 24
0.0

0.8
H4 = 1.4

l∗5 = 15, o5 = 4.1

1 8 16 24
0.0

0.4
H5 = 2.34

l∗6 = 16, o6 = 1.5

1 8 16 24
0.0

1.0
H6 = 0.49

(b)

Figure 6.9: Two sequences of attack steps, indicating A’s changing belief about the
secret p(H = h) after making input l∗i and observing oi at the ith step. The current
uncertainty, Hi (bits), is indicated.

139

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

in order to improve confidence. After 6 steps the probability mass of p(H = h) is

concentrated on h = 20 and the corresponding uncertainty is H6 = 0.07 bits, and so A

may reasonably conclude that h = 20 with high probability.

As a final comment on this example, we note that chooseLowInput1, which op-

timizes based on noise, and chooseLowInput2, which optimizes based only on trace

classes, both give identical attack sequences if provided the same observation sequences

from Figure 6.9.

6.4.7 Handling Non-deterministic Programs

Although our model assumes a deterministic program, we are able to handle non-

deterministic programs in some cases. Programs may contain explicit randomization

through the use of random number generators. Indeed, there are attempts to mitigate

side-channel leakage by introducing randomization into the program [97, 98]. If a program

has a random component that does not affect the branch conditions on h and l, then the

randomization is essentially decoupled from the computation on h and l. Thus, running

symbolic execution on such a program will yield path constraints on h and l that can

be used to characterize trace classes. Then, dynamic profiling with witnesses for each

path constraint will capture the effect of non-deterministic choices in the code on the

observation. Hence, the deterministic component of the program that computes over h

and l and the random component can be factored into the static analysis of symbolic

execution and the dynamic analysis of profiling, respectively. We demonstrate in our

experiments that we are indeed able to use our analysis on programs which contain

explicit non-determinism in the code.

140

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

6.4.8 Detecting Non-vulnerability

Some programs are not vulnerable to adaptive side-channel attacks with respect to

a chosen observable. We demonstrate our ability to report non-vulnerability in our

experimental evaluation. Our approach is able to report non-vulnerability in two ways:

1. If all trace classes initially defined by the path constraints are determined to be

observationally indistinguishable using the Hellinger distance merging metric, we

conclude that there is only one trace class, and therefore, different inputs cannot

leak information about the secret.

2. If the first step of attack generation determines that there is no input l∗ which

results in positive information gain, then again we conclude that there is no attack.

Note that trace-class constraints are generated with respect to a semantic model of a

program which is an abstraction of real system behavior. In our implementation, our

semantic model is based on path constraints generated from branch instructions in Java

byte-code, and so our abstraction does not capture lower level details like thread schedul-

ing or caching. The power of our technique is relative to the abstraction level used in

constraint generation and the cost model. Hence, our reports of non-vulnerability are

made with respect to the chosen level of semantic abstraction.

6.5 Implementation and Experimental Setup

I implemented this technique according to the high-level diagram shown in Figure 6.5

and described in Section 6.2.2. We ran our attack synthesis system on client-server pro-

grams created by DARPA (Defense Advanced Research Projects Agency) for the ongoing

STAC (Space/Time Analysis for Cybersecurity) [99] research program. We evaluated

141

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

the effectiveness of our approach on several programs taken from their publicly available

repository [2]. These programs were crafted to test and evaluate techniques for detecting

side-channel vulnerabilities in networked Java applications.

Reference platform. For all experiments, the system under test (SUT) was run on

the official DARPA STAC Reference Platform [2], which specifies an Intel NUC 5i5RYH

computer with an Intel Core i5-5250 CPU running at 1.60 GHz, 16 GB of DDR3 RAM,

and its built-in Intel 1000 Mbps Ethernet interface. The reference operating system is

CentOS 7, release 7.1.1503, with a Linux 3.10.0-229 64-bit kernel. We used the OpenJDK

64-bit Java VM, build 1.8.0 121.

Trace class extraction. We infer trace classes by symbolically executing the SUT

source code. We used Symbolic Path Finder (SPF), an extension to NASA’s Java Path

Finder v8.51 using the Z3 SMT-solver [29], version 4.4.1.

Automated profiling. This involves two components: a client-side Profiler and a

server-side AppServer. The server component is a wrapper for DARPA STAC canon-

ical challenge programs. Although their interfaces were slightly modified to achieve a

homogeneous input/output format, the core implementation of each challenge program

was left unmodified. The client-side Profiler is a Python script that invokes the server

while taking measurements. Given a list of trace-class witnesses, and the number of

samples per witness, the Profiler configures the server and repeatedly interacts with

it over the network, carefully timing each interaction. For our experiments, each trace

class witness is used to sample the system 1000 times.

Model counting. Symbolic weighted model-counting functions are computed by send-

ing the path constraints and p(H=h) to the Barvinok model counter [58], version v0.39.

Numeric and symbolic computing. Many computationally intensive numeric and

symbolic operations are handled by Mathematica, including smooth kernel probability

142

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

density estimation from timing samples, symbolic manipulation of model-counting and

information-theoretic functions, numeric integration, objective function maximization,

and Bayesian updating. All experiments were run using Wolfram Mathematica v11 [100]

on a Linux 64-bit system.

Entropy maximization. We used Mathematica’s NMaximize function [94] in Differ-

ential Evolution mode, which uses a fast and robust genetic algorithm [89, 101].

6.6 Experiments

6.6.1 DARPA-STAC Benchmark

Our experiments show that our approach is able to dynamically synthesize attack

input sequences for vulnerable programs and to report non-vulnerability for programs for

which an attack is not feasible. In Table 6.1, we label the DARPA benchmark programs

with a number that is consistent with the numbering from their repository along with

‘(v)’ or ‘(nv)’ to indicate vulnerable or non-vulnerable programs according to DARPA’s

classification. |Φ| denotes the number of path conditions, |T | denotes the number of

trace classes after performing Hellinger-based merging, and Dim(h) indicates the size of

the symbolic integer vector used to represent h. For STAC programs 1, 3, and 11, we

varied the secret search domain (28, 216, 224, 231), while keeping the code the same, and

so only a single offline phase was needed. For instance, row 1 of Table 6.1 corresponds

to the offline phase of 4 different online attacks.

The STAC benchmark also contains programs that are not related to side-channel

problems, so we did not analyze them. We analyzed only problems marked by DARPA

as side-channel related and that fit our model. There were two side-channel problems

that require a different cost observation model than ours, so we did not analyze those

143

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Table 6.1: Experimental data for publicly available STAC benchmarks [2].
Offline Phase Time (seconds)

Benchmark Dim(H) |H| |Φ| |T | Vuln? S.E. Noise Est. Merging Total

1 STAC-1(nv) 1 2{8,16,24,31} 2 1 no 0.57 22.28 0.81 23.67

2 STAC-3(nv) 1 2{8,16,24,31} 6 3 no 0.64 36.18 4.89 41.72

3 STAC-1(v) 1 2{8,16,24,31} 2 2 yes 0.56 31.52 0.48 32.58

4 STAC-3(v) 1 2{8,16,24,31} 6 4 yes 0.57 34.09 5.17 39.85

5 STAC-11A(v) 1 2{8,16,24,31} 3 2 yes 0.58 25.65 1.32 27.56

6 STAC-11B(v) 1 2{8,16,24,31} 3 2 yes 0.57 26.63 1.29 28.50

7 STAC-4(v) 1 26 10 2 yes 0.73 14.79 7.10 22.63

8 STAC-4(v) 2 702 27 3 yes 1.19 44.52 2.28 48.01

9 STAC-4(v) 3 18278 55 5 yes 2.67 100.55 64.94 168.17

10 STAC-12(v) 1 26 17 4 yes 0.94 26.30 18.57 45.83

11 STAC-12(v) 2 702 39 5 yes 0.99 57.46 48.67 107.13

12 STAC-12(v) 3 18278 77 6 yes 1.62 125.49 132.63 259.76

13 STAC-12(v) 4 475254 149 7 yes 3.06 258.48 293.57 555.13

programs. Initial secret distributions in our experiments are uniform.

Non-vulnerable programs. In Table 6.1 we present results of running our attack

synthesizer on two non vulnerable programs. We see that STAC–1(nv) (source code in

Figure 6.10) is not vulnerable to an adaptive timing side-channel attack because there is

only one trace class and so there are no attack steps taken. On the other hand, our tool

tells us that STAC–3(nv) (source code in Figure 6.11) is not vulnerable, despite having

3 observationally distinguishable trace classes, because after 1 attack step there are no

inputs which can leak any information. Thus, we agree with the DARPA non-vulnerable

classification. For both programs we observe that the majority of the analysis time is

spent in offline profiling.

Optimizing observation vs trace-class entropy. We applied both ChooseLowIn-

put1, which optimizes based on observation entropy, and ChooseLowInput2, which

optimizes based on trace class entropy, for two STAC programs. STAC–1(v) is similar to

our running example with a branch condition h≤ l in which extra computation is done.

STAC–3(v) is a program that contains 6 different branches and an internal parameter

n which, depending on h and l, causes 2 branches to run in O(1) time, 1 branch to run

in O(n) time, 1 branch to run in O(n2) time, and 2 branches to run in O(n3) time.

144

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 public static String category1_nv

2 (int[] secret , int[] guess) {

3 int n = 3;

4 if(guess [0] <= secret [0]){

5 for(int i=0;i<n;i++){

6 for(int t=0;t<n;t++) {

7 sleep (1);

8 }

9 }

10 }

11 else{

12 for(int i=0;i<n;i++){

13 for(int t=0;t<n;t++) {

14 sleep (1);

15 }

16 }

17 }

18 return "DONE";

19 }

1 public static String category1_v

2 (int[] secret , int[] guess) {

3 int n = 3;

4 if(guess [0] <= secret [0]){

5 for(int i=0;i<n;i++){

6 for(int t=0;t<n;t++) {

7 sleep (1);

8 }

9 }

10 }

11 else{

12 for(int i=0;i<n;i++){

13 for(int t=0;t<n;t++) {

14 sleep (2);

15 }

16 }

17 }

18 return "DONE";

19 }

Figure 6.10: Non-vulnerable (left) and vulnerable (right) versions of STAC–1.

1 public static String category3_nv

2 (int[] secret , int[] guess_t) {

3 int n = 2;

4 int guess = guess_t [0];

5 int t = guess_t [1];

6 if(guess <= secret [0]){

7 if(t == 1){ sleep (1);}

8 else if(t == 2){

9 for(int i = 0; i<n*n;i++){

10 sleep (1);

11 }

12 }

13 else{

14 for(int i = 0; i<n*n*n;i++){

15 sleep (1);

16 }

17 }

18 }

19 else{

20 if(t == 1){ sleep (1);}

21 else if(t == 2){

22 for(int i = 0; i<n*n;i++){

23 sleep (1);

24 }

25 }

26 else{

27 for(int i = 0; i<n*n*n;i++){

28 sleep (1);

29 }

30 }

31 }

32 return "DONE";

33 }

1 public static String category3_v

2 (int[] secret , int[] guess_t) {

3 int n = 2;

4 int guess = guess_t [0];

5 int t = guess_t [1];

6 if(guess <= secret [0]){

7 if(t == 1){ sleep (1);}

8 else if(t == 2){

9 for(int i = 0; i<n;i++){

10 sleep (1);

11 }

12 }

13 else{

14 for(int i = 0; i<n*n*n;i++){

15 sleep (1);

16 }

17 }

18 }

19 else{

20 if(t == 1){ sleep (1);}

21 else if(t == 2){

22 for(int i = 0; i<n*n;i++){

23 sleep (1);

24 }

25 }

26 else{

27 for(int i = 0; i<n*n*n;i++){

28 sleep (1);

29 }

30 }

31 }

32 return "DONE";

33 }

Figure 6.11: Non-vulnerable (left) and vulnerable (right) versions of STAC–3.

145

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

28 216 224 231

10

20

30

Domain Size

#
A

tt
ac

k
S
te

p
s

I(H;O|L = l)
I(H;T |L = l)

Figure 6.12: STAC–1(v) attack steps: observation vs. trace class entropy.

28 216 224 231

0

500

1000

Domain Size

A
tt

ac
k

T
im

e
(s

)

I(H;O|L = l)
I(H;T |L = l)

Figure 6.13: STAC–1(v) attack time: observation vs. trace class entropy.

28 216 224 231

10

20

30

40

Domain Size

#
A

tt
ac

k
S
te

p
s

I(H;O|L = l)
I(H;T |L = l)

Figure 6.14: STAC–3(v) attack steps: observation vs. trace class entropy.

28 216 224 231

0

500

1000

Domain Size

A
tt

ac
k

T
im

e
(s

)

I(H;O|L = l)
I(H;T |L = l)

Figure 6.15: STAC–3(v) attack time: observation vs. trace class entropy.

146

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

The low input to the program consists of 2 values. The offline phase merged the path

constraints for branches with the same time complexities into the same trace classes.

The online attack phase automatically chose inputs which caused the program to always

either execute the O(n) or O(n2) branch in order to leverage the timing difference and

fully leak the secret.

The offline phase data are shown in Table 6.1 and online attack phase data in Fig-

ures 6.13 and 6.15. The online attack phase was run over different secret domain sizes.

For each domain size we ran until p(H = h) converged with certainty to a single value,

which we manually verified was the correct secret. We observe that in all cases, optimiz-

ing for trace class entropy generates an attack that takes either the same number of steps

or is slightly longer. However, optimizing for trace class entropy synthesizes attack steps

much more quickly. For both STAC–1(v) and STAC–3(v), we were able to synthesize

attacks for domains of size 231 in under 2 minutes, including offline and online phases.

Because optimizing trace class entropy is significantly faster and generates strong attacks,

the remaining experiments were run only with ChooseLowInput2.

Attack synthesis with programmatic non-determinism. Program STAC–11(v)

has 2 versions, A and B. Both versions contain explicit recursive randomization that

affects the running time of the application (source code is Figures 6.16, 6.17, and 6.18.

In both cases, SPF is able to extract path conditions which depend only on h and l and

do not depend on any randomly generated variables. Thus, as discussed in 6.4.7, the

effect of the randomization on the running time is independent of the path conditions on

h and l and can be determined using profiling during the offline phase which is presented

in Table 6.1. In Figure 6.22 we see the running time and number of attack steps required

to completely leak the secret for both versions of STAC–11(v).

Programs with segment oracle side channels. STAC–4(v) and STAC–12(v) are

147

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 public static Random r = new Random(System.currentTimeMillis ());

2 private static boolean [] t = new boolean [100];

3
4 private static void randomizeT (){

5 for(int x=0; x<t.length; x++){

6 t[x] = r.nextBoolean ();

7 }

8 }

Figure 6.16: Common code for STAC–11A(v) and STAC–11B(v).

programs with segment oracle side channel [65]. Segment oracle side channels allow an

attacker to use timing measurements to incrementally leak information about contiguous

segments of arrays or strings. The relevant source code for STAC–12(v) is shown in

Figure 6.20. The function under test is verifyCredentials, which, using the function

checkChar, is a (somewhat obfuscated) way of comparing a candidate password to an

actual secret password as part of a log-in system where valid strings consist of lowercase

letters. DARPA challenge problems sometimes contain delay functions which mimic

additional computational work. At a high level, this function compares individual char-

acters of the secret and candidate password one at a time in a loop from left to right,

and the running time of the function is proportional to the number of characters which

match.

For example, if the password is ‘ciqa’, the running time will be slightly longer if an

attacker inputs ‘ciqg’ (first 3 characters match) vs. ‘ciao’ (first 2 characters match). Thus,

an attacker can use a timing side channel to reveal prefixes of the secret, and reduce the

O(kn) brute-force search space to O(k · n). Segment oracle attacks were responsible for

several real-world vulnerabilities [6, 5, 79].

Our method automatically synthesizes segment oracle attacks. We ran our attack

synthesis method on STAC–4(v) (source code in FIgure 6.19 and STAC–12(v) (source

code in Figure 6.20 where the secret domain is strings of lowercase letters. We set an

online phase timeout of 20 minutes and ran attack synthesis for increasing string lengths.

148

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 private static boolean checkSecret11A(int guess , int secret , boolean [] t)

2 throws InterruptedException {

3 recur11A(guess , t, t.length - 1);

4 if(guess <= secret){ sleep (1);}

5 return guess == secret;

6 }

7
8 private static void recur11A(int guess , boolean [] t, int index){

9 if(index == 0 && t[index]){}

10 else if(t[index]){

11 recur11A(guess , t, index -1);

12 }

13 }

14
15 public static String category11A_v(int[] H, int[] L)

16 throws InterruptedException {

17 randomizeT ();

18 checkSecret11A(L[0], H[0], t);

19 return "DONE";

20 }

Figure 6.17: Source code of STAC-11A(v).

1 private static boolean checkSecret11B(int guess , int secret , boolean [] t)

2 throws InterruptedException {

3 return recur11B(guess , secret , t, t.length - 1);

4 }

5
6 private static boolean recur11B(int guess , int secret , boolean [] t, int index)

7 throws InterruptedException {

8 if(index == 0 && t[index]){

9 if(guess <= secret){ sleep (1);}

10 return guess == secret;

11 }

12 else if(t[index]){ return recur11B(guess , secret , t, index -1);}

13 if(guess <= secret){ sleep (1);}

14 return guess == secret;

15 }

16
17 public static String category11B_v(int[] H, int[] L)

18 throws InterruptedException {

19 randomizeT ();

20 checkSecret11B(L[0], H[0], t);

21 return "DONE";

22 }

Figure 6.18: Source code of STAC-11B(v).

149

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 private static boolean verifyCredentials_4_v(String candidate){

2 for(int x = 0; x<candidate.length ();x++) {

3 if(x>= password.length ()|| password.charAt(x) != candidate.charAt(x)){

4 return false;

5 }

6 delay_4_v ();

7 }

8 return candidate.length () == password.length ();

9 }

10
11 private static void delay_4_v (){

12 for (int x = 0 ; x < 10000 ; x++) {}

13 }

Figure 6.19: Source code for STAC–4(v).

1 private static String password;

2 private static int subsequentCorrect;

3 private static int exceedPasswordLen;

4 private static void delay() {

5 for (int x=0 ; x < 75000 ; x++) {}

6 }

7 private static void checkChar(String candidate , int charNumber){

8 if(charNumber > password.length ())

9 exceedPasswordLen ++;

10 else if(password.charAt(charNumber - 1) == candidate.charAt(charNumber - 1)){

11 if(subsequentCorrect +1 == charNumber){

12 subsequentCorrect ++;

13 delay ();

14 }

15 }

16 }

17 private static boolean verifyCredentials(String candidate){

18 subsequentCorrect = exceedPasswordLen = 0;

19 for (int x=0; x < candidate.length (); x++){

20 checkChar(candidate ,x+1);

21 }

22 return subsequentCorrect == password.length () && exceedPasswordLen == 0;

23 }

Figure 6.20: Source code of STAC-12(v).

28 216 224 231

10

20

30

#
A

tt
ac

k
S
te

p
s

Version A
Version B

Figure 6.21: STAC–11(v) atttack steps: two versions.

150

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

28 216 224 231

20

40

60

80

Domain Size

A
tt

ac
k

T
im

e
(s

)

Version A
Version B

Figure 6.22: STAC–11(v) atttack time: two versions.

1 1.5 2 2.5 3 3.5 4
20

40

60

80

String Length

#
A

tt
ac

k
S
te

p
s

STAC–4
STAC–12

Figure 6.23: STAC–4(v) and STAC–12(v) attack steps.

1 1.5 2 2.5 3 3.5 4
0

500

1,000

String Length

A
tt

ac
k

T
im

e
(s

)

STAC–4
STAC–12

Figure 6.24: STAC–4(v) and STAC–12(v) attack time.

151

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

Table 6.2: Synthesized input strings for STAC-12(v).

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
prefix: ε prefix: c prefix: ci prefix: ciq prefix: ciqa

ε cmxq civf cisp ciqa ciqd ciqa
daaz cnte ciub cicz ciqc ciqo ciqa
uaak ctdo ciaz cibn ciqk ciqx ciqa
ecjq cvfo cigz citz ciqz ciqz ciqg
tzar ciil cifl cijw ciqs ciqr ciqa
fzgk csja cikt cine ciqi ciqr
zgap cwcs ciij cile ciqz ciqi
bnza cved ciok ciqs ciqd ciqv
zmna ceyu cisu cirx ciqq ciqu
zmna cild ciqz ciqz ciqz
maau cipa cihs ciqz ciqr
vzsc cimq ciqk ciqe ciqz
qyas cida cieb
asvr

We generated attack steps for STAC–4(v) up to string length 3 before timing out. For

STAC–12(v) we generated attack steps up to string length 4. The offline phase data for

STAC–4(v) and STAC–12(v) are shown in Table 6.1 and online phase data is shown in

Figure 6.24.

We give some details of one synthesized attack. For STAC12(v), length 4 (Table

6.1, benchmark 13) the secret was a randomly generated string, ‘ciqa’. In Table 6.2 we

manually separated the synthesized input strings into phases where the ith phase roughly

corresponds to inputs that match a secret prefix of length i. For instance, in phase 0, the

attacker does not know any prefix of the secret password, first tests the system with ε,

then begins testing inputs with different characters. At the end of phase 0, the attacker

has discovered using side-channel measurements that the first character is ‘c’. Thus, in

phase 2, the attacker keeps the first character ‘c’ constant and tests other inputs until the

side-channel observation indicates that the first 2 characters, ‘ci’, match. This continues

similarly for phases 3 and 4, until all characters are discovered. This required 77 steps

152

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

overall to discover a secret from a search space of size 475254.

Observe that some strings were tested multiple times. For instance, the string ‘ciqz’

was synthesized several times over Phases 2 and 3, and the final secret ‘ciqa’ was tested

several times during the last phase. Thus, we observe that our online attack synthesis

technique appears to automatically discover the fact that repeated sampling can be used

to eliminate spurious observations due to noise and reduce uncertainty. Indeed, real-world

manually written attacks often employ repeated sampling in an attempt to eliminate

noise. Finally, note that, once our automated attack synthesis approach generates a

segment oracle attack for a program for a small secret length, it is easy to generalize such

an attack to larger secrets by inspecting the generated attack.

6.6.2 Case Study: Law Enforcement Database

We applied our method to a larger application provided by DARPA. LawDB (Law

Enforcement Database) is a network service that stores and manipulates a database used

to store law enforcement personnel data associated with user IDs. Users can issue the

command SEARCH minID maxID to query the database for IDs within a range. IDs are

internally stored as public or restricted. Only public IDs within the search range will

be shown to the user; restricted IDs are secret. Using our approach, we were able to

synthesize a timing side-channel attack for this application that enables a public user to

determine a restricted ID.

Symbolically executing the entire LawDB application (51 classes, 202 methods) was

not feasible. By examining the source code, it was straightforward to locate the method

for the SEARCH operation, which corresponds to case 8 of the method channelRead0 of

class UDPServerHandler (Figure 6.25). We noticed a possible side channel because the

UDP request handler writes the message “SEARCH ON RESTRICTED KEY OCCURRED” to

153

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

a log file and throws a RestrictedAccessException depending on whether a user has

entered a search query range which encompasses a restricted secret ID.

We extracted the UDPServerHandler class (Figure 6.25) and its closure of depen-

dencies from the source code. Symbolic execution was not able to handle the provided

log writing, so we supplied our own simplified code which writes the same message to

a log file in order to mimic the original behavior of the function. We wrote a small

driver (20 LOC) to interface our symbolic execution system and profiling server with the

UDPServerHandler class. The driver initializes the database by inserting n unrestricted

IDs and inserts one restricted ID, h. The driver then executes queries with range: SEARCH

lminID lmaxID. We symbolically execute the driver with h, lminID, and lmaxID all symbolic

and then profile the driver with the generated witnesses to conduct the offline phase.

Then our online attack phase automatically synthesizes adaptive SEARCH range queries

that eventually reveal the restricted ID.

Initial Exploratory Experiment. We initialized the database with two concrete unre-

stricted IDs (with values 64 and 85) and constrained allowed IDs to the range [1, 100].

The result of running attack synthesis on this configuration can be seen in Table 6.3

and intermediate snapshots of online attack inputs and belief updates are shown in Fig-

ure 6.26. We see that there are 42 path constraints generated by symbolic execution

which reduce to 3 trace classes after profiling and merging. The offline phase takes less

than 1 minute and the online attack phase of 25 steps takes less than 3 minutes.The

secret ID was set to be a randomly generated number, 92.

Figure 6.26 illustrates interesting self-correcting behavior of the automated search.

Due to observation noise, in step 5 a timing observation was made that caused the

belief distribution to become highly concentrated in the range [64, 76]. The subsequently

synthesized inputs are queries which search this interval and eventually eliminate that

concentration of probability mass. Steps 12 through 25 generate queries that concentrate

154

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

the belief on the secret ID, 92.

Table 6.3: Experimental data for 4 different instantiations of the LawDB case study.
Offline Phase Time(s) Online Phase

Benchmark # IDs |H| |Φ| |T | S.E. Noise Est. Merging Total Time(s) # Steps

14 LawDB-1 3 100 42 3 1.17 5.45 51.10 57.736 158.78 25

15 LawDB-2 4 10000 90 4 1.81 11.83 127.59 141.24 163.28 45

16 LawDB-3 5 10000 165 5 2.91 23.39 365.13 391.45 188.85 48

17 LawDB-4 9 10000 855 9 20.57 152.09 2436.84 2609.50 271.16 77

Larger Experiments. After seeing that we can automatically synthesize an adaptive range-

query attack against LawDB for small domains, we increased the valid range of IDs that

are allowed in the database to [1, 10000] and inserted 3, 4, and 8 randomly generated

public IDs. In Table 6.3 we see that we are able to synthesize attacks in a reasonable

amount of time. We observe that as the number of path constraints increases, the cost

of the offline phase grows, with the majority of offline time spent in trace class merging.

However, trace class merging is crucial since it reduces the difficulty and the cost of

model counting and entropy computations. For instance, for LawDB-4 model counting

and entropy computation may be performed over 9 trace classes rather than 855 path

constraints, resulting in efficient online attack synthesis.

155

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

1 public class UDPServerHandler {
2 // Cons t ruc t o r s and l o c a l v a r i a b l e s . . .
3 public void channelRead0 (int t , int key , int min , int max) {
4 switch (t) {
5 . . .
6 case 8 : {
7 DSystemHandle sys = new DSystemHandle (” 1 2 7 . 0 . 0 . 1 ” , 6666) ;
8 List<Str ing> f i l e s t oChe ck=new ArrayList<Str ing >() ;
9 f ina l DFileHandle fh1 = new DFileHandle (” con f i g . s e c u r i t y ” , sys) ;

10 f i l e s t oChe ck . add (” con f i g . s e c u r i t y ”) ;
11 f ina l List<Integer> range = this . b t r ee . t oL i s t (min , max) ;
12 i f (range . s i z e () <= 0 | | ! this . r e s t r i c t e d . i sR e s t r i c t e d ((int) range . get (0))) {
13 f i l e s t oChe ck = new ArrayList<Str ing >() ;
14 }
15 int ind = 0 ;
16 while (ind < range . s i z e ()) {
17 try {
18 f ina l I n t eg e r nextkey=(In t eg e r) range . get (ind) ;
19 i f (this . r e s t r i c t e d . i sR e s t r i c t e d (nextkey)) {
20 Buf feredWriter bw = null ;
21 F i l eWr i t e r fw = null ;
22 try {
23 St r ing data = ”SEARCH ON RESTRICTED KEY OCCURRED: ” +
24 (In t ege r . t oS t r i ng ((int) nextkey) + ”\n”) ;
25 F i l e f i l e = new F i l e (LOGFILE) ;
26 i f (! f i l e . e x i s t s ()) {
27 f i l e . createNewFi le () ;
28 }
29 fw = new Fi l eWr i t e r (f i l e . g e tAbso lu t eF i l e () , true) ;
30 bw = new Buf feredWriter (fw) ;
31 bw. wr i t e (data) ;
32 }
33 catch (IOException e) {
34 e . pr intStackTrace () ;
35 }
36 f ina l ly {
37 try {
38 i f (bw != null)
39 bw. c l o s e () ;
40 i f (fw != null)
41 fw . c l o s e () ;
42 } catch (IOException ex) {
43 ex . pr intStackTrace () ;
44 }
45 }
46 throw new Rest r i c tedAcces sExcept ion () ;
47 }
48 i f (sys == null) {
49 sys = new DSystemHandle (” 1 2 7 . 0 . 0 . 1 ” , 6666) ;
50 }
51 at . add (” l a s t a c c e s s i n f o . l og ” , In t eg e r . t oS t r ing (nextkey) , nextkey) ;
52 ++ind ;
53 } catch (Rest r i c tedAcces sExcept ion rae) {
54 for (In t eg e r getkey = (In t eg e r) range . get (ind) ;
55 this . r e s t r i c t e d . i sR e s t r i c t e d (getkey) && ind < range . s i z e () ;
56 getkey = (In t ege r) range . get (ind)) {
57 i f (sys == null) {
58 sys = new DSystemHandle (” 1 2 7 . 0 . 0 . 1 ” , 6666) ;
59 }
60 i f (++ind < range . s i z e ()) {
61 }
62 }
63 } f ina l ly {
64 i f (atx != null) {
65 System . out . p r i n t l n (”Cleaning r e s ou r c e s ”) ;
66 atx . c l ean () ;
67 atx = null ;
68 }
69 }
70 }
71 at . c l ean () ;
72 sys = new DSystemHandle (” 1 2 7 . 0 . 0 . 1 ” , 6666) ;
73 break ;
74 }
75 // Remaining sw i t c h ca s e s . . .
76 }

Figure 6.25: Extracted search function for LawDB.

156

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

20 40 60 80 100

0.005

0.010

0.015

0.020

Step 0

20 40 60 80 100

0.005

0.010

0.015

0.020

0.025

Step 3: SEARCH 19 52

Observed time : 0.00476s

20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

Step 5: SEARCH 10 63

Observed time : 0.00671s

20 40 60 80 100

0.05

0.10

0.15

0.20

Step 7: SEARCH 66 76

Observed time : 0.00439s

20 40 60 80 100

0.1

0.2

0.3

0.4

Step 10: SEARCH 70 73

Observed time : 0.00475s

20 40 60 80 100

0.05

0.10

0.15

0.20

0.25

0.30

Step 12: SEARCH 75 100

Observed time : 0.00721s

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Step 15: SEARCH 78 100

Observed time : 0.00708s

20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

Step 17: SEARCH 88 98

Observed time : 0.00728s

20 40 60 80 100

0.1

0.2

0.3

0.4

Step 20: SEARCH 91 98

Observed time : 0.00702s

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Step 25: SEARCH 92 92

Observed time : 0.00747s

Figure 6.26: Snapshots of A’s belief about the restricted ID for the LawDB–1 case
study. In step 5, a noisy observation causes an erroneous belief update, but the
synthesized queries eliminate the incorrect belief, to eventually converge to the true
value of the restricted ID, 92.

157

Online Adaptive Attack Synthesis Under Noisy Conditions Chapter 6

6.7 Chapter Summary

In this chapter I gave details for how to synthesize side-channel attacks. This approach

takes into account the probabalistic nature of observations by (1) performing automatic

trace class extraction using symbolic execution and dynamic profiling, (2) using Bayesian

updates on a dynamically maintained attacker belief distribution p(h), and (3) using

weighted model counting (where models are weighted by p(h)) and numeric maximization

ofr choosing attacker inputs at each step. When an attack is synthesized, it provides a

proof of exploit for the function under test. I demonstrated that the approach is effective

against a set of benchmark programs.

158

Chapter 7

Related Work

Quantitative information flow (QIF) is a rich field of study incorporating aspects of

information theory, program analysis, combinatorics, and game theory. Many results

and techniques in the field are based on the pioneering work of Claude Shannon who laid

down a quantitative foundation for the study of information [38, 26]. This work borrowed

the concept of entropy from thermodynamics and applied it to communication channels,

introducing the word ‘bit’ (binary digit) along the way as a unit of information. QIF

leverages information theory to measure the strength of inferencing ability of a malicious

adversary in terms of the number of bits that can be learned about secret values. A

series of papers by Clark, Hankin, Hunt, and Malacaria laid the groundwork for QIF

analysis for software by proposing techniques for measuring the security of imperative-

style model languages [102, 103, 104, 105, 106]. These works address the quantification

information leakage of high-security program states or variables (intended to be hidden

from an attacker) to low-security program states or variables (accessible by an attacker).

The core elements of these works were distilled and codified in a later paper which

popularized the phrase “quantitative information flow” [107]. Interestingly, around that

same time, Kim and Seong independently developed similar entropy-based methods for

159

Related Work Chapter 7

measuring the amount of information that flows from safety-critical systems (not directly

accessible to operators) to the associated monitoring interfaces (accessible to operators)

in the context of engineering system safety and reliability [108, 109, 110]. Important

work by Geoffrey Smith provided additional framing, theoretical scaffolding, and useful

nomenclature for the study of information flow in software systems [37].

One of the first documented insecure information flows in history that can be called a

side channel was kept under wraps by the National Security Agency until 2007 when it was

partially declassified. The TEMPEST vulnerability leaked plaintext secret information

due to electromagnetic signals generated by the relays in military encryption devices [12].

More recently, it has been shown that dot-matrix printer sounds can be correlated with

the content of the resulting printed page [13], inter-keypress timing differences can be

measured by a network eavesdropper to determine an SSH user’s encrypted password [14],

and fairly simple radio equipment can be combined with sophisticated processing on the

distortion of wifi signals from a person typing on a laptop to reveal their keystrokes from a

distance with high accuracy [15]. However, unlike the software side channels addressed in

this dissertation, these side-channels are more related to the electro-mechanical properties

of the physical devices and the interaction of the human user with the system.

Turning our attention closer to programmatic side channels, Paul Kocher showed

that one can extract secret keys from a cryptographic device pair (e.g. a smart card

and reader), since different instructions executed by the microprocesser have different

power usage profiles. Measuring these profiles with standard signal processing equipment

can reveal cryptographic keys used during DES, AES, and RSA encryption [16], Later,

Brumley showed that RSA keys can be adaptively leaked by measuring processing times

through a network [7].

The side-channels just described were discovered through manual effort, analysis, and

experimentation. Automatic discovery of side-channel vulnerabilities remains a challeng-

160

Related Work Chapter 7

ing and active area of research. Promising advances in this area have been made in which

the framework provided by QIF has been adapted to the field of side-channel analysis by

introducing the notion of an observable in addition to the high-security and low -security

variables. There is a considerable amount of fairly recent work related to quantifying side-

channel information leakage for a single run of a program [111, 112, 113, 114, 42, 115, 116],

but none of these considers multiple runs of the program. Work in [33] addresses com-

puting side channel leakage for multiple runs of a program using symbolic execution but

does not address adaptively chosen input sequences. That work, and many of the afore-

mentioned works make use of symbolic execution for automatically analyzing the source

code of the program [21, 30].

A model for adaptive attacks was introduced in [93], which assumes noiseless observa-

tions and generates attack strategies for any possible secret by enumerating all possible

program–adversary behaviors and all partitions of the secret induced by the public in-

put. A 2018 CSF paper on side-channel analysis gives a static technique for measuring

information leakage for a single run, in the presence of programmatic randomness, using

symbolic sampling methods that provide upper and lower bounds on information flow.

This work also makes use of Barvinok for model counting [117].

An information flow model based on Bayesian belief updates for an adversary who

makes observations of a probabilistic program was presented in [118]. Their work specif-

ically addresses single runs of a program, but the authors indicate that Bayesian belief

updates may be used over multiple runs of the program. In [119], the authors illustrate

methods for detecting the possibility of side channels in client-server application traffic.

Work in [120] also addresses DARPA STAC programs. Their effort is concentrated on

showing safety properties of non-vulnerable programs and is able to indicate possible

side channel vulnerabilities by detecting observationally imbalanced program branches,

but does not generate attacks. Two works [121, 122] describe how to quantify infor-

161

Related Work Chapter 7

mation leakage in interactive systems in which the secret changes over repeated runs of

the application. In [97] a method is given to quantify the trade-off between program

reliability and security when adding noise to a program in order to reduce side channel

vulnerability. There is also work on program transformations that remove side-channel

vulnerabilities [123]. In [124] the problem of performing Bayesian inference via weighted

model counting is described with applications to statistical prediction. In [125] a method

is given for performing precise quantitative information flow analysis using symbolic

weighted model counting.

Model counting is a crucial component of quantitative program analysis, including

side-channel detection and measurement. This dissertation addressed information leakage

quantification for string manipulating programs in Chapter 4 using the automata-based

counting methods of Chapter 3. There has been significant amount of work on string

constraint solving in recent years [126, 51, 127, 128, 129, 52, 53, 54, 130, 55]; however

none of these address the model-counting problem. Due to the importance of model

counting in quantitative program analyses, model counting constraint solvers are gaining

increasing attention. S3# and SMC are the only other model-counting string constraint

solvers that we are aware of [131, 44]. Our approach to model counting is strictly more

precise than SMC. SMC cannot propagate string values across logical connectives which

reduces its precision during model counting, whereas we can handle logical connectives

without losing precision.

ABC builds on the automata-based string analysis tool Stranger [70, 71, 72] deter-

mined to be the best string solver in terms of precision and efficiency in a recent empirical

study [132]. While linear algebraic methods for counting paths in a graph are well es-

tablished [61], my approach was the first to implement those methods for the purpose

of parameterized model counting for string and integer constraints. There has been ear-

lier work on integer constraint model counting by counting paths in numeric DFA [50],

162

Related Work Chapter 7

but this earlier approach can only count models when there are finitely many models.

LattE [56] is a model counting constraint solver for linear integer arithmetic that has been

used in several quantitative program analyses [40, 133, 32]. LattE uses the polynomial-

time Barvinok algorithm [43] for integer lattice point enumeration. In addition, there

is a separate model counting library named Barvinok, which implements Barvinok’s

algorithm [57] that has also been used for QIF analysis [117, 125]. Finally, there are

randomized sampling based methods for approximating the number of solutions to a

constraint. SMTApproxMC [134] is a model counting constraint solver for the theory of

fixed-width words, and it uses a different generic approach for model-counting which is

based on hash-function sampling [135]. For a broad survey of methods for Boolean model

counting, we refer the reader to Chapter 20 of the Handbook of Satisfiability [60].

163

Chapter 8

Conclusion

Side-channel vulnerabilities are notoriously insidious, creeping into software written by

well-intentioned developers. Why do these types of security flaws arise? In the (possibly

apocryphal) words of Donald Knuth, “Premature optimization is the root of all evil.”

While this is a rather extreme sentiment, there is a thread of truth in it when it comes to

side-channels. For instance, in the case of segmented oracles a side-channel vulnerability

arises due to software developers who are trying to do what they were taught—always

make your code as efficient as possible. So, when writing code that compares two arrays,

for instance, they will return from the function as soon as it is possible to determine

the correct return value. However, this increase in efficiency results in an unintended

security vulnerability. We can see that, at least in segment oracle side channels, there

is a trade-off between the efficiency of the code and the security with respect to side

channel observations.

The widespread existence of the the segment oracle pattern—it is in C’s memcmp,

OAuth, Java’s Array.Equals(), Python’s string equality comparison—is one piece of

evidence to support the idea that side channel vulnerabilities are not at all obvious to

developers who are writing the code. Thus, in this concluding chapter, I would like to

164

emphasize the importance of (1) developing theories and tools for helping experts and

non-experts detect side-channel vulnerabilities in their code and (2) encouraging students

who are learning to program to think critically and carefully about the trade-offs made

when optimizing code that might operate on sensitive data.

Overall, this dissertation has drawn upon existing works in quantitative informa-

tion flow, side-channel analysis, model counting, and automatic software verification and

I pushed the state-of-the-art in software side-channel analysis by creating and demon-

strating new methods for quantifying, discovering, and synthesizing side-channel attacks.

Specifically I introduced (1) automata-based model counting techniques, (2) novel QIF

analysis for segmented oracle side channels, (3) offline static side-channel attack synthesis

and quantification, and (4) online attack synthesis that accounts for noisy and networked

systems. My attack synthesis approaches made use of symbolic polytope-based model

counting, information-theoretic objective functions, and numeric optimization. I demon-

strated the effectiveness of these 4 approaches for quantitative program analyses through

experimentation.

165

Bibliography

[1] J. Ziv and A. Lempel, A universal algorithm for sequential data compression,
IEEE Transactions on Information Theory 23 (May, 1977) 337–343.

[2] A. Research, DARPA STAC project public software repository, 2017.

[3] M. Joye, Basics of Side-Channel Analysis, in Cryptographic Engineering, ch. 13,
pp. 367–382. 2009.

[4] S. Chen, R. Wang, X. Wang, and K. Zhang, Side-channel leaks in web
applications: A reality today, a challenge tomorrow, in Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10, (Washington, DC, USA),
pp. 191–206, IEEE Computer Society, 2010.

[5] “Xbox 360 timing attack.”
http://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack, 2007.

[6] N. Lawson, “Timing attack in google keyczar library.” https://rdist.root.

org/2009/05/28/timing-attack-in-google-keyczar-library/, 2009.

[7] D. Brumley and D. Boneh, Remote Timing Attacks Are Practical, in Proceedings
of the 12th Conference on USENIX Security Symposium - Volume 12, SSYM’03,
(Berkeley, CA, USA), pp. 1–1, USENIX Association, 2003.

[8] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, Spectre attacks: Exploiting speculative
execution, CoRR abs/1801.01203 (2018) [arXiv:1801.0120].

[9] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, Meltdown, CoRR abs/1801.01207
(2018) [arXiv:1801.0120].

[10] P. Gray, And bomb the anchovies, Time Magazine 136 (aug, 1990).

[11] N. Zaidenberg and A. Resh, Timing and Side Channel Attacks, pp. 183–194.
Springer International Publishing, Cham, 2015.

166

http://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
http://xxx.lanl.gov/abs/1801.0120
http://xxx.lanl.gov/abs/1801.0120

[12] N. S. Agency, “Tempest: A signal problem.”
https://www.nsa.gov/news-features/declassified-documents/

cryptologic-spectrum/assets/files/tempest.pdf, 1972.

[13] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, Acoustic
side-channel attacks on printers, in Proceedings of the 19th USENIX Conference
on Security, USENIX Security’10, (Berkeley, CA, USA), pp. 20–20, USENIX
Association, 2010.

[14] D. X. Song, D. A. Wagner, and X. Tian, Timing analysis of keystrokes and timing
attacks on SSH, in 10th USENIX Security Symposium, August 13-17, 2001,
Washington, D.C., USA, 2001.

[15] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, Keystroke recognition using wifi
signals, in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, MobiCom ’15, (New York, NY, USA), pp. 90–102,
ACM, 2015.

[16] P. C. Kocher, J. Jaffe, and B. Jun, Differential power analysis, in Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pp. 388–397,
1999.

[17] C. Hale, “A lesson in timing attacks (or, dont use messagedigest.isequals).”
https://codahale.com/a-lesson-in-timing-attacks/, 2009.

[18] J. S. Daniel Mayer, “Time trial: Racing towards practical remote timing attacks.”
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/

TimeTrial.pdf, 2014.

[19] J. Kelsey, Compression and information leakage of plaintext, in Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February
4-6, 2002, Revised Papers, pp. 263–276, 2002.

[20] J. Rizzo and T. Duong, The crime attack, Ekoparty Security Conference, 2012.

[21] J. C. King, Symbolic execution and program testing, Commun. ACM 19 (July,
1976) 385–394.

[22] Q.-S. Phan, Symbolic Execution as DPLL Modulo Theories, in 2014 Imperial
College Computing Student Workshop, vol. 43 of OpenAccess Series in
Informatics (OASIcs), (Dagstuhl, Germany), pp. 58–65, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

[23] C. Cadar and K. Sen, Symbolic Execution for Software Testing: Three Decades
Later, Commun. ACM 56 (Feb., 2013) 82–90.

167

https://www.nsa.gov/news-features/declassified-documents/cryptologic-spectrum/assets/files/tempest.pdf
https://www.nsa.gov/news-features/declassified-documents/cryptologic-spectrum/assets/files/tempest.pdf
https://codahale.com/a-lesson-in-timing-attacks/
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/TimeTrial.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/TimeTrial.pdf

[24] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective lattice point
counting in rational convex polytopes, Journal of Symbolic Computation 38
(2004), no. 4 1273 – 1302. Symbolic Computation in Algebra and Geometry.

[25] A. Aydin, L. Bang, and T. Bultan, Automata-based model counting for string
constraints, in Proceedings of the 27th International Conference on Computer
Aided Verification (CAV), pp. 255–272, 2015.

[26] T. M. Cover and J. A. Thomas, Elements of information theory.
Wiley-Interscience, New York, NY, USA, 1991.

[27] P. Malacaria, Quantitative information flow: from theory to practice?, in
Proceedings of the 22nd international conference on Computer Aided Verification,
CAV’10, (Berlin, Heidelberg), pp. 20–22, Springer-Verlag, 2010.

[28] N. Lawson, “Optimized memcmp leaks useful timing differences.”
https://rdist.root.org/2010/08/05/

optimized-memcmp-leaks-useful-timing-differences/, 2010.

[29] L. De Moura and N. Bjørner, Z3: an efficient SMT solver, in Proceedings of the
14th international conference on Tools and algorithms for the construction and
analysis of systems, TACAS’08, (Berlin, Heidelberg), pp. 337–340,
Springer-Verlag, 2008.

[30] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and
N. Rungta, Symbolic PathFinder: integrating symbolic execution with model
checking for Java bytecode analysis, Automated Software Engineering (2013) 1–35.

[31] K. S. Luckow, C. S. Pasareanu, M. B. Dwyer, A. Filieri, and W. Visser, Exact and
approximate probabilistic symbolic execution for nondeterministic programs, in
ACM/IEEE International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, pp. 575–586, 2014.

[32] A. Filieri, C. S. Pasareanu, and W. Visser, Reliability analysis in symbolic
pathfinder, in Proceedings of the 35th International Conference on Software
Engineering (ICSE), pp. 622–631, 2013.

[33] C. S. Păsăreanu, Q.-S. Phan, and P. Malacaria, Multi-run side-channel analysis
using Symbolic Execution and Max-SMT, in Proceedings of the 2016 IEEE 29th
Computer Security Foundations Symposium, CSF ’16, (Washington, DC, USA),
IEEE Computer Society, 2016.

[34] D. J. D. Hughes and V. Shmatikov, Information hiding, anonymity and privacy:
a modular approach, Journal of Computer Security 12 (2004), no. 1 3–36.

168

https://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences/
https://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences/

[35] M. Backes and B. Pfitzmann, Computational probabilistic noninterference, Int. J.
Inf. Sec. 3 (2004), no. 1 42–60.

[36] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, Idle port scanning and
non-interference analysis of network protocol stacks using model checking, in 19th
USENIX Security Symposium, Washington, DC, USA, August 11-13, 2010,
Proceedings, pp. 257–272, 2010.

[37] G. Smith, On the foundations of quantitative information flow, in Proceedings of
the 12th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS), pp. 288–302, 2009.

[38] C. Shannon, A mathematical theory of communication, Bell System Technical
Journal 27 (July, October, 1948) 379–423, 623–656.

[39] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[40] Q.-S. Phan, Model Counting Modulo Theories. PhD thesis, Queen Mary
University of London, 2015.

[41] J. R. J. Bayardo and J. D. Pehoushek, Counting Models Using Connected
Components, in Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, pp. 157–162, AAAI Press, 2000.

[42] Q.-S. Phan and P. Malacaria, Abstract Model Counting: A Novel Approach for
Quantification of Information Leaks, in Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’14, (New
York, NY, USA), pp. 283–292, ACM, 2014.

[43] A. I. Barvinok, A Polynomial Time Algorithm for Counting Integral Points in
Polyhedra When the Dimension is Fixed, Math. Oper. Res. 19 (1994), no. 4
769–779.

[44] L. Luu, S. Shinde, P. Saxena, and B. Demsky, A model counter for constraints
over unbounded strings, in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), p. 57, 2014.

[45] V. Klebanov, Precise Quantitative Information Flow Analysis Using Symbolic
Model Counting, in Proceedings, International Workshop on Quantitative Aspects
in Security Assurance (QASA) (F. Martinelli and F. Nielson, eds.), 2012.

[46] K. von Gleissenthall, B. Köpf, and A. Rybalchenko, Symbolic polytopes for
quantitative interpolation and verification, in Computer Aided Verification
(D. Kroening and C. S. Păsăreanu, eds.), (Cham), pp. 178–194, Springer
International Publishing, 2015.

169

[47] M. Chavira and A. Darwiche, On probabilistic inference by weighted model
counting, Artificial Intelligence 172 (2008), no. 6 772 – 799.

[48] T. Sang, P. Beame, and H. A. Kautz, Performing bayesian inference by weighted
model counting, in Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pp. 475–482, 2005.

[49] W. Pugh, Counting solutions to presburger formulas: How and why, in Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation, PLDI ’94, (New York, NY, USA), pp. 121–134, ACM, 1994.

[50] E. Parker and S. Chatterjee, An automata-theoretic algorithm for counting
solutions to presburger formulas, in Compiler Construction (E. Duesterwald, ed.),
(Berlin, Heidelberg), pp. 104–119, Springer Berlin Heidelberg, 2004.

[51] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst, Hampi: a
solver for string constraints, in Proceedings of the 18th International Symposium
on Software Testing and Analysis (ISSTA), pp. 105–116, 2009.

[52] Y. Zheng, X. Zhang, and V. Ganesh, Z3-str: A z3-based string solver for web
application analysis, in Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pp. 114–124, 2013.

[53] G. Li and I. Ghosh, PASS: string solving with parameterized array and interval
automaton, in Proceedings of the 9th International Haifa Verification Conference
(HVC), pp. 15–31, 2013.

[54] P. A. Abdulla, M. F. Atig, Y. Chen, L. Hoĺık, A. Rezine, P. Rümmer, and
J. Stenman, String constraints for verification, in Proceedings of the 26th
International Conference on Computer Aided Verification (CAV), pp. 150–166,
2014.

[55] M. Trinh, D. Chu, and J. Jaffar, S3: A symbolic string solver for vulnerability
detection in web applications, in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 1232–1243, 2014.

[56] “LattE.” http://www.math.ucdavis.edu/~latte/.

[57] “Barvinok library.” http://garage.kotnet.org/~skimo/barvinok/.

[58] S. Verdoolaege, The barvinok model counter, 2017.

[59] E. Birnbaum and E. L. Lozinskii, The good old Davis-Putnam procedure helps
counting models, J. Artif. Int. Res. 10 (June, 1999) 457–477.

170

http://www.math.ucdavis.edu/~latte/
http://garage.kotnet.org/~skimo/barvinok/

[60] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
IOS Press, Amsterdam, The Netherlands, The Netherlands, 2009.

[61] R. P. Stanley, Enumerative Combinatorics: Volume 1. Cambridge University
Press, New York, NY, USA, 2nd ed., 2011.

[62] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University
Press, New York, NY, USA, 1 ed., 2009.

[63] N. Chomsky and M. P. Schtzenberger, The algebraic theory of context-free
languages, 01, 1970.

[64] A. I. Barvinok, A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed, Math. Oper. Res. 19 (Nov., 1994) 769–779.

[65] L. Bang, A. Aydin, Q.-S. Phan, C. S. Pasareanu, and T. Bultan, String analysis
for side channels with segmented oracles, in Proceedings of the 24th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering,
2016.

[66] N. Biggs, Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge
University Press, 1993.

[67] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[68] J. L. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory, Second Edition.
Chapman & Hall/CRC, 2nd ed., 2013.

[69] D. E. Knuth, The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, 1968.

[70] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra, Symbolic string verification: An
automata-based approach, in Proceedings of the 15th International SPIN
Workshop on Model Checking Software (SPIN), pp. 306–324, 2008.

[71] F. Yu, M. Alkhalaf, and T. Bultan, Stranger: An automata-based string analysis
tool for php, in Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 154–157,
2010.

[72] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra, Automata-based symbolic string
analysis for vulnerability detection, Formal Methods in System Design 44 (2014),
no. 1 44–70.

[73] BRICS, “The MONA project.” http://www.brics.dk/mona/.

171

http://www.brics.dk/mona/

[74] I. Wolfram Research, Mathematica, 2014.

[75] C. Bartzis and T. Bultan, Efficient symbolic representations for arithmetic
constraints in verification, Int. J. Found. Comput. Sci. 14 (2003), no. 4 605–624.

[76] F. Weimer, “Defeating memory comparison timing oracles.”
https://access.redhat.com/blogs/766093/posts/878863/, 2014.

[77] N. Lawson, Side-channel attacks on cryptographic software, IEEE Security and
Privacy 7 (Nov., 2009) 65–68.

[78] “A few important facts regarding oauth security.”
http://oauthlib.readthedocs.io/en/latest/oauth1/security.html, 2012.

[79] “Oauth protocol hmac byte value calculation timing disclosure weakness.”
https://osvdb.info/OSVDB-97562, 2013.

[80] T. Nelson, “Widespread timing vulnerabilities in openid implementations.” http:

//lists.openid.net/pipermail/openid-security/2010-July/001156.html,
2010.

[81] A. Filieri, C. S. Păsăreanu, and W. Visser, Reliability analysis in symbolic
pathfinder, in Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, (Piscataway, NJ, USA), pp. 622–631, IEEE Press, 2013.

[82] B. Köpf and D. Basin, An Information-theoretic Model for Adaptive Side-channel
Attacks, in Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, (New York, NY, USA), pp. 286–296, ACM,
2007.

[83] P. Malacaria and H. Chen, Lagrange multipliers and maximum information
leakage in different observational models, in Proceedings of the third ACM
SIGPLAN workshop on Programming languages and analysis for security, PLAS
’08, (New York, NY, USA), pp. 135–146, ACM, 2008.

[84] G. Smith, On the Foundations of Quantitative Information Flow, in Proceedings
of the 12th International Conference on Foundations of Software Science and
Computational Structures, FOSSACS ’09, (Berlin, Heidelberg), pp. 288–302,
Springer-Verlag, 2009.

[85] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan, Synthesis of
adaptive side-channel attacks, IACR Cryptology ePrint Archive 2017 (2017) 401.

[86] R. Nieuwenhuis and A. Oliveras, On SAT Modulo Theories and Optimization
Problems, in Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing, SAT’06, (Berlin, Heidelberg), pp. 156–169,
Springer-Verlag, 2006.

172

https://access.redhat.com/blogs/766093/posts/878863/
http://oauthlib.readthedocs.io/en/latest/oauth1/security.html
https://osvdb.info/OSVDB-97562
http://lists.openid.net/pipermail/openid-security/2010-July/001156.html
http://lists.openid.net/pipermail/openid-security/2010-July/001156.html

[87] M. H. Liffiton and A. Malik, Enumerating Infeasibility: Finding Multiple MUSes
Quickly, pp. 160–175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[88] W. Research, Mathematica 11.0, 2016.

[89] S. Das and P. N. Suganthan, Differential evolution: A survey of the
state-of-the-art, IEEE Trans. Evolutionary Computation 15 (2011), no. 1 4–31.

[90] “DARPA STAC program.”
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity.

[91] “Netty library.” http://netty.io/.

[92] A. Sabelfeld and A. C. Myers, Language-based information-flow security, IEEE
Journal on Selected Areas in Communications 21 (2003), no. 1 5–19.

[93] B. Köpf and D. A. Basin, An information-theoretic model for adaptive
side-channel attacks, in Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA, October
28-31, 2007 (P. Ning, S. D. C. di Vimercati, and P. F. Syverson, eds.),
pp. 286–296, ACM, 2007.

[94] Wolfram Research, Wolfram Language Documentation: NMaximize, 2017.

[95] M. Rosenblatt, Remarks on some nonparametric estimates of a density function,
Ann. Math. Stat. 27 (1956), no. 3 832–837.

[96] E. Parzen, On estimation of a probability density function and mode, Ann. Math.
Statist. 33 (1962), no. 3 1065–1076.

[97] T. M. Ngo and M. Huisman, Quantitative Security Analysis for Programs with
Low Input and Noisy Output, pp. 77–94. Springer International Publishing,
Cham, 2014.

[98] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, Thwarting cache
side-channel attacks through dynamic software diversity, in 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015, The Internet Society, 2015.

[99] DARPA, The space-time analysis for cybersecurity (STAC) project, 2015.

[100] Wolfram Research, Mathematica Version 11, 2017. Champaign, IL, 2017.

[101] Wolfram Research, Wolfram MathWorld: DifferentialEvolution, 2017.

[102] D. Clark, C. Hankin, and S. Hunt, Information flow for algol-like languages,
Comput. Lang. Syst. Struct. 28 (Apr., 2002) 3–28.

173

http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://netty.io/

[103] D. Clark, S. Hunt, and P. Malacaria, Quantified Interference for a While
Language, Electron. Notes Theor. Comput. Sci. 112 (Jan., 2005) 149–166.

[104] D. Clark, S. Hunt, and P. Malacaria, Quantitative Analysis of the Leakage of
Confidential Data , Electronic Notes in Theoretical Computer Science 59 (2002),
no. 3 238 – 251. QAPL’01, Quantitative Aspects of Programming Laguages
(Satellite Event of {PLI} 2001).

[105] D. Clark, S. Hunt, and P. Malacaria, Quantified interference: information theory
and information flow, in Presented at Workshop on Issues in the Theory of
Security (WITS04, p. 04, 2004.

[106] P. Malacaria, Assessing security threats of looping constructs, in Proceedings of the
34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’07, (New York, NY, USA), pp. 225–235, ACM, 2007.

[107] D. Clark, S. Hunt, and P. Malacaria, Quantitative Information Flow, Relations
and Polymorphic Types, J. Log. and Comput. 15 (Apr., 2005) 181–199.

[108] M. C. Kim and P. H. Seong, A computational model for knowledge-driven
monitoring of nuclear power plant operators based on information theory, Rel.
Eng. & Sys. Safety 91 (2006), no. 3 283–291.

[109] J. H. Kim and P. H. Seong, A quantitative approach to modeling the information
flow of diagnosis tasks in nuclear power plants, Rel. Eng. & Sys. Safety 80 (2003),
no. 1 81–94.

[110] H. G. Kang and P. Seong, Information theoretic approach to man-machine
interface complexity evaluation, IEEE Trans. Systems, Man, and Cybernetics,
Part A 31 (2001), no. 3 163–171.

[111] M. Backes, B. Kopf, and A. Rybalchenko, Automatic Discovery and
Quantification of Information Leaks, in Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, SP ’09, (Washington, DC, USA),
pp. 141–153, IEEE Computer Society, 2009.

[112] J. Heusser and P. Malacaria, Quantifying information leaks in software, in
Proceedings of the 26th Annual Computer Security Applications Conference,
ACSAC ’10, (New York, NY, USA), pp. 261–269, ACM, 2010.

[113] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S. Păsăreanu, Symbolic
Quantitative Information Flow, SIGSOFT Softw. Eng. Notes 37 (Nov., 2012) 1–5.

[114] V. Klebanov, N. Manthey, and C. Muise, SAT-Based Analysis and Quantification
of Information Flow in Programs, in Quantitative Evaluation of Systems,
vol. 8054 of Lecture Notes in Computer Science, pp. 177–192. Springer Berlin
Heidelberg, 2013.

174

[115] Q.-S. Phan, P. Malacaria, C. S. Păsăreanu, and M. d’Amorim, Quantifying
Information Leaks Using Reliability Analysis, in Proceedings of the 2014
International SPIN Symposium on Model Checking of Software, SPIN 2014, (New
York, NY, USA), pp. 105–108, ACM, 2014.

[116] Q.-S. Phan and P. Malacaria, All-Solution Satisfiability Modulo Theories:
applications, algorithms and benchmarks, in Proceedings of the 2015 Tenth
International Conference on Availability, Reliability and Security, ARES ’15,
(Washington, DC, USA), IEEE Computer Society, 2015.

[117] P. Malacaria, M. H. R. Khouzani, C. S. Pasareanu, Q. Phan, and K. S. Luckow,
Symbolic side-channel analysis for probabilistic programs, IACR Cryptology ePrint
Archive 2018 (2018) 329.

[118] M. R. Clarkson, A. C. Myers, and F. B. Schneider, Belief in information flow, in
Proceedings of the 18th IEEE Workshop on Computer Security Foundations,
CSFW ’05, (Washington, DC, USA), pp. 31–45, IEEE Computer Society, 2005.

[119] P. Chapman and D. Evans, Automated black-box detection of side-channel
vulnerabilities in web applications, in Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, (New York, NY, USA),
pp. 263–274, ACM, 2011.

[120] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei,
Decomposition instead of self-composition for k-safety, Nov., 2016.

[121] P. Mardziel, M. S. Alvim, M. W. Hicks, and M. R. Clarkson, Quantifying
information flow for dynamic secrets, in 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pp. 540–555, 2014.

[122] M. S. Alvim, M. E. Andrés, and C. Palamidessi, Information Flow in Interactive
Systems, pp. 102–116. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[123] H. Mantel and A. Starostin, Transforming Out Timing Leaks, More or Less,
pp. 447–467. Springer International Publishing, Cham, 2015.

[124] M. Chavira and A. Darwiche, On probabilistic inference by weighted model
counting, Artif. Intell. 172 (Apr., 2008) 772–799.

[125] V. Klebanov, Precise quantitative information flow analysis - a symbolic
approach, Theor. Comput. Sci. 538 (2014) 124–139.

[126] P. Hooimeijer and W. Weimer, A decision procedure for subset constraints over
regular languages, in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 188–198, 2009.

175

[127] P. Hooimeijer and W. Weimer, Solving string constraints lazily, in Proceedings of
the 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 377–386, 2010.

[128] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, A
symbolic execution framework for javascript, in Proceedings of the 31st IEEE
Symposium on Security and Privacy, 2010.

[129] V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C. Rinard, Word equations with
length constraints: What’s decidable?, in Proceedings of the 8th International
Haifa Verification Conference (HVC), pp. 209–226, 2012.

[130] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters, A DPLL(T) theory
solver for a theory of strings and regular expressions, in Proceedings of the 26th
International Conference on Computer Aided Verification (CAV), pp. 646–662,
2014.

[131] M.-T. Trinh, D.-H. Chu, and J. Jaffar, Model counting for recursively-defined
strings, in Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, Proceedings, Part II, pp. 399–418, 2017.

[132] S. Kausler and E. Sherman, Evaluation of string constraint solvers in the context
of symbolic execution, in Proceedings of the 29th ACM/IEEE International
Conference on Automated software engineering (ASE), pp. 259–270, 2014.

[133] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S. Păsăreanu, Symbolic
quantitative information flow, SIGSOFT Softw. Eng. Notes 37 (2012), no. 6 1–5.

[134] S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi, Approximate
probabilistic inference via word-level counting, in Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pp. 3218–3224, 2016.

[135] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi,
Distribution-aware sampling and weighted model counting for SAT, in Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1722–1730,
2014.

176

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Contributions
	Dissertation Outline

	Program Analysis for Quantitative Information Flow
	Software Side Channels
	Symbolic Execution
	Probabilistic Symbolic Execution
	Quantitative Information Flow
	Chapter Summary

	Model Counting
	Prior Work on Model Counting
	Model Counting for Boolean Logic
	Model Counting for String Constraints
	Linear Integer Arithmetic

	Automata-Based Model Counting
	String Constraints
	Automata Construction
	Model Counting with Automata
	Implementation of Automata-Based Model Counting
	Comparison with Syntax-Based Model Counting
	Automata-Based Counting for Linear Integer Constraints

	Chapter Summary

	Side-Channel Analysis for Segmented Oracles
	Segment Oracles
	Entropy Computation
	Multi-run Analysis of Segment Oracle Attacks
	Multi-Run Symbolic Execution
	The Best Adversary Model
	Computation of Information Leakage

	Multi-Run Analysis Using Single-Run Symbolic Execution
	Experiments
	Timing Performance of Model Counting
	Single- and Multi-run Symbolic Execution
	Password Checker
	Text Concatenation and Compression

	Chapter Summary

	Offline Adaptive Attack Synthesis
	Multi-Run Adaptive Attacks
	Attacker Model
	The Attacker's Knowledge

	Symbolic Execution for Attack Synthesis
	Maximizing Channel Capacity
	Maximizing Shannon Entropy
	Entropy Maximization: Numeric Optimization
	Entropy Maximization: Maximal Satisfiable Subsets
	Greedy Maximization
	Optimizations

	Implementation
	Experiments
	Chapter Summary

	Online Adaptive Attack Synthesis Under Noisy Conditions
	Motivating Example
	Overview
	System Model
	Outline of Attack Synthesis
	Measuring Uncertainty

	Offline Profiling
	Trace Equivalence Classes
	Trace Class Discovery via Symbolic Execution
	Estimating Observation Noise
	Trace Class Merging Heuristic

	Online Attack Synthesis
	Adversary Strategy
	Trace Class Probabilities via Symbolic Weighted Model Counting
	Leakage Objective Function
	Input Choice via Numeric Optimization
	Belief Update for Secret Distribution
	Example
	Handling Non-deterministic Programs
	Detecting Non-vulnerability

	Implementation and Experimental Setup
	Experiments
	DARPA-STAC Benchmark
	Case Study: Law Enforcement Database

	Chapter Summary

	Related Work
	Conclusion
	Bibliography

