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Abstract—We present a modular approach for verification
of synchronization behavior in concurrent programs that use
reentrant locks. Our approach decouples the verification of the
lock implementation from the verification of the threads that
use the lock. This decoupling is achieved using lock interfaces
that characterize the allowable execution order for the lock
operations. We use a thread modular verification approach to
check that each thread obeys the lock interface. We verify
the lock implementation assuming that the threads behave
according to the lock interface. We demonstrate that this
approach can be used to verify synchronization behavior in
Java programs that use reentrant lock implementations for
synchronization.

I. INTRODUCTION

Concurrent programming is a difficult task since it re-
quires coordinating execution of multiple threads. It is
especially difficult to control the behavior of shared variables
that can be accessed and modified by multiple threads. A
common concurrent programming paradigm is to protect
access to shared variables using locks. Locks restrict access
to shared variables and enable the threads that hold the lock
to read and modify shared variables without interference
from other threads. However, for this paradigm to work,
there are two correctness criteria that have to be satisfied:
1) The locks have to be used correctly by the threads, and 2)
The locks have to be implemented correctly. In this paper,
we present a modular verification approach that can be used
to check both of these conditions.

Reliable concurrent programming is a challenge faced by
all Java programmers since threads are an integral part of
Java. Thread programming in Java requires conditional waits
and notifications implemented with multiple locks and mul-
tiple condition variables with associated synchronized,
wait, notify and notifyAll statements. Concurrent pro-
gramming using these synchronization primitives is error-
prone, with common programming errors such as nested
monitor lockouts, missed or forgotten notifications, slipped
conditions, etc. [14].

Reentrant locking is an important concurrent program-
ming concept for fine grain synchronization. As part of
J2SE 5.0, java.util.concurrent package [20] contains
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various lock implementations to help Java programmers
with synchronization. For example, the ReentrantLock
and ReentrantReadWriteLock are lock implementations
provided by the java.util.concurrent package, and
these locks are reentrant, i.e., if a thread acquires a reentrant
lock and tries to acquire the same lock again, then the thread
would not block. The default synchronization mechanism in
Java based on the synchronized keyword is also reentrant.
A reentrant lock is released by a thread when the number
of acquire and release operations executed by that thread
become equal.

In this paper, we present a modular verification approach
for verification of reentrant lock implementations and their
usage. Our modular verification approach is based on the
earlier work on verification of synchronization policies in
Java programs presented in [2]–[5]. However, these earlier
results are not capable of handling reentrant locks since
they restrict the interfaces of the synchronization policies to
finite state machines. A finite state machine is not expressive
enough for specifying the interface of a reentrant lock.
Consider a reentrant lock with a single acquire (a) and
a single release (r) operation. The lock is released by a
thread when the sequence of calls made by that thread
is in {ai1ri1ai2ri2 . . . ainrin | i1, i2, . . . , in, n ≥ 0}. This
constraint cannot be modeled using finite state machines. To
express this type of interface constraints we use extended fi-
nite state machines and keep track of the difference between
acquire and release operations for each lock. Based on these
lock interfaces, we develop a modular verification technique
that enables verification of both the implementation and
the usage of reentrant locks such as ReentrantLock and
ReentrantReadWriteLock. Although we focus on ver-
ification of concurrent Java programs in this paper, our
approach is also applicable to other concurrent programming
frameworks that support reentrant locks.

Figure 1 gives an overview of our verification framework.
First we separate the verification task to two main compo-
nents: 1) Checking the lock behaviors, i.e., making sure that
the lock implementations are correct. 2) Checking that the
threads obey the lock interfaces. A lock interface specifies
the allowable sequences of lock and shared operations. As
mentioned above, in our framework the lock interfaces are
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Figure 1. Overview of the framework
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Figure 2. Modular lock verification

specified as extended state machines.
In order to check a lock’s behavior we assume that the

threads that use the lock obey the lock’s interface. This
allows us to check the lock’s behavior by replacing the
threads with instances of the state machine that characterizes
the lock’s interface. In our framework the lock behavior is
specified by a set of guarded commands that update the
lock variables. We construct a lock behavior machine based
on these guarded commands and the lock interface state
machine.

One of our contributions in this paper is reducing the ver-
ification of a reentrant-lock behavior machine to verification
of a non-reentrant-lock behavior machine. I.e., we show that
during the lock behavior verification, it is not necessary to
keep track of how many times a thread acquired or released
a lock as long as it is holding the lock.

As shown in Figure 2, our approach is modular in two dif-
ferent dimensions. First, using the lock interfaces we are able
to separate the lock behavior from the rest of the program.
This is crucial for achieving scalable verification of lock
properties. This separation and the reduction from reentrant-
locks to non-reentrant-locks enable us to use the counting
abstraction technique and check the lock implementations

with respect to arbitrary number of threads. We use the
Action Language Verifier (ALV) [22] for lock behavior
verification.

Second dimension of modularity is the thread modular
interface verification. We check interface correctness of each
thread separately. We isolate the threads by replacing shared
data variables with nondeterministic stubs that return arbi-
trary values. We replace the lock implementations with stubs
that check that the thread that is being verified calls the lock
operations in the order specified by the lock interface. We
use the Java Path Finder (JPF) [21] for interface verification.

Related Work: This paper builds on the framework
developed in [2]–[5]. The main contribution of the current
paper is extending the modular verification framework in-
troduced in this earlier work to reentrant locks. In order to
achieve this, we make the following contributions: 1) We
present a new formal model that captures the semantics
of reentrant locks. This formal model partitions the lock
operations to acquire and release operations and augments
the concurrent program states and the interface machine
states with reentry-counts that keep track of the difference
between the acquire and release calls by each thread. 2)
During interface verification we use these extended state ma-
chines augmented with reentry-counts to check the ordering
of the lock and shared operations. 3) We show that, during
behavior verification, it is not necessary to keep track of
reentry-counts, i.e., we show that the behavior verification
for reentrant-locks can be reduced to behavior verification
for non-reentrant-locks. This enables us to use counting
abstraction and check the lock implementations with respect
to arbitrary number of threads. 4) We conduct experiments
on Java programs with reentrant locks demonstrating the
feasibility of the proposed modular verification approach.

The thread-modular reasoning discussed in [11] verifies
each thread separately with respect to safety properties.
The effects of other threads are modeled as environment
assumptions whereas we use shared data stubs to reflect
these effects. Besides, we check the thread behavior against
the lock interfaces and leave the assurance of the safety
properties to behavior verification. I.e., our approach uses
a second type of modularity (which we call behavior-
modularity) in addition to thread-modularity.

Context-bounding [15]–[17], i.e., limiting the number of
context-switches among concurrent threads, is another way
of overcoming intractability of concurrent program verifica-
tion. Our approach relies on both thread and behavior mod-
ular verification rather than bounding the context switches.

Using state machines to characterize interfaces have been
proposed in the past. In [6] interfaces of software modules
are specified as a set of constraints, and algorithms for
interface compatibility checking are presented. In [7] type
systems are extended with stateful interfaces and interface
checking is made part of type checking. We use interfaces
to characterize the allowed call sequences for the lock and



shared operations and our interface machine characterization
is tailored towards reentrant locks.

In [13] a methodology is proposed for preserving object
invariants in a concurrent program with fine grained locking
mechanism through an ownership system supported by a
modular verification methodology. However, the approach
proposed in [13] cannot handle synchronization policies such
as the read-write lock. In our approach the programmers
are able to implement customized locks and check their
correctness.

In [1], an assertional proof method for proving properties
of a multithreaded sublanguage of Java is presented by
incorporating Java’s reentrant synchronization mechanism
to a proof system. Unlike our approach, this proof system
requires annotation of programs with Hoare-style assertions.
Furthermore, automation of the verification task is not dis-
cussed.

In [12] a verification technique for a concurrent Java-like
language with reentrant locks is proposed. The proposed
approach is based on separation logic. The authors introduce
a notion of a lockset to handle reentrancy (in contrast to
the reentry-counts used in our approach). Automation of the
verification task is not discussed in this work either.

Finally, in [18], [19] a design-for-verification approach
is presented that decouples the synchronization concerns
from the functional logic of the program. This is achieved
by using a language-independent compositional model for
synchronization contracts. Although, the approach presented
in [18], [19] uses the design-for-verification concept to
achieve effective verification as we do in our work, it does
not use the thread and behavior-modularity that we use in
our approach. Moreover, the approach presented in [18], [19]
requires the use of a middleware framework for contract
negotiation at run-time, whereas our approach does not
require any runtime intervention.

II. MODELING CONCURRENT PROGRAMS

In this section, we describe a simplified formal model for
concurrent programs. We assume that a concurrent program
consists of an arbitrary but fixed number of concurrent
threads. Each thread has its local variables that can only be
accessed and modified by that thread. The shared variables
and locks are accessible to all threads. We keep locks
separate from the shared variables since they are specifically
used for synchronization purposes. We assume that the
shared variables and locks can be modified only by executing
their methods. (This can be achieved by making fields of
shared and lock objects private.) We do not consider thread
creation or termination in our model. We also assume that
local variables stay local and shared variables and locks
stay shared throughout the execution of the program. These
restrictions are done to simplify the presentation and they
are not inherent to our approach.

Formally, we define the set of variables for a concurrent
program with n threads as:

Var = ShaVar ∪ LockVar ∪
⋃

t∈[1..n]

TLocVart

where ShaVar (shared), LockVar (lock), and TLocVart for
t ∈ [1..n] (local variables) are all disjoint sets.

In order to formulate the program states and executions,
we first define the program stores in a concurrent program.
A concurrent program consists of a shared store S ∈ Sha =
ShaVar → Dom, a lock store L ∈ Lock = LockVar →
Dom, and a local store for each thread t, Tt ∈ TLoct =
TLocVart → Dom. To simplify our presentation we use
Dom to denote the union of all variable domains and assume
that each variable is mapped to a type correct value. Note
that, the program counter of a thread t is represented as a
local variable in TLocVart.

We define the set of states for a concurrent program with n

threads as: State = Sha×Lock×W×R×TLoc1×TLoc2×
. . .×TLocn. In addition to previous stores, a state s ∈ State
also consists of a wait store W ∈ W that keeps track of the
blocked threads and the operations that they blocked on, and
a reentry store R ∈ R that keeps track of the reentry count
for each thread and each lock. We formally define wait and
reentry stores when we discuss lock operations below.

We denote the initial states of a concurrent program as
Init ⊆ State. Given a state of a concurrent program s =
(S, L, W, R, T1, T2, . . . , Tn) ∈ State and a shared variable
v ∈ ShaVar, S(v) denotes the value of the variable v in
state s. The values of lock and local variables in state s are
similarly defined by the lock store (L) and the local stores
for the threads (Tt), respectively.

We define the set of operations of a concurrent program
as: Op = SOp ∪ LOp ∪ TOp1 ∪ TOp2 ∪ . . . ∪ TOpn

where SOp denotes the shared operations, LOp denotes
the lock operations, and TOpt denotes the local operations
for thread t. Each operation corresponds to an atomic step
of execution, i.e., given a program state, execution of an
operation causes the program to transit to another program
state. The operations are formally defined as:

SOp = Sha → Sha
LOp = Lock × W × R → Lock × W × R
TOpt = TLoct → TLoct for t ∈ [1..n]

Based on operations, we define the transition
relation of a concurrent program as follows
Trans ⊆ State × Op × {1..n} × State, i.e., we label
a transition with the corresponding operation and
the index of the thread that executes the operation.
Given a transition (s, o, t, s′) ∈ Trans where
s = (S, L, W, R, T1, T2, . . . , Tn) and s′ =



(S′, L′, W ′, R′, T ′
1, T

′
2, . . . , T

′
n), we have the following:

o ∈ SOp ⇒ S′ = o(S) ∧ L′ = L ∧
V

i∈[1..n] T
′
i = Ti

o ∈ LOp ⇒ S′ = S ∧ (L′, W ′, R′) = o(L, W, R)∧
V

i∈[1..n] T
′
i = Ti

o ∈ TOpt ⇒ S′ = S ∧ L′ = L ∧ T ′
t = o(Tt)∧

V

i∈[1..n],i6=t
T ′

i = Ti

i.e., a shared operation can only change the values of the
shared variables, a lock operation can only change the values
of the lock variables, the wait store and the reentry store,
and a local operation of a thread can only change the values
of that thread’s local variables.

We use s
o,t
−→ s′ as an alternative notation for the tuple

(s, o, t, s′). We use an interleaving semantics, and define a
run ρ of a concurrent program as: ρ = s0

o0,t0
−→ s1

o1,t1
−→ s2 . . .

where s0 ∈ Init and for all i, si
oi,ti

−→ si+1 ∈ Trans.
Lock Operations: We assume that lock operations are

implemented as guarded commands, i.e., each lock operation
o ∈ LOp has a guard o.g and an update o.u where o.g :
Lock → {TRUE, FALSE}, o.u : Lock → Lock. The update
of a lock operation (o.u) is only executed when its guard
(o.g) evaluates to true.

In order to keep track of the threads that are waiting on
a blocked lock operation we use the wait store W ∈ W that
maps each thread to either a lock operation or ⊥, W ∈ W :
{1 . . . n} → LOp ∪ {⊥} where W (t) = ⊥ means that the
thread t is not blocked (i.e., it is not waiting), and W (t) = o

means that the thread t was blocked while executing the
operation o and it is waiting for the guard of the operation
o to become true. In our execution model W (t) = o implies
that 1) the last operation executed by thread t was o which
caused thread t to block, and 2) the next operation that will
be executed by t will also be o, however, the next execution
of o will not block.

Since our goal is to model reentrant locks, once a lock
acquire operation is completed by a thread (i.e., the thread
is not blocked and waiting), the next execution of the same
lock acquire operation by the same thread should not block
unless the lock is released. In order to model this semantics,
we partition the lock operations to acquire and release
operations where LOp = LAOp∪LROp. We further assume
that each lock operation is associated with a unique lock.
Assuming that there are m locks, then the lock operations
are partitioned to m sets of acquire operations and m sets
of release operations where LOp = LAOp1 ∪ LAOp2 ∪
. . .∪LAOpm∪LROp1∪LROp2∪ . . .∪LROpm. This does
not imply that there are m separate sets of lock variables.
For example, in our terminology a read-write lock will
correspond to one read lock and one write lock whereas
the operations implementing these two locks will be using
the same set of lock variables. The reentrant condition is
expressed as follows: An acquire operation o ∈ LAOpi

executed by thread t should not block if the number of
operations from LAOpi that have been executed by thread

t are greater than the number of operations from LROpi

that have been executed by thread t. We formalize this by
using a reentry store R ∈ R that maps each thread and each
lock to the difference between the number of executions of
the acquire and release operations: R ∈ R : {1 . . . n} →
{1 . . .m} → Int where R(t)(i) denotes the difference
between the number of executions of the acquire and release
operations of lock i by thread t. Figure 3 summarizes the
semantics of lock operations.

III. LOCK INTERFACES AND INTERFACE CORRECTNESS

In this section, we first formalize the lock interfaces.
A lock interface specifies correct ordering of lock and
shared operations for each thread. We define the interface
correctness condition for threads based on lock interfaces
and show that the interface correctness of each thread can be
checked individually. As we discuss in the following section,
the interface correctness property, i.e., the property that
establishes that all threads obey the lock interface, enables
us to use non-reentrant lock behaviors to simulate reentrant
lock behaviors in a concurrent system. At the end of this
section we also discuss how we use Java Path Finder (JPF)
to check the interface correctness property.

Given a run ρ = s0
o0,t0
−→ s1

o1,t1
−→ s2 . . ., π(ρ)(t) ∈ (SOp∪

LOp)∗ denotes the shared-trace of run ρ for thread t. We
define the projection function π below.

Let ρi denote the ith prefix of ρ (which consists of i + 1
states and i transitions). We denote the i + 1st prefix of ρ

as ρi+1 = ρi
oi,ti

−→ si+1. We define π inductively as follows,
π(ρ0)(t) = ε, and

• π(ρi+1)(t) = π(ρi)(t) oi if ti = t and either oi ∈ SOp
or oi ∈ LOp and Wi+1(t) = ⊥ where Wi+1 is the wait
store for state si+1,

• π(ρi+1)(t) = π(ρi)(t) otherwise.
We call π(ρ)(t) a lock word. A lock interface is a language

LI ⊆ (SOp ∪ LOp)∗. A concurrent program is interface
correct if for each run ρ and for each thread t, π(ρ)(t) ∈ LI.

Lock Interface Machine: A lock interface machine is
an extended finite state machine (EFSM) that recognizes the
lock interface LI ⊆ (SOp ∪ LOp)∗. A thread is interface
correct if each lock word generated by that thread is accepted
by the lock interface machine. In other words, lock interface
machine defines the acceptable sequences of lock and shared
operations that can be generated by a single thread.

Formally, given a concurrent program P with m locks, the
lock interface machine MI is a tuple (S, S0, C, C0, Σ, δ, F ),
where:

• S = 2{lock1,..,lockm} is a finite set of states that is
defined by the powerset of the m locks where locki ∈ s

means that the lock i is held by the thread.
• S0 ⊆ S is the set of initial states and is defined as {∅}.
• C = {1 . . .m} → Int is the reentry store for a single

thread denoting the reentry-counts for that thread. Each



Given a lock operation o ∈ LOp, a thread t and two states s = (S,L,W,R, T1, T2, . . . , Tn) and s′ = (S, L′, W ′, R′, T1, T2, . . . , Tn)

where (L′, W ′, R′) = o(L, W,R), then s
o,t
−→ s′ iff one of the following cases hold:

Case: Lock acquire call (o ∈ LAOpk), thread does not hold the lock (R(t)(k) = 0), guard does not hold (o.g(L) = FALSE):
o ∈ LAOpk ∧ R(t)(k) = 0 ∧ o.g(L) = FALSE ⇒
• Thread t starts waiting: W (t) = ⊥, W ′(t) = o, for all i ∈ [1..n], i 6= t ⇒ W ′(i) = W (i)
• Lock and reentry stores do not change: L′ = L, R′ = R

Case: Lock acquire call (o ∈ LAOpk), thread does not hold the lock (R(t)(k) = 0), guard holds (o.g(L) = TRUE):
o ∈ LAOpk ∧ R(t)(k) = 0 ∧ o.g(L) = TRUE ⇒
• Thread t does not wait: W (t) = o ∨ W (t) = ⊥, W ′(t) = ⊥, for all i ∈ [1..n], i 6= t ⇒ W ′(i) = W (i)
• Lock state is updated: L′ = o.u(L)
• Reentry count for t is set to 1: R′(t, k) = 1, for all i ∈ [1..n], j ∈ [1..m], (i 6= t ∨ j 6= k) ⇒ R′(i)(j) = R(i)(j)

Case: Lock acquire call (o ∈ LAOpk), thread holds the lock (R(t)(k) ≥ 1):
o ∈ LAOpk ∧ R(t)(k) ≥ 1 ⇒
• Reentry count for t is incremented: R′(t)(k) = R(t)(k) + 1, for all i ∈ [1..n], j ∈ [1..m], (i 6= t ∨ j 6= k) ⇒ R′(i)(j)
• Lock and wait stores do not change: L′ = L, W ′ = W

Case: Lock release call (o ∈ LROpk), thread is ready to release the lock (R(t)(k) = 1), guard does not hold (o.g(L) = FALSE):
o ∈ LROpk ∧ R(t)(k) = 1 ∧ o.g(L) = FALSE ⇒
• Thread t starts waiting: W (t) = ⊥, W ′(t) = o, for all i ∈ [1..n], i 6= t ⇒ W ′(i) = W (i)
• Lock and reentry stores do not change: L′ = L, R′ = R

Case: Lock release call (o ∈ LROpk), thread is ready to release the lock (R(t)(k) = 1), guard holds (o.g(L) = TRUE):
o ∈ LROpk ∧ R(t)(k) = 1 ∧ o.g(L) = TRUE ⇒
• Thread t does not wait: W (t) = o ∨ W (t) = ⊥, W ′(t) = ⊥, For all i ∈ [1..n], i 6= t ⇒ W ′(i) = W (i)
• Lock state is updated: L′ = o.u(L)
• Reentry count for t is set to 0: R′(t, k) = 0, for all i ∈ [1..n], j ∈ [1..m], (i 6= t ∨ j 6= k) ⇒ R′(i)(j) = R(i)(j)

Case: Lock release call (o ∈ LROpk), thread is not ready to release the lock (R(t)(k) > 1):
o ∈ LROpk ∧ R(t)(k) > 1 ⇒
• Reentry count for t is decremented: R′(t)(k) = R(t)(k) − 1, for all i ∈ [1..n], j ∈ [1..m], (i 6= t ∨ j 6= k) ⇒ R′(i)(j)
• Lock and wait stores do not change: L′ = L, W ′ = W

Figure 3. Semantics of lock operations

c ∈ C is an integer vector and c(i) denotes the reentry-
count for lock i.

• C0 ⊆ C is the set of initial values for the reentry-counts
where C0 = {c | ∀i ∈ [1..m], c(i) = 0}.

• Σ is the finite alphabet defined as Σ = SOp ∪ LOp.
• δ ⊆ S×C×Σ×S×C is the transition relation where

(s, c, o, s′, c′) ∈ δ if and only if one of the following
three conditions holds:

– o ∈ LAOpi ∧ s′ = s ∪ {locki} ∧ c′(i) = c(i) + 1,
– o ∈ SOp ∧ s′ = s ∧ c′ = c,
– o ∈ LROpi∧locki ∈ s∧((c(i) = 1∧s′ = s\{locki}∧

c′(i) = 0) ∨ (c(i) > 1 ∧ s′ = s ∧ c′(i) = c(i) − 1)).
• F ⊆ S is the set of final states defined as F = {∅}.
Consider a read-write lock as an example. Let locks =

{r, w}, SOp = {read, write}, LOp = LAOpr∪LAOpw∪
LROpr ∪ LROpw, where LAOpr = {read_enter},
LAOpw = {write_enter}, LROpr = {read_exit}, and
LROpw = {write_exit}.

A read-write lock interface machine is defined as MI =
(S, S0, C, C0, Σ, δ, F ), where: S = {∅, {r}, {w}, {r, w}},
S0 = {∅}, C = {r, w} → Int, C0 = {c | c(r) = 0∧ c(w) =
0}, Σ = {read, write, read_enter, write_enter,
read_exit, write_exit}, F = {∅} and δ consists of the
following transitions

• (s, c,read, s, c), where s ∈ {{r}, {w}, {r, w}}.
• (s, c,write, s, c), where s ∈ {{w}, {r, w}}.
• (s, c,read_enter, s′, c′), where s′ = s∪ {r} and c′(r) =

c(r) + 1.
• (s,read_exit, s′), where s ∈ {{r}, {r, w}}, and (c(r) =

1∧ s′ = s \ {r} ∧ c′(r) = 0)∨ (c(r) > 1∧ s′ = s∧ c′(r) =

c(r) − 1).
• (s, c,write_enter, s′, c′), where s′ = s ∪ {w} and

c′(w) = c(w) + 1.
• (s, c,write_exit, c′, s′), where s ∈ {{w}, {r, w}}, and

(c(w) = 1∧ s′ = s \ {w}∧ c′(w) = 0)∨ (c(w) > 1 ⇒ s′ =

s ∧ c′(w) = c(w) − 1).
A lock run over a lock word o1o2 . . . ok ∈ (SOp∪LOp)∗

is a finite sequence (s0, c0)(s1, c1)(s2, c2) . . . (sk, ck)
with (s0, c0) ∈ S0 × C0, such that ∀i ∈
[1..k], (si, ci, oi, si+1, ci+1) ∈ δ. A lock run is accepting
if sk ∈ F and ∀i ∈ [1..m], ck(i) = 0. A lock word w is
accepted by MI if there exists an accepting lock run over
w. Then, the lock interface LI for thread t is the set of
lock words that MI accepts, denoted as LI = L(MI).

Definition 3.1: A thread t in a concurrent program is
interface correct if for each run ρ, the lock word π(ρ)(t) ∈
LI = L(MI). A concurrent program is interface correct if
all the threads in the program are interface correct.

Interface Verification: During interface verification we
verify each thread in the program separately using the Java
Path Finder (JPF) [21]. If a thread invokes the lock and
shared operations in an order that is not accepted by the lock
interface machine, then the thread is not interface correct.

Our interface verification approach is thread modular, i.e.,
we check each thread separately for interface violations.
For this purpose, we isolate each thread by a conservative
approximation of the behavior of other threads in the dis-
tributed program without modifying the thread code. We
achieve this by replacing the lock and shared operations



with stubs. The lock operation stubs keep track of the lock
interface machine state and the reentry count for each lock.
Although the lock variables are abstracted away, since we are
checking reentrant locks we have to keep track of the reentry
counts in the lock operation stubs. The return values for
the shard operation stubs are chosen non-deterministically
to model arbitrary manipulation of the shared data by the
other threads. Note that during interface verification, JPF
searches the state space for all possible outcomes of the
non-deterministic choices that are inserted during thread iso-
lation. The thread isolation techniques we use are explained
in detail in [5].

The lock and shared operation stubs have assertions that
check the ordering constraints based on the lock interface
machine. If JPF reports a violation of an assertion in a lock
or shared operation stub, then we know that the thread in
question caused an interface violation. JPF outputs a counter-
example execution trace that leads to the violation of the
assertion.

IV. LOCK BEHAVIOR AND BEHAVIOR VERIFICATION

In this section, we present an abstract model for lock
behaviors of a concurrent system. We argue that this abstract
model can simulate the behavior of the concurrent system
whose threads behave according to the lock interface spec-
ifications.

Lock Behavior Machine: A lock behavior machine is
a special type of EFSM which contains one state machine
for each thread, i.e., it is a product machine characterizing
the combined behavior of all the threads. Formally, given
a concurrent program P with n threads, a lock behavior
machine MB is a tuple (C, C0, Σ, M1, M2, . . . , Mn), where:

• C = Lock = LockVar → Dom denotes the set of lock
stores.

• C0 is the set of initial lock stores.
• Σ is the finite alphabet defined as Σ = LOp ∪ {τ}.
• For t ∈ [1..n], Mt = (St, St0, δt, Ft), where

– St = 2{lock1,..,lockm} is the set of states that is
defined by the powerset of the m locks where
locki ∈ s means that the lock i is held by the
thread t.

– St0 ⊆ St is the set of initial states and is defined
as {∅}.

– δt ⊆ St ×C×Σ×St×C is the transition relation
where (st, c, o, s

′
t, c

′) ∈ δt if and only if one of the
following three conditions holds:
∗ o ∈ LAOpi ∧ locki 6∈ st ∧ o.g(c) = TRUE ∧ s′t =

st ∪ {locki} ∧ c′ = o.u(c),
∗ o = τ ∧ s′t = st ∧ c′ = c,
∗ o ∈ LROpi ∧ locki ∈ st ∧ o.g(c) = TRUE ∧ s′t =

st \ {locki} ∧ c′ = o.u(c).
– Ft ⊆ St is the set of final states defined as Ft =

{∅}.

Consider the read-write lock example. We define the read-
write lock behavior machine using two lock variables where
busy denotes that a writer is in the critical section and
nR denotes the number of reader threads in the critical
section. A read-write lock behavior machine with n threads
can be defined as: LockVar = {busy, nR}, Dom(busy) =
{FALSE, TRUE}, Dom(nR) = Int, C = LockVar → Dom,
C0 = {c | c ∈ C, c(busy) = FALSE ∧ c(nR) =
0)} , Σ = {τ, read_enter, write_enter, read_exit,
write_exit}. For each Mt = (St, St0, δt, Ft), St =
{∅, {r}, {w}, {r, w}}, St0 = {∅}, F = {∅} and δt consists
of the following transitions

• (st, c, τ, st, c),
• (st, c, read_enter, s′t, c

′), where c(busy) =
FALSE, s′t = st ∪ {r}, c′(busy) = c(busy), c′(nR) =
c(nR) + 1.

• (st, read_exit, s′t), where s′t = st \ {r}, c′(busy) =
c(busy), c′(nR) = c(nR) − 1.

• (st, c,write_enter, s′t, c
′), c(busy) = FALSE, c(nR) =

0, s′t = st ∪ {w}, c′(busy) = TRUE, c′(nR) = c(nR).
• (st, c, write_exit, s′t, c

′), where s′t = st −

{w}, c′(busy) = FALSE, c′(nR) = c(nR)).
The semantics of a lock behavior machine is defined as a

transition system T = (S, S0, ∆), where
• S = C × S1 × . . . × Sn.
• S0 = C0 × S10

× . . . × Sn0
.

• ∆ =
S

t∈[1..n]{δ ∧
V

i 6=t
(s′i = si) | δ ∈ δt}.

Note that, the lock behavior machine does not contain
a reentry store that keeps track of reentry counts. As
far as the lock behavior verification is concerned, the
reentry counts can be abstracted away. We formalize
this by defining a simulation relation between a
concurrent program and its lock behavior machine.
Consider a concurrent program P = (State, Init, Trans)
with n threads and a lock behavior machine
MB = (C, C0, Σ, M1, M2, . . . , Mn) that defines the
behaviors of the locks used by P . We will define
a simulation relation H between P and MB as
follows: H ⊆ State × (C × S1 × . . . × Sn) where
((S, L, W, R, T1, T2, . . . , Tn), (c, s1, . . . , sn)) ∈ H , if and
only if,

• for all v ∈ LockVar, L(v) = c(v),
• for all t ∈ [1..n] and for all j ∈ [1..m], R(i)(j) ≥ 1 ⇔

lockj ∈ si.
During lock behavior verification we restrict the set of
atomic properties to two types of properties: 1) The proper-
ties on lock variables. 2) Properties in the form of “thread
t holds lock locki.” Based on this set of atomic properties
and using the simulation relation above, we can show the
following result:

Theorem 4.1: Given a program P , if all the threads in P

are interface correct, then the lock behavior machine MB

simulates P , and if an ACTL property holds for MB, then
it holds for P .



This property can be proven by first showing that
the simulation relation H preserves the atomic prop-
erties defined above. Given ((S, L, W, R, T1, T2, . . . , Tn),
(c, s1, . . . , sn)) ∈ H the atomic properties on lock variables
are preserved since the lock variables have the same values
by definition, as defined by L and c. The property “thread t

holds lock locki” is equivalent to the property R(t)(i) ≥ 1
and locki ∈ st. And again this property is preserved by the
definition of the simulation relation.

Next, we need to show that for any transition in the con-
current program there exists a matching transition in the lock
behavior machine. This can be proved using the following
observation. Only transitions in the concurrent program that
change the values of the lock variables are those in which
a reentry-count change from 0 to 1 or vice versa. These
transitions can be mapped to the corresponding transitions of
the lock behavior machine. All other transitions are mapped
to τ transitions since they do not change the values of the
lock variables or the ownership of the locks.

This property implies that we can verify properties about
lock variables in a modular fashion. Given an ACTL prop-
erty, we first verify that all the threads in a program are
interface correct. Next, we check the given property on the
lock behavior machine. If the property holds for the lock
behavior machine and if all the threads are interface correct,
then we conclude that the concurrent program satisfies the
given property.

Behavior Verification: We use the Action Language
Verifier (ALV) [22] for behavior verification. An Action
Language specification consists of integer, boolean and
enumerated variables, parameterized integer constants, and
a set of modules and actions which are composed using
synchronous and asynchronous composition operators.

We map the lock behavior machine to an Action Language
specification by converting guarded commands of the lock
implementation to actions in the Action Language specifi-
cation. We use the template for guarded commands from
[3]. If a lock is implemented in Java using this template,
our translator automatically constructs the lock behavior
machine in Action Language.

ALV is an infinite state model checker which verifies
CTL properties of Action Language specifications with
unbounded integer variables (such as nR). For the infinite
state systems that can be specified in Action Language,
model checking is undecidable. Hence, ALV uses conser-
vative approximations techniques during verification. The
undecidability of the model checking problem for ALV
implies that the fixpoint computations are not guaranteed
to converge. ALV uses several conservative approximation
heuristics to achieve convergence. For the experiments we
conducted in this study ALV was able to verify all the
lock implementations. I.e., all the fixpoint computations
converged and the approximations were precise enough to
verify the given properties.

Since ALV allows unbounded integer variables, it enables
us to use an automated abstraction technique, called counting
abstraction, to verify the lock implementations with respect
to arbitrary number of threads [3], [23]. The counting
abstraction technique [8] in ALV supports verification of
parameterized systems with an arbitrary number of finite
state modules. The basic idea is to define an abstract
transition system in which the local states of the threads
(corresponding to the local states of the threads in the
lock behavior machine) are abstracted away, but the number
of threads in each local state is counted by introducing a
new integer variable for each interface state. For example,
for the read-write lock we will have one integer variable
counting the number of threads in the ∅ state, one for
counting the threads in the {r} state, etc. The initial states
and the transition relation of the parameterized system is
defined using linear arithmetic constraints on these variables.
A parameterized integer constant, n, denotes the number
of threads. This parameterized constant is restricted to be
positive and when the specification is verified with ALV, the
results hold for any valuation of this parameterized constant
(i.e. the results are valid for any number of threads) for
ACTL properties.

V. EXPERIMENTS

Experiments with a concurrent buffer: For large soft-
ware systems, a non-modular verification approach is simply
not feasible. So we are unable to compare our modular
verification approach with a non-modular approach on a
large software system. Experimenting on a small program
enables us to compare the verification performance of our
modular approach with a non-modular approach.

We implemented a Java program that consists of a concur-
rent buffer that stores an array of integers that are accessed
by two threads. The producer thread inserts new values to
the buffer and the consumer thread removes values from the
buffer. The buffer is protected by a reentrant read-write lock.
Both threads can peek at the buffer before modifying it by
obtaining the read lock. A thread has to obtain the write
lock before inserting or removing an item from the buffer.

We checked for interface violations for this program.
For example, if a thread calls the peek method of the
concurrent buffer before calling the read-enter method of
the read-write lock, interface verification should report an
interface violation. Since the read-write lock is reentrant
interface violation should take reentry counts into account.
For example, if a thread calls read-enter twice then read-exit
twice and then peek, there is an interface violation. However,
if a thread calls read-enter twice then read-exit once and then
peek, there is no interface violation.

In our experiments we experimented with different levels
of nesting between the lock entry and exit operations. We
created three versions of the program where the reentry
depths were bounded by 2, 4 or 6.
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Figure 4. Verification time and number of states explored for (a) non-
modular and (b) modular interface verification

During non-modular verification we used JPF to look for
interface violations on the whole program. During modular
verification we first isolated the producer and consumer
threads by replacing the lock class with the lock stub
(i.e., the lock interface machine) and the concurrent buffer
with a buffer stub. We checked for interface violations in
the producer and consumer threads separately. When we
checked for interface violations in the whole program using
JPF (i.e., the non-modular approach), JPF ran out of memory
for all configurations. Therefore, we bounded the search
depth of JPF. We limited the maximum search depth for JPF
to values between 50 and 600. JPF was able to explore the
whole state space using the modular verification approach
for all configurations.

The results of our experiments are shown in Figure 4. The
exponential increase in the number of reachable states and
the verification time with respect to increasing search depth
is clearly visible in the non-modular interface verification.
This is not a surprising since it is the result of the well-
known state-explosion problem. When the search depth is
600 and the reentry depth is limited to 6, the number of
states explored by JPF is 461 thousand and JPF takes 316
seconds to explore all the states within that depth. However,
for the modular behavior verification, the situation is quite
different. JPF is able to explore the full-state space of each
thread with a search depth of 350 states and the verification
time is around 2 seconds. For this simple example, it is clear
that the modular verification approach is significantly more
efficient than a non-modular verification strategy.

Experiments with TSAFE: In order to investigate the
effectiveness of the proposed approach on a real applica-
tion, we conducted experiments on a software component
called the Tactical Separation Assisted Flight Environment
(TSAFE). TSAFE is part of a framework developed by
NASA researchers which targets the automation of the air
traffic control system [10]. TSAFE is an implementation of
a safety critical component in this framework [9]. TSAFE
performs the following functions: 1) Display aircraft position
2) Display aircraft planned route 3) Display aircraft future
projected route trajectory 4) Indicate conformance problems.

The TSAFE implementation consists of 21,057 lines of
Java source code in 87 classes. A server component stores
the trajectories of the flights in a flight database. The feed
parser thread in the server receives updates of the locations
of the flights periodically from the radar feed through a
network connection and updates the trajectory database.
A computation component in the server implements the
trajectory synthesis and conformance monitoring functions.
The client side implements the display functionality in a
GUI. Multiple clients can connect to the server at the same
time via RMI. A timer thread at the server periodically
prompts the clients to access the flight database to obtain
the current data.

In [4], [5] TSAFE implementation was verified with re-



Table I
VERIFICATION PERFORMANCE

Thread Time(s) Memory (MB)
ave std ave std

ServerEvent 11.62 0.14 22.14 2.39
ServerRMI 177.85 10.24 63.15 13.13
ServerFeed 194.78 7.51 52.44 13.14
ClientEvent 451.54 0.63 82.55 4.58
ClientRMI 11.82 1.54 26.54 3.40

spect to non-reentrant read-write and mutex locks. We mod-
ified the TSAFE implementation using reentrant read-write
and mutex locks. Reentrant locks allow a more fine-grained
locking mechanism that is less likely to block threads,
potentially increasing the performance of the system. For
example, in the earlier version of TSAFE the lock that
protects the flight database is grabbed at a high level which
leads to course grain synchronization. Using a reentrant lock
it is possible to achieve a fine-grain synchronization where
each operation grabs the lock separately.

Behavior Verification: TSAFE implementation uses
two instances of a read-write lock and three instances of
a mutex lock. This means that for behavior verification we
only need to check two lock implementations. The lock
behavior specifications for these two lock implementations
are identical to the ones analyzed in [4], [5]. Although, the
locks in [4], [5] are not reentrant, the modular verification
approach we present in this paper reduces the behavior
verification problem for reentrant locks to behavior verifi-
cation problem for non-reentrant locks. Hence the results
reported in [4], [5] also hold for reentrant lock verification.
We report them here for completeness. We identified 10
ACTL properties for the read-write lock (such as AG(busy
⇒ nR= 0)) and 6 ACTL properties for the mutex lock. Using
an Action Language specification that corresponds to a lock
behavior machine that contains 16 threads, the verification of
the read-write lock takes 3.42 seconds and uses 9.36 MBytes
of memory and the verification of the mutex lock takes 0.02
seconds and uses 0.62 MBytes of memory.

We also checked the parameterized version of the lock
behavior machines using counting abstraction. We identi-
fied 6 ACTL properties for the parameterized read-write
lock specification (such as AG(¬(count{w} > 1)) where
count{w} denotes the number of threads that hold the write
lock) and 4 ACTL properties for the parameterized mutex
lock specification. Using an Action Language specification
the verification of the parameterized read-write lock spec-
ification takes 0.21 seconds and uses 12.05 MBytes of
memory and the verification of the parameterized mutex lock
specification takes 0.03 seconds and uses 0.24 MBytes of
memory.

Interface Verification: Table I shows the verification
performance for interface verification for the five threads
in TSAFE using the JPF model checker. In order to do
interface verification, in addition to isolating the threads
from each other, we also have to model the environment

of the program, i.e., generate the input events. We used
the approach used in [5] to generate drivers that provide
non-deterministically generated input event sequences. Note
that, during verification JPF model checker tries all possible
outcomes for the non-deterministic choices. In order to
achieve convergence during interface verification, we bound
the length of the input event sequences which means that
this verification approach is not sound. Combining interface
checking with automated abstraction techniques such as
predicate abstraction can be helpful for analyzing threads
with large state spaces and achieving sound verification.

In order to investigate the bug finding capability of our
framework during interface verification, we automatically
injected random faults into the thread implementations. Then
using our framework we tried to find the interface violations
caused by these faults.

We categorize the automatically generated interface faults
using the classification from [4], [5] 1) modified-call faults
(IM) which were generated by removing, adding or swap-
ping calls to the methods of the locks, and 2) conditional-call
faults which were generated by adding a branch condition
in front of a method call to a lock method. The conditional-
call faults are further categorized as: a) program-variable
faults (ICV) in which the created branch conditions used
existing program variables, and b) new-variable faults (ICN)
in which the created branch conditions used new variables
that were declared during fault creation.

The automated fault injection program works as follows.
The IM faults are injected by adding, removing or swapping
lock methods before or after a shared data access by the
program. To introduce an ICV fault, the program chooses
an integer or boolean class field and inserts a conditional
using this field before a lock method call statement. The
ICN faults are injected by creating a new unique integer
variable, and adding a conditional statement using this new
variable before a method call to a lock method. This new
variable is initialized to zero and is incremented every time
the control reaches the inserted conditional statement. The
conditional is of the form if (_new_var00 < C) where
C is a constant integer value that can be 50, 60, 70, 80, 90,
100, 200, 300, 400, or 500.

We generated 20 faulty versions of TSAFE (denoted as
v1-20) by fault injection and the faults are categorized as
follows IM faults {v10, v11, v12, v15, v18, v19}; ICV faults
{v8, v13, v17}; and ICN faults {v3, v4, v8, v12, v13, v17,
v19, v20}.

The results reported in Table II show that our approach is
effective in catching interface violations. Some of the faults
were spurious, i.e., they are changes in the program which do
not cause interface violations. All the faults that were not
spurious were caught by JPF during interface verification.
I.e., they caused assertion violations either in the lock or
share data operation stubs.



Table II
FALSIFICATION PERFORMANCE

ServerEvent v8: (ICV) Not found, spurious fault
v12: (ICN) Found in 8.23 sec and 53.29MB
v17: (ICN) Found in 14.56 sec and 125.85MB

ServerRMI v3 : (ICN) Found in 33.8s and 343.13MB
v8: (ICV) Not found, spurious fault
v10: (IM) Found in 31.27 sec and 329.1MB
v11: (IM) Found in 30.99 sec and 318.45MB
v12: (ICN) Found in 38.38 sec and 403.18MB
v17: (ICV) Not found, spurious fault
v18: (IM) Found in 31.40 sec and 322.48MB

ServerFeed v4: (ICN) Found in 122.59 sec and 996.82MB
v8: (ICN) Found in 114.59 sec and 831,35 MB
v17: (ICN) Found in 15.15 sec and 134.54MB
v19: (IM) Found in 2.78 sec and 7MB;

(ICN) Not found, spurious fault
ClientEvent No faults, none found
ClientRMI v12: (IM) Found in 6.21 sec and 40.59MB

v13: (ICN) Found in 5.82 sec and 38.53MB;
(ICV) Not found, spurious fault

v15: (IM) Found in 6.11 sec and 39.20MB
v20: (ICN) Found in 29.63 sec and 299.44MB

VI. CONCLUSIONS

We proposed a modular framework for verifying im-
plementations and usage of reentrant locks in concurrent
programs. Our approach decouples the verification of lock
behavior from the verification of thread behaviors using
lock interface machines. Our experiments demonstrate that
our approach is capable of verifying realistic safety critical
applications effectively.
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and F.Y.C. Mang. Interface compatibility checking for soft-
ware modules. In CAV 2002, pages 428–441.

[7] R. DeLine and M. Fahndrich. Typestates for objects. In
ECOOP 2004, pages 465–490.

[8] G. Delzanno. Automatic verification of parameterized cache
coherence protocols. In CAV 2000.

[9] G. Dennis. TSAFE: Building a trusted computing base for
air traffic control software, Master’s Thesis, massachusetts
institute of technology, 2003.

[10] H. Erzberger. Transforming the NAS: The next generation
air traffic control system. In International Congress of the
Aeronautical Sciences (ICAS) 2004.

[11] C. Flanagan and S. Qadeer. Thread-modular model checking.
In SPIN 2003, pages 213–224.

[12] C. Haack, M. Huisman, and C. Hurlin. Reasoning about java’s
reentrant locks. In APLAS 2008, pages 171–187.

[13] B. Jacobs, R. Leino, F. Piessens, and W. Schulte. Safe
concurrency for aggregate objects with invariants. In SEFM
2005, pages 137–147.

[14] D. Lea. Concurrent Programming in Java. Addison-Wesley,
Reading, Massachusetts, 1999.

[15] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI 2007,
pages 446–455.

[16] S. Qadeer and J. Rehof. Context-bounded model checking of
concurrent software. In TACAS 2005, pages 93–107.

[17] S. Qadeer and D. Wu. Kiss: keep it simple and sequential.
In PLDI 2004, pages 14–24.

[18] B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dillon. A
model-based design-for-verification approach to checking for
deadlock in multi-threaded applications. In SEKE 2006, pages
120–125, 2006.

[19] B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dillon. A
model-based design-for-verification approach to checking for
deadlock in multi-threaded applications. International Jour-
nal of Software Engineering and Knowledge Engineering,
17(2):207–230, 2007.

[20] java.util.concurrent package. http://g.oswego.edu/
dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html.

[21] W. Visser, K. Havelund, G. Brat, and S. Park. Model check-
ing programs. Automated Software Engineering Journal,
10(2):203–232, 2003.

[22] T. Yavuz-Kahveci, C. Bartzis, and T. Bultan. Action language
verifier, extended. In CAV 2005, pages 413–417.

[23] T. Yavuz-Kahveci and T. Bultan. Specification, verification,
and synthesis of concurrency control components. In ISSTA
2002, pages 169–179, 2002.


