A Composite Model Checking Toolset for Analyzing Software Systems

Tevfik Bultan
Department of Computer Science
University of California
Santa Barbara, CA 93106
e-mail: bultan@cs.ucsb.edu

Model checking has proved to be a successful technique
for verifying hardware systems. Given a transition system
and a temporal property, model checking procedures exhaus-
tively search the state space of the input transition system to
find out if it satisfies the given temporal property. Recently,
model checking has been used for analyzing software specifi-
cations with encouraging results [CAB+98]. The state-space
of a software specification can be explored using model check-
ing procedures to verify or falsify (by generating counter-
example behaviors) its properties.

The success of model checking has been partially due to Bi-
nary Decision Diagrams (BDDs) — a data structure that can
encode boolean functions in a highly compact format. The
main idea in BDD based model checking is to represent sets
of system states and transitions as boolean formulas, and ma-
nipulate them efficiently using BDDs [McM93]. BDD data
structure supports the operations required for model check-
ing: intersection, union, complement, equivalence checking
and existential quantifier elimination (used to compute pre-
and post-conditions). This type of model checking is called
symbolic since the system states are represented implicitly
by BDDs during the state space search.

In recent years new symbolic representations have been
proposed. For example, HyTech, a symbolic model checker
for hybrid systems, encodes real domains using linear con-
straints on reals [AHH96]. Recently, we proposed a model
checker for integer based systems, which uses Presburger
arithmetic (integer arithmetic without multiplication) con-
straints as its underlying state representation [BGP97]. Us-
ing constraint representations one can verify systems with
infinite variable domains (which is not possible using finite
representations such as BDDs).

Our goal in this project is to develop a toolset which com-
bines various symbolic representations in a single composite
model checker. In the composite model checking approach
each variable in the input system is mapped to a symbolic
representation type [BGL98]. (For example, boolean and
enumerated variables can be mapped to BDD representation,
and integers can be mapped to Presburger constraint repre-
sentation.) Then, each atomic event in the input system is
conjunctively partitioned where each conjunct specifies the
effect of the event on the variables mapped to a single sym-
bolic representation. Conjunctive partitioning of the atomic
events allows pre- and post-condition computations to dis-
tribute over different symbolic representations.

We plan to structure the composite model checking toolset
using a layered class hierarchy. The lowest layer will contain
libraries for manipulating various symbolic representations

such as BDDs and arithmetic constraints. We plan to de-
velop an API which will be shared by different symbolic
representations. At the next level of the hierarchy we will
have the composite-model library to handle operations over
mixed-type expressions (e.g., equivalence check, intersection,
etc.); in turn, these operations will invoke their relevant type-
specific counterparts in the lower level to help carry out the
desired effect. At the top level, the model checker will imple-
ment the fixpoint computations using the composite-model
library. We already implemented a prototype toolset based
on this structure which combines BDD and Presburger con-
straint representations [BGL98]. We plan to expand our
composite model checker by adding other symbolic repre-
sentations which will allow us to encode variable types such
as reals and queues. We would also like to compare perfor-
mances of different symbolic representations.

We plan to investigate techniques for generating efficient
symbolic representations for software specifications. Par-
ticularly, we would like to investigate automated or semi-
automated techniques for abstraction, partitioning, and com-
positional analysis. Our goal is to use the composite model
checking toolset to investigate effectiveness of symbolic anal-
ysis techniques in verification of software systems.

References

[AHH96] R. Alur, T. A. Henzinger, and P. Ho. Automatic sym-
bolic verification of embedded systems. IEEE Trans-

actions on Software Engineering, 22(3):181-201, 1996.

T. Bultan, R. Gerber, and C. League. Verifying sys-
tems with integer constraints and boolean predicates:
A composite approach. In Proceedings of the 1998 In-
ternational Symposium on Software Testing and Anal-
ysis, pages 113-123, 1998.

T. Bultan, R. Gerber, and W. Pugh. Symbolic model
checking of infinite state systems using Presburger
arithmetic. In O. Grumberg, editor, Proceedings of
the 9th International Conference on Computer Aided
Verification, volume 1254 of LNCS, pages 400-411.
Springer, 1997.

[CABT98] W. Chan, R. J. Anderson, P. Beame, S. Burns,
F. Modugno, D. Notkin, and J. D. Reese. Model check-
ing large software specifications. IEEE Transactions
on Software Engineering, 24(7):498-520, 1998.

K. L. McMillan. Symbolic model checking. Kluwer
Academic Publishers, Massachusetts, 1993.

[BGLYS]

[BGP97]

[McM93]



