
Service Oriented Computing and Applications manuscript No.
(will be inserted by the editor)

Specification of Realizable Service Conversations Using
Collaboration Diagrams

Tevfik Bultan ?1, Xiang Fu2

1 Computer Science Department
University of California
Santa Barbara, CA 93106, USA
e-mail: bultan@cs.ucsb.edu

2 School of Computer and Information Sciences
Georgia Southwestern State University
Americus, GA 31709, USA
e-mail: xfu@canes.gsw.edu

Received: 09/15/2007 / Revised version: date

Abstract Specification, modeling and analysis of interactions among peers that communicate via
messages are becoming increasingly important due to the emergence of service oriented computing.
Collaboration diagrams provide a convenient visual model for specifying such interactions. An in-
teraction among a set of peers can be characterized as a conversation. A conversation is the global
sequence of messages exchanged among the peers, listed in the order they are sent. A collaboration
diagram can be used to specify the set of allowable conversations among the peers participating to
a composite web service. Specification of interactions from a global perspective leads to the real-
izability problem: Is it possible to construct a set of peers that generate exactly the specified set of
conversations? In this paper, we investigate the realizability of conversations specified by collabora-
tion diagrams. We formalize the realizability problem by modeling peers as concurrently executing
finite state machines, and we give sufficient realizability conditions for a class of collaboration dia-
grams.

1 Introduction

Collaboration diagrams are useful for modeling interactions among distributed components with-
out exposing their internal structure. In particular, collaboration diagrams model interactions as a
sequence of messages which are recorded in the order they are sent. Such an interaction model is
becoming increasingly important in service oriented computing where a set of autonomous peers
interact with each other using synchronous or asynchronous messages. Web services that belong to
different organizations need to interact with each other through standardized interfaces and with-
out access to each other’s internal implementations. Formalisms which focus on interactions rather
than the local behaviors of individual peers are necessary for both specification and analysis of such
distributed applications.

? This work is supported by NSF grants CCF-0614002 and CNS-0716095

2 T. Bultan et al.

The need to develop mechanisms for specifying interactions in composite services is well rec-
ognized in the web services area. For example, Web Services Choreography Description Language
(WS-CDL) [1] is an XML-based language for describing the interactions among services. WS-CDL
specifications describe “peer-to-peer collaborations of Web Services participants by defining, from
a global viewpoint, their common and complementary observable behavior; where ordered mes-
sage exchanges result in accomplishing a common business goal.” Collaboration diagrams provide
a suitable visual formalism for modeling such specifications.

However, characterizing interactions using a global view may lead to behavior specifications
that are not implementable. In this paper, we study the problem of realizability which addresses the
following question: Given an interaction specification, is it possible to find a set of distributed peers
which generate exactly the specified set of interactions.

In order to study the realizability problem, we define a formal model for collaborations diagrams.
We model a distributed system as a set of communicating finite state machines [2]. A collaboration
diagram is realizable if there exists a set of communicating finite state machines that generate exactly
the set of conversations specified by the collaboration diagram. We present sufficient conditions for
realizability of a class of collaboration diagrams.

Although realizability problem for Message Sequence Charts (MSCs) has been studied exten-
sively [3–5], to the best of our knowledge, realizability of collaboration diagrams has not been
studied before. Collaboration diagrams provide a different view of interactions than the one pro-
vided by MSCs. MSCs show the local orderings of the message send and receive events, whereas
the collaboration diagrams show the global ordering of the message send events. The ordering of
the message receive events in collaboration diagrams corresponds to a “don’t care” condition, i.e.,
receive events can be ordered in any way as long as the send events follow the specified order. Due
to these differences, earlier results on realizability of MSCs are not applicable to the realizability of
collaboration diagrams.

Rest of the paper is organized as follows. In Section 2 we introduce a formal model for col-
laboration diagrams and we define the set of conversations specified by a collaboration diagram. In
Section 3 we present a formal model for a set of autonomous peers communicating via messages and
we define the set of conversations generated by such peers. In Section 4 we discuss the realizability
of collaboration diagrams. In Section 5 we give sufficient conditions for realizability of a class of
collaboration diagrams. In Section 6 we discuss the related work and in Section 7 we conclude the
paper.

2 Collaboration Diagrams

In this paper we focus on the use of collaboration diagrams for specification of interactions among
a set of peers. We model each peer as an active object with its own thread of control. We model the
interactions specified by a collaboration diagram as conversations [6,7], i.e., sequences of messages
exchanged among the peers listed in the order they are sent. This provides an appropriate model for
the web services domain where a set of autonomous peers communicate with each other through
messages.

A collaboration diagram (called communication diagram in [8]) consists of a set of peers, a set of
links among the peers showing associations, and a set of message send events among the peers. Each
message send event is shown by drawing an arrow over a link denoting the sender and the receiver of
the message. Messages can be transmitted using synchronous (shown with a filled solid arrowhead)
or asynchronous (shown with a stick arrowhead) communication. During a synchronous message
transmission, the sender and the receiver must execute the send and receive events simultaneously.

Realizable Service using Collaboration Diagrams 3

1:order

:Vendor

:Shipping:Customer

:Invoicing

:Scheduling

A2,B3,C2/2:orderReply

1/A1:shipReq

A2:shipInfo

1/B1:productInfo

A1/B2:shipType

B3:invoice

1/C1:productSchedule

A2/C2:shipSchedule

Fig. 1 An example collaboration diagram for a composite web service.

During an asynchronous message transmission, the send event appends the message to the input
queue of the receiver, where it is stored until receiver consumes it with a receive event. Note that,
a collaboration diagram does not show when a receive event for an asynchronous message will be
executed, it just gives an ordering of the send events.

In a collaboration diagram each message send event has a unique sequence label. These sequence
labels are used to declare the order the messages should be sent. Each sequence label consists of a
(possibly empty) string of letters (which we call the prefix) followed by a numeric part (which we
call the sequence number). The numeric ordering of the sequence numbers defines an implicit total
ordering among the message send events with the same prefix. For example, event A2 can occur
only after the event A1, but B1 and A2 do not have any implicit ordering. In addition to the implicit
ordering defined by the sequence numbers, it is possible to explicitly state the events that should
precede an event e by listing their sequence labels (followed by the symbol “/”) before the sequence
label of the event e. For example if an event e is marked with “B2,C3/A2” then A2 is the sequence
label of the event e, and the events with sequence labels B2, C3 and A1 must precede e.

The prefixes in sequence labels of collaboration diagrams enable specification of concurrent
interactions where each prefix represents a thread. Note that, here, “thread” does not mean a thread of
execution. Rather, it refers to a set of messages that have a total ordering and that can be interleaved
arbitrarily with other messages. The sequence numbers specify a total ordering of the send events
in each thread. The explicitly listed dependencies, on the other hand, provide a synchronization
mechanism between different threads.

In a collaboration diagram message send events can be marked to be conditional, denoted as a
suffix “[condition]”, or iterative, denoted as a suffix “*[condition]”, where condition is written in
some pseudocode. In our formal model we represent conditional and iterative message sends with
nondeterminism where a conditional message send corresponds to either zero or one message send,
and an iterative message send corresponds to either zero or one or more consecutive message sends.

2.1 An Example

As an example, consider the collaboration diagram in Figure 1 for the Purchase Order Handling
service described in the Business Process Execution Language for Web Services (BPEL) 1.1 lan-
guage specification [9]. In this example, a customer sends a purchase order to a vendor. The vendor
arranges a shipment, calculates the price for the order including the shipping fee, and schedules the
production and shipment. The vendor uses a shipping service to arrange the shipment, an invoicing

4 T. Bultan et al.

service to calculate the price, and a scheduling service to handle the scheduling. To respond to the
customer in a timely manner, the vendor performs these three tasks concurrently while processing
the purchase order. There are two control dependencies among these three tasks that the vendor
needs to consider: The shipment type is required to complete the final price calculation, and the
shipping date is required to complete the scheduling. After these tasks are completed, the vendor
sends a reply to the customer.

The web service for this example is composed of five peers: Customer, Vendor, Shipping, Schedul-
ing, and Invoicing. Customer orders products by sending the order message to the Vendor. The Ven-
dor responds to the Customer with the orderReply message. The remaining peers are the ones that
the Vendor uses to process the product order. The Shipping peer communicates with the shipReq,
and shipInfo messages, the Scheduling peer with the productSchedule, and shipSchedule messages,
and the Invoicing peer with the productInfo, shipType, and invoice messages.

Figure 1 shows the interactions among the peers in the Purchase Order Handling service using
a collaboration diagram. All the messages in this example are transmitted asynchronously. Note
that the collaboration diagram in Figure 1 has four threads (the main thread, which corresponds to
the empty prefix, and the threads with labels A, B and C) and the interactions between the Vendor
and the Shipping, Scheduling and Invoicing peers are executed concurrently. However, there are
some dependencies among these concurrent interactions: shipType message should be sent after the
shipReq message is sent, the shipSchedule message should be sent after the shipInfo message is sent,
and the orderReply message should be sent after all the other messages are sent.

2.2 A Formal Model

Based on the assumptions discussed above we formalize the semantics of the collaboration diagrams
as follows. A collaboration diagram D = (P, L, M, E, D) consists of

– a set of peers P ,
– a set of links L ∈ P × P ,
– a set of messages M ,
– a set of message send events E, and
– a dependency relation D ⊆ E × E among the message send events.

The sets P , L, M and E are all finite. To simplify our formal model, we assume that the asyn-
chronous messages MA and synchronous messages MS are separate (i.e., M = MA ∪ MS and
MA ∩ MS = ∅), and that each message has a unique sender and a unique receiver denoted by
send(m) ∈ P and recv(m) ∈ P , respectively. (Note that, messages in any collaboration diagram
can be converted to this form by concatenating each message with tags denoting the synchronization
type and its sender and its receiver.) For each message m ∈ M , the sender and the receiver of m

must be linked, i.e., (send(m), recv(m)) ∈ L.
The set of send events E is a set of tuples of the form (l, m, r) where l is the label of the event,

m ∈ M is a message, and r ∈ {1, ?, ∗} is the recurrence type. We denote the size of the set E with
|E| and for each event e ∈ E we use e.l, e.m, and e.r to denote different fields of e. The labels of
the events correspond to the sequence labels, and we assume that each event in E has a unique label.
Each event e ∈ E denotes a message send event where the peer send(e.m) sends a message e.m to
the peer recv(e.m). The recurrence type r ∈ {1, ?, ∗} determines if the send event corresponds to

– a single message send event (r = 1),
– a conditional message send event (r =?), or
– an iterative message send event (r = ∗).

Realizable Service using Collaboration Diagrams 5

The dependency relation D ⊆ E × E denotes the ordering among the message send events
where (e1, e2) ∈ D means that e1 has to occur before e2. We assume that there are no circular
dependencies, i.e., the dependency graph (E, D), where the send events in E form the vertices and
the dependencies in D form the edges, should be a directed acyclic graph (dag).

Given a dependency relation D ⊆ E × E let pred (e) denote the predecessors of the event e

where e′ ∈ pred(e) if there exists a set of events e1, e2, . . . , ek where k > 1, e′ = e1, e = ek, and
for all i ∈ [1..k− 1], (ei, ei+1) ∈ D. Similarly, we use succ(e) to denote the successors of the event
e where e′ ∈ succ(e) if there exists a set of events e1, e2, . . . , ek where k > 1, e = e1, e′ = ek, and
for all i ∈ [1..k − 1], (ei, ei+1) ∈ D.

A dependency (e′, e) ∈ D is redundant if there exists an e′′ ∈ pred(e) such that e′ ∈ pred (e′′).
We assume that there are no redundant dependencies in D (i.e., the dependency relation D is the
transitive reduction of the partial ordering of the events). Since we do not allow any redundant
dependencies in D, we call e′ an immediate predecessor of e if (e′, e) ∈ D.

Given a collaborations diagram D, we call an event eI with pred(eI) = ∅ an initial event of
D and an event eF where for all e ∈ E eF 6∈ pred (e) a final event of D. Note that since the
dependency relation is a dag there is always at least one initial event and one final event (and there
may be multiple initial events and multiple final events).

1:order

1/A1:shipReq

A2:shipInfo

1/B1:productInfo

A1/B2:shipType

B3:invoice

1/C1:productSchedule

A2/C2:shipSchedule

A2,B3,C2/2:orderReply

Fig. 2 Dependencies among the message send events in the Purchase Order example.

Figure 2 shows the dependency graph for the the collaboration diagram of the Purchase Order
example shown in Figure 1. In this example event 1 is an initial event and event 2 is a final event.
Event 2 has three immediate predecessors: A2, B3 and C2.

LetD = {P, L, M, E, D} denote the formal model for the collaboration diagram of the Purchase
Order example shown in Figure 1. The elements of the formal model are as follows (we denote the
peers and messages with their initials or first two letters):

– P = {C, V, Sh, I, Sc} is the set of peers,
– L = {(C, V), (V, Sh), (V, I), (V, Sc)} is the set of links among the peers,
– M = {o, oR, sR, sI, pI, sT, i, pS, sS} is the set of messages, where the senders and the

receivers for the messages are as follows:
– C = send(o) = recv(oR),
– V = recv(o) = send(oR) = send(sR) = recv(sI) = send(pI) = send(sT) = recv(i) =

send(pS) = send(sS),
– Sh = send(sI) = recv(sR),
– I = recv(pI) = recv(sT) = send(i),
– Sc = recv(pS) = recv(sS),

6 T. Bultan et al.

Note that, we use C = send(o) = recv(oR) to mean that the peer C is the sender of the message
o and the receiver of the message oR.

– E = {(1, o, 1), (2, oR, 1), (A1, sR, 1), (A2, sI, 1), (B1, pI, 1), (B2, sT, 1), (B3, i, 1), (C1, pS, 1),
(C2, sS, 1)} is the set of events, and

– D = { (e1, eA1), (eA1, eA2), (e1, eB1), (eA1, eB2), (eB1, eB2), (eB2, eB3), (e1, eC1), (eA2, eC2),
(eC1, eC2), (eA2, e2), (eB3, e2), (eC2, e2)} is the dependency relation (where we identify the
events with their labels).

Given a collaboration diagram D = (P, L, M, E, D) with k threads, the event set E can be
partitioned as E =

⋃k
i=1

Ei where Ei is the event set for thread i, and for all i 6= j ⇒ Ei ∩Ej = ∅.
I.e., each event belongs to exactly one thread. As we mentioned above, the Purchase Order example
has four threads E1, E2, E3, E4, that correspond to four sequence label prefixes: the empty prefix
(E1 = {e1, e2}), the prefix A (E2 = {eA1, eA2}), the prefix B (E3 = {eB1, eB2, eB3}), and the
prefix C (E4 = {eC1, eC2}). Note that, although the set of events E is partially ordered, the set
of events that belong to a single thread are totally ordered by definition. We have the following
total orderings for each thread above: E1 : e1 < e2, E2 : eA1 < eA2, E3 : eB1 < eB2 < eB3,
E4 : eC1 < EC2.

Given a collaboration diagram D = (P, L, M, E, D) we denote the set of conversations defined
by D as C(D) where C(D) ⊆ M∗.

Definition 1 A conversation σ = m1m2 . . . mn is in C(D), i.e., σ ∈ C(D), if and only if σ ∈ M ∗

and there exists a corresponding matching sequence of message send events γ = e1e2 . . . en such
that

1. for all i ∈ [1..n] ei = (li, mi, ri) ∈ E

2. for all i, j ∈ [1..n] (ei, ej) ∈ D ⇒ i < j

3. for all e ∈ E (for all i ∈ [1..n] ei 6= e) ⇒ (e.r = ∗ ∨ e.r =?)
4. for all e ∈ E if there exists i, j ∈ [1..n] such that i 6= j ∧ ei = ej then ei.r = ∗.

The first condition above ensures that each message in the conversation σ is equal to the message
of the matching send event in the event sequence γ. The second condition ensures that the ordering
of the events in the event sequence γ does not violate the dependencies in D. The third condition
ensures that if an event does not appear in the event sequence γ then it must be either a condi-
tional event or an iterative event. Finally, the fourth condition states that only iterative events can be
repeated in the event sequence γ.

For example, a possible conversation for the collaboration diagram shown in Figure 1 is o, sR,
sI , pS, pI , sS, sT , i, oR. The matching sequence of events for this conversation that satisfy all
the four conditions listed above are: (1, o, 1), (A1, sR, 1), (A2, sI, 1), (C1, pS, 1), (B1, pI, 1),
(C2, sS, 1), (B2, sT, 1), (B3, i, 1), (2, oR, 1).

3 Execution Model

We model the behaviors of peers that participate to a collaboration as concurrently executing finite
state machines that interact via messages [10,11]. We assume that the state machines can inter-
act with both synchronous and asynchronous messages. We assume that each state machine has a
single FIFO input queue for asynchronous messages. A send event for an asynchronous message
appends the message to the end of the input queue of the receiver, and a receive event for an asyn-
chronous message removes the message at the head of the input queue of the receiver. The send and
receive events for synchronous messages are executed simultaneously and synchronous message

Realizable Service using Collaboration Diagrams 7

transmissions do not change the contents of the message queues. We assume reliable messaging,
i.e., messages are not lost or reordered during transmission.

Formally, given a set of peers P = {p1, . . . , pn} that participate in a collaboration, the peer
state machine for the peer pi ∈ P is a nondeterministic FSA Ai = (Mi, Ti, si, Fi, δi) where Mi =
MA

i ∪ MS
i is the set of messages that are either received or sent by pi, Ti is the finite set of states,

si ∈ T is the initial state, Fi ⊆ T is the set of final states, and δi ⊆ Ti × ({!, ?} × Mi ∪ {ε}) × Ti

is the transition relation. A transition τ ∈ δi can be one of the following three types: (1) a send-
transition of the form (t1, !m, t2) which sends out a message m ∈ Mi from peer pi = send(m) to
peer recv(m), (2) a receive-transition of the form (t1, ?m, t2) which receives a message m ∈ Mi

from peer send(m) to peer pi = recv(m), and (3) an ε-transition of the form (t1, ε, t2).
LetA1, . . . ,An be the peer state machines (implementations) for a set of peers P = {p1, . . . , pn}

that participate in a collaboration where Ai = (Mi, Ti, si, Fi, δi) is the state machine for peer
pi. A configuration is a (2n)-tuple of the form (Q1, t1, ..., Qn, tn) where for each j ∈ [1..n],
Qj ∈ (MA

j)∗, tj ∈ Tj . Here ti, Qi denote the state and the queue contents of the peer state machine
Ai respectively. For two configurations c = (Q1, t1, ..., Qn, tn) and c′ = (Q′

1, t
′

1, ..., Q
′

n, t′n), we
say that c derives c′, written as c → c′, if one of the following three conditions hold:

– One peer executes an asynchronous send action (denoted as c
!m
→ c′), i.e., there exist 1 ≤ i, j ≤ n

and m ∈ MA
i ∩ MA

j , such that, pi = send(m), pj = recv(m) and:
1. (ti, !m, t′i) ∈ δi,
2. Q′

j = Qjm,
3. Qk = Q′

k for each k 6= j, and
4. t′k = tk for each k 6= i.

– One peer executes an asynchronous receive action (denoted as c
?m
→ c′), i.e., there exists 1 ≤ i ≤

n and m ∈ MA
i , such that, pi = recv(m) and:

1. (ti, ?m, t′i) ∈ δi,
2. Qi = mQ′

i,
3. Qk = Q′

k for each k 6= i, and
4. t′k = tk for each k 6= i.

– Two peers execute synchronous send and receive actions (denoted as c
!?m
→ c′), i.e., there exist

1 ≤ i, j ≤ n and m ∈ MS
i ∩ MS

j , such that, pi = send(m), pj = recv(m) and:
1. (ti, !m, t′i) ∈ δi,
2. (tj , ?m, t′j) ∈ δj ,
3. Qk = Q′

k for each k, and
4. t′k = tk for each k 6= i and k 6= j.

– One peer executes an ε-action (denoted as c
ε
→ c′), i.e., there exists 1 ≤ i ≤ n such that:

1. (ti, ε, t
′

i) ∈ δi,
2. Qk = Q′

k for each k ∈ [1..n], and
3. t′k = tk for each k 6= i.

Now we can define the runs of a set of peer state machines participating in a collaboration as
follows:

Definition 2 Let A1, . . . ,An be a set of peer state machines for the set of peers P = {p1, . . . , pn}
participating in a collaboration, a sequence of configurations γ = c0c1 . . . ck is a run of A1, . . . ,An

if it satisfies the first two of the following three conditions, and γ is a complete run if it satisfies all
three conditions:

8 T. Bultan et al.

1. The configuration c0 = (ε, s1, . . . , ε, sn) is the initial configuration where si is the initial state
of Ai for each i ∈ [1..n].

2. For each j ∈ [0..k − 1], cj → cj+1.
3. The configuration ck = (ε, t1, . . . , ε, tn) is a final configuration where ti is a final state of Ai

for each i ∈ [1..n].

Definition 3 Given a run γ the conversation generated by γ, denoted by C(γ) where C(γ) ∈ M ∗, is
defined inductively as follows:

– If |γ| ≤ 1, then C(γ) is the empty sequence.
– If γ = γ′cc′, then

– C(γ) = C(γ′c)m if c
!m
→ c′

– C(γ) = C(γ′c)m if c
!?m
→ c′

– C(γ) = C(γ′c) otherwise.

A sequence σ is a conversation of a set of peer state machines A1, . . . ,An, denoted as σ ∈
C(A1, . . . ,An), if there exists a complete run γ such that σ = C(γ), i.e., a conversation of a set
of peer state machines must be a conversation generated by a complete run. The conversation set
C(A1, . . . ,An) of a set of peer state machines A1, . . . ,An is the set of conversations generated by
all the complete runs of A1, . . . ,An.

We call a set of peer state machines A1, . . . ,An well-behaved if each run of A1, . . . ,An is a
prefix of a complete run. Note that, if a set of peer state machines are well-behaved then the peers
never get stuck (i.e., each peer can always consume all the incoming messages in its input queue and
reach a final state).

Let D be a collaboration diagram. We say that the peer state machines A1, . . . ,An realize D if
C(A1, . . . ,An) = C(D). A collaboration diagram D is weakly realizable if there exists a set of peer
state machines which realize D. D is (strongly) realizable if the peer state machines that realize it
are well-behaved.

4 Realizability of Collaboration Diagrams

:Customer :Store

1:order

:Shipping :Depot

2:ship

Fig. 3 Unrealizable collaboration diagram.

Not all collaboration diagrams are realizable. For example, Figure 3 shows a simple collabora-
tion diagram that is not realizable. The conversation set specified by this collaboration diagram is
{order ship}, i.e. this collaboration diagram specifies a single conversation in which, first, the Cus-
tomer has to send the order message to the store, and then the Shipping department has to send the
ship message to the Depot. However, this conversation set cannot be generated by any implemen-
tation of these peers. Any set of peer state machines which generates the conversation “order ship”

Realizable Service using Collaboration Diagrams 9

will also generate the conversation “ship order”. The Shipping department has no way of knowing
when the order message was sent to the Store, so it may send the ship message before the order
message which will generate the conversation “ship order”. Since the conversation “ship order” is
not included in the conversation set of the collaboration diagram shown in Figure 3, this collabora-
tions diagram is not realizable. To resolve this problem we have to require that, after receiving the
order message, the Store sends a message to the Shipping department to inform it. The collabora-
tion diagram shown in Figure 4 includes this fix and its conversation set {order orderInfo ship} is
realizable.

:Customer :Store

1:order

:Shipping :Depot

3:ship

2:orderInfo

Fig. 4 Realizable collaboration diagram.

Figure 5 shows another simple collaboration diagram that is not realizable. The conversation set
specified by this collaboration diagram is {order bill}, i.e. the only conversation specified by this
collaboration diagram requires that the Customer sends the order message to the Store first and then
the Accounting department sends the bill message to the Customer. Similar to the earlier example,
this conversation set cannot be generated by any implementation of these peers. Any set of peer
state machines which generates the conversation “order bill” will also generate the conversation
“bill order”. This time the Accounting department has no way of knowing when the order message
was sent to the Store, so it may send the bill message before the order message which will generate
the conversation “bill order”, and since that is not included in the conversation set the collaboration
diagram is not realizable. Similar to the example above, we can fix this problem if the Store sends a
message to the Accounting department to inform it after it receives the order message as shown in
Figure 6.

:Customer :Store

:Accounting

2:bill

1:order

Fig. 5 Unrealizable collaboration diagram.

It is not too difficult to figure out realizability of the simple collaboration diagrams shown in
Figure 3, Figure 4, Figure 5, and Figure 6. However, it is not that straightforward to figure out the
realizability of the collaboration diagram shown in Figure 1. In the next section we will define a

10 T. Bultan et al.

:Customer :Store

:Accounting

3:bill

1:order

2:orderInfo

Fig. 6 Realizable collaboration diagram.

set of conditions which can be used to determine realizability of collaborations diagrams automat-
ically. Based on these conditions we can automatically show that the collaboration diagram shown
in Figure 1 is realizable.

5 Sufficient Conditions for Realizability

In this section we give sufficient conditions for realizability of a class of collaborations diagrams
that are common in practice. Recall that the events in a collaboration diagram can be partitioned to
a set of threads, where the set of events in each thread is totally ordered. In the class of collaboration
diagrams we focus on, each message can appear only in one thread. After formally defining this
class of collaboration diagrams we give sufficient conditions for their realizability.

We call a collaboration diagram separated if each message appears in the event set of only
one thread, i.e., given a separated collaboration diagram D = (P, L, M, E, D) with k threads, the
event set E can be partitioned as E =

⋃k

i=1
Ei where Ei is the event set for thread i, Mi =

{e.m | e ∈ Ei} is the set of messages that appear in the event set Ei and i 6= j ⇒ Mi ∩ Mj = ∅.
Recall that, the events in each Ei are totally ordered since they belong to the same thread. Note
that dependencies among the events of different threads are still allowed in separated collaboration
diagrams. The collaboration diagrams in Figure 1, Figure 3, Figure 4, Figure 5, and Figure 6 are
separated whereas the collaboration diagram in Figure 7 is not separated. Based on our experience,
requiring a collaboration diagram to be separated is not a big restriction. So far, all the collaboration
diagrams we have seen in the literature have been separated collaboration diagrams.

Definition 4 Given an event e = (l, m, r) in a collaboration diagram D = (P, L, M, E, D), we
call the event e well-informed if for all e′ = (l′, m′, r′) such that (e′, e) ∈ D (i.e., for each event e′

which is an immediate predecessor of e) one of the following conditions hold:

1. e = eI i.e., e is an initial event of C, or
2. r′ = 1 or m′ ∈ MS, and send(m) ∈ {recv(m′), send(m′)}, or
3. r′ 6= 1 and m′ ∈ MA and send(m) = send(m′) and recv(m) = recv(m′) and m 6= m′ and

r = 1.

We call a collaboration diagram well-informed if all of its events are well-informed.
According to the above definition, there are three types of well-informed events. First, all the

initial events are well-informed since they do not have any immediate predecessors. Second, if an
immediate predecessor of an event e is either a synchronous message send event, or if it is not a
conditional or iterative event, then for e to be well-informed, the sender of the message for e has
to be either the receiver or the sender of the message for its immediate predecessor. Finally, if an
immediate predecessor of an event e is either a conditional or an iterative asynchronous message

Realizable Service using Collaboration Diagrams 11

send event, then, to be well-informed, e cannot be a conditional or iterative event and it must have
the same sender and the receiver but a different message than its immediate predecessor.

Next, we show that if a separated collaboration diagram is well informed (i.e., if all the events
of a separated collaboration diagram are well-informed), then the collaboration diagram can be
realized by a set of deterministic finite state peer implementations. The construction of such peer
implementations is defined as below.

Definition 5 Given a separated and well-informed collaboration diagram D = (P, L, M, E, D),
for each peer pi ∈ P , its projection Ai can be constructed as follows. Ai = (Mi, Si, si, Fi, δi) is a
finite state machine, where Mi,Si = 2Ei ,si = Ei, Fi = {∅}, and δi are the alphabet, set of states,
initial state, set of final states, and transition relation, respectively. Here Ei ⊆ E is the set of events
that are received or sent by peer pi. For each state s ⊆ Ei and for each event e ∈ s such that for
each e′ ∈ pred(e) ∩ s, pred(e′) ∩ s = ∅ and either e′.l =? or e′.l = ∗:

– if e.l = 1 there exists one transition (s, e.m, s−{e}−{e′ | (e′, e) ∈ D ∧ (e′.l =? ∨ e′.l = ∗)}).
– if e.l =? there exists one transition (s, e.m, s − {e}).
– if e.l = ∗ there exists one transition (s, e.m, s).

We call an event e enabled at a state s if there exists a transition (s, e.m, s′).

Each state s of Ai is uniquely represented by the set of events that have not yet been completed
when the automaton reaches s. Clearly, the initial state si is represented by Ei because initially none
of the events in Ei have been executed. The set of final states Fi = {∅} is a singleton set that contains
one final state, and the final state is represented by an empty set of events (i.e., all the events related
to pi have been executed). At each state s, an event e is “enabled” if none of its single-message
predecessors appear in the state and all of its conditional and iterative immediate predecessors are
enabled at s. When an event is executed, it is removed from the event set representation of the next
state (except for iterative events). If there are any iterative or conditional immediate predecessors,
they will also be removed from the next state. Notice that only a single message event can have
conditional or iterative immediate predecessors according to the well-informedness condition.

Lemma 1 Each peer projection defined in Definition 5 is deterministic.

Proof: The lemma can be proved by contradiction. Let Ai = (Mi, Si, si, Fi, δi) be a peer projection
of a separated and well-informed collaboration diagram. Assume Ai is nondeterministic, then there
must be two transitions (s, e1.m, s′) and (s, e2.m, s′′) such that e1 6= e2 and s′ 6= s′′ but e1.m =
e2.m. This is because according to Definition 5, for each event e and each state s there is at most
one outgoing transition (from s) defined for e. Now, given e1.m = e2.m, according to the separated
property, both e1 and e2 belong to the same thread and there exists a total order between these two
events. Without loss of generality, let e1 < e2. Since both e1 and e2 are enabled at state s, by
Definition 5, e1 has to be an immediate predecessor of e2 and e1 is a conditional or an iterative
event. This contradicts with condition 3 of the well-informed property that a conditional or iterative
event and its immediate successor event cannot be for the same message. ut

In order to prove some of the results below we augment each message that is sent with a “send
event” attribute. This auxiliary attribute does not change the peer execution semantics since it does
not influence any of the peer operations. It is only an auxiliary attribute that tracks the send event
that corresponds to a message and enables us to reason about the correspondence between the send
and receive events.

Definition 6 Given a message m, its “send event” attribute, denoted as m.se is the send event
executed by send(m) when m is sent out.

12 T. Bultan et al.

Lemma 2 Let D be a separated and well-informed collaboration diagram. Let γ be a run of all its
peer projections. The following four propositions are true:

– P1 (Stuckness Freedom). For each configuration ca in γ, let Qi and si be the queue and local
state of peer pi at ca. Let Set(Qi) = {e | there is a message m in Qi s.t. m.se = e}, then
Set(Qi) ⊆ si. (For each message in queue Qi the corresponding receive event is in the state
si.)

– P2 (Send-Receive Correspondence). For each receive action ca
?m
→ ca+1 in γ, let (s, e.m, s′)

be the transition taken at the receiver, then e = m.se. (For each message, the receive event
matches the send event.)

– P3 (Strong Stuckness Freedom). For each configuration ca in γ, for each peer pi, if its queue
has messages, let m be the head element of Qi and si its local state at ca, then m.se is enabled
at si.

– P4 (Dependency Relation Conformance). For any send event ct
!m
→ ct+1 and m.se = e, for

each predecessor e′ ∈ pred(e) where e′.l = 1, there must be an action ca
!m′

→ ca+1 in γ where
m′.se = e′ and a < t.

Proof: We prove P1 to P4 by induction on the length of γ. The proofs of all the base cases are trivial
because initially there all the queues are empty. The induction assumption is that for any run whose
length is smaller than n, propositions P1 to P4 hold.

Now, let us look at a run γ with length n. Let m be the message for its last action, which can
be either a send or a receive action (since we do not have any ε transitions in the peers constructed
according to Definition 5). Let pi and pj be the sender and the receiver of m, respectively, and let
e = m.se. We use apostrophe to represent the properties of the last configuration cn. For example
if Qi is the queue contents of pi at cn−1, then Q′

i is that of pi at cn. Similarly the states of pi are
defined as si and s′i.

P1 (Stuckness Freedom). Case 1: Consider the case where the last action is a send action.
Clearly, we only need to consider pi and pj because all other peers have their states and queues
intact, and hence the induction assumption applies. For sender pi, we have three cases to consider:
e.l = 1, e.l =?, and e.l = ∗. When e.l = 1, according to Definition 5, s′i = si −{e}−{e′ | (e′, e) ∈
D ∧ (e′.l =? ∨ e′.l = ∗)}, where e′ (if there is any) is a conditional or iterative event that is an
immediate predecessor of e. Note that according to Condition 3 of well-informedness, both e and e′

are outgoing messages of pi, hence they do not belong to Qi. Therefore, given that Set(Qi) ⊆ si

(induction assumption), it is true that Set(Qi) ⊆ si−{e}−{e′ | (e′, e) ∈ D ∧ e′.l =? ∨ e′.l = ∗}.
This immediately leads to Set(Q′

i) = Set(Qi) ⊆ s′i. The cases e.l =? and e.l = ∗ are proved
similarly.

Next consider the receiver pj of the last send action of γ. Clearly, Set(Q′

j) = Set(Qj) ∪ {e}
because the message m is appended to FIFO queue of pj (note: e = m.se). The state s′j is equal
to sj . Now, given the induction assumption Set(Qj) ⊆ sj , to prove that Set(Q′

j) ⊆ s′j , e ∈ sj is
required. It can be proved by contradiction. Assume that e is not in sj , then we also have three cases
to consider:

1. If e.l = 1, since e 6∈ sj , by Definition 5, peer pj must have taken some transition (s, e.m, t)
that executes the receive event e. According to the induction assumption of P2, the receive event
?e has a corresponding send event !e at peer pi, which is executed before cn−1. Now we know
that pi executes another !e at cn−1 (which is the last action of γ), hence !e is executed at least
twice at pi. This already contradicts with Definition 5 because a single message send event can
be executed at most once (a single message send event is removed from the peer state once it is
executed and cannot be enabled again, according to Definition 5).

Realizable Service using Collaboration Diagrams 13

2. If e.l =?, the argument is the same according to Definition 5.
3. If e.l = ∗, the only way that pj can remove e from its local state is to execute a dependent action

?e′ of e (s.t. (e, e′) ∈ D and e′.l = 1 and the sender/receiver of e′ match those of e), according
to Definition 5. By induction assumption of P2, ?e′ must have a corresponding send action !e′ at
pi. Once !e′ is executed at pi, according to Definition 5, e is removed from local state of pi (and
hence not enabled any more). Then there is no way that pi can execute !e at cn−1 (which is after
!e′). This contradicts with the fact that e is sent at cn−1.
Case 2: Consider the case where the last action is a receive action. Only receiver pj needs to be

considered because other peers’ state and queue do not change. We also have three cases to examine:
e.l = 1, e.l =?, and e.l = ∗. If e.l = 1, according to Definition 5, !e will be executed at most once
at its sender, hence there is no second message in Qj with the send attribute equal to e. Given
Qj = e.m Q′

j , Set(Q′

j) = Set(Qj) − {e}. Now given the induction assumption Set(Qj) ⊆ sj ,
and Set(Q′

j) = Set(Qj) − {e}, and s′j = sj − {e} − {e′ | (e′, e) ∈ D ∧ (e′.l =? ∨ e′.l = ∗)},
to prove that Set(Q′

j) ⊆ s′j we only need to prove that {e′ | (e′, e) ∈ D ∧ (e′.l =? ∨ e′.l = ∗)}
is not a subset of Set(Qj). The proof is by contradiction. If there is such an event e′ in Set(Qj),
according to induction, there is a message m′ after m in queue such that m′.se = e′. According
to the FIFO queue property, this implies that at sender pi, an event !e′ is executed after !e and e′

is an immediate predecessor of e. This is not possible according to Definition 5. When e.l =? or
e.l = ∗, the argument is similar and simpler because we do not have to consider conditional/iterative
predecessors.

P2 (Send-Receive Correspondence). We only need to consider the receive action case, because
send actions are not related. Now consider the last action cn−1

?m
→ cn, peer pj is taking a transition

(sj , e
′.m, s′j). We need to prove that e′ = e where e is defined as m.se. Now according to induction

assumption of P3, e is enabled at sj . Then by Lemma 1, for each state, there is only one outgoing
transition labeled for e.m and it is the transition to consume e. Hence, we have proved that e′ = e.

P3 (Strong Stuckness Freedom). We prove this via contradiction. Assume that at cn (the last
configuration of γ), letting m = Qj [0] and e = m.se, e is not enabled at sj of peer pj . Note that by
induction assumption of P1, e is contained in sj . Then according to Definition 5, there are two cases
left to discuss:
1. Case 1: There is a e′ ∈ pred(e) ∩ sj and e′.l = 1. Note that !e has been executed at send(e.m).

According to induction assumption of P4, all of e’s single message predecessors have been
executed. Hence !e′ has been executed (for exactly once according to Definition 5), and it is
executed before !e. Let m′ = e′.m. Clearly m′ arrives at pj earlier than m. Since m is the
head of queue, and queue is FIFO, at peer pj , m′ must have been consumed. Now by induction
assumption of P2, the transition taken at pj to consume m′ must be for receiving event e′ =
m′.se. By Definition 5, such transition removes e′ from the local state of pj forever (since
e′.l = 1), and e′ cannot be contained in the local state of pj at cn, which contradicts with
the assumption.

2. Case 2: There is a e′ ∈ pred(e)∩sj , and e′.l =? or e′.l = ∗, and pred(e′)∩sj 6= ∅. According to
Condition 3 of well-informedness, for each immediate predecessor e′′ : (e′′, e′) ∈ D, e′′.l = 1.
Clearly e′′ ∈ pred(e), we simply have to apply argument in Case 1 for the contradiction.
P4 (Dependency Relation Conformance). First, consider all the immediate predecessors of e.

Let e.m be a message from pi to pj . According to the well-informedness property, all immediate
predecessors of e either have pi as sender or receiver. So they must appear in the initial state of Ai.
According to the construction algorithm of Ai, all immediate predecessors of e have to be removed
from local state pi before executing !e. Given an immediate predecessor e′ of e, if e′.l = 1, the only
way to remove it from pi’s state is to execute it. There are two cases to consider. Case 1: e′ is a send

14 T. Bultan et al.

event. Now by induction assumption of P4 itself, all of the single message send events of e′ have
been sent. Case 2: e′ is a receive event. According to the induction assumption of P2, there exists
a corresponding send event for e′ at its sender. Then by applying induction assumption again, we
have all single message send predecessors of e′ already executed. Now the last situation to consider
is e′.l =? or e′.l = ∗. According to well-informedness requirement, for any predecessor e′′ of e′,
e′′.l = 1. We apply similar arguments to e′′ and can prove that all single message predecessors of e′′

have been executed. Now we have exhausted all possible situations for e, and by induction we have
that all single message send events of e have been executed. ut

Theorem 1 A separated collaboration diagram D = (P , L, M , E, D) is weakly realizable if all the
events e ∈ E are well-informed.

Proof: Construct peer implementations according to Definition 5, and let them be A1, · · · ,An. First
we prove that every conversation defined by D can be generated by the composition of A1, · · · ,An.
This proof is straight-forward because given any send event sequence γ = e1e2 · · · ek, we can al-
ways make the peer implementations simulate a conversation generated by the collaboration diagram
by following the send actions step by step and executing a receive action immediately after the cor-
responding send action (and making receiver to receive a message simultaneously with the sender if
the message is synchronous).

Next we prove that every conversation generated by peer implementation belongs to the conver-
sation set defined for D, i.e., satisfies the four conditions in the conversation definition. The proof of
the first condition “for all i ∈ [1..n] ei ∈ E” is trivial according to Definition 5. The proof of condi-
tion 3 is also trivial. By Definition 5, for each single message event e, it is removed from the local
state of its sender only if it is executed. Since at the end of complete run, the final state of all peers is
an empty set of events, thus all single message events have been executed which implies condition
3. Proof of condition 4 is also based on Definition 5 – once a single or conditional message event is
executed, it is removed from the local state of its sender hence it will not be executed a second time.
This directly implies condition 4.

Finally, we prove Condition 2 by contradiction. Assume that there are two send events !e1 and
!e2 such that e1 ∈ pred (e2), however, during the run !e2 is executed before !e1. If e1.l = 1, this
directly contradicts with P4 of Lemma 2. If e1.l = ∗ or ?, study the configuration where e2 is sent.
If e1 is the immediate predecessor of e2, then e1 and e2 are sent by the same peer. According to the
construction algorithm in Definition 5, e2 cannot be sent before e1. Now the only case to consider is
that e1 ∈ pred(e2) however (e1, e2) 6∈ D. According to well-informedness, there must be another
event e′ s.t. (e1, e

′) ∈ D and e′ ∈ pred(e2). Note that e′.l = 1. By P4 of Lemma 2, !e′ must be
executed before !e. When peer send(e′.m) sends e′, it also removes e1 from its local state, according
to Definition 5, and it disables e1 at sender forever. Thus, e1 cannot be sent by send(e1.m) after e2

is sent (which is after !e′). Up to now, all cases have been examined and contradiction is established
for each case. Hence, the assumption that e1 is sent after e2 cannot be true. Condition 2 is proved.
ut

Next we show that each conversation generated by peer projections can be expanded into a
complete conversation (hence no deadlock and no stuckness). This allows us to prove the strong
realizability.

Lemma 3 Let D be a separated and well-informed collaboration diagram. Let A1, · · · ,An be the
peer implementations in Definition 5. Let γ be a run of A1, · · · ,An, and let cn be the last configu-
ration of γ. The following is true for the local state si of each peer pi at cn:

si = Ei − πi(E(γ)) − πi(pred (E(γ))) (1)
+{e | e ∈ πi(E(γ)) ∧ e.l = ∗ ∧ succ(e) ∩ E(γ) = ∅}

Realizable Service using Collaboration Diagrams 15

where E(γ) is set of send/receive events executed during γ and πi(E(γ)) is the projection of E(γ)
to the event set Ei of peer pi such that each event e in πi(E(γ)) is executed by pi (notice that if
a peer pa sends a message m to pj , the send event !m.se is not projected to peer pj). For conve-
nience, we call the items on the right hand side of the equation components 1,2,3,4. For example,
πi(pred((E(γ))) is component 3.

Proof: We prove the lemma by induction on the length of γ. Assume that for all runs whose length
is smaller than or equal to n−1, the lemma holds. Now consider the last action, we need to consider
two cases: send and receive.

Case 1: the last action cn−1
!m
→ cn is a send event and let e = m.se. We do not have to consider

peers other than send(m) because the state of other peers are not changed. Consider send(m), let
si and s′i be its local state at cn−1 and cn respectively.

1. if e.l = 1: According to Definition 5, s′i = si −{e}−{e′ | (e′, e) ∈ D ∧ (e′.l =? ∨ e′.l = ∗)}.
Clearly, E(γ′) = E(γ e) = E(γ)∪ {e}, and each e′ (if there is any) is included in pred(E(γ ′)).
Now given induction assumption that Equation 1 holds at cn−1, let us observe the changes on
both sides of the equation for cn. The left side has e and all its immediate conditional/iterative
predecessors removed. On the right side, component 2 has e added, component 4 does not
change. Component 3 has all predecessors of e included; however, notice that only the imme-
diate conditional/iterative predecessors of e and e itself could be new members of the union of
component 2 and 3, because according to P4 of Lemma 2 all single-message event predecessors
of e have already been contained in component 2 (which already includes immediate predeces-
sors of each e′). Hence, we have shown that both sides of equation has e and its immediate
conditional/iterative predecessors removed. Equation 1 still holds at cn.

2. if e.l =?: the proof is similar to the above except that we do not have to consider the im-
mediate/iterative conditional predecessor of e. Well-informedness property guarantees that the
recurrence type of each immediate predecessor of e is 1.

3. if e.l = ∗: the proof is similar except that e is still included in s′i due to component 4 in Equation
1. Note that the proof also relies on P4 of Lemma 2 for arguing that predecessors of e are already
contained in πi(E(γ)) at cn−1.

Now consider the receiver side. For recv(m) its local state does not change (on the left hand side of
Equation 1). None of the components on the right hand side is changed either. Notice that the !e is
not contained in πj(E(γ)) because recv(m) did not execute !e (only ?e will be projected).

Case 2: the last action cn−1
?m
→ cn is a receive event and let e = m.se. Only recv(m) needs to be

considered because its state is affected. We also have three cases to discuss. Let sj and s′j be the local
state of recv(m) at cn−1 and cn respectively. When e.l = 1, s′j = sj−{e}−{e′ | (e′, e) ∈ D ∧ e′.l =
? or ∗}. Clearly, the receive event ?e will be contained in component 2 in the new equation, and e′(s)
will be contained in component 3. By induction assumption, both sides of Equation 1 have e and e′

removed, so the equation still holds at s′j . When e.l =? and e.l = ∗, the proof is similar. ut

Theorem 2 Let D be a separated and well-informed collaboration diagram, and A1, · · · ,An be the
peer implementations in Definition 5. Let γ be a run of A1, · · · ,An, if γ is not a complete run it can
always be expanded into a complete run.

Proof: Let γ be an incomplete run, according to P3 of Lemma 2: at any moment of a run each
queue head is always enabled at its receiver, we can append a series of receive actions to γ until all
messages in queues of every peer are consumed. Let the expanded run be γ ′. Clearly the following
argument (let it be A1) is true: in γ ′ each receive event has a corresponding send event (according
to P2 of Lemma 2), and each send event has a corresponding receive event (because all messages

16 T. Bultan et al.

:P :Q

A1:x

A2:y

B1:y

B2:x

:R

B3:z

Fig. 7 Unrealizable collaboration diagram with well-informed events.

in queues have been consumed). Now let us study the status of each peer at the end of γ ′. Let
E′ = πsend(E(γ)) + πsend(pred(E(γ))) − {e | e ∈ πsend(E(γ)) ∧ e.l = ∗ ∧ succ(e) ∩
πsend(E(γ)) = ∅}. Clearly E ′ represents the events which have been completely executed by γ ′.
We can construct a new collaboration diagram (let it be D′) with its dependency graph created from
that of D by removing E ′ from E and corresponding dependency links. Also a new peer projection
A′

i can be generated for each peer pi, by making the state of pi at the end of γ′ the initial state.
Study the initial state of A′

i. Clearly if we project E − E ′ to a peer pi, the set πi(E − E′) is equal
to Ei − πi(E

′) which is

Ei − πi(E(γ)) − πi(pred(E(γ))) + {e | e ∈ πi(E(γ)) ∧ e.l = ∗ ∧ succ(e) ∩ E(γ) = ∅}

Note that in the above formula, send and recv do not appear in the subscripts of πi due to argument
A1. The above formula is equal to the formula given in Lemma 3. This implies that when γ ′ is
completed, all states of peers are exactly the initial states for the remaining collaboration diagram
D′. Then by applying Theorem 1, immediately we have that for D′ there is a complete run (let it be
γ′′) generated by the modified peer projections A′

i(i ∈ [1..n]). Obviously, concatenation of γ ′ and
γ′′ is the complete run for γ. ut

Then by Theorems 1 and 2, we have the following.

Theorem 3 A separated collaboration diagram D = (P , L, M , E, D) is (strongly) realizable if all
the events e ∈ E are well-informed.

The realizability condition for separated collaboration diagrams given above can be checked in
linear time. As mentioned above, the collaboration diagrams shown in Figure 3, Figure 4, Figure 5,
and Figure 6 are all separated collaboration diagrams. However, the collaboration diagrams shown
in Figure 3 and Figure 5 violate the realizability condition given above and they are not realizable,
whereas the the collaboration diagrams shown in Figure 4 and Figure 6 satisfy the realizability
condition given above and hence they are realizable.

Note that, in Figure 3 the sender for the final event (i.e., the event labeled 2) is the peer Shipping
and this peer is not the receiver or the sender of the message for event 1 which is the immediate
predecessor of event 2. Hence event 2 is not well-informed. However, in Figure 4 the sender for the
final event (i.e., the event labeled 3) is the receiver of the message for event 2 which is the immediate
predecessor of event 3. Hence, in Figure 4, the final event is well-informed. In fact all the events in
Figure 4 are well-informed and therefore it is realizable.

Similarly, in Figure 3 the sender for the event 2 is Accounting and Accounting is not the receiver
or the sender of the message for event 1 which is the immediate predecessor of event 2. Hence event
2 is not well-informed. However, in Figure 6 the sender for the event 3 is the receiver of the message
for event 2 which is the immediate predecessor of event 3. In Figure 6 all events are well-informed
and it is realizable.

Finally, the collaboration diagram shown in Figure 1 is realizable since all the events shown in
Figure 1 are well-informed.

Realizable Service using Collaboration Diagrams 17

:P :Q

:R

2:y

1:x

x
y

P QR

Fig. 8 A collaboration diagram with no corresponding Message Sequence Charts.

Now, we will give an example to show that well-informedness of the events alone does not
guarantee realizability of a collaboration diagram which is not separated. Consider the collaboration
diagram given in Figure 7. This collaboration diagram has two threads (A and B) and it is not
separated since both threads have send events for messages x and y. Note that all the events in
this collaboration diagram are well-informed. The conversation set specified by this collaboration
diagram consists of all interleavings of the sequences xy and yxz which is the set {xyyxz, xyxyz,
xyxzy, yxzxy, yxxzy, yxxyz, yxyxz}. However any set of peer state machines that generate this
conversation set will either generate the conversation xyzxy or will not be well-behaved. Consider
any set of peer state machines that generate this conversation set. Consider the incomplete run in
which first peer P sends x and then the peer Q sends y. From the peer Q’s perspective there is no
way to tell if y was sent first or if x was sent first. If we require peer Q to receive the message x

before sending y (hence, ensuring that x is sent before y) then we cannot generate the conversations
which start with the prefix yx. Hence, peer Q can continue execution assuming that the conversation
being generated is yxzxy and send the message z before peer P sends another message. Such a
partial execution will generate the sequence xyz which is not the prefix of any conversation in the
conversation set of the collaboration diagram. Therefore such a partial execution will either lead to a
complete run and generate a conversation that is not allowed or it will not lead to any complete run,
either of which violate the realizability condition.

Although well-informedness property is not a necessary condition for realizability of separated
collaboration diagrams. It is a necessary condition for a more restricted class of collaboration dia-
grams. We call a collaboration diagram C = (P, L, M, E, D) simple if for all e ∈ E e.r = 1. Then
we have the following result:

Theorem 4 A simple separated collaboration diagram C = (P , L, M , E, D) is realizable if and
only if all the events e ∈ E are well-informed.

The “if” direction follows from Theorem 1. For the “only if” direction assume that there exists an
event e ∈ E which is not well-informed. Then there must be an immediate predecessor of event
e = (l, m, r), say event e′ = (l′, m′, r′), such that send(m) 6∈ {recv(m′), send(m′)}. Then we
have m 6= m′ and for any implementation of the peers, sender of message m has no way of knowing
if message m′ has been sent. So it is always possible to get an interaction where message m is sent
before message m′, violating the dependency relation.

6 Related Work

Message Sequence Charts (MSCs) [12] provide another visual model for specification of interac-
tions in distributed systems. MSC model has also been used in modeling and verification of web
services [13]. As opposed to the collaboration diagrams which only specify the ordering of send

18 T. Bultan et al.

x y

P Q R :Q :R

:P

A1:x

B1:y

Fig. 9 A Message Sequence Chart with no corresponding collaboration diagram.

events, in the MSC model ordering of both send and receive events are captured. Another difference
between the collaboration diagram model and the MSC model is the fact that MSC model gives a
local ordering of the send and receive events whereas a collaboration diagram gives a global order-
ing of the send events. It is possible to show that there are collaboration diagrams which specify
interactions that cannot be specified using MSCs and there are MSCs which specify interactions that
cannot be specified using collaboration diagrams.

The examples in Figure 8 and Figure 9 demonstrate the differences between the MSC and col-
laboration diagram models. Consider the collaboration diagram shown in Figure 8 which states that
the peer P should send the message x before peer R sends the message y. There is no way to ex-
press this ordering using a MSC since the senders of messages y and x are different. Even if peer P

makes sure that it sends message x before it receives message y (as shown in Figure 8), this does not
guarantee that message y is sent after message x is sent (note that these are asynchronous messages).

Figure 9, on the other hand, shows an MSC which specifies and ordering of send and receive
events which cannot be specified using a collaboration diagram. The MSC in Figure 9 states that
the peer Q should receive message x before it receives message y, however, it does not specify any
ordering between the send events for messages x and y. The collaboration diagram in Figure 9 also
leaves the ordering of send events for messages x and y unspecified, however, there is no way of
restricting the ordering of the receive events in collaboration diagrams.

The realizability problem for MSCs [3] and its extensions such as high-level MSC (hMSC) [5]
and MSC Graphs [4] have been studied before. However as we discussed above, the type of interac-
tions specified by collaboration diagrams and MSCs are different.

There has been earlier work on using various UML diagrams in modeling different aspects of
service compositions (for example [14–16]). However, we are not aware of any work that focuses
on realizability of interactions specified as collaboration diagrams.

In [17], interactions among agents are represented using various UML diagrams, including
collaboration diagrams, however, the realizability problem is not investigated. In [18,19], Dooley
graphs are used to model conversations. In [20] collaboration diagrams are used to represent Dooley
graphs, and a formal coordination modeling approach for supply-chain management is proposed by
using collaboration diagrams in conjunction with other UML diagrams, such as state diagrams. Some
of the conditions on Dooley graphs presented in these earlier papers are similar to the realizability
conditions presented in this paper. However, these earlier results do not address the realizability
problem discussed in this paper. In fact, in [20], resolving technical issues in Dooley graph rep-
resentation of conversations is left as future work. Moreover, the computational model we present
in this paper is different and involves both synchronous and asynchronous communication, and the
interaction model we use has both conditional and iterative send events.

In our earlier work we have studied the realizability of conversations specified using automata,
called conversation protocols [6,10,21,11,7]. Conversations protocols provide a different model for
specifying conversations. Unlike collaboration diagrams, conversation protocols allow specification

Realizable Service using Collaboration Diagrams 19

of arbitrary cycles. In fact, conversation protocols can be used for specification of any conversa-
tion set that is regular (i.e., that can be recognized by a finite state automaton). For example, given
two messages x and y, the conversation set specified by the regular expression (xy)∗ can be easily
specified using a conversation protocol. However, this conversation set cannot be specified using
collaboration diagrams since the only loop construct in collaboration diagrams allows repetition of a
single send event. In [22] we show that conversation protocols are more expressive than collaboration
diagrams. The fact that collaboration diagrams provide a more restricted language for specification
of interactions can also mean that one can find more efficient techniques for checking their realiz-
ability. In fact, the realizability condition for the collaboration diagrams given in this paper can be
checked more efficiently than the realizability conditions for conversation protocols given in [10].

7 Conclusions

Analysis of interactions specified by collaborations diagrams is becoming increasingly important
in the web services domain where autonomous peers interact with each other through messages to
achieve a common goal. Since such interactions can cross organizational boundaries, it is necessary
to focus on specification of interactions rather then the internal structure of individual peers. In
this paper we argued that collaboration diagrams are a useful visual formalism for specification of
interactions among web services. However, specification of interactions from a global perspective
inevitably leads to the realizability problem. In this paper, we formalized the realizability problem
for collaboration diagrams and gave sufficient conditions for realizability.

References

1. W3C: Web Service Choreography Description Language (WS-CDL). http://www.w3.org/TR/
ws-cdl-10/ (2005)

2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2) (1983)
323–342

3. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In: Proc. 22nd Int. Conf.
on Software Engineering. (2000) 304–313

4. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. In: Proc. 28th Int.
Colloq. on Automata, Languages, and Programming. (2001) 797–808

5. Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-based specifications and behavior
models using implied scenarios. ACM Transactions on Software Engineering and Methodology 13(1)
(2004) 37–85

6. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: A new approach to design and analysis of
e-service composition. In: Proc. 12th Int. World Wide Web Conf. (2003) 403–410

7. Bultan, T., Fu, X., Su, J.: Analyzing conversations of web services. IEEE Internet Computing 10(1) (2006)
18–25

8. OMG: UML 2.0 superstructure specification. http://ww.uml.org/ (2004)
9. OASIS: Web services business process execution language version 2.0. http://docs.oasis-open.

org/wsbpel/2.0/wsbpel-specification-draft.html (2006)
10. Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification and analysis of reactive

electronic services. Theoretical Computer Science 328(1-2) (2004) 19–37
11. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among web services. IEEE Transactions on

Software Engineering 31(12) (2005) 1042–1055
12. ITU-T: Message Sequence Chart (MSC). Geneva Recommendation Z.120 (1994)
13. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web service compositions. In:

Proc. 18th IEEE Int. Conf. on Automated Software Engineering Conference. (2003) 152–163

20 T. Bultan et al.

14. Benatallah, B., Sheng, Q.Z., Dumas, M.: The self-serv environment for web services composition. IEEE
Internet Computing 7(1) (2003) 40–48

15. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: Proc. of 8th International
IEEE Enterprise Distributed Object Computing Conference. (2004)

16. Blake, M.B.: A lightweight software design process for web services workflows. In: Proc. of the 2006
IEEE International Conference on Web Services. (2006) 411–418

17. Odell, J.J., Parunak, H.V.D., Bauer, B.: Representing Agent Interaction Protocols in UML. In: Proc. of
First International Workshop on Agent-Oriented Software Engineering. (1999)

18. Parunak, H.V.D.: Visualizing agent conversations: Using enhanced Dooley graphs for agent design and
analysis. In: Proceedings of the Second International Conference on Multi-Agent Systems (ICMAS’96).
(1996)

19. Singh, M.P.: Synthesizing coordination requirements for heterogeneous autonomous agents. Autonomous
Agents and Multi-Agent Systems 3(2) (2000) 107–132

20. Huhns, M.N., Stephens, L.M., Ivezic, N.: Automating supply-chain management. In: Proceedings of
the First International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS 2002).
(2002) 1017–1024

21. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message contents. International
Journal of Web Services Research (JWSR) 2(4) (2005) 68 – 93

22. Bultan, T., Fu, X.: Realizability of interactions in collaboration diagrams. Technical Report 2006-11,
Computer Science Department, University of California, Santa Barbara (2006)

