Data Model Property Inference, Verification and Repair for Web
Applications

JAIDEEP NIJJAR, University of California, Santa Barbara
IVAN BOC|C, University of California, Santa Barbara
TEVFIK BULTAN, University of California, Santa Barbara

Most software systems nowadays are web-based applications that are deployed over compute clouds using
the three-tier architecture, where the persistent data for the application is stored in a backend datastore
and is accessed and modified by the server-side code based on the user interactions at the client-side. The
data model forms the foundation of these three tiers, and identifies the sets of objects (object classes) and the
relations among them (associations among object classes) stored by the application. In this paper, we present
a set of property patterns to specify properties of a data model, as well as several heuristics for automatically
inferring them. We show that the specified or inferred data model properties can be automatically verified
using bounded and unbounded verification techniques. For the properties that fail, we present techniques
that generate fixes to the data model that establish the failing properties. We implemented this approach
for web applications built using the Ruby on Rails framework and applied it to ten open source applications.
Our experimental results demonstrate that our approach is effective in automatically identifying and fixing
errors in data models of real-world web applications.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification
General Terms: Languages, Verification

Additional Key Words and Phrases: Data models, web applications, automated verification, automated re-
pair

1. INTRODUCTION

Software applications are migrating from desktops to computer clouds. The software-
as-a-service paradigm supported by cloud computing platforms has become a powerful
way to develop software systems that are accessible everywhere and can store, ac-
cess and manipulate large amounts of information, while saving the end users from
the hassles of software installation, configuration management, version updates and
security patches. However, these benefits come with a cost: the increasing complex-
ity of software applications. A typical software application nowadays is a complicated
distributed system that consists of multiple components that run concurrently on mul-
tiple machines and interact with each other in complex ways via the Internet. As one
would expect, developing such software systems is an error-prone task. Moreover, due
to the distributed and concurrent nature of these applications, and due to the increas-
ing use of scripting languages, existing testing, static analysis and verification tech-
niques are becoming ineffective.

Yet another challenge is the fact that modern software applications are globally ac-
cessible systems (via web browsers or mobile application front-ends) that are in use all
the time without any downtime for analysis or repair. So, it is important that errors in

This work is supported by the National Science Foundation, under grants CCF 1117708 and CCF 1423623.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 0000 ACM 1049-331X/0000/-ART00 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:2 J. Nijjar et al.

Property Property Repair Suggested
Templates Violation| Generation Repair
Verification Results
Property Inference

L———— including violating instances
for failed properties

ORM
Code

Model Formal Verification
Extraction JData Model

Fig. 1: Data model analysis toolset.

Properties

these applications are both discovered and repaired quickly. In order to address these
challenges, it is necessary to develop novel techniques that focus on and exploit the
unique characteristics of modern software applications while increasing the level of
automation in analysis, verification and repair of such systems.

One common characteristic of modern software applications is the fact that they
are developed using the three-tier architecture that consists of a client, a server and
a backend datastore component. The client-side code is responsible for coordinating
the interaction with the user. The server-side code implements the business logic and
determines the control flow of the application. The backend datastore keeps the per-
sistent data for the application. The interaction between the server and the backend
datastore is typically managed using an object-relational mapping (ORM) that maps
the object-oriented code at the server side to the relational database at the backend.
To accomplish this, ORMs use the concept of a data model that specifies the types of
objects (the object classes, e.g., user, account, etc.) stored by the application, the rela-
tions among the objects (the associations among the object classes, e.g., the association
between users and accounts), and the constraints on the data model relations (e.g., the
association between the users and accounts must be one-to-one).

Since data models form the foundation of modern software applications, their cor-
rectness is of paramount importance. In fact, data model specification correctness is a
problem that has been studied extensively [Lenzerini and Nobili 1987; Zamperoni and
Lohr-Richter ; Calvanese and Lenzerini 1994; Jarrar and Heymans 2006; Jarrar 2007,
Artale et al. 2007b; 2007a; Cunha and Pacheco 2009; Smaragdakis et al. 2007; 2009;
McGill et al. 2011]. However, these earlier approaches focus on data model specifica-
tion languages or database schemas and are not directly applicable to web application
implementations that we target in this paper. The experiments we present later in
this paper demonstrate the prevalence of data model errors in real-world web appli-
cations. Moreover, when reported, data model errors found by data model verification
techniques have been acknowledged and immediately repaired by developers [Bocic
and Bultan 2014] indicating the importance of such errors.

Most modern software development frameworks such as Ruby on Rails, Zend
for PHP, CakePHP, Django for Python, and Spring for J2EE use the Model-View-
Controller (MVC) pattern [Krasner and Pope 1988] which separates the data model
(Model) from the user interface logic (View) and the control flow logic (Controller). In
all these web application development frameworks, data models are implemented us-
ing ORMs. The modularity and separation of concerns principles imposed by the MVC
pattern makes automated extraction of the data model possible, and provides opportu-
nities for developing customized verification and analysis techniques, which we exploit
in this paper by presenting techniques for specification, verification and repair of data
model properties.

For most verification techniques and tools, the set of properties to be verified must
be provided as an input to the verification process, and the effectiveness of the verifi-
cation process is highly dependent on the quality of the input properties. We present
two approaches to facilitate property specification. First, we provide a set of property

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:3

templates that cover a wide range of common properties of data stores (e.g., that an ob-
ject of a certain class cannot exist in the absence of a related object from another class)
and are easy to manually instantiate for a given data store [Nijjar et al. 2013]. Second,
we present heuristics for automatic inference of properties about the data model of a
given application [Nijjar and Bultan 2013].

Once we have a suite of properties, we use both bounded and unbounded data model
verification techniques [Nijjar and Bultan 2011; 2012] to determine if the given prop-
erties are actually enforced by the data model constraints that are extracted from
the ORM code. For failing properties, our method automatically generates a counter-
example data model instance that demonstrates the violation which aids in identi-
fying the potential error in the data model. Finally, we present techniques that au-
tomatically generate repairs for the properties that fail. These repairs are suggested
modifications to the ORM code that establishes the inferred properties.

Our approach has its limitations. It is only applicable to properties that are express-
ible using templates that we provide. We do not analyze data model methods, but only
focus on analysis of static association declaration constructs. We are not able to ana-
lyze unbounded data models with cyclic destroy dependencies, but we can use bounded
analysis in such cases. Our experiments show that, even with these limitations, our
approach is able to identify data model errors in real-world applications. We experi-
mented on seven applications. Four of them are among the most popular Rails applica-
tions on Github, and the remaining three are from application domains not covered by
the other four. Together these seven applications represent a sampling of widely used
Rails applications, and cover a variety of application domains.

The high level structure of our approach is shown in Figure 1. The front end au-
tomatically extracts a formal data model from the ORM specification of the web ap-
plication. The model extraction, property inference, verification and repair generation
components are all integrated together and use the results from the prior stages to
generate the results needed for the following stages of the analysis. In addition to
automatically inferred properties, users can manually specify additional data model
properties using property templates. The tool implementing our approach is called
iDaVer and is available for download at http:/www.cs.ucsb.edu/~vlab/idaver/.

The rest of the paper is organized as follows: Section 2 discusses the data models and
their formalization. Section 3 discusses the property patterns and the automated prop-
erty inference heuristics. Section 4 presents the techniques for automated verification
of specified or inferred properties. Section 5 presents the automated repair genera-
tion techniques. Section 6 presents our experimental results. Section 7 discusses the
related work, and Section 8 concludes the paper.

2. DATA MODEL

In modern software applications that use the three-tier architecture, the data model
serves as an abstraction layer between the application code and the backend datastore.
The data model identifies the sets of objects (i.e., object classes) stored by the applica-
tion and the relations (i.e., associations) among the objects. The object-relational map-
ping (ORM) handles the translation of the data model between the relational database
view of the backend datastore and the object-oriented view of the application code. In
this section, we first give an overview of the data model constructs supported by the
Ruby on Rails framework (Rails for short) and later give a formalization of data model
semantics.

The Rails framework employs ORM via a library called ActiveRecord. While our
current toolset supports ActiveRecord only, other ORM libraries share many of the
same features as ActiveRecord. Hence, the techniques we present in this paper are
applicable to other ORM libraries.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:4 J. Nijjar et al.

1 class User < ActiveRecord::Base

2 has_and_belongs_to_many :roles

3 has_one :profile, :dependent => :destroy
4 has_many :photos, :through => :profile

5 end

6 class Role < ActiveRecord::Base

7 has_and_belongs_to_many :users

8

end
9 class Profile < ActiveRecord::Base
10 belongs_to :user

11 has_many :photos, :dependent => :destroy
12 has_many :videos, :dependent => :destroy, :conditions => "format='mp4’"
13 end

14 class Photo < ActiveRecord: :Base

15 belongs_to :profile

16 has_many :tags, :as => :taggable

17 end

18 class Video < ActiveRecord: :Base

19 belongs_to :profile

20 has_many :tags, :as => :taggable

21 end

22 class Tag < ActiveRecord::Base

23 belongs_to :taggable, :polymorphic => true
24 end

Fig. 2: A data model example

format="mp4’

— one to many

—@® one to zero-one
<4——» manyto many
_____ ¥ transitive

conditions

conditional

Taggable g >—p polymorphic

Fig. 3: The data model schema extracted Fig. 4: Graphical representations
from the data model shown in Figure 2. of relation types.

Below we give an overview of Rails’ data modeling features using a running example.
Figure 2 presents the simplified data model for a social networking application built
on the Rails platform. In this application, there are users who create profiles. Photos
and videos can be tagged and posted to a user’s profile, and users can be attributed
with various roles.

2.1. Basic Relation Declarations

Rails allows the developer to declare three different types of relations with
different cardinality constraints wusing the hasmany, has_one, belongs_to and
has_and_belongs_tomany association declarations in pairs: 1) one-to-zero-one rela-
tions, expressed using the has_one and belongs_to declarations, (e.g., lines 3 and 10
in Figure 2 declare that a User is associated with zero or one Profile objects), 2)
one-to-many relations, expressed using the has many and belongs_to declarations (e.g.,
lines 11 and 15 declare a one-to-many relation between Profile and Photo), and 3)
many-to-many relations, expressed using the declaration has_and belongs_to many (e.g.,
lines 2 and 7 to declare a many-to-many relation between User and Role).

In order to demonstrate that these types of relations can also be specified in other
ORMs, we provide a simple syntax comparison between three different ORM libraries

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:5

Cardinality ActiveRecord Hibernate DjangoORM
public class Foo {
— class Foo(models.Model)
class Foo @OneToOne (mappedBy = "bar") # associ(ated Bar can be queried
has_one :bar public Bar getBar() { ... }

end # using the bar() method

One to Zero or One class Bar(models.Model)

class Bar public class Bar { _ .
belongs_to :foo @OneToOne (nullable = false) foo ;uT;?ii:éOneTcOneFleld(Foo,
end public Foo getFoo() { ... } L ’
_key=t.
) primary_key=true)
public class Foo {
@ManyToOne (mappedBy = "bar")
cl;:z ;Z:)\ bar) public Set<Bar> getBars() { ... } class Foo(models.Nodel)
end many. # associated Bars can be queried
. # using the bar_set() method
One to Many public class Bar {
class Bar @Ma{\yToOHe " s class Bar(models.Model)
belongs_to :foo @JoinColumn(name = "foo_id", foo = models.ForeignKey (Foo)
end nullable = false) b : gniey

public Foo getFoo() { ... }

public class Foo {

@ManyToMany(...)

@JoinTable(...) class Foo(models.Model)

public Set<Bar> getBars() { ... } # associated Bars can be queried
} # using the bars() method

class Foo
has_and_belongs_to_many :bar
end
Many to Many
class Bar
has_and_belongs_to_many :foo
end

public class Bar { class Bar(models.Model)
@ManyToMany (mappedBy = "bars") foo = models.ManyToManyField(Foo)
public Set<Foo> getFoos() { ... }

Fig. 5: ORM Library Syntax Comparison
(ActiveRecord, Hibernate, and DjangoORM) in Figure 5, where objects of class Foo is
associated with objects of class Bar with different cardinality constraints.

2.2. Extensions

Rails offers constructs to extend the basic relation declarations discussed above to ex-
press more complex relations between objects. The first construct we would like to
discuss is the :through option, which can be set on either the has_one or has many decla-
ration. This option allows the developer to express transitive relations. For example,
lines 3, 10 and 11, 15 declare relations between User and Profile, and between Profile
and Photo. The :through option set on the association declaration on line 4 declares a
relation between User and Photo that is the composition of the ones between User and
Profile, and Profile and Photo.

The second construct is the :conditions option which allows the developer to create a
relation between one class and the subset of another class. For instance, on line 12 the
:conditions option is set on the relation between Profile and Video, denoting that Pro-
file objects are only associated with Video files that satisfy the condition "format="mp4’".

Rails also supports the declaration of polymorphic associations. A polymorphic rela-
tion is used when the programmer desires to use a single declaration to relate a class
to multiple other classes. This is similar to the idea of interfaces in object-oriented de-
sign, where dissimilar things may have common characteristics that are embodied in
the interface that they implement. In Rails, polymorphic associations are declared by
setting the :polymorphic option on the belongs_to declaration and the :as option on the
has_one or has_many declarations. In the running example, line 23 sets up such a relation
in the Tag class. The Photo and Video classes both connect to this relation by using the
corresponding :as option in lines 16 and 20.

Finally, the :dependent option allows developers to model how to propagate the object
deletion at the data model level. The :dependent option can be set to either :delete
or :destroy, where :delete will propagate the delete to the associated objects, and no
further, whereas :destroy will go into the class of the associated objects and propagate
the delete further depending on the :dependent options set on its relations. On line 11

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:6 J. Nijjar et al.

in Figure 2 we see that the :dependent option is set on the relation between Profile and
Photo. This means that when a Profile object is deleted, all associated Photo objects
are also deleted. Since the :dependent option is set to :destroy, the delete will also be
propagated to any relations in the Photo class with the :dependent option set.

All these constructs together form the essence of Rails data models specified using
the ActiveRecord. As we discussed above, the basic constructs are also supported by
other ORMs such as Hibernate and DjangoORM. ActiveRecord is the most expressive
among these ORM libraries, and allows declaration of complex relations using the op-
tions we discussed above. However, many features of ActiveRecord are available in
other ORMs as well. For example, Hibernate supports delete propagation in a man-
ner similar to :dependent => :destroy option of ActiveRecord. All three ORMs support
polymorphism and multiple inheritance in different ways (polymorphic associations
in Rails, @MappedSuperclass annotations in Hibernate, the parent_link option in Djan-
goORM). The :condition option of ActiveRecord is unavailable in Hibernate or Djan-
goORM, and DjangoORM does not have a feature similar to ActiveRecord’s :dependent
option. These missing features can be implemented as extensions to these frameworks.

The approach we present in this paper is applicable to other ORMs such as Hi-
bernate and DjangoORM. Adapting our approach to these other frameworks would
require implementation of new data model extraction modules to support these lan-
guages. However, the formal data model and all the analysis techniques would be ap-
plicable without modifications. Also, the repair generator would need to be tailored to
the syntax and constructs of these languages.

2.3. Formalizing Data Models

Our verification framework first extracts a formal data model from the ORM code of
a given web application based on the ActiveRecord class and association declarations
that we discussed above. We formalize a data model as a tuple M = (S,C, D) where S
is the data model schema identifying the sets and relations of the data model, C is a
set of relational constraints, and D is a set of dependency constraints.

The schema S = (O, R) identifies the object classes (O) and the relations (R) in the
data model. In the schema, each relation is specified as a tuple containing its domain
class, its name, its type and its range class where R C O x N x T x O, N is a string
denoting the name of the relation, and

T = {zero-one, one, many} x {zero-one, one, many}x {conditional, not-conditional} x
{transitive, not-transitive} x {polymorphic, not-polymorphic}

is the set of relation types, which are a combination of type qualifiers denoting the
cardinality of the domain and range of the relation, and whether the relation is con-
ditional, transitive or polymorphic. For example, the Profile-Video relation defined in
Figure 2 has the type (one, many, conditional, not-transitive, not-polymorphic), indi-
cating that it is a one to many relation that is conditional but not transitive or poly-
morphic.

Not all combinations of these attributes are allowed in relation declarations. The
types of relations must obey the following rules: 1) Only the following combinations of
cardinalities are possible: many to many, one to many, many to one, zero-one to one,
and one to zero-one. 2) A relation cannot be both polymorphic and transitive. 3) A
many-to-many relation cannot be transitive or polymorphic.

The schema § = (O, R) for the running example in Figure 2 consists of the object
classes O = {User, Role, Profile, Photo, Video, Tag} and the object relations R contain
seven tuples, one for each relation declared in Figure 2: User-Role, User-Profile, User-
Photo, Profile-Photo, Profile-Video, Photo-Tag, Video-Tag. As an example, the tuple for

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:7

the User-Photo relation is (User, User-Photo, (one, many, transitive, not-conditional,
not-polymorphic), Photo).

Figure 3 shows a visual representation of the schema for the running example
(which is automatically extracted from the ORM code by iDaVer). The nodes are the
object classes and the edges are the object relations. The graphical representation of
the edges differs based on the type of the relation that they represent, as explained in
Figure 4.

The relational constraints, C, express the constraints that are imposed by the re-
lation declarations. For example, lines 12 and 19 in Figure 2 declare a one to many
relation between the Profile and Video objects. In order to formalize this cardinality
constraint let us use op and oy to denote the set of objects for the Profile and Video
classes and rp_y to denote the relation between Profile objects and Video objects. Then
the constraint that corresponds to this relation is formalized as:

(Vv € ov,3dp € op : (p,v) € rp—v)A
(Vp,p' € op,Yv € ov : ((p,v) Erp—v A(P',v) Erp_v)=>p=1p) (2.1)

Semantics of all of the data model declaration constructs we discussed above other
than the dependency constraints can be formalized similarly [Nijjar and Bultan 2012].

Formal modeling of the dependency constraints (denoted as D in the formal model)
requires us to model the delete operation, which means that we have to refer to the
state of the object classes and relations both before and after the delete operation.
Again, consider the relation between the Profile and Video objects. In order to model
the delete operation, we have to specify the set of Profile objects, the set of Video ob-
jects and the relation between the Profile and Video objects both before and after the
delete operation (op, ov, rp_v, 0p, 0|/, r'>_y,, respectively). Then, to model the delete
dependency expressed using the :dependent option in line 12 in Figure 2, we need to
specify that when a Profile object is deleted, the Video objects related to that Profile
are also deleted (and thus all the tuples, possibly containing other Profile objects, that
are associated with those Video objects will also be deleted). Formally:

Jpa € op :0p = op \ {pa}A
(Vv:v € oy & (vEov A (pa,v) €op_v))A

rp_y =rp_y N (0p X oY) (2.2)

where p; denotes the Profile object that is being deleted. Note that modeling of cyclic
destroy dependencies would require the use of transitive closure. Our current frame-
work does not handle cyclic destroy dependencies.

2.4. Data Model Verification Problem

Using the data model specification constructs we discussed above, a developer can
specify complex relations among objects of an application. Since a typical application
contains dozens of object classes with many relations among them, data model specifi-
cations can contain errors and omissions that can result in unexpected behaviors and
bugs. Hence, it would be worthwhile to automatically verify the data models. Below,
we formalize the data model verification problem by formally defining the data model
instances and what it means for a data model instance to satisfy a given data model
property.

A data model instance is a tuple Z = (O, R) where O = {01, 02,...0,,} is a set of
object classes and R = {ry, ra,...7,,} is a set of object relations and for each ; € R
there exists 0;, 0, € O such that r; C 0, x 0.

Given a data model instance Z = (O, R), we write R |= C to denote that the relations
in R satisfy the constraints in C. Similarly, given two instances Z = (O, R) and 7' =

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:8 J. Nijjar et al.

(O, R’y we write (R,R') E D to denote that the relations in R and R’ satisfy the
constraints in D.

A data model instance Z = (O, R) is an instance of the data model M = (S,C,D),
denoted by Z = M, if and only if 1) the sets in O and the relations in R follow the
schema S = (O, R) (where the sets in O correspond to the object classes in O and the
relations in R correspond to the relations in R), and 2) R = C.

Given a pair of data model instances Z = (O, R) and 7' = (O, R'), (Z,7’) is a behavior
of the data model M = (S,C, D), denoted by (Z,Z’) = M if and only if 1) O and R and
O’ and R’ follow the schema S,2) R=Cand R' =C, and 3) (R, R') = D.

Given a data model M = (S,C, D), we define four types of properties: 1) state asser-
tions (denoted by Ag): these are properties that we expect to hold for each instance of
the data model; 2) behavior assertions (denoted by Ap): these are properties that we
expect to hold for each pair of instances that form a behavior of the data model; 3) state
predicates (denoted by Ps): these are properties we expect to hold in some instance of
the data model; and, finally, 4) behavior predicates (denoted by Pp): these are proper-
ties we expect to hold in some pair of instances that form a behavior of the data model.
We denote that a data model satisfies an assertion or a predicate as M = A where:

M As VI = (O,R),T =M= R As (2.3)
MEAp & VI =(O,R),VI' = (O',R),(Z,T) =EM = (R,R) = Ap (2.4)
MEPs < 3T=(0,R),IT=M= RE Ps (2.5)
MEPp < 37T=(0,R),37' = (O, R"),(Z,I) EM = (R,R) = Ps (2.6)

The data model verification problem is, given a state or a behavior assertion or a
state or a behavior predicate, determining whether the data model satisfies the given
property.

3. PROPERTY SPECIFICATION AND INFERENCE

Most verification techniques and tools expect a set of properties as input. Verification
process is only effective if the input properties are correctly and thoroughly specified.
A verification tool cannot find an error in the input system if a property that exposes
the error is not provided as input. Since manual specification of properties is time-
consuming, error prone and lacks thoroughness, many errors can be missed during
verification. Another disadvantage of the manual specification is that it requires fa-
miliarity with a formal modeling language, which is typically not the case for most
developers.

To address these challenges and facilitate property specification, we present a set
of property templates that we found to be useful and flexible enough to cover a wide
variety of data model properties. These property templates are easy to use and do not
require the developers to learn a formal modeling language. Moreover, we developed
heuristics for automatic inference of several property templates. These heuristics look
for certain patterns in the data model schema and automatically generate an instance
of a corresponding property pattern if a match is found. We present the property tem-
plates and the automatic property inference heuristics below.

3.1. Property Templates

We identified seven property templates that characterize the most common properties
we observed in our earlier research on data model verification [Nijjar and Bultan 2011;
2012]. These templates can easily be instantiated by the user for different classes and
relations by providing the names of the relations as input.

We present the formal definitions of the seven property templates below. Of the seven
property templates we list below, templates I and IV are state assertions, templates II

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:9

and IIT are state predicates, and templates V, VI, and VII are behavior assertions. For
the following, let M be the data model about which we are expressing the property. Let
T =(O,R),7' = (O, R') be data model instances, ra_p,rg_c,7a—c € R, 7's_p,"5_¢ €
R and 04,0p,0c € O, 0,05 € O'.Let 7T =M and (Z,7') = M.

L. alwaysRelated is used to express that objects of one class are always related to
objects of another class. We formally define this template as

alwaysRelated(ra—p) =Va € 04,3b € 0p : (a,b) Era_p 3.1

For example we can express the following property on the data model in Figure 2:
alwaysRelated(Profile-User). This is saying that a Profile object should always be as-
sociated with a User object.

II. multipleRelated expresses the property that it is possible for the objects of one
class to be related to more than one object of another class. Formally,

multipleRelated(ra—p) = Ja € 04, Ib1,ba € 0p : b1 #ba A(a,b1) Era—B A (a,b2) Era_p (3.2)

Note that, because this template is a state predicate, this formula is not required to
hold for every instance of the model, but instead needs to hold on at least one instance
of the data model. In the running example, we can specify multipleRelated(Photo-Tag)
to state that a Photo may be associated with more than one Tag.

II1. someUnrelated is used to express that it is possible for an object of one class to
not be related to any objects of another class. This template is defined formally as

someUnrelated(ra—_p) = Ja € 0a,Vb € 0B : (a,b) € ra_B 3.3)

For example, the property someUnrelated(User-Photo) means that it is possible to have
a User without any Photos. This template is also a state predicate, meaning that this
formula is expected to hold on at least one instance of the data model.

IV. transitive is the template used to express that one relation is the composition of
two others. Formally,

transitive(ra—p,TB—c,TA—C) =
Va € 0a4,Vc € oc : (a,c) €Era—c < b€ op,(a,b) Era_p A (b,c) Erp_c (3.4)

For the running example, the property transitive(User-Profile, Profile-Photo, User-
Photo) states that the relation between User and Photo is the composition of the rela-
tions between User and Profile, and Profile and Photo.

V. noOrphans applies to situations where objects can potentially be orphaned. This
occurs when there is a relation r4_p between classes 04 and og and deletion of an
element of class 04 results in an element of class op that is not related to any element of
class 04. This property template asserts that this scenario does not happen. Formally,

noOrphans(ra—g) =Va € 04,Vb' € 05 : a € o)y = (3a’ € o)y : (a',V) €r's_p) (3.5)

As an example, we may desire to check noOrphans(Video-Tag) to make sure there are
no orphaned Tags once a Video has been deleted.

VI. deletePropagation template is about making sure that when an object of one class
is deleted, related objects in another class are also deleted. This template is formally
defined as:

deletePropagation(ra_p) =Va € 04,¥b € op : (a & 04 A (a,b) Era_p) = b ¢ o3 (3.6)
For instance, we can say deletePropagation(Profile-Video), meaning that when a Profile
object is deleted then the delete is propagated to all associated Video objects.

VIL. noDeletePropagation is the template used to express that when an object of one
class is deleted, its associated objects from another class are not deleted. Formally,

noDeletePropagation(ra_p) =Va € 04,¥b € op : (a € 04 A (a,b) Era_p) =bc€op (3.7)

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:10 J. Nijjar et al.

For example, noDeletePropagation(User-Role) means that when a User is deleted, the
associated Role should not be deleted.

3.2. Property Inference

Below we present three heuristics for automatically inferring instances of three prop-
erty templates defined in the previous section: transitive, noOrphans and deleteProp-
agation These three property templates are the ones we encountered the most during
our manual analysis of data models in our prior work [Nijjar and Bultan 2011; 2012].
The heuristics we present take as input the data model schema S = (O, R) and output
a list of inferred properties. Each heuristic focuses on a sub-schema that contains only
the relations that are relevant for the corresponding property type.

Note that the inferred properties may not necessarily hold on the model. Inference of
properties that necessarily hold would be of no benefit to the developer as that would
make only the absence of properties a useful signal. On the other hand, inferring prop-
erties too loosely would create a high ratio of false positives, wasting programmer time.

% |

Fig. 6: The pattern used for inferring transitive relations.

3.2.1. Transitive Relations. The final property inference heuristic is for detecting tran-
sitive relations. The heuristic for this property defines a sub-schema by removing all
relations in R that are polymorphic, transitive, conditional or many to many. The al-
gorithm looks for paths of relations of length more than one. If there exists an edge
connecting the first node in the path to the last node, then the algorithm infers that
this edge should be a transitive relation. The intuition here is that if there are multiple
ways to navigate relations between two classes, the composition of the relations cor-
responding to alternative ways of navigation should be equivalent. The pattern used
for this heuristic is shown in Figure 6. Given that the path oy, 01, ..., 0., is found, and
there is also an edge between oy and o,,, the algorithm infers that this edge (o9, 0,,,)
should be transitive. The only exception is for paths that are of length exactly two.
Then it is possible that the first edge in the path is the transitive relation so the algo-
rithm outputs both possibilities. The complete algorithm for this heuristic is shown in
Algorithm 1.

3.2.2. Orphan Prevention. The next heuristic infers properties about preventing or-
phaned objects. An orphan object results after a delete operation if there is an object
class related to a single other object class. An object becomes orphaned when the ob-
ject it is related to is deleted but the object itself is not. Orphan chains can also occur,
which begin with an object class that is related to a single object class, and continue
with object classes that are related to exactly two object classes, one of which is the
previous object class in the chain. Consider an object of the final class of a chain, such
as o,,—1 in Figure 7. When the object it is related to (of the class o,,) is deleted but the
object itself is not, the entire chain of objects (0,,,_1, ..., 01) becomes orphaned.

The heuristic that infers this property looks for potential orphans or orphan chains
by analyzing the directed graph that corresponds to the sub-schema which is obtained
from the original data model schema by removing all relations in R that are not one to
many or one to zero-one. The orphan prevention property inference algorithm is shown
in Algorithm 2.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:11

ALGORITHM 1: Inference Algorithm for Transitive Relations

Input: Data model schema, S = (O, R)
Output: List of inferred properties
Let &' = (O, R'), where R’ C R contains only relations that are either one to many or one to
zero-one, and not polymorphic, transitive nor conditional.
for all nodes oo € O do
for all pairs (ro,rm) of outgoing edges from oo to distinct nodes o1, 0, do
if there exists a path p = (r1,...,7m—1) in 8’ from o1 to 0., then

if p is of length 2 then
| Output transitive(ro,r1,72) V transitive(rz, 1, 7o)

else
| Output transitive(ro, ..., rm)

end

end
end
end

%} O S T

Fig. 7: The pattern used for recognizing orphan chains.

ALGORITHM 2: Inference Algorithm for Orphan Prevention

Input: Data model schema, S = (O, R)

Output: List of inferred properties

Let 8" = (O, R’), where R’ C R contains only the relations that are either one to many or one
to zero-one.

for all classes o € O with exactly one relation which is incoming, r1, do

Let o’ be the class o is related to

while o’ has exactly two relations, v (outgoing), and another incoming, r2, do
Leto:=0
Let o’ := the class o is related to by
Let T1 =72

end

Output noOrphans(ri)

end

3.2.3. Delete Propagation. Our property inference algorithm for this type of property
identifies when the deletion of an object should be propagated to objects related to that
object. The heuristic for this property type first obtains a sub-schema by removing all
relations in R that are transitive or many to many. This sub-schema is viewed as a
directed graph, where an edge from o to o’ corresponds to a one to many or one to zero-
one relation, r, between classes o and o’. Such a sub-schema is given in Figure 8(a).
Cycles in this graph are removed by collapsing strongly connected components to a
single node. For the schema in Figure 8(a), nodes o3 and o4 are collapsed to a single
node called c¢; in Figure 8(b). Next, each node in the schema is assigned a level that
indicates the depth of a node in the graph. The root nodes(s) are those with no incoming
edges and are at level zero. All other nodes are assigned a level that is one more than
the maximum level of their predecessor nodes. The levels for the schema in Figure 8(a)

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:12 J. Nijjar et al.

/ O3 level: 0 W level: 2
04 level: 1
(a) (b)

Fig. 8: A sub-schema (a) and the corresponding acyclic graph (b) constructed during
the Inference Algorithm for Delete Propagation.

are given in Figure 8(b). As can be seen, node o; is assigned level 0 since it has no
incoming edges. The remaining nodes are assigned levels as just described.

The deletePropagation property is inferred if the difference in levels between the
nodes a relation connects is not greater than one. The intuition here is that if the dif-
ference between the levels of the nodes is greater than one, then there could be other
classes between these two classes that are related to both of them and therefore prop-
agating the delete could lead to inconsistencies between the relations. The complete
algorithm for this heuristic is given in Algorithm 3.

ALGORITHM 3: Inference Algorithm for Delete Propagation

Input: Data model schema, S = (O, R)
Output: List of inferred properties
Let &' = (O, R') be a data model schema where R’ C R only contains relations that are not
transitive and not many to many.
Let S” be the directed acyclic graph obtained from S’ by collapsing each strongly connected
component in S’ to a single node.
for all nodes x in S” traversed in topological order do

if node x in S” has no predecessors then

| level(z) =0

else
Let z1,...,z, be the predecessors of z.
level(z) = max(level(x1), . .., level(zn)) + 1

end
end
For a node c that corresponds to a strongly connected component, assign the lcvel of every class
in the strongly connected component of S’ to be the level of node cin S”.
for all relations r = (o,t,n,0’) in R’ do
if level(o') — level(o) = 1 then

| Output deletePropagation(r)

end
end

4. VERIFICATION

We use automated verification techniques to verify the data model properties that are
either specified using property templates or automatically inferred by the heuristics
discussed in the previous section. We verify properties on the automatically extracted
formal data model by translating verification queries to satisfiability queries in a spec-
ified theory and then using a backend solver for that theory. Our tool combines two dif-
ferent variants of this framework: 1) a SAT-based bounded verification approach [Nij-

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:13

/ Verification True, Counterexample \
or False

Fgm;a'_ Unbounded ﬁ:Veriﬁcation
M:dzl Verification Unknown Verification Results

Instance,
Unsatisfiable
or Unknown

Alloy Instance
or Unsatisfiable
SMT-LIB

SMT Solver Alloy
Analyzer

- J

Fig. 9: Verification component of the toolset

jar and Bultan 2011], and 2) a Satisfiability Modula Theories (SMT)-based unbounded
verification approach [Nijjar and Bultan 2012].

The verification component of our tool is shown in Figure 9. It first converts the
verification query to a logical formula and sends it to an SMT solver for unbounded
verification. The unbounded verification phase can conclusively prove or disprove the
property. If it disproves an assertion, it returns a counterexample data model instance
demonstrating the failure of the assertion. Similarly, if it proves a predicate, it returns
an instance demonstrating the satisfaction of a predicate. However, due to undecid-
ability of unbounded verification, the SMT-based verification phase can produce an
inconclusive result or a timeout. In this case, our tool converts the data model verifi-
cation query to an Alloy specification and uses the Alloy Analyzer [Jackson 2006] for
SAT-based bounded verification. Using the Alloy Analyzer, it looks for a data model in-
stance within a bound that violates the given assertion or satisfies the given predicate.
If such an instance is found, it returns the data model instance. If such an instance is
not found within the given bound, then the verification result can only be guaranteed
to hold within that bound. Below, we discuss these two verification approaches.

4.1. Bounded Verification with Alloy

The main idea in bounded verification approach is to bound the set of data model
instances to a finite set, say Z;, where Z = (O, R) € 7 if and only if for all 0 € O
lo] < k. Then given a state assertion Ag, we can check if the following condition holds:

IT=(0,R),T€Tu NT = MARIW As (4.1)

Note that if this condition holds, then we can conclude that the assertion Ag fails for
the data model M, i.e., M [~ Ags. However, if the condition does not hold, then we only
know that the assertion Ag holds for the data model instances in Z,.

Similarly, given a state predicate Pg, we can check if the following condition holds:

IT=(O,R),T€Tx ANT=EMARE Ps (4.2)

In this case, if the condition holds, then we can conclude that the predicate Pg holds
for the data model M, i.e., M | Ps. However, if the condition does not hold, then we
only know that the predicate Ps does not hold for the data model instances in Zj.

An enumerative (i.e., explicit state) search technique is not likely to be efficient for
bounded verification since even for a bounded domain the set of data model instances
can be exponential in the number of sets in the data model. One bounded verifica-
tion approach that has been quite successful is SAT-based bounded verification. The
main idea is to translate the verification query to a Boolean SAT instance and then
use a SAT-solver to search the state space. Alloy Analyzer [Jackson 2006] is a SAT-
based bounded verification tool for analyzing object-oriented data models. The Alloy

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:14 J. Nijjar et al.

language allows the specification of objects and relations as well as the specification
of constraints on relations using first-order logic. In order to do SAT-based bounded
verification of Rails data models, our tool automatically translates ActiveRecord ORM
specifications to Alloy specifications [Nijjar and Bultan 2011].

To demonstrate how the Alloy translation works, consider the following Rails data
model excerpt:
class User < ActiveRecord::Base

has_one :profile
end
class Profile < ActiveRecord: :Base

belongs_to :user
end

This excerpt specifies a one to zero-or-one relation between User and Profile objects.
Its translation to Alloy is given below:
sig Profile {}
sig User {}
one sig State {
profiles: set Profile,
users: set User,
relation: Profile lone -> one User

}

The keyword sig is used in Alloy to define a set of objects. Thus, a sig is created
for each class in the input Rails data model. In this example, a sig is declared for the
Profile and User classes. We also create a State sig, which we use to define the state of
a data model instance. Since we only need to instantiate exactly one State object when
checking properties, we prepend the sig declaration with a multiplicity of one. The
State sig contains fields to hold the set of all objects and related object pairs. In this
example, the State sig contains three fields. The first is named profiles and is a binary
relation between State and Profile objects. The field uses the multiplicity operator set,
meaning ’zero or more’. In other words, the state of a data model instance may contain
zero or more Profile objects. The State sig contains a similar field for User objects.
Finally, the one to zero-or-one relation between Profile and User objects is translated
as another field in the State sig. Named relation, it is defined to be a mapping between
Profile and User objects. It uses the multiplicity operators lone and one to constrain the
mapping to be between ’zero or one’ Profile and ’exactly one’ User object, respectively.

The translation of all Rails’ data modeling constructs into Alloy is discussed in our
previous work [Nijjar and Bultan 2011]. After automatically translating the input data
model and the property into an Alloy specification, our tool sends the specification to
the Alloy Analyzer. Our tool then interprets the result returned by the Alloy Analyzer
and reports back to the user whether the data model property failed or verified. It also
returns a witness data model instance for assertions that fail and predicates that hold.

4.2. Unbounded Verification with an SMT Solver

To perform unbounded verification of data models, the technique we use is to convert
the inferred property to a query about the satisfiability of formulas in the theory of
uninterpreted functions. Given ActiveRecord ORM code and a property, we generate a
formula in the theory of uninterpreted functions and then use a Satisfiability Modulo
Theories (SMT) solver to determine the satisfiability of the generated formula [Nijjar
and Bultan 2012]. Our tool translates the data model verification query into an SMT-
LIB specification (which is a standard formula format used by SMT-solvers).

The generated SMT-LIB specification is a formula in the theory of uninterpreted
functions. For example, the translation of the data model excerpt (given earlier) is:

(declare-sort User 0)

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:15

(declare-sort Profile 0)
(declare-fun relation (Profile) User)
(assert (forall ((pl Profile)(p2 Profile))
(=> (not (= pl p2))
(not (= (relation pl) (relation p2)))
ID))]

Types in SMT-LIB are declared using the declare-sort command. We use this com-
mand to declare types for User and Profile, as shown above. The relation is translated
as an uninterpreted function. Uninterpreted functions are created in SMT-LIB using
the declare-fun command. We use this command to declare an uninterpreted function
name relation whose domain is Profile and range is User. Since functions can map
multiple elements in the domain to the same element in the range, and we instead
have a one to zero-or-one relation, we constrain the function to be one-to-one to obtain
the desired semantics. This constraint is expressed using the assert command. Details
for the complete translation of the all data modeling constructs in Rails are provided
in our previous work [Nijjar and Bultan 2012].

After translating the data model verification query into an SMT-LIB specification,
our tool uses the SMT solver Z3 to determine the satisfiability of the generated for-
mula. Based on the output of the SMT solver, it reports whether the property holds
or fails. For assertions that fail and predicates that hold, it also reports a data model
instance as a witness.

Since the SMT-based verification approach does not bound the sizes of the object
classes or the relations, unlike the bounded verification case, if the verification tool
reports that a property holds or fails, both results are conclusive. However, in addition
to returning unsatisfiable or satisfiable, an SMT solver may also return “unknown”
or it may timeout since the quantified theory of uninterpreted functions is known to
be undecidable [Bryant et al. 1999]. So, when the call to the SMT-solver times out
or returns “unknown” we switch to the SAT-based bounded verification approach as
shown in Figure 9.

4.3. Counter-Example Generation

If an assertion property fails, or if a predicate property is correct, we can produce an
instance of the model that disproves the assertion or demonstrates the correctness of
the predicate property.

Both Z3 and Alloy work by attempting to show that the input formulas are satis-
fiable. If they are satisfiable, a satisfying instance is generated. To prove predicate
properties, we create the formulas corresponding to the model and the property and, if
the translation is satisfiable, the predicate property holds. To prove assertion proper-
ties, we negate the property and ask Z3 or Alloy to show that this negated property is
satisfiable within the model. If it is, there exists a data store instance that violates the
property (the counter-example).

The formats in which these instances are given by Z3 and Alloy are difficult to inter-
pret since they closely follow the syntactic details of the translation that our approach
produces. To make these instances usable in practice, iDaVer automatically translates
the instance into a more readable format. For example, if property alwaysRelated[User,
Profile] were verified on the model in Figure 2, our method would show that this
property does hold on the model and a satisfying instance that would be provided is
presented in Figure 10. This format enumerates all objects of all classes that exist in
the instance, and subsequently, how these objects are related. In this counterexample,
there exists a User object (called User$0) and no objects are related (since the Relations
section is empty).

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:16 J. Nijjar et al.

OBJECTS:
User { User$0 }
Tag { Tag$® }
Role { Role$®, Role$l, Role$2, Role$3, Role$4, Role$5, Role$6,
Role$7, Role$8, Role$9, Role$1®, Role$ll, Role$12, Role$13 }

RELATIONS:
--empty--
Fig. 10: A Data Store Instance Example

1 class User < ActiveRecord::Base

2 has_and_belongs_to_many :roles

3 has_one :profile, :dependent => :destroy
1 class User < ActiveRecord::Base 4 hasTmany iphotos, :t?rough => :profile

validate :check_profile
2 has_and_belongs_to_many :roles .
? def check_profile
3 has_one :profile . " .
2 has. many :photos if profile.nil?
5 end -many :p errors.add :profile, "Profile missing"
6 class Role < ActiveRecord::Base end
end

7 has_and_belongs_to_many :users 5 end
8 end
9 class Profile < ActiveRecord::Base 6 class Role < ActiveRecord::Base

7 has_and_belongs_to_many :users
10 belongs_to :user 8 end

11 has_many :photos

12 has_many :videos, :conditions => "format='mp4’"
13 end

14 class Photo < ActiveRecord::Base

15 belongs_to :user

16 belongs_to :profile

17 has_many :tags, :as => :taggable

18 end

19 class Video < ActiveRecord::Base

20 Dbelongs_to :profile

21 has_many :tags, :as => :taggable

22 end

23 class Tag < ActiveRecord: :Base

24 belongs_to :taggable, :polymorphic => true

9 class Profile < ActiveRecord: :Base

10 belongs_to :user

11 has_many :photos, :dependent => :destroy

12 has_many :videos, :conditions => "format='mp4’",
:dependent => :destroy

13 end

14 class Photo < ActiveRecord::Base

15 # line removed

16 belongs_to :profile

17 has_many :tags, :as => :taggable

18 end

19 class Video < ActiveRecord::Base

20 Dbelongs_to :profile

21 has_many :tags, :as => :taggable

25 end
22 end
23 class Tag < ActiveRecord: :Base
24 belongs_to :taggable, :polymorphic => true
25 end

(a) Before Repair (b) After Repair
Fig. 11: A Repair Example
5. REPAIR

Our tool automatically generates data model repairs for the failed properties and sug-
gests them to the developer. These repairs show how the data model can be modified
(by changing the ORM source code) to establish the failed properties. The failed prop-
erties are guaranteed to hold in the repaired model. In case a repair is generated for a
false positive, the generated repair would be redundant, but it would not induce a bug.
For example, a static constraint would be generated for a property already preserved
by actions, or a runtime check would be generated, but it would never fail.

A repair generated by our approach consists of a program point and the piece of
code to be inserted at that program point. Each repair is either replacement of an
association declaration (which augments an existing association declaration with some
options) or insertion of runtime validation code.

The repair rules we developed for the property templates are discussed below. We
will use the application given in Figure 11(a) as the running example in this section.
This is a faulty version of the example given in Figure 2. The repaired version is given
in Figure 11(b).

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:17

L. alwaysRelated fails if it is possible for an object to be unrelated to any object over
a given relation r = (o,t,n,0’). Static cardinality constraints in ActiveRecord are not
expressive enough to guarantee this property. Hence, this property must be enforced
using runtime checks. Our automatically generated repair consists of runtime checks
(validations) that enforce this property. These validations are run automatically by
ActiveRecord whenever an object is about to be saved to the data store and will prevent
invalid objects from reaching the data store.

For example, the property alwaysRelated[User, Profile] fails on the application in
Figure 11(a). Our tool will generate the validation code between lines 4 and 5 in Fig-
ure 11(b) as the repair for this property.

I1. multipleRelated fails if an object can be related to at most one object over a given
relation r = (o,t,n,0"). To fix this property we generate a repair that alters the car-
dinality of the relation as follows: If the relation is has_one we make it has many. If the
relation is belongs_to with has_many on the other side, we make both sides of the relation
has_and_belongs_to_many. Otherwise, we have a belongs_to with has_one on the other side
and this cannot be repaired directly as changing it to has many and belongs_to would
cause the side-effect of the other object having to be related to at least one of the first
class. ActiveRecord cardinality constraints are not expressive enough to express repair
in this case and in this case we generate runtime validations that enforce the property.

ITL. someUnrelated fails over a relation r = (o,t,n, o') if it is impossible for an object
of class o to be unrelated to another over r. As with the alwaysRelated property repair,
this property is enforced by generating runtime checks.

IV. transitive When transitive(ro,...,r,,) fails for some set of relations rg,..., 7,
it means that r,, is not the composition of the other m relations, as asserted in the
property. To repair this property in the data model, we set the :through option on the
declaration corresponding to the relation r,, = (0m,tm,nm,0,,) in o,’s data model.
For instance, running the Inference Algorithm for Transitive Relations (Algorithm 1)
on the example in Figure 11(a) infers the following transitive property: the relation
between User and Photo should be the composition of the relations between User and
Profile, and Profile and Photo. However, we again find out that this property fails using
automated verification. In other words, the photos in the profile associated with a user
may not be the same as the photos associated with that user. In order to enforce this
transitivity in the data model, a repair is generated which sets the :through option on
the declaration in the User class that associates it with Photo:

has_many :photos, :through => :profile

We also need to remove the belongs_to :user declaration in the Photo class since it
becomes unnecessary when using the :through option. After this repair the relation
between User and Photo will be the same as navigating the User-Profile relation and
then the Profile-Photo relation. These repairs are presented in lines 4 and 15 of Fig-
ure 11(b).

There are two complications in the repair generation of the transitive relation prop-
erty. For transitive properties with exactly three parameters, transitive(rg,r1,72), it is
possible that rq is the transitive relation instead of 7, so two repairs will be generated
to let the user choose the one that is appropriate for fixing the failing property.

The other scenario is for transitive properties with more than three parameters. In
Rails, one can only express that a relation is the composition of two others, not three
or more others. Therefore, to repair a property such as
transitive(rg, ..., ry,) with m > 2 and r; = (04, t;, ni, 0;), the repair generator ensures
that there are transitive relations between oy and o; for 1 < i < m. Otherwise it
generates these transitive relations, and then sets the :through option on r,, so that it
is the composition of r,, _; and the (possibly generated) relation between oy and o,,,_.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:18 J. Nijjar et al.

V. noOrphans When noOrphans(r) fails for a relation r = (o,t,n,0’), this mean that
the data model is set up such that deleting an object of class o’ will cause objects in
class o to be orphaned, i.e. there will be objects of class o that will not be related to any
other object. We can enforce this property in the data model by generating a repair
that will delete the associated objects that would otherwise be orphaned. This is done
by setting the :dependent option on the declaration corresponding to relation r in the
model for o’. For orphan chains this is repeated down the chain, creating repairs for
the declarations that associate a class with the next class in the chain.

For example, when we run the Inference Algorithm for Orphan Prevention (Algo-
rithm 2) on the data model in Figure 11(a), a noOrphans property is generated which
states that when a Profile is deleted no Video objects should be orphaned. This prop-
erty fails when we check it using automated verification, which means that when a
profile with videos is deleted, the videos are orphaned. In order to enforce this prop-
erty in the data model, a repair is generated that sets the :dependent on the relation
with Videos in the Preference model, i.e.

has many :videos, :conditions => "format="mp4’", :dependent => :destroy

This will cause the deletion of a Profile object to be propagated to the associated Videos.
There are no more objects in this orphan chain so no further repairs will be generated.
This suggested repair, as applied to the data model in Figure 11(a), is shown in Fig-
ure 11(b) between lines 12 and 13.

VL. deletePropagation If deletePropagation(r) fails for some relation r = (o,t,n,0),
this means that the data model is set up such that deleting an object of class o will
not cause associated objects of o’ to be deleted. In order to enforce this property in the
data model, the :dependent option must be set on the hasmany or has_one declaration
corresponding to relation r in o’s model. For example, when we run the Inference Algo-
rithm for Delete Propagation (Algorithm 3) on the data model of the application given
in Figure 11(a), the deletePropagation property is generated for the relation between
the User and Profile classes. However, this property fails when we check it using the
automated verification techniques discussed in the previous section. This means that
when a user is deleted, the profile of that user is not deleted. In order to enforce this in
the data model, the repair our tool generates sets the :dependent option on the relation
with Profile in the User model, i.e.

has_one :profile, :dependent => :destroy

as can be seen on line 3 of Figure 11. This will cause the deletion of User objects to
be propagated to the associated Profile object. Note that the :dependent option is set to
:destroy and not :delete since we want the delete to propagate to o”’s associated ob-
jects. Otherwise there may be objects of another class with a dangling reference to the
deleted associated object. In the repaired example (Figure 11), we observe that setting
the :dependent option to :delete may result in Video objects with a dangling reference
to deleted Profile objects. In order to prevent this inconsistency, the :dependent option
is set to :destroy so that the Profile model can propagate the delete to the desired
relations.

VII. noDeletePropagation is the dual of the deletePropagation property. As such, its
repair is similar: :destroy and :delete dependencies are changed to :nullify option
(which means that the deletion is not propagated further) in order to prevent deletion
without causing dangling references.

6. EXPERIMENTS

To evaluate the effectiveness of the techniques, we ran our tool on seven open source
Rails web applications. In choosing these applications, we focused on popular appli-
cations and attempted to cover a wide range of web application domains. Four of

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:19

the seven applications we analyzed (FatFreeCRM, Lobsters, SprintApp, Tracks) are
among the 25 most starred Rails applications on Github, according to the community
maintained Ruby on Rails open source project index (www.opensourcerails.com). The
remaining three applications (LovdByLess, OSR, Substruct) represent examples of a
social network, an application repository, and a web store respectively. Since our imple-
mentation works only on Ruby version 1.8.7 and Rails version 2.x, the set of existing,
open source applications that we can analyze was limited. With additional work, our
toolset can be updated to handle the syntactic constructs added with the more recent
versions Ruby and Rails.

We used our automatic inference algorithm to extract properties about the appli-
cation, and in addition, used property templates to manually specify additional prop-
erties. These properties are sent to the next component of the tool which automati-
cally translates the ActiveRecord files to SMT-LIB and performs verification using the
73 [Z3 2013] solver. If any properties time out during verification (with a time out
limit of 1 minute), bounded verification is performed instead, using the Alloy Analyzer
with a bound of 10, meaning at most 10 objects of each type are instantiated to check
satisfaction of these properties.

The set of properties reported as failing by the tool are manually checked to deter-
mine which are data model errors as opposed to false positives. Data model errors are
those properties that are not upheld by the data model despite its ability to do so.
There are two categories of errors: properties that are not upheld in the application
codebase thus causing an application error, and those that are not upheld in the data
model but are enforced in other areas of the application (for example in the controller
code). Properties enforced in other areas of the application can cause application er-
rors in the future since if the application code is changed later on, it is possible that
the property may no longer be upheld by the application. Of the remaining properties
that failed which do not fall under these two categories, we have properties that failed
because of the limitations of Rails constructs, and properties that are false positives,
i.e., data model properties that were incorrectly inferred or data model properties that
actually hold in the data model but our verification approach reports that they fail.

Table I: Sizes of the Applications
Application Ruby LOC Classes Data Model Classes

FatFreeCRM 12069 54 20
Lobsters 4378 74 14
LovdByLess 3787 61 13
OSR 4295 41 15
SprintApp 3053 26 15
Substruct 15639 85 17
Tracks 6062 44 13

6.1. The Applications

The seven applications used in the experiments are listed in Table I, along with their
sizes in terms of lines of code, number of total classes, and number of data model
classes. Descriptions of the applications are given below:

— FatFreeCRM (fatfreecrm.com) is a light-weight customer relations management soft-
ware.

— Lobsters (lobste.rs) is a technology-focused link aggregation site.

— LovdByLess (lovdbyless.com) is a social networking application with the usual fea-
tures.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:20 J. Nijjar et al.

— OpenSourceRails (OSR) (opensourcerails.com) is a project gallery that allows users
to submit, bookmark, and rate projects.

— Substruct (code.google.com/p/substruct) is an e-commerce application.

— SprintApp (sprintapp.com) is a project management application.

— Tracks (getontracks.org) is an application that helps users manage to-do lists, which
are organized by contexts and projects.

6.2. Inference and Verification Results

The results of running our tool on the seven applications are given in Table II. For
each application and type of property, it displays the number of properties that were
inferred by the tool, the number or properties for which unbounded verification timed
out, the number of properties for which bounded verification did not produce a con-
clusive result within the bound, and the number of properties that were shown to
not hold during either bounded or unbounded verification. A total of 159 properties
were inferred, of which 103 failed. There were no inconclusive results for the inferred
properties. We manually specified a total of 43 properties using property templates, of
which 14 are shown to not hold on the model, and 4 of which produced inconclusive
verification results. All properties that timed out during unbounded verification were
properties for FatFreeCRM and Lobsters applications, both of which have an excep-
tionally complex data model with a high number of polymorphic associations.

Table II: Inference and Verification Results per Application

Application Property Count Timeout Inconc- Failed Data Model and Data Model Failures Due to False
PP Source (SMT) lusive Application Errors Errors Rails Limitations Positives
Inferred 25 9 0 12 0 8 1 3

FatFreeCRM momplates 7 3 3 0 0 0 0 0
Lobsters Inferred 21 19 0 19 7 3 0 9
Templates 6 5 1 4 2 2 0 0

Inferred 12 0 0 9 0 8 0 1

LovdByLess i slates 8 0 0 2 0 2 0 0
OSR Inferred 24 0 0 18 0 18 0 0
Templates 3 0 0 3 0 3 0 0

SprintApp Inferred 18 0 0 8 0 3 0 5
Templates 5 0 0 0 0 0 0 0

Substruct Inferred 31 0 0 18 0 5 5 8
Templates 6 0 0 1 1 0 0 0

Tracks Inferred 28 0 0 19 1 1 10 7
Templates 8 0 0 4 1 3 0 0

Total Inferred 159 28 0 103 8 46 16 33
Templates 43 8 4 14 4 10 0 0

We manually investigated each of the failing properties to determine which corre-
spond to data model errors. These results are also summarized in Table II.

For example, a noOrphans property that was inferred and failed verification (i.e., it
fails to hold on the data model) is in the OSR application. In this application, Projects
can be rated by users and the property that was inferred states that when a Project
is deleted, the associated ProjectRatings should not be orphaned. This property fails,
meaning it is not upheld by the data model. Manual inspection shows that it should
be. Thus, this property is a data model error. However this property does not mani-
fest itself as an error in the overall application since the user interface does not allow
projects to be deleted. Nevertheless this indicates a potential application error which
can be exposed if the application is later changed to allow project deletion. The repair
generated for this error suggests setting the :dependent option on the declaration in
the Project class that relates Projects to ProjectRatings so that any associated Projec-
tRatings are deleted along with a Project instead of being orphaned. This will ensure
that the property holds in the data model without relying on the other parts of the
application to establish it.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:21

There are also a category of properties that are data model and application errors.
These properties are those that fail to hold not only in the data model but the entire
application as well. For instance, in Tracks a deletePropagation property was inferred
that stated deleting a Context should delete any associated RecurringTodos. This prop-
erty is not upheld in the data model. Further, it is not enforced in the application, so
when a context is deleted and then the recurring todo is edited that was associated
with that context, the application crashes when it cannot find the associated context.
This is an example of a data model and application error.

Properties that fail verification are not necessarily errors. For example, a transi-
tive property that failed was for LovdByLess, which has forums in which users are
allowed to create topics and post messages inside the forum topics. The property in-
ferred states that the relation between User and ForumPost is the transitive between
the relations between User and ForumTopic, and ForumTopic and ForumPost. Manual
analysis shows that the this relation should not be transitive due to the semantics of
the application. It is not necessary that users must post to forum topics that they cre-
ated, as transitivity requires. Thus, this failing property is classified as a false positive.

Properties may also fail due to limited expressiveness in Rails constructs. For in-
stance, in FatFreeCRM accounts can be created for each customer, and multiple con-
tacts can be associated with each account. A deletePropagation property that was in-
ferred for this application stated that the deletion of an Account should propagate to
the associated Contacts. However, in this application it is valid for there to be contacts
that are not associated with any accounts. Hence the relationship that was desired
here was a zero-one to many, not a one to many. Therefore this property fails due to
limitations in Rails’ expressiveness.

As an example of a failure due to a different Rails limitation there is a deletePropa-
gation property that failed in Substruct which stated that deleting a Country deletes
any associated Addresses. However, the Country table holds a list of all countries in
the world which should never be deleted, nor does the user interface allow this. Thus,
the inability to declare the Country model as undeletable causes this property to fail.

Of the 159 inferred properties for the seven web applications we analyzed, 56 prop-
erties (35.22%) hold on the given data model, 54 of them (33.96%) fail and correspond
to data model errors (8 of which are also application errors), 16 of them (10.06%) fail
due to Rails limitations, and 33 of them (20.75%) fail and correspond to false positives.
Of the 43 properties we defined manually using templates, 29 properties (67.44%) hold
on the given data model and 14 (32.56%) fail and correspond to data model errors (4
of which are also application errors). There were no failures due to Rails limitations
and there were no false positives for the properties that were specified manually using
templates. The fact that we are able to identify 12 application errors and an additional
56 data model errors across seven web applications indicates that data model errors
are prevalent in web applications and web application developers are not using ad-
vanced features of ORMs effectively. Although we manually validated them ourselves,
we did not contact the original developers directly about the data model errors discov-
ered by our approach. In addition to identifying errors in data models, our approach
also shows how to fix the data model using automated repair generation.

6.3. Performance

Our experiments included taking performance measurements as an additional indica-
tor of the effectiveness of our approach. Specifically, we measured the time it took for
the inference and verification of each property, as well as the formula size produced by
the verification tools.

In Table III we summarize the performance of (a) inferred properties and (b) tem-
plate properties across all seven applications. We observe that inferred properties can

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:22 J. Nijjar et al.

Table III: Performance Information per Property Type

Verification
Template Property Type # Time (s)
Inferred Property Type 4 Inference Verification alwaysRelated 9 0.032
Time (ms) Time (ms) multipleRelated 4 0.051
transitive 34 103 40 someUnrelated 7 0.931
noOrphans 9 10 27 transitive 5 0.022
deletePropagation 116 7 54 noOrphans 9 0.365
deletePropagation 5 1.783
noDeletePropagation 4 1.904

(a) Inferred properties (b) Template properties

be verified very quickly, while template properties may take more time. Template
properties occasionally timeout during unbounded verification and we included the
bounded verification time in this metric when it was necessary. We noticed that the
complexity of the applications contributed more to the timeouts then the property it-
self, as all timeouts were on the most complex models (FatFreeCRM and Lobsters) and
similar properties did not time out in simpler models. Bounded verification takes about
3 seconds while unbounded verification takes milliseconds and hence the disparity.

Table IV: Inference and Verification Performance per Application

Apolication Property Inference Verification Time (s) Formula Size (clauses) = Formula Size (variables)
pp Source Time (ms) SMT Alloy SMT Alloy SMT Alloy
FatFreeCRM Inferred 0.25 0.155 4.203 1363 265797 553 142670
Templates - 0.019 3.682 1246 263598 499 142152

Lobsters Inferred 0.11 0.021 2.953 581 255488 257 120710
Templates - 0.015 2.944 477 258418 209 122163

LovdByLess Inferred 0.09 0.037 - 546 - 245 -
Templates - 0.026 - 473 - 215 -

OSR Inferred 0.13 0.029 - 501 - 221 -
Templates - 0.037 - 488 - 219 -

SprintApp Inferred 0.16 0.027 - 475 - 228 -
Templates - 0.021 - 420 - 202 -

Substruct Inferred 0.90 0.044 - 1051 - 486 -
Templates - 0.068 - 982 - 429 -

Tracks Inferred 0.04 0.034 - 388 - 170 -
Templates - 0.031 - 344 - 154 -

Average Inferred 0.28 0.049 3.355 713.9 258801 317.0 127768
Templates - 0.033 3.221 612.9 260360 271.1 129659

Table IV summarizes inference and verification performance averaged over each ap-
plication and property generation method. For unbounded verification, the formula
size measures the SMT-LIB specification produced for verification. Here, the number
of variables are the number of sorts, functions and quantified variables in the specifica-
tion, and the number of clauses are the number of asserts, quantifiers and operations.
For the bounded tool, the formula size reports the number of clauses and variables cre-
ated by Alloy’s SAT translation. The time taken for repair generation is not reported
in Table IV since it is close to zero for all properties.

Property inference was almost instantaneous in most cases, with transitive prop-
erties taking the longest time of about a millisecond. Unbounded verification usu-
ally took about 30 milliseconds, with the longest time being 155 milliseconds. Even
bounded verification, which was necessary in 22% of cases, took 3 to 4 seconds, show-
ing that our technique is applicable during development. In summary, our approach is
not only able to find and repair errors effectively, it does so efficiently.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:23

7. RELATED WORK

Formal modeling and automated verification of web applications have been investi-
gated before. There has been some work on analyzing navigation behavior in web ap-
plications, focusing on correct handling of the control flow given the unique character-
istics of web applications, such as the use of a browser’s “back” button combined with
the stateless nature of the underlying HTTP protocol [Krishnamurthi et al. 2006]. The
problem of navigation inconsistencies in web applications has also been studied [Li-
cata and Krishnamurthi 2004], where it has been shown that multiple browser win-
dows can lead the user of a popular travel reservation site to purchase the wrong
flight. Some language based solutions have been proposed to alleviate this problem, in
which such navigation inconsistencies reduce to type checking errors [Krishnamurthi
et al. 2006]. Prior work on formal modeling of web applications mainly focuses on state
machine based formalisms to capture the navigation behavior. Modeling web applica-
tions as state machines was suggested a decade ago [Stotts et al. 1998] and investi-
gated further later on [Han and Hofmeister 2007; Book and Gruhn 2004; Hallé et al.
2010]. State machine based models have been used to automatically generate test se-
quences [Yuen et al. 2006], perform some form of model checking [Sciascio et al. 2005]
and for runtime enforcement [Hallé et al. 2010]. In contrast to these previous efforts,
we are focusing on analysis of the data model rather than the navigational aspects of
a web application.

There has been some prior work on formal modeling of web applications using
UML [Conallen 1999; Ricca and Tonella 2001] and extending UML to capture complex
web application behavior such as browsing and operations on navigation states [Baresi
et al. 2001]. For example, WebML [Ceri et al. 2000] is a modeling language developed
specifically for modeling web applications. There has been a significant amount of work
on specification and analysis of conceptual data models [Lenzerini and Nobili 1987;
Zamperoni and Lohr-Richter ; Calvanese and Lenzerini 1994; Jarrar and Heymans
2006; Jarrar 2007; Artale et al. 2007b; 2007a; Cunha and Pacheco 2009; Smaragdakis
et al. 2007; 2009; McGill et al. 2011]. These earlier efforts are mainly based on the
model-driven development approach and focus on data model specification languages
or database schemas. Hence, they are not directly applicable to implementations of web
applications that are developed without using these modeling languages. Moreover, if
one were to manually write a data model specification for a web application and ana-
lyze it using these tools, there exists no guarantee that the specification corresponds
to the implementation. In contrast, the approach we present is a reverse engineer-
ing approach that automatically extracts a data model from the implementation of an
existing application and analyzes it.

The idea of using patterns to facilitate formal property specification was first pro-
posed for temporal logic properties [Dwyer et al. 1999]. The property templates we
present in this paper are not temporal and they are specific to data model analysis.

Automated discovery of likely program invariants by observing runtime behaviors
of programs has been studied extensively [Ernst et al. 1999; 2001; Ernst et al. 2007].
There has also been extensions of this style of analysis to inference of abstract data
types [Guo et al. 2006]. Instead of using observations about the runtime behavior, we
analyze the static structure of the data model extracted from ORM code to infer prop-
erties. Static verification of inferred properties has been investigated earlier [Nimmer
and Ernst 2001]. Unlike these earlier approaches we are focusing on data model veri-
fication in web applications.

There has been earlier work on automatically repairing data structure in-
stances [Demsky and Rinard 2005; Demsky et al. 2006; Elkarablieh et al. 2007; Malik
et al. 2009]. In this paper we are not focusing on generating code for fixing data model

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:24 J. Nijjar et al.

properties during runtime. Instead, we generate repairs that modify the data model
declarations that fix the data model for all possible executions. Moreover, we focus
on data model verification in web applications based on ORM code which is another
distinguishing feature of our work.

There has been prior work on the verification of data models based on bounded veri-
fication using the Alloy Analyzer [Cunha and Pacheco 2009; Wang et al. 2006]. For ex-
ample, mapping relational database schemas to Alloy has been studied before [Cunha
and Pacheco 2009]. Also, translating ORA-SS specifications (a data modeling language
for semi-structured data) to Alloy and using Alloy Analyzer to find an instance of the
input data model has been investigated [Wang et al. 2006]. However, the translation to
Alloy is not automated in these earlier efforts. Alloy has also been used for discovering
errors in web applications related to browser and business logic interactions [Bordbar
and Anastasakis 2005] which is, a different class of errors than the ones we focus on
in this paper.

Rubicon [Near and Jackson 2012] is a tool for verification of Controller (applica-
tion logic) in Rails applications using Alloy Analyzer, whereas our work focuses on
data model analysis. Further, we propose techniques to automatically infer properties,
whereas Rubicon requires manual specifications. Finally, Rubicon, and all the other
approaches mentioned above that use the Alloy Analyzer, are limited to bounded ver-
ification, whereas we perform both unbounded and bounded verification. There has
been some other recent work on unbounded verification of Alloy specifications using
SMT solvers [Ghazi and Taghdiri 2011], but to the best of our knowledge this approach
has not been implemented. SMT-based verification has also been applied to bounded
program verification for object-oriented programs [Liu et al. 2012].

ADSL [Bocic and Bultan 2014] is an approach on action verification in web appli-
cations. While the static portion of their model is very similar to the model presented
in this paper, their work focuses on dynamic behavior and does not support property
inference or template specification.

The discussion on inferring properties resembles the problem of detecting objects
that are ready to be garbage collected [Wilson] (such as orphan chains, etc). However,
the issue of garbage collecting is very different from the problem of avoiding orphans.
In garbage-collecting memory management systems, garbage objects are the ones that
can no longer be referred to (usually because the variable stack and the static portion
of the runtime do not refer to the said object). This criterion cannot be applied to data
stores because every data object can be queried and referred to. We refer to orphans
on a semantic level, defined by the business logic.

There has been some recent work on generic automated program repair based on
genetic programming [Weimer et al. 2009; Goues et al. 2012] constraint based symbolic
analysis [Wei et al. 2010; Nguyen et al. 2013] and pattern matching [Kim et al. 2013].
All these techniques rely on existence of a test suite to generate repairs whereas our
approach generates repairs based on property violations. The repairs generated based
on test suites are not guaranteed to be correct, hence, the generated repairs must be
validated by testing. In contrast, the repairs generated by our approach are guaranteed
to establish the property for any execution of the code. On the other hand, our approach
is customized for data model errors and corresponding repairs and is not a generic
program repair approach.

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented techniques for property specification, inference and repair
for data models that are used in web applications built using the three-tier architec-
ture. We first extract a formal data model from the object-relational mapping of a given
application. The formal data model consists of a schema and a set of constraints. We

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:25

present a set of property patterns that can be used to specify properties about the data
model. We also present techniques that analyze the structure of the relations in the
data model schema to automatically infer properties. Next we use automated verifica-
tion techniques to check if the specified or inferred properties hold on the data model.
For failing properties we generate repairs that modify the data model in order to es-
tablish the failing properties. Our experimental results demonstrate that the proposed
approach is effective in finding and repairing errors in real-world web applications.

We would like to conclude the paper by identifying a couple of directions for fu-
ture research. First, it would be worthwhile to empirically investigate the prevalence
and severity of data model errors in real world applications by examining their issue
tracking logs. Results of such an empirical study would be useful for guiding the fu-
ture research in this area. Second, the approach we present in this paper extracts a
static data model from the association declarations and their options in ORM code. We
are currently working on extending this static approach by modeling the dynamic be-
havior, which we extract by analyzing the methods that update the data model. Such
an extension would enable us to find errors in method implementations which are not
visible in the static data model analyzed in this paper.

REFERENCES

Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
2007a. Complexity of Reasoning in Entity Relationship Models. In Proceedings of the 2007 International
Workshop on Description Logics (DL).

Alessandro Artale, Diego Calvanese, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
2007b. Reasoning over Extended ER Models. In Proceedings of the 26th International Conference on
Conceptual Modeling (ER). 277-292.

Luciano Baresi, Franca Garzotto, and Paolo Paolini. 2001. Extending UML for Modeling Web Applications.
In Proceedings of the 34th 34th Annual Hawaii International Conference on System Sciences (HICSS).

Ivan Bocic and Tevfik Bultan. 2014. Inductive verification of data model invariants for web applications. In
Proceedings of the 36th International Conference on Software Engineering (ICSE). 620-631.

Matthias Book and Volker Gruhn. 2004. Modeling Web-Based Dialog Flows for Automatic Dialog Control.
In Proceedings of the 19th IEEE |ACM International Conference on Automated Software Engineering
(ASE). 100-109.

Behzad Bordbar and Kyriakos Anastasakis. 2005. MDA and Analysis of Web Applications. In Proceedings of
the VLDB Workshop on Trends in Enterprise Application Architecture (TEAA). 44-55.

Randal E. Bryant, Steven M. German, and Miroslav N. Velev. 1999. Exploiting Positive Equality in a Logic
of Equality with Uninterpreted Functions. In Proceedings of the 11th International Conference on Com-
puter Aided Verification (CAV). 470-482.

Diego Calvanese and Maurizio Lenzerini. 1994. On the Interaction Between ISA and Cardinality Con-
straints. In Proceedings of the Tenth International Conference on Data Engineering (ICDE). 204-213.

Stefano Ceri, Piero Fraternali, and Aldo Bongio. 2000. Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites. Computer Networks 33, 1-6 (2000), 137-157.

Jim Conallen. 1999. Modeling Web Application Architectures with UML. Communnications of the ACM 42,
10 (1999), 63-70.

Alcino Cunha and Hugo Pacheco. 2009. Mapping between Alloy Specifications and Database Implementa-
tions. In Proceedings of the 7th IEEE International Conference on Software Engineering and Formal
Methods (SEFM). 285-294.

Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant, Jeff H. Perkins, and Martin C. Ri-
nard. 2006. Inference and enforcement of data structure consistency specifications. In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA). 233—-244.

Brian Demsky and Martin C. Rinard. 2005. Data structure repair using goal-directed reasoning. In Proceed-
ings of the 27th International Conference on Software Engineering (ICSE). 176-185.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in Property Specifications for
Finite-State Verification. In Proceedings of the 21st International Conference on Software Engineering
(ICSE). 411-420.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:26 J. Nijjar et al.

Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. 2007. Assertion-based repair of
complex data structures. In Proceedings of the 22nd IEEE | ACM International Conference on Automated
Software Engineering (ASE). 64-73.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999. Dynamically Discovering
Likely Program Invariants to Support Program Evolution. In Proceedings of the 21st International Con-
ference on Software Engineering (ICSE). 213-224.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Transactions on Software Engineering
27,2 (2001), 99-123.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz,
and Chen Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69, 1-3 (2007), 35-45.

Aboubakr Achraf El Ghazi and Mana Taghdiri. 2011. Relational Reasoning via SMT Solving. In Proceedings
of the 17th International Symposium on Formal Methods (FM). 133—-148.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A Generic
Method for Automatic Software Repair. [EEE Transactions on Software Engineering 38, 1 (2012), 54—
72.

Philip J. Guo, Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst. 2006. Dynamic inference of ab-
stract types. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA).
255-265.

Sylvain Hallé, Taylor Ettema, Chris Bunch, and Tevfik Bultan. 2010. Eliminating navigation errors in web
applications via model checking and runtime enforcement of navigation state machines. In Proceedings
of the 25th IEEE | ACM International Conference on Automated Software Engineering (ASE). 235-244.

Minmin Han and Christine Hofmeister. 2007. Relating Navigation and Request Routing Models in Web Ap-
plications. In Proceedings of the 10th International Conference on Model Driven Engineering Languages
and Systems (MoDELS). 346-359.

Daniel Jackson. 2006. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge,
Massachusetts.

Mustafa Jarrar. 2007. Towards Automated Reasoning on ORM Schemes. In Proceedings of the 26th Interna-
tional Conference on Conceptual Modeling (ER). 181-197.

Mustafa Jarrar and Stijn Heymans. 2006. Unsatisfiability Reasoning in ORM Conceptual Schemes. In Pro-
ceedings of the Workshop on Current Trends in Database Technology (EDBT). 517-534.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic patch generation learned
from human-written patches. In Proceedings of the 35th International Conference on Software Engineer-
ing (ICSE). 802-811.

Glenn E. Krasner and Stephen T. Pope. 1988. A cookbook for using the model-view controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1, 3 (1988), 26—49.

Shriram Krishnamurthi, Robert Bruce Findler, Paul Graunke, and Matthias Felleisen. 2006. Modeling Web
Interactions and Errors. Springer, 255-275.

Maurizio Lenzerini and Paolo Nobili. 1987. On The Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. In Proceedings of 13th International Conference on Very Large Data Bases
(VLDB). 147-154.

Daniel R. Licata and Shriram Krishnamurthi. 2004. Verifying Interactive Web Programs. In Proceedings of
the 19th IEEE | ACM International Conference on Automated Software Engineering (ASE). 164-173.
Tianhai Liu, Michael Nagel, and Mana Taghdiri. 2012. Bounded Program Verification Using an SMT Solver:
A Case Study. In Proceedings of the 5th International Conference on Software Testing, Verification and

Validation (ICST). 101-110.

Muhammad Zubair Malik, Khalid Ghori, Bassem Elkarablieh, and Sarfraz Khurshid. 2009. A Case for Au-
tomated Debugging Using Data Structure Repair. In Proceedings of the 24th IEEE | ACM International
Conference on Automated Software Engineering (ASE). 620-624.

Matthew J. McGill, Laura K. Dillon, and R. E. Kurt Stirewalt. 2011. Scalable analysis of conceptual data
models. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA). 56—
66.

Joseph P. Near and Daniel Jackson. 2012. Rubicon: Bounded verification of web applications. In Proceedings
of the 20th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE). 60.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. SemFix: Program
Repair via Semantic Analysis. In Proceedings of the 2013 International Conference on Software Engi-
neering (ICSE). 772-781.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

Data Model Property Inference, Verification and Repair for Web Applications 00:27

Jaideep Nijjar, Ivan Bocic, and Tevfik Bultan. 2013. An Integrated Data Model Verifier with Property Tem-
plates. In Proceedings of the ICSE 2013 Workshop on Formal Methods in Software Engineering (For-
maliSE 2013). IEEE, 29-35.

Jaideep Nijjar and Tevfik Bultan. 2011. Bounded verification of Ruby on Rails data models. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA). 67-71.

Jaideep Nijjar and Tevfik Bultan. 2012. Unbounded Data Model Verification Using SMT Solvers. In Pro-
ceedings of the 27th IEEE |ACM International Conference on Automated Software Engineering (ASE).
210-219.

Jaideep Nijjar and Tevfik Bultan. 2013. Data model property inference and repair. In Proceedings of the
2013 International Symposium on Software Testing and Analysis (ISSTA). 202-212.

Jeremy W. Nimmer and Michael D. Ernst. 2001. Static verification of dynamically detected program invari-
ants: Integrating Daikon and ESC/Java. Electronic Notes in Theoretical Computer Science 55, 2 (2001).

Filippo Ricca and Paolo Tonella. 2001. Analysis and Testing of Web Applications. In Proceedings of the 23rd
International Conference on Software Engineering (ICSE). 25-34.

Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello, Rodolfo Totaro, and Daniela Castelluccia.
2005. Design Verification of Web Applications Using Symbolic Model Checking. In Proceedings of the
5th International Conference on Web Engineering (ICWE). 69-74.

Yannis Smaragdakis, Christoph Csallner, and Ranjith Subramanian. 2007. Scalable automatic test data
generation from modeling diagrams. In Proceedings of the 22nd IEEE | ACM International Conference
on Automated Software Engineering (ASE). 4-13.

Yannis Smaragdakis, Christoph Csallner, and Ranjith Subramanian. 2009. Scalable satisfiability checking
and test data generation from modeling diagrams. Automated Software Engineering 16, 1 (2009), 73-99.

P. David Stotts, Richard Furuta, and Cyrano Ruiz Cabarrus. 1998. Hyperdocuments as Automata: Verifica-
tion of Trace-Based Browsing Properties by Model Checking. ACM Transactions on Information Systems
16, 1 (1998), 1-30.

Lin Wang, Gillian Dobbie, Jing Sun, and Lindsay Groves. 2006. Validating ORA-SS Data Models using Alloy.
In Proceedings of the Australian Software Engineering Conference (ASWEC). 231-242.

Yi Wei, Yu Pei, Carlo A. Furia, Lucas Serpa Silva, Stefan Buchholz, Bertrand Meyer, and Andreas Zeller.
2010. Automated fixing of programs with contracts. In Proceedings of the Nineteenth International Sym-
posium on Software Testing and Analysis (ISSTA). 61-72.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically Finding
Patches Using Genetic Programming. In Proceedings of the 31st International Conference on Software
Engineering (ICSE). 364-374.

Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceedings of the International Workshop
on Memory Management (IWMM).

Shoji Yuen, Keishi Kato, Daiju Kato, , and Kiyoshi Agusa. 2006. Web Automata: A Behavioral Model of Web
applications based on the MVC model. Information and Media Technologies 1, 1 (2006), 66—79.

73 2013. Z3. http://research.microsoft.com/projects/z3/. (2013).

Andreas Zamperoni and Perdita Lohr-Richter. Enhancing the Quality of Conceptual Database Specifica-
tions through Validation. In Proceedings of the 12th International Conference on the Entity-Relationship
Approach (ER).

Received January 2014; revised ?; accepted ?

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00, Pub. date: 0000.

