
Synchronizability for Verification of
Asynchronously Communicating Systems?

Samik Basu1, Tevfik Bultan2, Meriem Ouederni3

1 Iowa State University, sbasu@iastate.edu
2 University of California, Santa Barbara, bultan@cs.ucsb.edu

3 University of Malaga, meriem@lcc.uma.es

Abstract. Message-based communication is an increasingly common in-
teraction mechanism used in concurrent and distributed systems where
components interact with each other by sending and receiving mes-
sages. It is well-known that verification of systems that use asynchronous
message-based communication with unbounded FIFO queues is unde-
cidable even when the component behaviors are expressed using finite
state machines. In this paper we show that there is a sub-class of such
systems, called synchronizable systems, for which certain reachability
properties (over send actions and over states with no pending receives)
remain unchanged when asynchronous communication is replaced with
synchronous communication. Hence, if a system is synchronizable, then
the verification of these reachability properties can be done on the syn-
chronous version of the system and the results hold for the asynchronous
case. We present a technique for deciding if a given system is synchroniz-
able. Our results are applicable to a variety of domains including verifica-
tion and analysis of interactions among processes at the OS level, coordi-
nation in service-oriented computing and interactions among distributed
programs. In this paper we focus on analysis of channel contracts in
the Singularity OS. Our experimental results show that almost all chan-
nel contracts in the Singularity OS are synchronizable, and, hence, their
properties can be analyzed using synchronous communication semantics.

1 Introduction

The asynchronous message-based communication model has been receiving in-
creasing system support [17, 21, 2, 20] and it is getting increasing attention in a
diverse set of areas for handling a variety of issues such as process isolation at the
OS level [8], coordination in service-oriented computing [6, 27], and interactions
in distributed programs [1]. Unfortunately, in general verification problems are
undecidable for such systems since a set of finite-state machines that communi-
cate with unbounded FIFO message queues can simulate Turing Machines [5].

? The authors thank Gwen Salaün for fruitful discussions on the CADP implementa-
tion. This work has been partially supported by the US National Science Foundation
grants CCF1117708, CCF1116836, CCF0702758, and project TIN2008-05932 funded
by the Spanish Ministry of Innovation and Science and FEDER.

We present a class of asynchronously communicating systems, called synchro-
nizable systems, for which certain reachability properties can be verified auto-
matically, and we show that we can automatically check if an asynchronously
communicating system is in this class.

Intuitively, an asynchronously communicating system is synchronizable if ex-
ecuting that system with synchronous communication instead of asynchronous
communication preserves its behaviors. We focus on two types of behaviors: 1)
the sequences of messages that are sent, and 2) the set of reachable configu-
rations where message queues are empty, i.e., configurations with no pending
receives. If a system is synchronizable, then we can check properties about its
message sequences or about the reachability of its global configurations with
empty message queues, using the synchronous version of the system. Since we
are focusing on systems where component behaviors are specified using finite
state machines, the synchronous version of the system has a finite state space
and its properties can be verified using well-known model checking techniques.

The important question is: is it possible to check synchronizability automati-
cally? In this paper we show the following: A system is synchronizable if and only
if the behaviors for the synchronous version of the system and the 1-bounded-
asynchronous version of the system are equivalent with respect to sent mes-
sages and reachable configurations with empty message queues. The 1-bounded-
asynchronous version corresponds to the case where all message queues are re-
placed with queues of size one (hence, if there is an unconsumed message in a
message queue any send action to that queue blocks until message is consumed).
Since both synchronous and 1-bounded asynchronous versions of a system have
finite state space, the equivalence check of their behavior, and therefore, syn-
chronizability check, can be done automatically.

In order to demonstrate the practical value of our results, we have developed
a prototype implementation leveraging CADP toolbox [12] and have applied our
approach to analyzing channel contracts in Singularity OS [8, 16]. A channel
contract is a state machine that specifies the allowable ordering of messages
exchanged between processes in the Singularity OS. In this paper we show that
almost all of the channel contracts in Singularity OS are synchronizable, hence,
their reachability properties can be automatically verified.

2 Motivation: Singularity Channel Contracts

Singularity [23] is an experimental operating system developed by Microsoft
Research to explore new approaches to OS design in order to improve the de-
pendability of software systems. Process isolation is a chief design principle of
the Singularity OS, where processes are not allowed to share memory with each
other or the kernel. All inter-process communication occurs via asynchronous
message exchange in bidirectional channels. Communication through Singularity
channels corresponds to asynchronous communication via FIFO queues. When
a process sends a message through a channel, the message is appended to a mes-
sage queue. A message that is at the head of a message queue is removed from

public contract IoStream {
...
state Start: {

O? -> {
OK! -> Open;
ERR! -> End;

}
}

state Open: {
R? -> D! -> Open;
W? -> Open;
C? -> End;

}

state End;
...

?C

Start

End

 s

 t

Open

?O

!OK !ERR

?R ?W

!D

!C

Start

End

 s

 t

Open

!O

?OK ?ERR

!R !W

?D

O: request to open
R: request to read
W: request to write
D: respond with data
C: request to close

Server Client

(a) (b)

Fig. 1. (a) An example channel contract; and (b) corresponding state machines for the
Client and the Server

the message queue when a receive action is executed by the receiving process at
the other end of the channel.

In Singularity, channel contracts (written in an extension of C#, called
Sing#) specify the allowable ordering of message exchanges between the pro-
cesses [8, 23]. Figure 1(a) shows a contract governing a channel used by Sin-
gularity for communicating between a process (client in this case) and the file
server [18]. (The full contract specification also includes the message declarations
which are omitted in the figure.) Singularity contracts are written from the per-
spective of the server, where send actions by the server are appended with !
to denote communication from the server to the client and receive actions by
the server are appended with ? to denote communication from the client to the
server. The contract states that the file server receives a request (O) for open-
ing a file and it responds with either OK or ERR; the destination states are Open
or End. In the Open state, the file server can either receive a read request (R), a
write request (W) or a close request (C). In the first case, the server responds with
the data from the opened file and the destination state of the contract remains
Open; in the second case, the destination state also remains Open; and in the
final case, the destination state becomes End. The behaviors of the client and
the server constructed on the basis of this contract are presented in Figure 1(b).
Each local configuration in the client and the server is annotated with the state
of the contract; note that there are two temporary/transient states s and t.

Verification Objectives: Properties of Interest. There are several questions that
are of interest in this setting. Does the system obtained from the asynchronously
communicating client and server (Figure 1(b)) produces exactly the same behav-
ior (in terms of send actions) as depicted in the channel contract (Figure 1(a))?
Does the system conform to some pre-specified desired properties expressed in
temporal logic? For instance, a property of interest can be: the C (close) send
action is eventually followed by a configuration where the client and the server
are both at state End and their message queues are empty (i.e., there are no
pending receives). Another example property can be: every read send action (R)
is eventually followed by a configuration where the client and the server states

are both Open and their message queues are empty. These types of properties
can be suitably expressed in linear temporal logic.

Verification Challenge. Unfortunately, for finite state processes that communi-
cate asynchronously with unbounded message queues, verification of these types
of properties is undecidable in general. Observe that, the system obtained from
the asynchronously communicating client and server in Figure 1(b) exhibits be-
havior with infinite state-space due to existence of potentially unbounded num-
ber of !W actions from the client before the server consumes via ?W action.

Our Solution. In this paper, we show that we can automatically check if the
asynchronous system under consideration is synchronizable, and, if it is, we can
verify the above properties on the synchronized-version of the system using tra-
ditional model checking techniques. Verification of properties of asynchronously
communicating systems is decidable when the system is synchronizable and we
present here the necessary and sufficient condition for synchronizability, which
can be efficiently checked using existing equivalence checking techniques that
work for systems with finite state-space.

It should be noted that in order to statically determine the amount of mem-
ory required for each message buffer, Singularity OS imposes a restriction on
channel contracts that bounds the sizes of the message buffers. Such a restric-
tion, therefore, finitizes the behavior of the asynchronous system. Even with
such a restriction the results presented in this paper are useful since they allow
us to remove the message queues completely during verification. Since the state
space of an asynchronously communicating system with bounded queues can be
exponential in the size of the queues, our results can be used to avoid state space
explosion for such bounded systems. Our experiments show that in fact most of
the Singularity channel contracts are synchronizable.

3 Preliminaries

3.1 Behaviors as State Machines

We use finite state machines to describe the behaviors of components or peers
that asynchronously communicate via messages (sends and receives). The behav-
ior of a system resulting from such communicating peers is described by state
machines (with potentially infinite state-space).

Definition 1 (Peer Behavior). A peer behavior or simply a peer, denoted by
P, is a state machine (M,T, s0, δ) where M is the union of finite input (M in)
and finite output (Mout) message sets, T is the finite set of states, s0 ∈ T is the
initial state, and δ ⊆ T × (M ∪ {ε})× T is the transition relation.

A transition τ ∈ δ can be one of the following three types: (1) a send-
transition of the form (t1, !m1, t2) which sends out a message m1 ∈Mout, (2) a
receive-transition of the form (t1, ?m2, t2) which consumes a message m2 ∈M in,
and (3) an ε-transition of the form (t1, ε, t2). We write t a−→ t′ to denote that
(t, a, t′) ∈ δ.

Figures 2(a, b, c) present state machines representing three communicating
peers. The start states (s0, t0 and r0) are denoted by arrows with no source state.
Each transition is labeled with the action (send or receive) performed when the
peer moves from the source state to the destination state of the transition.

We will consider systems that consist of a finite set of peers, 〈P1, . . . ,Pn〉,
where Pi = (Mi, Ti, s0i, δi) and Mi = M in

i ∪Mout
i , such that ∀i : M in

i ∩Mout
i = ∅,

∀i, j : i 6= j ⇒M in
i ∩M in

j = Mout
i ∩Mout

j = ∅.

Definition 2 (System Behavior). A system behavior or simply a system over
a set of peers 〈P1, . . . ,Pn〉, where Pi = (Mi, Ti, s0i, δi) and Mi = M in

i ∪Mout
i ,

is denoted by a state machine (possibly infinite state) I = (M,C, c0, ∆) where

1. M = ∪iMi

2. C ⊆ Q1 × T1 ×Q2 × T2 . . .Qn × Tn such that ∀i ∈ [1..n] : Qi ⊆ (M in
i)∗

3. c0 ∈ C such that c0 = (ε, s01, ε, s02 . . . , ε, s0n)
4. ∆ ⊆ C ×M × C, and for c = (Q1, t1, . . . Qn, tn) and c′ = (Q′1, t

′
1, . . . Q

′
n, t
′
n)

(a) c
!m−→ c′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈Mout

i ∩M in
j ,

(i) ti
!m−→ t′i ∈ δi, (ii) Q′j = Qjm, (iii) ∀k ∈ [1..n] : k 6= j ⇒ Qk = Q′k

and (iv) ∀k ∈ [1..n] : k 6= i⇒ t′k = tk

(b) c
?m−→ c′ ∈ ∆ if ∃i ∈ [1..n] : m ∈M in

i ,
(i) ti

?m−→ t′i ∈ δi, (ii) Qi = mQ′i, (iii) ∀k ∈ [1..n] : k 6= i ⇒ Qk = Q′k
and (iv) ∀k ∈ [1..n] : k 6= i⇒ t′k = tk

(c) c
ε−→ c′ ∈ ∆ if ∃i ∈ [1..n] : (i) ti

ε−→ t′i ∈ δi, (ii) ∀k ∈ [1..n] : Qk = Q′k
and (iii) ∀k ∈ [1..n] : k 6= i⇒ t′k = tk

(a) !a

0
s1!b

s

(b)

?a 1
t 0

!c

t

(c) ?c

0
r1?b

r

(d)
!c(?c)

0
t 1 r0

s1
t 1 r1

s0
t 0 r0

r1t 0s1

!b(?b)

!a(?a)!b(?b)
s

(e)

[][][b]

0
t 0 r0

r0t 1s0

r0t 1

r0t 1

s1

r1t 0s1

r1t 1s1 r1t 1s1

s0

s1

t 1 r1

r0t 0s1

s0
t 0 r0

r1t 0s1

r0t 0
s1

[][a][]

?a

[][][]

[][a][]

[][a][]

[][a][c]

[][][c] [][][]

[][a][b]

[][a][b]

!a

!b

?b

!c

?a
?c

!b

[][][]

!a!b

?b

[][][]

s

Fig. 2. Peers (a, b, c); Synchronous Behavior (d);
(partial view of) Asynchronous Behavior (e).

In the above, Qs describe the
message queues associated with
each peer in the system. The
messages sent to a peer are ap-
pended to the tail of its message
queue. A peer can perform a re-
ceive action if the corresponding
message is present at the head of
its message queue. After the re-
ceive action is performed, the re-
ceived message is removed from
the head of the message queue.

Figure 2(e) presents a snap-
shot of the behavior of the
system realized from the asyn-
chronous composition of the
peers shown in Figures 2(a, b,
c). Each state is annotated with
the local states of the peers and
the contents of their message
queues. For instance, the state

s1t0r0 has the associated message queues [][][b], denoting that the message queue
of the third peer has a pending receive b and the message queues of the other
peers are empty.

3.2 Verification Objective

We refer to the states where all peers have empty message queues as the synchro-
nized states (shown in bold in Figure 2(e)). Note that, start state of the system
is a synchronized state (e.g., s0t0r0 [][][] in Figure 2(e)). Verification of the above
systems may involve checking for properties describing certain desired temporal
ordering of send actions and reachability of synchronized states. In this paper,
we focus on the following types of global properties:

1. reachability of a synchronized state via a sequence of send actions.
2. existence of a sequence of send actions.

Note that, it is reasonable to ignore the ordering of the receive actions as they
are performed locally by the peers by consuming messages from their respective
message queues. Similarly, it is reasonable to ignore the temporal ordering of
states that are not synchronized since these states can be viewed as “transient”
states where one or more peers are yet to consume messages and, therefore, have
not reacted to the messages sent to them.

4 Synchronizability

We define the notion of send- and synchronized-traces described over the se-
quence of send actions and synchronized states. Formally,

Definition 3 (Send- & Synchronized-Trace). A send-trace of a system
I = (M,C, c0, ∆) is a sequence of send actions starting from c0. This is obtained
by projecting a trace of I starting from c0 to the send actions (by ignoring labels
of all the other transitions).

A synchronized-trace of a system, on the other hand, corresponds to a
send-trace that starts from c0 and ends in a synchronized state. A synchronized-
trace also includes the start state and the synchronized state reached at the end
of the trace (in addition to the sequence of send actions).

The union of the set of send-traces and the set of synchronized-traces of I is
denoted by L(I).

(s0t0r0[][][])aabc(s1t1r1[][][]) is a synchronized-trace of the system in Fig-
ure 2(e). We will denote such a trace as follows: s0t0r0

aabc
 s1t1r1 (as the message

queues of the peers in synchronized states are empty, we omit them). On the
other hand, the send-traces of the system include b, a, aa, aab, aabc, aabc . . .,
etc. We will denote the send-trace as follows · a=⇒ · a=⇒ · b=⇒ · c=⇒ . . ., where
m=⇒ denotes a transition-sequence containing zero or more receive actions and a

single send action !m.

Next, we describe synchronizability in terms of a system and its synchronous
variant. In the synchronous variant, all peers communicate synchronously, that
is, all peers immediately consume the messages sent to them.

Definition 4 (Synchronous System Behavior). The synchronous system
behavior containing a set of peers 〈P1, . . . ,Pn〉, where Pi = (Mi, Ti, s0i, δi) and
Mi = M in

i ∪Mout
i , is denoted by a state machine I0 = (M,C, c0, ∆) where

1. M = ∪iMi 2. C ⊆ T1 × T2 . . .× Tn
3. c0 ∈ C such that c0 = (s01, s02 . . . , s0n)
4. ∆ ⊆ C ×M × C and for c = (t1, t2, . . . , tn) and c′ = (t′1, t

′
2, . . . , t

′
n)

1. c !m−→ c′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈Mout
i ∩M in

j ,

(i) ti
!m−→ t′i ∈ δi, (ii) tj

?m−→ t′j ∈ δj, (iii) ∀k ∈ [1..n] : k 6= i∧k 6= j ⇒ t′k = tk

2. c ε−→ c′ ∈ ∆ if ∃i ∈ [1..n],
(i) ti

ε−→ t′i ∈ δi, (ii) ∀k ∈ [1..n] : k 6= i⇒ t′k = tk

Figure 2(d) presents the behavior of the system realized from synchronous com-
position of peers in Figure 2(a, b, c). Each transition is annotated with the send
action; the corresponding receive action which happens synchronously is shown
in parenthesis. Note that, in synchronous behavior, there is no pending receives
and system states are represented by the tuples of the participating peers’ local
states. Finally, synchronizability is formally defined as:

Definition 5 (Trace Synchronizability). The system I over a set of peers
〈P1, . . . ,Pn〉 is said to be trace synchronizable if and only if L(I) = L(I0), where
I0 is the synchronous system over the same set of peers.

Verification of properties described in Section 3.2 is decidable for trace synchro-
nizable systems, where such verification can be performed using synchronous
version of the system (which does not have message queues and therefore has
a finite state-space) using standard model checking techniques. The system
in Figure 2(e) is not trace synchronizable as it contains a synchronized trace
s0t0r0

aabc
 s1t1r1 which is not present in its synchronous variant in Figure 2(d).

5 Deciding Trace Synchronizability

We will show that the necessary and sufficient condition for synchronizability
involves the equivalence between the synchronous system behavior and the sys-
tem behavior using bounded asynchronous communication with message queues
of size 1 for each participating peer.

Definition 6 (k-bounded System). For any k ≥ 1, a k-bounded system (de-
noted by Ik) is a system where the length of message queue for any peer is at
most k. The description of k-bounded system behavior is, therefore, realized by
augmenting condition 4(a) in Definition 2 to include the condition |Qj | < k,
where |Qj | denotes the number of pending receives in the queue for peer j.

(a) !a

0
s1!b

s

(b) ?a

1
t 0 ?a

!c

t

(c) ?c

0
r1?b

?c

r

(d)

!b(?b)
0

t 1 r0

s1
t 1 r1

s0
t 0 r0

r1t 0s1

!c(?c)

!b(?b)
!a(?a)

!c(?c)

!a(?a)
s

[][a][b]

0
t 0 r0

r0t 1s0

r0t 1

s1

r1t 1s1

s0

t 1 r1

t 1s1
r0

t 1s1
r0

t 1s0
r0

t 1s0
r0

r1t 1s1

s1
t 0

s1
r1t 0

s1t 1
r0

r0

s0
t 0 r0

r0
t 0

s1

r1t 0s1

[][a][]

?a

[][][]

[][a][]

[][a][]

[][][]

[][a][b]

!a

?a

?a

?a

[][][b]

?b

?b

!c

[][a][c]

[][][c]

?a

?c

!a

[][][c]

!b

[][a][]

?b
?a

[][][b]
!c

!b

!b
?c

?c

[][][]

!a!b

[][][b]
?b

[][][]

!c

?a

?b

s

(e)

Fig. 3. Peers (a, b, c); Synchronous (d); 1-bounded Asynchronous Behavior (e).

Figure 3(e) shows the 1-bounded system behavior obtained from asynchronously
communicating peers in Figures 3(a, b, c). Note that the peer behavior in Fig-
ure 3(a) is identical to that in Figure 2(a), while the two peers in Figures 3(b,
c) are modified versions of the ones presented in Figures 2(b, c).

Recall that, the synchronous system behavior is denoted by I0 (Definition 4).
In the rest of the section, we will assume that I and Ik (∀k) are described over
the same set of peers.

Proposition 1. ∀k ≥ 0 : [L(Ik) ⊆ L(Ik+1)]

Proof. For any k ≥ 0, every move of Ik can be matched by Ik+1 by avoiding the
send actions that make the receiving peers’ pending receives to exceed k. �

Theorem 1. L(I0) = L(I1)⇒ ∀k ≥ 0 : L(Ik) = L(Ik+1).

We prove the theorem by contradiction. We assume that there exists k > 1 such
that L(Ik) 6= L(I1). Therefore, there exists a finite trace (either a send-trace or
a synchronized-trace) in Ik (as L(I1) ⊆ L(Ik), by Proposition 1) distinguishing
Ik from I1. The following Lemmas 1 and 2 contradict the above assumption.

Lemma 1. L(I0) = L(I1) ⇒ all send-traces in Ik for all k > 1 are present in
I0 and I1.

Proof. This lemma follows directly from the result in [3], where we have proved
that I0 and I1 have the same set of send-traces if and only if the sets of send-
traces in I0 and I are identical. �

Before proceeding with the proof of Lemma 2, we informally describe the
concepts that will be used in the proof. A synchronized-trace is realized by a
system that consists of a set of peers, if each peer follows a path in its behavioral
state machine that is consistent with the synchronized-trace and reaches a state
where its messages queue is empty. In such a path, we will consider the sequence
of send and receive actions leading to the local state of the peer with empty
message queue. We refer to such a sequence when we say that a peer moves
along a trace to realize the synchronized-trace. Similarly, we say that a set of
peers move along a trace to realize a synchronized-trace to refer to the sequence
of send and receive actions performed by the peers to reach their respective
local states describing the synchronized-state of the system. For instance, in
Figure 3(e), consider the synchronized trace s0t0r0

aabc
 s1t1r1. We say that the

synchronized trace is realized when the first peer (Figure 3(a)) moves along the
trace (!a!a!b)s1; while the other peers (Figures 3(b, c)) move along the traces
(?a?a?b)t1r1 or (?a?b?a)t1r1.

Lemma 2. L(I0) = L(I1) ⇒ all synchronized-traces in Ik for all k > 1 are
present in I0 and I1.

Proof. Let tk0
ω
 tk1 . . . be a synchronized-trace belonging to Ik where tk0 is the

start state, tk1 is a synchronized state and ω is a sequence of send actions.
I0 and I1 contain the send-trace ω as they contain all send-traces present in

Ik, for any k > 1 (Lemma 1). As I0 reaches one or more synchronized states via
the send-trace ω, I1 also reaches the same set of synchronized states after ω (as
L(I0) = L(I1)). We denote this set of states by T 01. To prove by contradiction,
we assume that tk1 is different from all the synchronized states in T 01. We will
contradict this assumption by considering differences between tk1 and the states
in T 01 in terms of the local states of the peers.

Consider that in Ik, there exists a peer P1 that moves along a trace Ak and
other peers move along a trace Bk to realize the synchronized-trace tk0

ω
 tk1 .

Further, consider that in I1, the peer P1 moves along the trace A1 (6= Ak) and
the other peers move along a trace B1 to realize a synchronized-trace with ω as
the sequence of send actions. Let the synchronized state reached in I1 in this
case be t011 ∈ T 01. Let B1 and Bk eventually lead to identical local states for all
peers other than P1. In short, we are considering the case where t011 and tk1 differ
only in terms of the states of P1. Figure 4 illustrates this situation.

We analyze the condition under which, in I1, the peer P1 cannot move along
Ak when other peers are moving along Bk to realize the send-trace ω. The
condition is that in Ak, the peer P1 has a full message queue (containing a
pending receive a) and is trying to send a message m to some other peer; while
in Bk, the other peers cannot move without sending a message b to P1; and
. . . abm . . . is present in ω. In other words, the peers cannot move without sending
each other messages in a specific order and such sending is not possible as the
buffer of P1 in I1 in the path Ak is full. That is,
• in Ak, P1 sends !m when it has some pending receive action (say, a);
• in Bk, some peer sends !b to P1; and

• . . . abm . . . is present in ω.
For simplicity, we consider the above scenario with the following assumptions:

Assumption 1: P1’s message queue contains two pending receives at most once
when it moves along the trace Ak in Ik to realize the given
synchronized-trace, and

Assumption 2: tk1 differs from t011 in terms of local states of one peer (P1).

We will prove that the scenario is not possible with the above assumptions and
later proceed to prove the same without the assumptions.

As L(I0) = L(I1), the peer P1 in I0 moves along a trace A0 and the other
peers move along a trace B0 to reach t011 via ω = . . . abm Note that, A0 and
A1 end in identical local states for the peer P1, while B0, B1 and Bk end in
identical local states for peers other than P1 according to Assumption 2 above
(see Figure 4).

Furthermore, the peers moving along B0 immediately consume any message
sent to them (all sends are immediately received in I0). This implies that B0

contains the subsequence !a!b?m. Therefore, in I1, the peer P1 can move along
the trace Ak and other peers can move along B0 to realize a send sequence
. . . amb . . . and reach the synchronized state tk1 (see Figure 4). As L(I1) = L(I0),
this synchronized-trace is also present in I0. In other words, in I0, P1 can move
along a trace A′0 and other peers can move along a trace B′0 such that the
send sequence . . . amb . . . is realized and the synchronized state tk1 is reached.
Therefore, the destination states for P1 along the traces A′0 and Ak are iden-
tical and the destination states for the peers other than P1 along the traces
B′0, B0, B1 and Bk are identical (see Figure 4). Furthermore, there exists a
subsequence ?a!m?b in A′0 as all sends are immediately consumed by P1 in I0.

...?a!m?b...

1 B 0A 1 A 0B’0A’0

k
1

t 01
1

t

[a]
!m

?m

!b

A k B k

...!a!b?m...

B

P1 Path Others Path Send-trace System
Ak Bk . . . abm . . . Ik

A1 B1 . . . abm . . . I1
A0 B0 . . . abm . . . I0
Ak B0 . . . amb . . . I1
A′

0 B′
0 . . . amb . . . I0

A′
0 B0 . . . abm . . . I1

Fig. 4. Proof Schema 1 for Lemma 2

Proceeding further, in I1,
the peer P1 can move along the
trace A′0 and the other peers
can move along the trace B0 to
realize the send sequence ω =
. . . abm . . . and reach the des-
tination synchronized state tk1
(see Figure 4). This is because,
in I1, each peer has a message
queue of size 1. This contra-
dicts the assumption that Ik
can reach a synchronized state
tk1 via ω that is not reachable by
I1 via the same send sequence.

Addressing Assumption 1. Recall the two assumptions made for simplifying the
arguments of the proof. The arguments hold even when the first assumption is
not considered. This is because, if P1 considers n > 2 pending receives in Ak,

then we can construct a path for I1 where P1 consumes n− 1 pending receives
before the send action !m and reaches the same state as in trace Ak.

Similarly, if P1 considers n > 2 pending receives multiple times along the
trace Ak before sending m0, m1, etc., we can construct a trace for P1 in I1,
where P1 consumes n − 1 pending receives before performing the send actions
!m0, !m1, etc. and reaches the same destination state as in Ak.

Addressing Assumption 2. Next, we discard the second assumption that tk1 differ
from t011 (∈ T 01) due to only the local states of P1. Let the difference between tk1
and t011 be due to two peers P1 and P2. In Ik, P1 moves along the trace Ak1,
P2 moves along the trace Ak2, and peers other than P1 and P2 move along the
trace Bk. On the other hand, in I1, P1 moves along A1 (6= Ak1), P2 moves along
A2 (6= Ak2) and other peers move along B1 (destination states of these peers in
B1 and Bk are identical). Figure 5 illustrates this scenario.
Ik has a synchronized-trace with send sequence ω where P1 moves along Ak1,

P2 moves along A2 and the rest of the peers move along B1. This synchronized-
trace is possible because the size of the message queues of peers in Ik is greater
than those in I1. Therefore, Ik and I1 reach two different synchronized states via
send sequence ω, where the destination states differ only in terms of local states
of P1 (see Figure 5). We have already proved that this is not possible. Therefore,
there exists a path (with send sequence ω) in I1 such that P1 moves along A′1,
P2 moves along A′2 and other peers move along B′1, where the destination states
in A′1 and Ak1 are identical, the destination states in A′2 and A2 are identical,
and the destination states in B′1 and B1 are identical (see Figure 5).

A k2 B k B 1 A 1 A 2A’1A’2B’1

k
1

t
01
1

t

k1 A

P1 Path P2 Path Others Path Send-trace System
Ak1 Ak2 Bk ω Ik

A1 A2 B1 ω I1
Ak1 A2 B1 ω Ik

A′
1 A′

2 B′
1 ω I1

Fig. 5. Proof Schema 2 for Lemma 2

Next, consider this newly con-
structed synchronized-trace for I1
and the original synchronized-
trace for Ik (P1 moves along Ak1,
P2 moves along Ak2 and other
peers move along Bk). The syn-
chronized states reached via the
same send sequence (ω) differ only
in terms of local states of P2.
We have proved this is not pos-
sible. Therefore, there exists a
synchronized-trace (with send se-
quence ω) in I1 such that P1 moves
along A′′1 , P2 moves along A′′2 and
others move along B′′1 where the

destination states of A′′1 and Ak1 are identical, the destination states of A′′2 and
Ak2 are identical, and the destination states of B′′1 and B1 are identical. This
contradicts our assumption.

The above arguments also hold when differences in synchronized states are
due to local states of more than two peers participating in the system. �

The proof for Theorem 1 directly follows from Lemmas 1 and 2.

Theorem 2. L(I0) = L(I1) if and only if I is trace synchronizable.

Proof. Follows from Theorem 1, Definition 3 and Proposition 1. �

The system in Figure 2(e) is not synchronizable as its 1-bounded asyn-
chronous version is not trace equivalent to its synchronous counterpart (Fig-
ure 2(d)). The 1-bounded asynchronous system contains traces (e.g., send trace
a=⇒ a=⇒ and synchronized trace s0t0r0

aabc
 s1t1r1) which are absent in the syn-

chronous version. Figure 3(d) and (e) shows the synchronous and 1-bounded
asynchronous system realized from the peers in Figures 3(a, b, c). These two
systems are trace equivalent and as such the corresponding asynchronous sys-
tem is trace synchronizable.

Note that, we have proved that synchronizability can be decided by check-
ing the equivalence between two finite-state systems, I0 and I1. This can be
performed automatically. Once an asynchronous system (with possibly infinite
state-state) has been classified as trace synchronizable, we can verify reachability
properties over its send actions and synchronized states using the synchronous
variant of the system.

6 Experiments with Singularity Channel Contracts

We automated our approach for analyzing Singularity channel contracts by im-
plementing a translator which takes a Singularity channel contract specification
as input and generates two LOTOS specifications that correspond to the syn-
chronous and 1-bounded-asynchronous versions of the input contract. Then we
use the CADP toolbox [12] to check the equivalence of the synchronous and
1-bounded-asynchronous versions.
Synchronous Model. Given a Singularity channel contract, the state machine of
the participating peers (a client and a server) is obtained as follows. For every
transition between a state s to a state t, in the contract with label m!, a send
transition labeled with m is added to the state machine of server peer from its
local state corresponding to s to its local state corresponding to t; a receive action
m is added to the state machine of client peer from its local state corresponding
to s to its local state corresponding to t. The dual strategy is used for actions of
the form m? in the contract (the server peer receives m sent by the client peer).

The state machines for the peers are encoded in LOTOS using process con-
structs which allows sequential (ordering), branching (choice) and loop speci-
fications. The synchronous system is constructed from the peer specifications
in LOTOS by using the composition operator in LOTOS, which specifies syn-
chronous communication between processes over pre-specified channels.
Asynchronous Model. The LOTOS language does not support asynchronous com-
munication directly. In order to generate the 1-bounded asynchronous model in
LOTOS we create a bounded FIFO queue process (which can store at most
one message) for each message queue. The FIFO queue process representing the
message queue of a peer P synchronously receives messages from peers sending

messages to P, and it synchronously sends these messages to P. The messages
sent from the FIFO queue process of peer P are essentially receive actions by
P which are not considered in send- and synchronized-traces. These actions are,
therefore, hidden during the composition process and they become internal tran-
sitions (τ -transitions in LOTOS).
Equivalence Checking. After generating the LOTOS specifications for the syn-
chronous and 1-bounded asynchronous models, we generate the two correspond-
ing LTSs using the state space generation tools in the CADP toolbox. During
the equivalence check the only visible events are the message send events from
any peer since the receive events are hidden. To optimize the equivalence check
we reduce the resulting LTS modulo the hidden actions (using the τ -confluence
relation). This reduces the transition system without modifying the send- and
synchronized-traces of the system. Then we check the equivalence of the reduced
LTSs for the synchronous and 1-bounded asynchronous systems. If two LTSs are
equivalent, the system (i.e, the system obtained from the peers participating in
the given Singularity contract) is synchronizable; otherwise it is not.

The construction of LTSs from LOTOS specifications, the reduction of the
LTSs and their equivalence checking are performed automatically using SVL
scripts [11] and by using the Reductor and the Bisimulator tools that are part
of the CADP toolbox [12].

We applied our approach to 86 channel contracts that are available in the
Singularity code base. The size of the synchronous systems obtained from the
projected peers of these contracts ranges between 2 to 23 states and 1 to 60
transitions. The size of the 1-bounded asynchronous variant, on the other hand,
ranges between 3 to 99 states and 2 to 136 transitions. The time taken to reduce
the asynchronous model is on an average 10 secs and the equivalence checking
time is on an average 3 secs. We have found that all channel contracts in the
Singularity code base are synchronizable except two. The two contracts that
fail the synchronizability test are faulty (allow deadlocks, as was previously re-
ported and confirmed by the Singularity developers [24]). Hence, if we ignore
these two faulty contracts, all channel contracts in the Singularity code base are
synchronizable, i.e., their properties concerning the sequence of send actions and
reachability of synchronized states can be verified automatically.

7 Related Work

The synchronizability problem was first proposed in [9, 10] in the context of an-
alyzing interactions among web services. Synchronizability definition in these
papers only considered sequence of send actions, i.e., send-traces. The synchro-
nizability conditions given in [9, 10] are sufficient but not necessary conditions.
One of the synchronizability conditions used in [9, 10] is called autonomous con-
dition, and this condition prevents a process from having a send and a receive
transition from the same state. This condition sometimes fails for protocols that
are synchronizable. In [3] it is argued that synchronizability analysis can be used
for checking the conformance of a set of web services to a given global interaction

protocol (called a choreography specification in the web services domain). The
synchronizability analysis presented in [3] provides a necessary and sufficient
condition for synchronizability when only send-traces are considered. Recent re-
sults reported in [4] also build on the results from [3] to show the decidability of
the choreography realizability problem.

The synchronizability definitions used in these earlier papers do not corre-
spond to the synchronizability definition we use in this paper since they do not
take into account synchronized state reachability. In particular, the main result
presented in [3] corresponds to the Lemma 1 from this paper. In this paper we
present a non-trivial and important extension to this earlier result and introduce
the synchronized-state reachability by proving Lemma 2. This extension allows
for verification of reachability properties over send actions and configurations
where the message queues are empty. Moreover, the synchronizability analysis
presented in [3] is not implemented, whereas we implement the proposed syn-
chronizability analysis and apply it to the Singularity channel contracts.

The work on session types [14, 15] focuses on conformance of an interaction
to a predefined protocol and formulates this as a typing problem. The idea is
to first define a global type for interaction behavior and then to check if each
local peer implementation is “typable” with respect to the global type. If that
is the case then the typing rules ensure that when the peers are executed, they
conform to the interaction protocol specification that corresponds to the global
type. Interestingly, the type system for session types contains an analogue of
the autonomous condition from [9, 10] and therefore is more restrictive then the
synchronizability condition presented in this paper.

In [7], the authors presented various decidability results for half-duplex asyn-
chronous systems containing two peers, one where at any system state at most
one message queue is non-empty. The authors proved that half-duplex systems
have a recognizable reachability set which can be computed in polynomial time,
and which makes it possible to verify in polynomial time the reachability of sys-
tem states. The authors proved that determining whether an asynchronous sys-
tem with two peers is half-duplex is decidable. Finally, the authors showed that
systems with more than two peers and participating in pair-wise half-duplex com-
munication can simulate a Turing machines, and therefore, reachability analysis
of such systems is undecidable, in general. In this paper, we examined a different
subclass of asynchronous systems, namely synchronizable systems. Synchroniz-
ability does not require half-duplex communication and is applicable for systems
containing more than two peers.

In [25, 13], the authors discuss the type of communication topologies (e.g.,
trees) that leads to decidability of reachability analysis in communicating sys-
tems, including communicating push-down systems. Our results hold for any
communication topology. We conjecture that our results also hold for well-
queuing push-down systems considered in [25]; a well-queuing push-down system
is one where communications occur when the execution stack is empty. We plan
to investigate synchronizability of such communicating push-down systems.

In the context of parallel programming, where concurrently executing pro-
cesses communicate via message passing (MPI programs), several papers (e.g.,
[19, 22, 26]) discuss the impact of buffering on the behavior in terms of dead-
lock freedom and conformance to local sequence of actions. Specifically, these
works discuss how buffering can lead to deadlock when there are “wildcard”
receives (states in the peer behavior where any receive action of that peer is
possible), and address the problem of deadlock detection efficiently using partial
order reduction [22] or using “happens before” relation [26]. There is one main
difference between our work and these earlier results. We are concerned with
the global ordering of send actions and reachability of synchronized states as
opposed to local ordering of actions. As a result, deadlock-freedom in the syn-
chronous and asynchronous variants does not imply that these variants are trace
equivalent (Definition 3). Hence, the premise of the work on MPI programming
that deadlock-freedom ensures conformance to desired behavior does not hold in
our setting. Additionally, [22] imposes certain MPI domain-specific restrictions
regarding dependencies between sends and receives, whereas our approach does
not depend on such conditions.

8 Conclusion

In this paper we introduced a notion of synchronizability that identifies a class
of asynchronously communicating systems for which the sequences of sent mes-
sages and the set of reachable synchronized states (i.e., states with empty-
message queues) remain the same when asynchronous communication is replaced
with synchronous communication. We showed that synchronizability of a system
can be determined by checking the equivalence between its synchronous and 1-
bounded asynchronous models. We applied this approach to Singularity channel
contracts and our experimental results show that all Singularity channel con-
tracts that are not faulty are synchronizable. Hence, their properties can be
verified using the synchronous communication model.

References

1. J. Armstrong. Getting Erlang to talk to the outside world. In Proc. ACM SIG-
PLAN Workshop on Erlang, pages 64–72, 2002.

2. G. Banavar, T. D. Chandra, R. E. Strom, and D. C. Sturman. A case for message
oriented middleware. In Proc. 13th Int. Symp. Distributed Computing (DISC),
pages 1–18, 1999.

3. S. Basu and T. Bultan. Choreography conformance via synchronizability. In Proc.
20th Int. World Wide Web Conf. (WWW), 2011.

4. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In Proc.
39th Symp. Principles of Programming Languages (POPL), 2012.

5. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

6. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A
theoretical basis of communication-centred concurrent programming.

7. G. Cécé and A. Finkel. Verification of programs with half-duplex communication.
Information and Computation, 202:166–190, November 2005.

8. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and
S. Levi. Language support for fast and reliable message-based communication in
singularity os. In Proc. 2006 EuroSys Conf., pages 177–190, 2006.

9. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc.
13th Int. World Wide Web Conf., pages 621 – 630, 2004.

10. X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web services.
IEEE Trans. Software Eng., 31(12):1042–1055, 2005.

11. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. of FORTE, pages 377–394, 2001.

12. H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A toolbox for
the construction and analysis of distributed processes. In Proc. 18th Int. Conf. on
Computer Aided Verification (CAV), 2006.

13. A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of commu-
nicating pushdown systems. In 13th Int. Conf. on Foundations of Software Science
and Computational Structures (FOSSACS), pages 267–281, 2010.

14. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-
pline for structured communication-based programming. In 7th European Symp.
on Programming Languages and Systems (ESOP), pages 122–138, 1998.

15. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In Proc. 35th Symp. Prin. Programming Languages (POPL), pages 273–284, 2008.

16. G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. Operating
Systems Review, 41(2):37–49, 2007.

17. Java Message Service. http://java.sun.com/products/jms/.
18. J. Larus and G. Hunt. Using the singularity research development kit, 2008. Tu-

torial, Int. Conf. Arch. Support for Prog. Lang. and OS.
19. R. Manohar and A. J. Martin. Slack elasticity in concurrent computing. In Math-

ematics of Program Construction, (MPC), pages 272–285, 1998.
20. D. A. Menascé. Mom vs. rpc: Communication models for distributed applications.

IEEE Internet Computing, 9(2):90–93, 2005.
21. Microsoft Message Queuing Service. http://www.microsoft.com/windowsserver2003/

technologies/msmq/default.mspx.
22. S. F. Siegel. Efficient verification of halting properties for MPI programs with

wildcard receives. In 6th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), pages 413–429, 2005.

23. Singularity design note 5 : Channel contracts. singularity rdk documentation
(v1.1). http://www.codeplex.com/singularity, 2004.

24. Z. Stengel and T. Bultan. Analyzing singularity channel contracts. In Proc. 18th
Int. Symp. on Software Testing and Analysis (ISSTA), pages 13–24, 2009.

25. S. L. Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concur-
rent queue systems. In 14th Int. Conf. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 299–314, 2008.

26. S. Vakkalanka, A. Vo, G. Gopalakrishnan, and R. M. Kirby. Precise dynamic
analysis for slack elasticity: adding buffering without adding bugs. In 17th Euro.
MPI Conf. Advances in Message Passing Interface, pages 152–159, 2010.

27. Web Service Choreography Description Language (WS-CDL).
http://www.w3.org/TR/ws-cdl-10/, 2005.

