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ABSTRACT
Choreography analysis has been a crucial problem in ser-
vice oriented computing. Interactions among services in-
volve message exchanges across organizational boundaries in
a distributed computing environment, and in order to build
such systems in a reliable manner, it is necessary to develop
techniques for analyzing such interactions. Choreography
conformance involves verifying that a set of services behave
according to a given choreography specification that charac-
terizes their interactions. Unfortunately this is an undecid-
able problem when services interact with asynchronous com-
munication. In this paper we present techniques that iden-
tify if the interaction behavior for a set of services remain the
same when asynchronous communication is replaced with
synchronous communication. This is called the synchroniz-
ability problem and determining the synchronizability of a
set of services has been an open problem for several years.
We solve this problem in this paper. Our results can be used
to identify synchronizable services for which choreography
conformance can be checked efficiently. Our results on syn-
chronizability are applicable to any software infrastructure
that supports message-based interactions.

1. INTRODUCTION
Software systems are becoming increasingly more concur-

rent and distributed. In fact, nowadays, many software sys-
tems consist of multiple components that execute concur-
rently, possibly on different machines. Moreover, new trends
in computing, such as service-oriented architecture, cloud
computing, multi-core hardware, all point to even more con-
currency and distribution among the components of software
systems in the future. At the same time, concurrent and
distributed software systems are increasingly used in every
aspect of society and in some cases provide safety critical
services. Hence, it is very important to develop techniques
that guarantee that these software systems behave as they
are expected to behave.

A crucial problem in dependability of concurrent and dis-
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tributed software systems is the coordination of different
components that form the whole system. In order to com-
plete a task, components of a software system have to co-
ordinate their executions by interacting with each other.
A fundamental question is, what should be the interaction
mechanism given the trend for increased level of concurrency
and distribution in computing? One emerging paradigm is
message-based communication [17, 21, 16, 23, 2, 5, 19, 8],
where components interact with each other by sending and
receiving messages.

Specification and analysis of message-based interactions
has been an important research area in service oriented com-
puting in the last several years. Choreography languages
enable specification of such interactions. A choreography
specification corresponds to a global ordering of the message
exchange events among the peers participating to a compos-
ite service, i.e., a choreography specification identifies the set
of allowable message sequences for a composite web service.
Choreography conformance problem is identifying if a set of
given services adhere to a given choreography specification.
In general this problem is undecidable when asynchronous
communication is used.

In this paper, we identify a class of systems where chore-
ography conformance can be efficiently checked even in the
presence of asynchronous communication. We achieve this
by checking a condition called synchronizability. A set of ser-
vices is synchronizable if and only if the ordering of message
exchanges remain the same when asynchronous communica-
tion is replaced with synchronous communication. In this
paper we give an algorithm for determining synchronizabil-
ity of a set of services that communicate with asynchronous
communication.

It is important to note that the choreography analysis
problem is not isolated to the area of service-oriented com-
puting. It is a fundamental problem that appears in any
area where message-based communication is used to coordi-
nate interactions of multiple concurrent or distributed com-
ponents. For example, recently, earlier results on choreog-
raphy analysis have been applied to analysis of Singularity
channel contracts [22]. Singularity is an experimental oper-
ating system developed by Microsoft Research in order to
improve the dependability of software systems [14]. In the
Singularity operating system all inter-process communica-
tion is done via messages sent through asynchronous com-
munication channels. Each channel is governed by a channel
contract [8]. A channel contract is basically a state machine
that specifies the allowable ordering of messages between
the client and the server. Hence, channel contracts serve



the same purpose that choreography specifications serve in
service oriented computing.

As another example, UBF(B) is a specification language
for specification of communication contracts in distributed
Erlang programs [1]. UBF(B) contracts are finite state ma-
chines, where transitions correspond to request response pat-
terns. Given a state, a transition from that state identifies a
request response sequence where after receiving a message,
the process sends a response and changes its state to the
destination state.

UBF(B) contracts, Singularity channel contracts, and web
service choreography specifications are all mechanisms for
specifying ordering of messages exchanged among a set of
concurrent or distributed processes. Analysis and verifica-
tion of message-based interactions is an essential problem for
all these specification mechanisms and the results we present
in this paper are directly applicable to all of them.

1.1 A Summary of Our Results
The core problem we study in this paper is the following:

Given a set of peers (individual services) that interact via
asynchronous messaging (i.e., messages are sent and received
through unbounded FIFO message queues), does the inter-
action behavior change when asynchronous communication
is replaced with synchronous communication? This is called
the synchronizability problem [11]. In asynchronous commu-
nication with unbounded message queues, the send actions
are never blocked. In contrast, in synchronous communica-
tion each send action must synchronize with a corresponding
receive action in order to execute, otherwise it blocks (this
is also called rendezvous style communication). Synchroniz-
ability problem investigates the equivalence of asynchronous
and synchronous communication as far as the interaction be-
havior is concerned. Interaction behavior is defined as the
global sequence of send actions.

The synchronizability problem has been open for several
years, in the sense that it was not known if synchronizability
is decidable or not. Note that finite state machines com-
municating with unbounded message queues can simulate
Turing machines, hence, many verification problems about
them is undecidable [3]. In this paper we give an algorithm
for determining synchronizability of a set of finite state peers
that communicate with unbounded message queues. Our
main result is that synchronizability can be determined by
comparing the behavior of the peers with synchronous com-
munication and with bounded asynchronous communication
where each message queue is restricted to a queue of size 1
(i.e., if there is already a message in the queue, then the
send actions that try to send to that queue block). We show
that if the interaction behavior of the peers are the same
for the synchronous and the 1-bounded asynchronous com-
munication then they are synchronizable (i.e., the interac-
tion behavior is also the same for unbounded asynchronous
communication). If the interaction behavior of the peers
are not the same for the synchronous and the 1-bounded
asynchronous communication, then we also know that it is
not the same for unbounded asynchronous communication.
Hence, comparing the behavior of the synchronous commu-
nication and the 1-bounded asynchronous communication is
enough for determining synchronizability. This type of com-
parison can be done using existing finite state verification
tools since both synchronous communication and 1-bounded
asynchronous communication lead to finite state spaces.
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Figure 1: Three Systems with Server and Requester
Peers [11]

Once we determine that a set of peers are synchronizable,
then we can easily check choreography conformance using
existing finite state verification tools. Note that choreogra-
phy conformance checking is undecidable in general since,
as we mentioned earlier, finite state machines communicat-
ing with unbounded message queues can simulate Turing
machines, and therefore it is not possible to verify them au-
tomatically. The synchronizability checking mechanism we
present in this paper enables us to identify a class of peers
where choreography conformance can be easily checked. In-
terestingly many choreography specifications lead to syn-
chronizable interactions, so this class seems to be practically
very useful.

1.2 Organization
Rest of the paper is organized as follows. Section 2 presents

some motivating examples and discusses the salient aspects
of our contribution. Section 3 introduces the formal descrip-
tion of peers and systems, and describes the choreography
conformance problem. Section 4 discusses the formalisms
necessary for proving the decidability of synchronizability
problem. Section 5 presents the main theorems identifying
the necessary and sufficient conditions for synchronizability.
Section 6 compares our technique with the existing ones.
Finally, Section 7 summarizes the contributions of our work
followed by some future avenues of research.

2. AN OVERVIEW
Figure 1 shows three variations of systems containing re-

quester and server peers [11]. Each transition is labeled with
either a send action (prefixed with “!”) or a receive action
(prefixed with “?”). The start and the final states in the
requester peers are t1 and t2, respectively; while the start
and the final states in the server peers are s1 and s2, re-
spectively. In the first two systems, whenever the requester
sends a request message (r1 or r2), the server responds with
a corresponding acknowledgment (a1 or a2). Note that al-
though the behavior of the server is identical in the first two
systems the behavior of the requester is different. In the
third system, one type of request message (r) causes server
to send an acknowledgment message (a), but the other two
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Figure 2: System Behaviors using Peers in Figure 1

types of requests (r1 and r2) are not acknowledged. Finally,
when the requester sends an end message (e) the interaction
terminates.

Figure 2 illustrates the behavior of each of the systems
when the peers communicate asynchronously or synchronously.
In asynchronous communication, when a peer executes a
send action, the sent message is added to the tail of the re-
ceive queue of the receiver, and a peer can consume the mes-
sage at the head of its receive queue by executing a receive
action. The size of the queue is unbounded. In synchronous
communication, on the other hand, sender and receiver move
in lock-step, i.e., a send action of a sender is allowed only
when the receiver is ready to perform the corresponding re-
ceive action. The message exchange occurs when the sender
and the receiver take the send and receive transitions simul-
taneously.

In Figure 2, for the asynchronous case, we show the global
state of the system by listing the local states of the partic-
ipating peers along with the contents of their queues. We
annotate each state by first listing the contents of the re-
quester’s receive queue (where ε means that the queue is
empty), followed by the requester’s local state, followed by
the server’s receive queue, followed by the server’s local
state. For instance, initially the queues of all peers are

empty, and each peer is in its initial local state, i.e., the
global system state is (εt1εs1).

Observe that, asynchronous communication may result in
a system which contains infinite number of states. For in-
stance, when peers asynchronously communicate, the be-
havior of System 1 contains an infinite length sequence of
states

εt1εs1
!r1−→ εt1r1s2

!r1−→ εt1r1r1s2
!r1−→ . . .

where requester peer keeps sending r1 which is not con-
sumed by the server. System 3 also exhibits similar infi-
nite state behavior when peers communicate asynchronously
(Figure 2(c)-i). As a result, it is not possible to directly
verify whether Systems 1 and 3 (when peers communicate
asynchronously) conform to any choreography specification
using the finite state verification techniques and tools.

As noted before, verification of conformance can be easily
performed if the peers communicate in a synchronous fash-
ion. This is because, in this case, system behavior always
contains finite number of states (of the order of the product
of the number of local states of the peers).

In this paper, we identify the necessary and sufficient con-
ditions under which the behavior of the system when peers
communicate asynchronously is equivalent to the behavior
of the system when peers communicate synchronously, i.e.,
the peer interactions are synchronizable. If these conditions
are satisfied, then choreography conformance of a system
can be verified using the system behavior where the peers
interact synchronously. We prove that synchronizability can
be decided by verifying the equivalence between two varia-
tions of the system under consideration. In one variation,
the participating peers interact synchronously, while in the
other, the peers interact asynchronously and have message
queues bounded by 1 (the 1-bounded system). As both vari-
ations have finite number of states, the verification of their
behavioral equivalence is decidable and can be efficiently
performed using existing tools.

Observe that 1-bounded version of System 1 from 1 has a
path where the following actions are performed:

!r1 ?r1 !r1 !a1 ?r1 ?a1 !a1 ?a1 !e ?e

The subsequence containing only the send actions (i.e., the
interaction sequence) !r1 !r1 !a1 !a1 !e is not present in syn-
chronous version of System 1 (Figure 2(a)). Therefore, Sys-
tem 1 is not synchronizable.

The behavior of System 2, when peers communicate asyn-
chronously, has finite number of states (Figure 2(b)-i). The
linear as well as branching behavior of this system w.r.t.
send actions is identical to its synchronous counterpart (Fig-
ure 2(b)-ii). Using our approach, we can automatically de-
termine that System 2 is synchronizable. Furthermore, based
on the synchronizability condition we use, we can also con-
clude that any temporal property that is satisfied by System
2 is also satisfied by its synchronous version, and vice versa.

Unlike System 2, the behavior of System 3, when peers
communicate asynchronously, is shown in Figure 2(c)-i. It
has infinite number of states. We prove that System 3 is also
synchronizable and any temporal property that is satisfied
by System 2 is also satisfied by its synchronous counter-part
and vice versa.

Finally, consider the example in Figure 3, where two peers
are negotiating on offers following the Haggle protocol [15].
The peers can send an offer (oi), accept an offer (ai) or can-
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Figure 3: Peers following the Haggle Protocol [15]

cel an offer (ci). Any of the peers can send the first offer.
We prove that the system of peers for the Haggle protocol
is indeed synchronizable; more specifically, unlike System
2 and System 3, this system is “language” synchronizable.
That is, the conformance to choreography specifications ex-
pressed as sequences of send actions and/or in linear time
Temporal Logic can be decided using the system where the
peers interact in a synchronous fashion.

In the rest of the paper we discuss different variations of
conditions for synchronizability based on the different lev-
els of expressivity of the choreography specification being
considered. For instance, if the choreography specification
expresses some desired sequencing of send actions (using
FSA, regular expressions, linear time temporal logic LTL) in
the peer interactions, then the synchronizability condition is
based on language equivalence. We say that systems satisfy-
ing this synchronizability condition are language synchroniz-
able. On the other hand, if the choreography specification
expresses desired branching behavior (using branching time
temporal logics such as CTL, ACTL, CTL∗) of the send
actions in the peer interactions, then the synchronizability
condition is based on bisimulation equivalence or simulation
equivalence. Accordingly, we say that systems satisfying
these conditions are either bisimulation synchronizable or
simulation synchronizable.

In the earlier work on synchronizability [11], only lan-
guage based choreography conformance was considered and
only sufficient (but not necessary) conditions were identi-
fied for verifying synchronizability. The sufficient conditions
on synchronizability presented in [11], are satisfied by the
Systems 2 and 3 in Figure 2; however the satisfiability of
these conditions only guarantees that the languages result-
ing from asynchronous and synchronous interactions of peers
are identical. In contrast, our conditions ensure that any
temporal property (linear and branching time) satisfied by
asynchronous system is also satisfied by the synchronous
counter-part. Furthermore, since the conditions given in
[11] are sufficient conditions, violation of such conditions
may result in false positives, when synchronizable systems
do not satisfy the sufficient condition. For instance, the au-
tonomous condition described in [11] (from any local state,
a peer can either send or receive messages but not both) is
violated by the peers in Figure 3 and generates a false pos-
itive. However, our analysis correctly determines that the
system is (language) synchronizable.

3. CHOREOGRAPHY CONFORMANCE
In this section, we first formally define the behavior of

the peers and the system. We use automata to represent
the peer and system behaviors. A state in the automata
corresponds to the configuration of the peer or system and
labeled transitions denote how the peer or system evolve
(after performing certain actions) from one state to another.

Definition 1 (Peer Behavior). A peer behavior or sim-
ply a peer, denoted by P, is a Finite State Automaton (FSA)

(M, T, s0, F, δ) where M is the union of input (M in) and
output (Mout) message sets, T is the finite set of states,
s0 ∈ T is the initial state, F ⊆ T is the set of final states,
and δ ⊆ T × (M ∪ {ε})× T is the transition relation.

A transition τ ∈ δ can be one of the following three types:
(1) a send-transition of the form (t1, !m1, t2) which sends out
a message m1 ∈ Mout, (2) a receive-transition of the form

(t1, ?m2, t2) which consumes a message m2 ∈ M in from its
input queue, and (3) an ε-transition of the form (t1, ε, t2).

We write t
a−→ t′ to denote that (t, a, t′) ∈ δ.

Figures 1 and 3 present FSA representations of three dif-
ferent variations of requester and server peers, and a pair
of peers participating in an offer negotiation protocol. The
start states in each FSA are shown with incoming transitions
with no labels and source, and the final states are shown us-
ing ©• . Transitions between any two states are labeled with
send and receive actions.

In the following, we will consider systems described using
a set of peers, 〈P1, . . . ,Pn〉, where Pi = (Mi, Ti, s0i, Fi, δi)

and Mi = M in
i ∪ Mout

i , such that ∀i : M in
i ∩ Mout

i = ∅,
∀i, j : i 6= j ⇒ M in

i ∩ M in
j = Mout

i ∩ Mout
j = ∅. All peer

pairs in Figures 1 and 3 satisfy the above criteria.

Definition 2 (System Behavior). A system behavior
or simply a system over a set of peers 〈P1, . . . ,Pn〉, where

Pi = (Mi, Ti, s0i, Fi, δi) and Mi = M in
i ∪Mout

i , is denoted by
an automaton (possibly infinite state) I = (M, C, c0, F, ∆)
where

1. M = ∪iMi

2. C ⊆ Q1 × T1 × Q2 × T2 . . .Qn × Tn such that ∀i ∈
[1..n] : Qi ⊆ (M in

i )∗

3. c0 ∈ C such that c0 = (ε, s01, ε, s02 . . . , ε, s0n)

4. F ⊆ {ε} × F1 × {ε} × F2 . . .× {ε} × Fn; and

5. ∆ ⊆ C×M ×C, and for c = (Q1, t1, Q2, t2, . . . Qn, tn)
and c′ = (Q′

1, t
′
1, Q

′
2, t

′
2, . . . Q

′
n, t′n)

(a) c
!m−→ c′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈ Mout

i ∩M in
j ,

i. ti
!m−→ t′i ∈ δi,

ii. Q′
j = Qjm,

iii. ∀k ∈ [1..n] : k 6= j ⇒ Qk = Q′
k and

iv. ∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

(b) c
?m−→ c′ ∈ ∆ if ∃i ∈ [1..n] : m ∈ M in

i

i. ti
?m−→ t′i ∈ δi,

ii. Qi = mQ′
i,

iii. ∀k ∈ [1..n] : k 6= i ⇒ Qk = Q′
k and

iv. ∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

(c) c
ε−→ c′ ∈ ∆ if ∃i ∈ [1..n]



i. ti
ε−→ t′i ∈ δi,

ii. ∀k ∈ [1..n]Qk = Q′
k and

iii. ∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

The above definition [4, 10] states that a peer can send a
message which gets attached to the tail of the queue of the
peer capable of receiving the message, while a peer can re-
ceive a message if the corresponding message is at the head
of its queue (after the receive action is performed the re-
ceived message is removed from the queue).

Figures 2(a)-i, (b)-i, (c)-i illustrate the system behavior
automata for the three requester/server peers from Figure 1.
Each state is annotated with the local states of the peers
along with the content of their message queues and the tran-
sitions between the states follow the definition given above.

Our objective is to verify whether a given system I con-
forms to a desired choreography specification C. A choreog-
raphy specification can be described in different languages,
e.g., FSA, temporal logic, and accordingly, the semantics of
the conformance depends on the semantics of the choreog-
raphy specification language.

For instance, if C is described as a finite state machine
over the alphabet of send actions, then one can ask whether
the sequences of send actions in I are identical to the ones
specified by C. This corresponds to the verification of lan-
guage equivalence (denoted by L(I) = L(C)) where, in our
case, language of an FSA (L(·)) is the set of sequences of
send actions from its start state to a final state.

The choreography specification C can be described as a
temporal property in the language of Linear Temporal Logic,
LTL [6]. The standard LTL semantics defined for a set of in-
finite sequences over set of atomic propositions can be easily
adapted for choreography specification where send actions
will be mapped to atomic propositions and finite sequences
of send actions will be extended to form infinite sequences
by adding an infinite suffix over a special symbol. In this
case, the conformance of I to C amounts to verifying I |= C.
In essence, the |= relation checks whether the language of I
is a subset of the language of the Büchi automaton repre-
senting the semantics of the C expressed in LTL. Hence, in
this case choreography conformance corresponds to language
inclusion.

The above problems of conformance verification (against
FSA and Linear Temporal Logic) are undecidable in gen-
eral due to the infinite state-space of I resulting from asyn-
chronous communication among the peers participating in
I. The problem of conformance remains undecidable if the
choreography specification C is represented using an FSA
over send actions and the conformance demands that any
temporal property satisfied by C should also be satisfied by
I. Yet another possibility is to use branching time tempo-
ral logic formulas (specified in branching time logics such as
Computation Tree Temporal Logic (CTL) or CTL∗ [6]) as
the choreography specification and demand that I should
satisfy the given temporal logic formulas. For these last two
variations of conformance, language equivalence or inclusion
are not strong enough and stronger notions of equivalence
are needed as we show in the following sections.

In this paper, we provide the necessary and sufficient con-
ditions for synchronizability for all these variations of chore-
ography conformance and prove that checking these condi-
tions is decidable. Hence, our results identify a sub-class of
peer systems for which choreography conformance is decid-

able even when unbounded asynchronous communication is
used.

4. SYNCHRONIZABILITY
As noted in the previous section, the conformance prob-

lem is undecidable due to potentially infinite state-space of
the system I. For instance, System 1 in Figure 2(a)-i has
an infinite state-space due to the presence of unbounded se-
quence of requester’s send action (e.g., r1 and r2) without
the corresponding receive action by the server. On the other
hand, if the peers exchange messages via synchronous com-
munication (where each send action is synchronized with the
corresponding receive action) the behavior of the system has
finite state-space as shown in Figures 2(a)-iii, (b)-ii, (c)-ii.

It is well-known that language equivalence and satisfiabil-
ity of temporal logic properties are decidable when the state
machine, under consideration, has finite state-space. Syn-
chronizability analysis identifies whether the asynchronous
and synchronous behaviors of the system are “equivalent”
with respect to send actions. When a system is synchro-
nizable, conformance of its synchronous behavior to a given
choreography specification proves the conformance of its asyn-
chronous behavior.

As we are concerned with choreography specifications ex-
pressed as FSAs, LTL, CTL and CTL∗, there are different
characterizations of synchronizability. In the following, we
formally describe these notions and introduce the concepts
necessary for proving the decidability of synchronizability
problem.

Definition 3 (Synchronous Behavior). The synchronous
system behavior containing a set of peers 〈P1, . . . ,Pn〉, where

Pi = (Mi, Ti, s0i, Fi, δi) and Mi = M in
i ∪ Mout

i , is denoted
by an automaton I0 = (M, C, c0, F, ∆) where

1. M = ∪iMi

2. C ⊆ T1 × T2 . . .× Tn

3. c0 ∈ C such that c0 = (s01, s02 . . . , s0n)

4. F ⊆ F1 × F2 . . .× Fn; and

5. ∆ ⊆ C × M × C and for c = (t1, t2, . . . , tn) and c′ =
(t′1, t

′
2, . . . , t

′
n)

(a) c
!m−→ c′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈ Mout

i ∩M in
j ,

i. ti
!m−→ t′i ∈ δi,

ii. tj
?m−→ t′j ∈ δj,

iii. ∀k ∈ [1..n] : k 6= i ∧ k 6= j ⇒ t′k = tk

(b) c
ε−→ c′ ∈ ∆ if ∃i ∈ [1..n]

i. ti
ε−→ t′i ∈ δi,

ii. ∀k ∈ [1..n]Qk = Q′
k and

iii. ∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

Figures 2(a)-ii, 2(b)-ii and 2(c)-iii show the synchronous
behavior automata for the three requester/server systems
shown in Figure 1.

Definition 4 (Language Equivalence). The language
of a system I = (M, C, c0, F, ∆), denoted by L(I), is the set
of sequences of send actions on any path from c0 to any state
in F . Systems I and I′ are language equivalent if and only
if L(I) = L(I′).



For example, one of the elements in the language of the au-
tomaton corresponding to the asynchronous version of Sys-
tem 2 (Figure 2(b)-i) is !r1!a1!e.

Proposition 1. I is said to be language synchronizable
if and only if L(I) = L(I0).

If I is language synchronizable then the sequences of send
actions in I are identical to that specified by a choreography
specification C (defined as an FSA over send actions) if and
only if the sequences of send actions in I0 are identical to
that specified by C. Hence, conformance to a choreography
C can be checked on the finite state automaton of I0 and
the result will tell us if I conforms to C or not. A similar
approach can be used even when C is specified as an LTL
property. This is because, in this case the objective is to
verify language inclusion, i.e., whether L(I) is a subset of
the language of the Büchi automaton representing the se-
mantics of C expressed in LTL. In short, if C is specified as
an FSA or in LTL and I is language synchronizable, then
the conformance verification can be performed using I0.

However, language inclusion and equivalence are not strong
enough for choreography conformance checking via synchro-
nizability if the choreography specification is given as a branch-
ing time temporal logic formula. To handle such cases we
use a stronger notion of equivalence.

Definition 5 (Bisimulation Equivalence). Given two
systems I = (M, C, c0, F, ∆) and I′ = (M ′, C′, c′0, F ′, ∆′)
and two states, t ∈ C and t′ ∈ C′, t and t′ are bisimulation
equivalent, denoted by t ≈ t′, implies

∀t !m
=⇒ s : ∃t′ !m

=⇒ s′ : s ≈ s′ and

∀t′ !m
=⇒ s′ : ∃t !m

=⇒ s : s ≈ s′

In the above,
!m

=⇒ denotes a sequence of transitions contain-
ing zero or more transitions over actions in {ε} ∪ M in or
{ε} ∪M ′in and a single transition over !m.

Systems I = (M, C, c0, F, ∆) and I′ = (M ′, C′, c′0, F ′, ∆′)
are said to be bisimulation equivalent, denoted by I ≈ I′, if
and only if c0 ≈ c′0.

The above definition is similar to weak bisimulation equiv-
alence [20] of states (systems) where =⇒ corresponds to ε-
closure transitions.

Proposition 2. I is said to be bisimulation synchroniz-
able if and only if I ≈ I0.

It is well known that bisimulation equivalence preserves all
temporal logic properties including branching time temporal
logic properties [6]. Hence, if C is specified in CTL or CTL∗,
and I is bisimulation synchronizable, then the conformance
verification can be performed using I0.

Proposition 3. I is bisimulation synchronizable implies
that I is language synchronizable.

The above proposition follows from the fact that while bisim-
ulation synchronizability demands the equivalence of branch-
ing behavior w.r.t. send actions, language synchronizability
only requires the equivalence between sequences of send ac-
tions. Hence, bisimulation synchronizability is a more strict
notion for synchronizability and therefore enables confor-
mance verification for a richer set of conformance properties.

!r1 ?a 

!e 

!r 

εt1εs1 

εt3rs1 

εt3εs3 

?r1 

at3εs1 

!a 

εt1r1s1 

εt2es1 εt2εs2 
?e 

?r1 
!r2 

?r2 
εt1r2s1 

Figure 4: 1-bounded System 3

Simulation pre-order relation [20] presents the condition
under which one system simulates every (send) actions in
the other. We will use this concept in Section 5 to order
the systems where peers asynchronously communicate using
message queues of different sizes/capacities.

Definition 6 (Simulation Pre-order). Given two sys-
tems I = (M, C, c0, F, ∆) and I′ = (M ′, C′, c′0, F ′, ∆′) and
two states, t ∈ C and t′ ∈ C′, t simulates t′ denoted by
t ≺ t′, implies

∀t !m
=⇒ s : ∃t′ !m

=⇒ s′ : s ≺ s′

I′ = (M ′, C′, c′0, F ′, ∆′) simulates I = (M, C, c0, F, ∆), de-
noted by I ≺ I′, if and only if c0 ≺ c′0.

5. DECIDING SYNCHRONIZABILITY
In this section, we identify the necessary and sufficient

condition for determining synchronizability. The condition
involves comparing the behavior of the system using syn-
chronous communication with the one using asynchronous
communication with message queue of size equal to 1.

Definition 7 (k-bounded System). A k-bounded sys-
tem (denoted by Ik) is a system where the length of mes-
sage queue for any peer is at most k. The description of
k-bounded system behavior is, therefore, realized by augment-
ing condition 5(a) in Definition 2 to include the condition
|Qj | < k, where |Qj | denotes the length of the queue for peer
j.

Recall that System 2 (Figure 2(b)-i) has the same behavior
for any k > 0 bound. Figure 4 shows the 1-bounded System
3; observe that this is “structurally different” from the ver-
sions where the peers of System 3 (Figure 1) communicate
via pure asynchronous (Figure 2(c)-i) and pure synchronous
(Figure 2(c)-ii) interactions.

Proposition 4. ∀k ≥ 0 : [Ik ≺ Ik+1 ∧ L(Ik) ⊆ L(Ik+1)]

Proof. Every move of a system where peers asynchronously
communicate using message queue size k can be simulated
(Definition 6) by the system using > k size message queues
by avoiding the send actions that makes the receiver’s queue
size to exceed k. Secondly, Ik ≺ Ik+1 implies L(Ik) ⊆
L(Ik+1).

The above proposition along with Proposition 1 (or Propo-
sition 2) implies that if I is language (bisimulation) syn-
chronizable then ∀k ≥ 0 : L(Ik) = L(Ik+1) (∀k ≥ 0 : Ik ≈
Ik+1).



Theorem 1.

L(I0) = L(I1) ⇒ ∀k ≥ 1 : L(Ik) = L(Ik+1)

Proof. Consider that there exists k > 1 such that L(Ik) 6=
L(I1). Therefore, there exists a finite path (witness) distin-
guishing Ik from I1. In other words, both Ik and I1 have
a path over the same sequence of send actions such that the
path eventually leads to a state from where Ik can perform a
send action which is not possible in I1. In the following, we
will consider paths with =⇒-transitions (see Definition 5).

Consider that such a path with l send actions is

tk
0

!m1=⇒ tk
1

!m2=⇒ . . .
!ml=⇒ tk

l in Ik (1)

and the corresponding path in I1 that deviates from the
above after l send actions is

t10
!m1=⇒ t11

!m2=⇒ . . .
!ml=⇒ t1l in I1 (2)

such that ∀j ∈ [0..l]tk
j = t1j .

In the above paths, tk
l is capable of realizing

!m′
=⇒ which

is not possible from t1l , i.e., at t1l the peer (say P) which
is responsible for consuming m′ is not ready to move on
any receive action and its message queue is full (contains 1
pending receive action).

As L(I1) = L(I0), there exists a path,

t00
!m1=⇒ t01

!m2=⇒ . . .
!ml=⇒ t0l in I0 (3)

We prove by induction that there exists a path over the
same sequence of send actions in I1 where every receives are
performed immediately by peer P. Let such a path be

t′10
!m′

1=⇒ t′11
!m′

2=⇒ . . .
!m′

l=⇒ t′1l (4)

We use ti
j↓P and ti

j↓E to denote the local states of the peer
P and the local states of the peers (∈ E) other than P in
state ti

j , respectively. Note that, at states with subscript 0

(t10, t
0
0, t

′1
0 ) are start states in the system, i.e., the local states

all peers at these states are identical.

Base case: i=1. If !m1 is an action from some peer in E

to another peer in E, then there exists an identical action
!m′

1 =!m1 as the states of peers in E are identical in t10 and
t′10 . The resulting next states of t10 and t′10 are also identical.

If !m1 is an action from some peer in E to the peer P,
then there exists an identical action !m′

1 =!m1 as the states
of peers in E are identical in t10 and t′10 . Furthermore, as t00
also allows !m, it must have the capability to receive ?m at
the local state of peer P in t00. Therefore, the next state of
t′10 is such that the t′11 ↓P= t01↓P and t′11 ↓E= t11↓E.

If !m1 is an action from peer P to some peer in E, then
there exists an identical action !m′

1 =!m1 as the local state
of P are identical in t′10 and t00.

We can, therefore, construct a matching path of length 1
from t′01 to t′11 such that t′11 ↓P= t01↓P and t′11 ↓E= t11↓E.

Induction Step. Let ∀i ≤ n :!m′
i =!mi ∧ t′1i ↓P= t0i ↓P and

t′1i ↓E= t1i↓E.
Using the arguments as above, we can prove that !m′

i+1 =
!mi+1, and t′1i+1↓P= t0i+1↓P and t′1i+1↓E= t1i+1↓E.

Therefore, paths 2 and 4 are over exactly the same se-
quence of send actions. Observe that at state t′1l peer P
has an empty message queue. As a result t′1l is capable of

realizing the action !m′. This violates our assumption that
path 1 is a witness distinguishing Ik and I1.

Theorem 2. L(I0) = L(I1) if and only if I is language
synchronizable.

Proof. Follows from Theorem 1 and Propositions 1, 4.

Systems 2 and 3 (Figure 2(b, c)) are language synchroniz-
able as the language of their respective 1-bounded behavior
is identical to that of the corresponding synchronous behav-
ior. Recall that, asynchronous behavior of System 2 is finite
state and remains identical for message queues of all sizes.
On the other hand, System 3 is infinite state and its be-
havior “structurally” differs for different message queue size.
The 1-bounded system 3 is shown in Figure 4.

The 1-bounded system behavior for the peers (Figure 3)
following Haggle protocol is shown in Figure 5(a). In the
figure, we have presented the partial view of the system
where o1 is sent before o2. The dashed arrow corresponds
to the case where o2 is sent followed by o1 before consum-
ing o1. The synchronous behavior of the system is shown
in Figure 5(b). They are language equivalent as the path
(involving the dashed arrow) where !o1 is immediately fol-
lowed by !o2 (and similarly the one where o2 is immediately
followed by o1), never reaches any of the final states, i.e.,
these sequence of send actions along these paths are not in
the language of the system. Therefore, the system is said to
be language synchronizable.

Next, we discuss the conditions under which system is
bisimulation synchronizable.

Theorem 3. The following holds when all peer behaviors
in the system are deterministic:

I0 ≈ I1 ⇒ ∀k ≥ 1 : Ik ≈ Ik+1

Proof. Let there exists a k > 1 such that Ik 6≈ I1.
Therefore, there exists a finite path (witness) distinguish-
ing Ik from I1. In other words, both Ik and I1 have a path
over the same sequence of states (starting from the corre-
sponding start states) such that the path eventually leads
to a state from where Ik can perform a send action which
is not possible in I1 due to limited size of of peer message
queues in the latter.

Consider that such a path with l send actions is

tk
0

!m1=⇒ tk
1

!m2=⇒ . . .
!ml=⇒ tk

l in Ik (5)

and the corresponding path in I1 that deviates from the
above after l send actions is

t10
!m1=⇒ t11

!m2=⇒ . . .
!ml=⇒ t1l in I1 (6)

such that ∀j ∈ [0..l] : tk
j = t1j .

In the above paths, tk
l is capable of performing

!m′
=⇒ which

is not possible from t1l , i.e., at t1l the peer (say P) which
is responsible for consuming m′ is not ready to move on
any receive action and its message queue is full (contains 1
pending receive action).

As I1 ≈ I0, there exists a path,

t00
!m1=⇒ t01

!m2=⇒ . . .
!ml=⇒ t0l in I0 (7)

such that ∀j ≥ 0 : t0j ≈ t1j .
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Figure 5: System with peers following Haggle Pro-
tocol: (a) 1-bounded; (b) Synchronous

Let ti
j ↓P and ti

j ↓E be the local states of the peer P and

the local states of the peers (∈ E) other than P in state ti
j ,

respectively. That is, ti
j is a tuple 〈ti

j↓P , ti
j↓E〉. For ease of

explanation, in this notation we are not including the queue
contents associated with each peer’s local state. Recall that,
when i > 0, the local state of any peer is associated with
the contents of its queue, while for i = 0, there is no such
queue.

Using paths 6 and 7, we construct a new path

t′10
!m1=⇒ t′11

!m2=⇒ . . .
!ml=⇒ t′1l in I1 (8)

such that ∀j ≥ 0 : t′1j ↓E= t1j↓E ∧ t′1j ↓P= t0j↓P .

Recall that, t10 ≈ t00, i.e., 〈t10↓P , t10↓E〉 ≈ 〈t00↓P , t00↓E〉.

1. The states 〈t1j↓P , t1j↓E〉 and 〈t′1j ↓P , t′1j ↓E〉 have same set
of send actions from some peer in E to be consumed
by another peer in E. The destination states after such
send actions are also identical.

2. The states 〈t1j↓P , t1j↓E〉 and 〈t′1j ↓P , t′1j ↓E〉 have same set
of send actions from some peer in E to be consumed
by the peer P. This is because (a) the local states of
E are identical in t′1j and t1j , (b) the local state of peer

P is identical in t′1j and t0j , and (c) t0j ≈ t1j (implies
the action, under consideration, from a peer in E is

consumed immediately by the peer P in t0j ). The des-
tination states again maintains the same relationship
as the current states.

3. Finally, send actions in 〈t1j ↓P , t1j ↓E〉 from peer P to

any other peer is also present in 〈t′1j ↓P , t′1j ↓E〉 as (a)

the local state of P is identical in t′1j and t0j , and (b)

t0j ≈ t1j (same set of send actions are allowed from t0j↓P
and t1j↓P).

Conversely, we can show that all send actions from
peer P to any other peer at state 〈t′1j ↓P , t′1j ↓E〉 are also

present in 〈t1j↓P , t1j↓E〉.
We prove this by contradiction. Assume that peer
P can perform an send action at state 〈t′1j ↓P , t′1j ↓E〉
and the same action is blocked in 〈t1j ↓P , t1j ↓E〉 and

〈t0j ↓P , t0j ↓E〉 (as t1j ≈ t0j ). Recall that, we have con-
strained the the peer behaviors to be deterministic
(i.e., I0 is also deterministic) and I0 ≈ I1. This im-
plies one sequence of send actions cannot lead to two
different states in the system behavior. Therefore, I0

is bisimulation equivalent to I1 implies that t0j and t′1j
are also bisimulation equivalent. This implies that if t0j
any send action from t0j is also possible from t′1j . This
results in contradiction.

Therefore,

∀j ≥ 0 : t1j ≈ t′1j (9)

Observe that peer P’s message queue is empty at state t′1l
and t′1l ↓E= t1l ↓E . As a result, t′1l is capable of performing
the action !m′. Therefore, the assumption that the path 5
is a witness distinguishing Ik and I1 does not hold.

Theorem 4. The following holds when all peer behaviors
in the system are deterministic. I0 ≈ I1 if and only if I is
bisimulation synchronizable.

Proof. Follows from Theorem 3 and Propositions 2, 4.

System 2 (Figure 1) is bisimulation synchronizable as the
branching behavior of the send actions in the automaton
(synchronous system) in Figure 2(b)-ii is bisimilar to the
branching behavior of send actions in the automaton (1-
bounded system) in Figure 2(b)-i. Recall that, for any k,
the behavior of k-bounded System 2 is exactly identical to
1-bounded System 2.

This is, however, not true for System 3 where k-bounded
behavior is structurally different from k−1-bounded behav-
ior. In spite of that, the synchronous behavior of System
3 (Figure 2(b)-ii) is bisimilar to 1-bounded System 3 (Fig-
ure 4), proving that all k-bounded System 3 are bisimilar.
In other words, System 3 is bisimulation synchronizable.

The system with peers following the Haggle protocol (Fig-
ure 3) is not bisimulation synchronizable, as its 1-bounded
behavior allows o1 immediately followed by o2 which can
eventually result in peers sending offers even after there is
a cancel or an accept message in the peers’ message queue.
This behavior is not bisimilar to the synchronous behav-
ior of the system (Figure 5(b)). Note that, this behavior of
the asynchronous system that witnesses the non-bisimilarity
of the 1-bounded system and its synchronous counter-part,
never leads to any final states of the system. If the chore-
ography specification is only concerned with the behavior of



the system that always eventually leads to the final states
of the system, then we can discard the states and the tran-
sitions in the 1-bounded system that do not participate in
any paths from the start to the final states of the system.
The bisimulation equivalence between synchronous and 1-
bounded system can be checked after discarding such states
and transitions, and the Theorems 3 and 4 remain valid
as the definitions of bisimulation equivalence as well as the
proofs of the theorems do not depend on the (un)reachability
of the final states.

Remark 1. If the choreography specification is described
using universal fragment of CTL, i.e., ACTL, then one can
define simulation synchronizability. This is because if I and
I′ are simulation equivalent, i.e., I ≺ I′ ∧ I′ ≺ I, then I
and I′ conform to the same set of choreography specifications
expressed as ACTL properties. The proof, that when peer
behaviors are deterministic I0 ≺ I1 ∧ I1 ≺ I0 if and only if
I is simulation synchronizable, follows the same arguments
as in Theorem 3.

Synchronizability allows for verifying choreography con-
formance of I using I0. We have presented three differ-
ent variations of synchronizability: language, bisimulation
and simulation synchronizability; each variation corresponds
to the expressive power and semantics of the choreogra-
phy specification language. Bisimulation synchronizability
allows for verifying conformance of I to choreography speci-
fication expressed in any temporal logic; Simulation synchro-
nizability allows for verifying conformance of I to choreog-
raphy specifications expressed in universal fragment of tem-
poral logic; and finally, language synchronizability allows
for verifying conformance of I to choreography specifica-
tion expressed as FSA and in LTL temporal logic. Bisimu-
lation synchronizability implies simulation synchronizability
which, in turn, implies language synchronizability.

We have proved that language, bisimulation and, respec-
tively, simulation equivalence between I0 and I1 is the neces-
sary and sufficient condition for language, bisimulation and
simulation synchronizability. As I0 and I1 are automata
with finite state-space, bisimulation and simulation synchro-
nizability are decidable for systems with deterministic peers,
and language synchronizability is decidable for systems with
non-deterministic peers. In short, our results identify a sub-
class of peer systems for which choreography conformance is
decidable even when peers interact by exchanging messages
asynchronously using unbounded message queues.

6. RELATED WORK
The synchronizability problem was first proposed in [9,

11]. The synchronizability definition used in [9, 11] corre-
sponds to the language-synchronizability definition we use in
this paper. Hence it cannot be used to check for conformance
of branching time properties. Moreover, the synchronizabil-
ity conditions given in [9, 11] are sufficient but not necessary
conditions. For example, as we discussed earlier in the pa-
per, one of the sycnhronizability conditions used in [9, 11]
is called autonomous condition, and this condition prevents
a peer from having a send and a receive transition from the
same state. This condition sometimes fails for peer behav-
iors that are synchronizable, leading to false positives (which
is the case for the Haggle protocol shown in Figure 3).

The decidability of synchronizability has been an open
problem since it has been defined in [9, 11]. In this paper
we show that synchronizability is decidable by giving a com-
putable necessary and sufficient condition for synchroniz-
ability. Furthermore, we extend the synchronizability defini-
tion to bisimulation synchronizability that enables choreog-
raphy conformance checking for branching time properties.

In [7], message patterns expressed with Petri nets us-
ing synchronous communication are “de-synchronized”, i.e.,
one is interested in finding a specification that produces
the same pattern of messages when communications become
asynchronous. However, in [7] instead of finding necessary
and sufficient conditions for equivalence between the syn-
chronous and asynchronous behavior, the authors try to
eliminate race conditions that are created due to asynchronous
behavior by several resolution strategies.

In [18] different communication models including synchronous
communication and asynchronous communication are de-
fined with the goal of choosing the most appropriate commu-
nication model for a given choreography specification. How-
ever, one of the assumptions used in [18] limits the behaviors
of the analyzed systems to use a finite size message queues.
Our results on synchronizability does not require such a re-
striction and therefore can be used to extend the approach
presented in [18] to systems with infinite state spaces.

The work on session types [12, 13] formulates the confor-
mance of an interaction to a predefined choreography proto-
col as a typing problem. The idea is to first define a global
type for interaction behavior which corresponds to the chore-
ography specification. Then during implementation of each
peer, it is checked if each local peer implementation is “ty-
pable”with respect to the global type. If that is the case then
the typing rules ensure that when the peers are executed,
they conform to the choreography specification that corre-
sponds to the global type. Interestingly, the type system for
session types contains an analogue of the autonomous con-
dition from [9, 11] and therefore cannot be used for chore-
ography conformance checking of some synchronizable peer
behaviors.

7. CONCLUSION
Message-based interaction mechanisms are becoming in-

creasingly common in many software infrastructures includ-
ing service oriented architecture, distributed systems pro-
gramming, and concurrent programming at the systems level.
Message-based communication provides a clean way of iso-
lating behaviors of individual peers that participate in a dis-
tributed system. Furthermore, it enables software develop-
ers to specify global properties about the interaction behav-
ior among the peers, which is called choreography specifica-
tion.

In this paper we focused on one of the essential prob-
lems in choreography analysis: choreography conformance.
In the presence of asynchronous communication, choreogra-
phy conformance problem becomes undecidable. We showed
that for a class of systems choreography conformance can be
checked efficiently by replacing the asynchronous communi-
cation operations with synchronous communication, which
results in a finite state system. The key to this approach
is figuring out the cases where replacing asynchronous com-
munication with synchronous communication does not affect
the interaction behavior. In this paper, we showed that this
problem, called synchronizability, can be solved by compar-



ing the behavior of a system with synchronous communi-
cation to the behavior of the same system with bounded
asynchronous communication where the queue sizes are lim-
ited to one. We also defined different variations of the syn-
chronizability problem for different types of choreography
conformance checks and gave necessary and sufficient con-
ditions for each of the variations. Our results are applicable
to analysis of the global interaction behavior in any software
infrastructure that supports message-based interactions.
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