
Side Channel Analysis Using a Model
Counting Constraint Solver and Symbolic

Execution

Joint work with:
Abdulbaki Aydin, Lucas Bang, UCSB

Corina Pasareanu, Quoc-Sang Phan, CMU, NASA

Tevfik Bultan
Computer Science Department

University of California, Santa Barbara

Overview

2

Symbolic
Execution

Model
Counting

Side
Channel
Analysis

Program

Path Constraints

Probability Distribution
for Observables

Information Leakage

ISSTAC Project: Vanderbilt, UCSB, CMU

Java
Bytecode

Symbolic
Execution

Hadoop Distributed
File System (HDFS)

Hive Data
Warehouse

Symbolic
Execution
Engines

Worst-case Analysis
(bounds)

Side-channel Analysis

Model-counting
Constraint Solver

Worst-case Bounds
Worst-case Input
Worst-case Constraints

Analysis
Report

informs generates

Apache
Spark

input
Preprocessing
&Visualization

Quantified Information
Leakage and Confidence

Overview

4

Symbolic
Execution

Model
Counting

Side
Channel
Analysis

Program

Path Constraints

Probability Distribution
for Observables

Information Leakage

JPF and SPF

Java PathFinder
Extensible tool for Java bytecode

verification
Uses specialized JVM
Developed at NASA Ames since

1999
Open-sourced

Symbolic PathFinder (SPF)
Symbolic execution tool for Java

bytecode; open-sourced
Uses lazy initializations to handle

complex data structures and
arrays as inputs

Handles multi-threading
Provides support for symbolic string

operations
Supports quantitative reasoning

6

A PIN Checker

Symbolic Execution of PIN Checker

7

Symbolic Execution of PIN Checker

8

Symbolic Execution of PIN Checker

9

Symbolic Execution of PIN Checker

10

Symbolic Execution of PIN Checker

11

Symbolic Execution of PIN Checker

12

Symbolic Execution of PIN Checker

13

Symbolic Execution of PIN Checker

14

Symbolic Execution of PIN Checker

15

Symbolic Execution of PIN Checker

16

Probabilistic Symbolic Execution
} Can we determine the probability of executing a particular

program path?

} Let PCi denote the path constraint of an execution path

} Let |PCi| denote the number of possible solutions for PCi

} Let |D| denote the size of the input domain

} Assume uniform distribution over the input domain

p(PCi) = |PCi|
|D|

Probabilistic Symbolic Execution of PIN
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256.

} p(PCi) =
|PCi|
|D|

18

Probabilistic Symbolic Execution of PIN
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256.

} p(PCi) =
|PCi|
|D|

19

Probabilistic Symbolic Execution of PIN
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256.

} p(PCi) =
|PCi|
|D|

20

Probabilistic Symbolic Execution of PIN
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256.

} Probability that an adversary can guess a prefix of length i in
one guess is given by pi

21

Overview

22

Symbolic
Execution

Model
Counting

Side
Channel
Analysis

Program

Path Constraints

Probability Distribution
for Observables

Information Leakage

Information leakage
} Note that the PIN checker leaks information about the secret

(secret is the pin value P).
} When an adversary tries a guess G there are two scenarios:

¨ If G matches P then adversary learns the PIN
¨ If G does not match P, then the adversary learns that the PIN

values is not G

} This is due to the public output of the PIN checker
¨ This is called the main channel

} However, there may be other observations one can make
about the PIN checker

23

Information leakage
} An adversary may observe more than just the public output of

a program.

} An adversary may observe:
¨ execution time
¨ memory usage
¨ file size
¨ network package size

} There may be information leakage about the secret from
these observable values. These are called side channels.

24

Information Leakage
} How can we quantify leakage from a side channel (or

main channel)?

} Shannon Entropy

} Intuition:
} The expected amount of information gain (i.e., the

expected amount of surprise) expressed in terms of bits

25

Information Leakage
} Example:
} Seattle weather, always raining:
} prain = 1, psun = 0
} Entropy: H = 0

} Costa Rica weather, coin flip:
} prain= ½, psun=½
} Entropy: H = 1

} Santa Barbara weather, almost always beautiful:
} prain=1/10, psun=9/10
} Entropy: H = 0.496

26

Information Leakage via Side Channels
} Side channels produce a set of observables that partition

the secret:

} By computing the probability of observable values we can
compute the entropy:

} We can compute the probability of observable values
using model counting:

27

Symbolic Execution of PIN Checker

28

Probabilistic Symbolic Execution of PIN
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256.

29

Information Leakage

} H: The expected amount of information gain by the adversary

30

A secure PIN checker

31

} Only two observables: o0: does not match, o1: full match
} p(o0) = 15/16, p(o1) = 1/16
} Hsecure = 0.33729 < Hsidechannel=1.8750

Secure vs. insecure PIN checker

32

Overview

33

Symbolic
Execution

Model
Counting

Side
Channel
Analysis

Program

Path Constraints

Probability Distribution
for Observables

Information Leakage

Model Counting String Constraint Solver

34

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

𝑪

of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

Model Counting String Constraint Solver

35

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

𝑪

of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

String Constraint Language

36

Example String Expressions

37

String Expression Constraint Language

Ja
va

s.length() length(s)

s.isEmpty() length(s) == 0

s.startsWith(t,n) 0 ≤ n ⋀ n ≤ |s| ⋀
begins(substring(s,n,|s|),t)

s.indexOf(t,n) indexof(substring(s,n,|s|),t)

s.replaceAll(p,r) replaceall(s,p,r)

P
H

P

strrpos(s, t) lastindexof(s,t)

substr_replace(s,
t,i,j)

substring(s,0,i).t.substring(s,j,|s|)

strip_tags(s) replaceall(s,("<a>"|"<p>"|...),"")

mysql_real_escape
_string(s)

...replaceall(s
,replaceall(s,“\\",“\\\\")
,"’", “\’")...

Model Counting String Constraint Solver

38

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

𝑪

of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

String Automata Construction

39

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

40

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

41

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

42

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

43

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

44

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

45

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

46

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

47

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

48

⋂

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

49

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

50

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

51

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

52

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

53

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

54

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

55

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

56

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

57

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

58

⋂

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

59

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

String Automata Construction

60

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

00, 10, 11

Integer Constraints

61

Integer Automata Construction

62

𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

Integer Automata Construction

63

𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

𝐶9 ≡ 𝑥 + 0 ∗ 𝑦 + 1 = 0 ⇒ [1	0	1]

𝐶? ≡ 𝑥 + 𝑦	 − 1 = 0 ⇒ [1	1 − 1]

Integer Automata Construction

} Using automata construction techniques described in:
C. Bartzis and Tevfik Bultan. Efficient symbolic representations for
arithmetic constraints in verification. Int. J. Found. Comput. Sci., 2003

64

𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

𝐶9 ≡ 𝑥 + 0 ∗ 𝑦 + 1 = 0 ⇒ [1	0	1]

𝐶? ≡ 𝑥 + 𝑦	 − 1 = 0 ⇒ [1	1 − 1]

𝐶9 𝐶?∧

Integer Automata Construction

} Conjunction and disjunction is handled by automata
product, negation is handled by automata complement

65

𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

(111, 010) = (−1, 2)

Model Counting String Constraints Solver

66

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

𝑪

of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

Can you solve it Will Hunting?

67

Automata-based Model Counting

68

𝐶 ≡ ¬ 𝑥 ∈ 01 ∗

} Converting constraints to automata reduces the model counting
problem to path counting problem in graphs

} We will generate a function 𝑓(𝑘)
} Given length bound 𝑘, it will count the number of paths with length 𝑘.
} 𝑓 0 = 0, {}
} 𝑓 1 = 2, {0,1}
} 𝑓 2 = 3, {00,10,11}

Path Counting
𝐶 = ¬ 𝑥 ∈ 01 ∗

69

𝑇 =
0
1
0
0

	
1
0
0
0

	
1
1
2
0

	
0
1
1
0

, 𝑇? =
1
0
0
0

	
0
1
0
0

	
3
3
4
0

	
2
1
2
0

, 𝑇J =
0
1
0
0

	
1
0
0
0

	
7
7
8
0

	
3
4
4
0

, 𝑇M =
0
1
0
0

	
1
0
0
0

	
15
15
16
0

	
8
7
8
0

𝑓 0 = 0 𝑓 1 = 2 𝑓 2 = 3 𝑓 3 = 8

Recurrence Relation

70

𝑓 4, 𝑘 = 𝑓 2, 𝑘 − 1 + 𝑓 3,𝑘 − 1
𝑓 3, 𝑘 = 𝑓 1, 𝑘 − 1 + 𝑓 2,𝑘 − 1 + 𝑓 3,𝑘 − 1
𝑓 2, 𝑘 = 𝑓 1, 𝑘 − 1
𝑓 1, 𝑘 = 𝑓 2, 𝑘 − 1
𝑓 1,0 = 1,𝑓 2,0 = 0, 𝑓 3,0 = 0,𝑓 4,0 = 0

Recurrence Relation

71

𝑓 𝑛, 𝑘 = Q 𝑓(𝑚, 𝑘 − 1)
(S,T)∈U

𝑓 0,0 = 1
𝑓 1,0 = 0
𝑓 2,0 = 0
…
𝑓 𝑖, 0 = 0

Recurrence Relation
} We can solve system of recurrence relations for final

node

𝑓 0 = 0, 𝑓 1 = 2, 𝑓 2 = 3
𝑓 𝑘 = 2𝑓 𝑘 − 1 + 𝑓 𝑘 − 2 − 2𝑓 𝑘 − 3

72

} We can compute a generating function, 	𝑔 𝑧 , for a DFA
from the associated matrix

𝑔 𝑧 = (−1)T
det	(𝐼 − 𝑧𝑇:𝑛 + 1,1)
𝑧×det	(𝐼 − 𝑧𝑇)

=
2𝑧 − 𝑧?

1 − 2𝑧 − 𝑧? + 2𝑧J

Counting Paths w Generating Functions

73

𝑇 =

0
1
0
0

	

1
0
0
0

	

1
1
2
0

	

0
1
1
0

𝑔 𝑧 =
2𝑧 − 𝑧?

1 − 2𝑧 − 𝑧? + 2𝑧J

} Each 𝑓(𝑖) can be computed by Taylor expansion of 𝑔 𝑧

𝑔 𝑧 =
𝑔(0)
0!

𝑧a +
𝑔(9)(0)
1!

𝑧9 +
𝑔(?)(0)
2!

𝑧? +⋯+
𝑔(T)(0)
𝑛!

𝑧T +⋯

𝑔 𝑧 = 0𝑧a + 2𝑧9 + 3𝑧? + 8𝑧J + 15𝑧M +⋯

𝑔 𝑧 = 𝑓(0)𝑧a + 𝑓(1)𝑧9 + 𝑓(2)𝑧? + 𝑓(3)𝑧J + 𝑓(4)𝑧M +⋯

Counting Paths w Generating Functions

74

Good job Will Hunting!

75

Applicable to Both Automata

76

} Multi-track Binary Integer Automaton:

} String Automaton:

Model Counting String Constraints Solver

77

Automata-Based
model Counting
string constraint

solver
(ABC)

INPUT

string
constraint:

𝑪

of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)

JPF and SPF

Java PathFinder
Extensible tool for Java bytecode

verification
Uses specialized JVM
Developed at NASA Ames since

1999
Open-sourced

Symbolic PathFinder (SPF)
Symbolic execution tool for Java

bytecode; open-sourced
Uses lazy initializations to handle

complex data structures and
arrays as inputs

Handles multi-threading
Provides support for symbolic string

operations
Supports quantitative reasoning

Side-Channel Analysis

Java
Bytecode

Symbolic
Execution

Hadoop Distributed
File System (HDFS)

Hive Data
Warehouse

Symbolic
Execution
Engines

Worst-case Analysis
(bounds)

Side-channel Analysis

Model-counting
Constraint Solver

Worst-case Bounds
Worst-case Input
Worst-case Constraints

Analysis
Report

informs generates

Apache
Spark

input
Preprocessing
&Visualization

Quantified Information
Leakage and Confidence

Side Channel Analysis Process
• Use code inspection to figure out parts of the code that relate

to the mentioned operations

• Write a driver to execute the identified code

• Run symbolic execution on the resulting system using the
time or memory listener

• Remove or stub out code that breaks symbolic execution
(such as native libraries)

• Path constraints generated by symbolic execution identify the
relationship between the secret and the observable

• Devise an attack based on the result of symbolic execution

Probabilistic Analysis and Entropy
Calculation
} In order to quantify the amount of leakage, compute the probability of

each observable value

} To compute observable probabilities:

} Count the number of input values that satisfy a path constraint and divide
it by the size of the input domain.

} This results in the probability of execution for that path constraint

} Using path constraint probabilities compute the observable
probabilities

} From the probabilities, compute the entropy reduction for each
operation

A case study
• Database contains restricted & unrestricted employee

information
• Supports SEARCH & INSERT queries

• Question: Is there a side channel in time that a third party can
determine the value of a single Restricted ID in the database

Code Inspection
• Using code inspection we identified that the SEARCH and

INSERT operations are implemented in:

class UDPServerHandler

method channelRead0

switch case 1: INSERT

switch case 8: SEARCH

SPF Driver
public class Driver {

public static void main(String[] args){
BTree tree = new BTree(10);
CheckRestrictedID checker = new CheckRestrictedID();
// create two concrete unrestricted ids
int id1 = 64, id2 = 85;
tree.add(id1, null, false);
tree.add(id2, null, false);
// create one symbolic restricted id
int h = Debug.makeSymbolicInteger("h");
Debug.assume(h!=id1 && h!=id2);
tree.add(h, null, false);
checker.add(h);
UDPServerHandler handler = new UDPServerHandler(tree,checker);
int key = Debug.makeSymbolicInteger("key");
handler.channelRead0(8,key); // send a search query with
} // with search range 50 to 100

}

SPF Output

>>>>> There are 5 path conditions and 5 observables
cost: 9059
(assert (<= h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 15

cost: 8713
(assert (<= h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 20

cost: 7916
(assert (> h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 923

cost: 8701
(assert (>= h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 14

cost: 7951
(assert (< h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 50

**
PC equivalance class model counting results.
**
Cost: 9059 Count: 15 Probability: 0.014677
Cost: 8713 Count: 20 Probability: 0.019569
Cost: 7916 Count: 923 Probability: 0.903131
Cost: 8701 Count: 14 Probability: 0.013699
Cost: 7951 Count: 50 Probability: 0.048924

Domain Size: 1022
Single Run Leakage: 0.6309758112933285

Observation & Proposed Attack
} SEARCH operation:

takes longer when the secret is within the search range
(9059, 8713, 8701 byte code instructions)

as opposed to the case when the secret is out of the search
range (7916, 7951 byte code instructions)

} Proposed attack:

Measure the time it takes for the search operation to figure out
if there is a secret within the search range.

Attack
• Binary search on the ranges of the IDs
• Send two search queries at a time and compare their execution

time.
• Refine the search range based on the result.

min= 0; max=MAX_ID //assume MAX_ID is a power of 2
while (min < max)
{
half = (max-min-1)/2;
if (time(search(min.. min+half-1) > time(search(min+half .. max)))

max = min+half-1;
else

min = min+half;
}

Attack Output
Running [0, 40000000] at 0.
Comparing 467821 vs 612252...
Running [20000000, 40000000] at 2.
Comparing 400377 vs 333665...
Running [20000000, 30000000] at 4.
Comparing 200603 vs 237025...
Running [25000000, 30000000] at 6.
Comparing 163564 vs 115072...
Running [25000000, 27500000] at 8.
Comparing 95736 vs 37388...
Running [25000000, 26250000] at 10.
Comparing 85305 vs 30118...
Running [25000000, 25625000] at 12.
Comparing 22765 vs 72958...
Running [25312500, 25625000] at 14.
Comparing 2147483647 vs 19353...
Running [25312500, 25468750] at 16.
Comparing 517 vs 2147483647...
Running [25390625, 25468750] at 18.
Comparing 317 vs 2147483647...
Running [25429687, 25468750] at 20.
Comparing 2147483647 vs 302...
Running [25429687, 25449218] at 22.
Comparing 2147483647 vs 287...
Running [25429687, 25439452] at 24.
Comparing 336 vs 2147483647...

Running [25434569, 25439452] at 26.
Comparing 300 vs 2147483647...
Running [25437010, 25439452] at 28.
Comparing 2147483647 vs 265...
Running [25437010, 25438231] at 30.
Comparing 2147483647 vs 328...
Running [25437010, 25437620] at 32.
Comparing 280 vs 2147483647...
Running [25437315, 25437620] at 34.
Comparing 293 vs 2147483647...
Running [25437467, 25437620] at 36.
Comparing 2147483647 vs 281...
Running [25437467, 25437543] at 38.
Comparing 2147483647 vs 613...
Running [25437467, 25437505] at 40.
Comparing 2147483647 vs 258...
Running [25437467, 25437486] at 42.
Comparing 2147483647 vs 291...
Running [25437467, 25437476] at 44.
Comparing 362 vs 2147483647...
Running [25437471, 25437476] at 46.
Comparing 311 vs 2147483647...
Running [25437473, 25437476] at 48.
Comparing 2147483647 vs 2147483647...
Checking oracle for: 25437474... true
Checking oracle for: 25437475... false

Multi-Run Analysis
• The side channel analysis I discussed so far is for analyzing a

single execution of a program

• Can we do model multi-run analysis?

• Adversary runs the program on multiple inputs one after
another

• Can we determine the amount of information leakage in such
a scenario?

Multi-Run Analysis
• For multi-run analysis we need an adversary model

• Adversary behavior influences the analysis

• It would make sense to calculate the leakage for the best
adversary

• For a class of side channels called “segmented oracles” we can
use symbolic execution and entropy calculation from a single
run to compute the change in the entropy for multiple runs

• This can be used to automatically compute how many tries it
will take to reveal the secret.

Results for Password Check
Results for 4 segments with 4 values (8 bits of information)

Results for CRIME
Results for 3 segments with 4 values (6 bits of information)

Noisy Observations
} Entropy computations we have shown so far do not take

observation noise into account

} One approach we are investigating to handle noise:
• Assume a noise distribution (for example normal distribution)
• Run fuzzing to observe parameters of the distribution (mean

and standard deviation)
• Update entropy calculations using the noise model

Noisy Observation Simulation

Noisy Observation Simulation

Entropy vs. Noise

Summary

97

Symbolic
Execution

Model
Counting

Side
Channel
Analysis

Program

Path Constraints

Probability Distribution
for Observables

Information Leakage

Related work: Quantitative Information Flow
} Geoffrey Smith. On the Foundations of Quantitative Information Flow. FOSSACS 2009: 288-

302
} Pasquale Malacaria. Assessing security threats of looping constructs. POPL 2007: 225-235
} David Clark, Sebastian Hunt, Pasquale Malacaria. A static analysis for quantifying information

flow in a simple imperative language.Journal of Computer Security 15(3): 321-371 (2007)
} Jonathan Heusser, Pasquale Malacaria. Quantifying information leaks in software. ACSAC 2010:

261-269
} Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, Corina S. Pasareanu. Symbolic

quantitative information flow.ACM SIGSOFT Software Engineering Notes 37(6): 1-5 (2012)
} Quoc-Sang Phan, Pasquale Malacaria, Corina S. Pasareanu, Marcelo d'Amorim. Quantifying

information leaks using reliability analysis. SPIN 2014: 105-108
} Stephen McCamant, Michael D. Ernst.Quantitative information flow as network flow

capacity. PLDI 2008: 193-205
} Michael Backes, Boris Köpf, Andrey Rybalchenko. Automatic Discovery and Quantification of

Information Leaks. IEEE Symposium on Security and Privacy 2009: 141-153
} Shuo Chen, RuiWang, XiaoFeng Wang, Kehuan Zhang. Side-Channel Leaks in Web Applications:

A Reality Today, a Challenge Tomorrow. IEEE Symposium on Security and Privacy 2010: 191-
206

} Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, Jan Reineke. CacheAudit: A
Tool for the Static Analysis of Cache Side Channels.USENIX Security 2013: 431-446

98

Related work: Model Counting
} SMC
} ACM
} Latte
} Barvinok

99

