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JPF and SPF

Java PathFinder
Extensible tool for Java bytecode 

verification
Uses specialized JVM
Developed at NASA Ames since 

1999
Open-sourced

Symbolic PathFinder (SPF)
Symbolic execution tool for Java 

bytecode; open-sourced
Uses lazy initializations to handle 

complex data structures and 
arrays as inputs

Handles multi-threading
Provides support for symbolic string 

operations
Supports quantitative reasoning
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Probabilistic Symbolic Execution
} Can we determine the probability of executing a particular 

program path?

} Let PCi denote the path constraint of an execution path

} Let |PCi| denote the number of possible solutions for PCi

} Let |D| denote the size of the input domain

} Assume uniform distribution over the input domain

p(PCi) = |PCi|
|D| 



Probabilistic Symbolic Execution of PIN 
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256. 

} p(PCi) = 
|PCi|
|D| 
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Probabilistic Symbolic Execution of PIN 
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256. 

} Probability that an adversary can guess a prefix of length i in 
one guess is given by pi
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Information leakage
} Note that the PIN checker leaks information about the secret 

(secret is the pin value P).
} When an adversary tries a guess G there are two scenarios:

¨ If G matches P then adversary learns the PIN
¨ If G does not match P, then the adversary learns that the PIN 

values is not G

} This is due to the public output of the PIN checker
¨ This is called the main channel

} However, there may be other observations one can make 
about the PIN checker 
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Information leakage
} An adversary may observe more than just the public output of 

a program.

} An adversary may observe:
¨ execution time
¨ memory usage
¨ file size 
¨ network package size

} There may be information leakage about the secret from 
these observable values. These are called side channels.
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Information Leakage
} How can we quantify leakage from a side channel (or 

main channel)?

} Shannon Entropy

} Intuition: 
} The expected amount of information gain (i.e., the 

expected amount of surprise) expressed in terms of bits
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Information Leakage
} Example:
} Seattle weather, always raining:
} prain = 1, psun = 0
} Entropy: H = 0

} Costa Rica weather, coin flip:
} prain= ½, psun=½
} Entropy: H = 1

} Santa Barbara weather, almost always beautiful:
} prain=1/10, psun=9/10
} Entropy: H = 0.496
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Information Leakage via Side Channels
} Side channels produce a set of observables that partition 

the secret:

} By computing the probability of observable values we can 
compute the entropy:

} We can compute the probability of observable values 
using model counting:
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Symbolic Execution of PIN Checker
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Probabilistic Symbolic Execution of PIN 
Checker
} Assume binary 4 digit PIN. P and G each have 4 bits.
} |D| = 28 = 256. 
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Information Leakage

} H: The expected amount of information gain by the adversary
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A secure PIN checker

31

} Only two observables: o0: does not match, o1: full match
} p(o0) = 15/16, p(o1) = 1/16 
} Hsecure = 0.33729 < Hsidechannel=1.8750



Secure vs. insecure PIN checker
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Model Counting String Constraint Solver
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

𝑪

# of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting 
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

𝑪

# of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting 
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)



String Constraint Language
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Example String Expressions
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String Expression Constraint Language

Ja
va

s.length() length(s)

s.isEmpty() length(s) == 0

s.startsWith(t,n) 0 ≤ n ⋀ n ≤ |s| ⋀
begins(substring(s,n,|s|),t)

s.indexOf(t,n) indexof(substring(s,n,|s|),t)

s.replaceAll(p,r) replaceall(s,p,r)

P
H

P

strrpos(s, t) lastindexof(s,t)

substr_replace(s,
t,i,j)

substring(s,0,i).t.substring(s,j,|s|)

strip_tags(s) replaceall(s,("<a>"|"<p>"|...),"")

mysql_real_escape
_string(s)

...replaceall(s
,replaceall(s,“\\",“\\\\")
,"’", “\’")...



Model Counting String Constraint Solver
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

𝑪

# of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting 
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)
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𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2
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⋂
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String Automata Construction
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𝐶 ≡ ¬ 𝑥 ∈ 01 ∗ ∧ 𝐿𝐸𝑁 𝑥 = 2

00, 10, 11



Integer Constraints
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Integer Automata Construction
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𝐶 ≡ 𝑥 = −1 ∧ x + y = 1



Integer Automata Construction
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𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

𝐶9 ≡ 𝑥 + 0 ∗ 𝑦 + 1 = 0 ⇒ [1	0	1]

𝐶? ≡ 𝑥 + 𝑦	 − 1 = 0 ⇒ [1	1 − 1]



Integer Automata Construction

} Using automata construction techniques described in: 
C. Bartzis and Tevfik Bultan. Efficient symbolic representations for 
arithmetic constraints in verification. Int. J. Found. Comput. Sci., 2003

64

𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

𝐶9 ≡ 𝑥 + 0 ∗ 𝑦 + 1 = 0 ⇒ [1	0	1]

𝐶? ≡ 𝑥 + 𝑦	 − 1 = 0 ⇒ [1	1 − 1]

𝐶9 𝐶?∧



Integer Automata Construction

} Conjunction and disjunction is handled by automata 
product, negation is handled by automata complement

65

𝐶 ≡ 𝑥 = −1 ∧ x + y = 1

(111, 010) = (−1, 2)



Model Counting String Constraints Solver
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

𝑪

# of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting 
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)



Can you solve it Will Hunting?
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Automata-based Model Counting
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𝐶 ≡ ¬ 𝑥 ∈ 01 ∗

} Converting constraints to automata reduces the model counting 
problem to path counting problem in graphs

} We will generate a function 𝑓(𝑘)
} Given length bound 𝑘, it will count the number of paths with length 𝑘. 
} 𝑓 0 = 0, {}
} 𝑓 1 = 2, {0,1}
} 𝑓 2 = 3, {00,10,11}



Path Counting
𝐶 = ¬ 𝑥 ∈ 01 ∗

69

𝑇 =
0
1
0
0

	
1
0
0
0

	
1
1
2
0

	
0
1
1
0

, 𝑇? =
1
0
0
0

	
0
1
0
0

	
3
3
4
0

	
2
1
2
0

, 𝑇J =
0
1
0
0

	
1
0
0
0

	
7
7
8
0

	
3
4
4
0

, 𝑇M =
0
1
0
0

	
1
0
0
0

	
15
15
16
0

	
8
7
8
0

𝑓 0 = 0 𝑓 1 = 2 𝑓 2 = 3 𝑓 3 = 8



Recurrence Relation
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𝑓 4, 𝑘 = 𝑓 2, 𝑘 − 1 + 𝑓 3,𝑘 − 1
𝑓 3, 𝑘 = 𝑓 1, 𝑘 − 1 + 𝑓 2,𝑘 − 1 + 𝑓 3,𝑘 − 1
𝑓 2, 𝑘 = 𝑓 1, 𝑘 − 1
𝑓 1, 𝑘 = 𝑓 2, 𝑘 − 1
𝑓 1,0 = 1,𝑓 2,0 = 0, 𝑓 3,0 = 0,𝑓 4,0 = 0



Recurrence Relation
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𝑓 𝑛, 𝑘 = Q 𝑓(𝑚, 𝑘 − 1)
(S,T)∈U

𝑓 0,0 = 1
𝑓 1,0 = 0
𝑓 2,0 = 0
…
𝑓 𝑖, 0 = 0



Recurrence Relation
} We can solve system of recurrence relations for final 

node

𝑓 0 = 0, 𝑓 1 = 2, 𝑓 2 = 3
𝑓 𝑘 = 2𝑓 𝑘 − 1 + 𝑓 𝑘 − 2 − 2𝑓 𝑘 − 3

72



} We can compute a generating function, 	𝑔 𝑧 , for a DFA 
from the associated matrix

𝑔 𝑧 = (−1)T
det	(𝐼 − 𝑧𝑇:𝑛 + 1,1)
𝑧×det	(𝐼 − 𝑧𝑇)

=
2𝑧 − 𝑧?

1 − 2𝑧 − 𝑧? + 2𝑧J

Counting Paths w Generating Functions

73

𝑇 =

0
1
0
0

	

1
0
0
0

	

1
1
2
0

	

0
1
1
0



𝑔 𝑧 =
2𝑧 − 𝑧?

1 − 2𝑧 − 𝑧? + 2𝑧J

} Each 𝑓(𝑖) can be computed by Taylor expansion of 𝑔 𝑧

𝑔 𝑧 =
𝑔(0)
0!

𝑧a +
𝑔(9)(0)
1!

𝑧9 +
𝑔(?)(0)
2!

𝑧? +⋯+
𝑔(T)(0)
𝑛!

𝑧T +⋯

𝑔 𝑧 = 0𝑧a + 2𝑧9 + 3𝑧? + 8𝑧J + 15𝑧M +⋯

𝑔 𝑧 = 𝑓(0)𝑧a + 𝑓(1)𝑧9 + 𝑓(2)𝑧? + 𝑓(3)𝑧J + 𝑓(4)𝑧M +⋯

Counting Paths w Generating Functions
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Good job Will Hunting!
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Applicable to Both Automata

76

} Multi-track Binary Integer Automaton:

} String Automaton:



Model Counting String Constraints Solver
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Automata-Based 
model Counting 
string constraint 

solver
(ABC)

INPUT

string 
constraint:

𝑪

# of strings with length ≤ 𝒌
for which 𝑪 evaluates to true

OUTPUT

counting 
function:

𝒇𝒄 length bound: 𝒌

Aydin et al., Automata-based Model Counting for String Constraints. (CAV’15)



JPF and SPF

Java PathFinder
Extensible tool for Java bytecode 

verification
Uses specialized JVM
Developed at NASA Ames since 

1999
Open-sourced

Symbolic PathFinder (SPF)
Symbolic execution tool for Java 

bytecode; open-sourced
Uses lazy initializations to handle 

complex data structures and 
arrays as inputs

Handles multi-threading
Provides support for symbolic string 

operations
Supports quantitative reasoning
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Side Channel Analysis Process
• Use code inspection to figure out parts of the code that relate 

to the mentioned operations

• Write a driver to execute the identified code

• Run symbolic execution on the resulting system using the 
time or memory listener

• Remove or stub out code that breaks symbolic execution 
(such as native libraries)

• Path constraints generated by symbolic execution identify the 
relationship between the secret and the observable

• Devise an attack based on the result of symbolic execution



Probabilistic Analysis and Entropy 
Calculation
} In order to quantify the amount of leakage, compute the probability of 

each observable value

} To compute observable probabilities: 

} Count the number of input values that satisfy a path constraint and divide 
it by the size of the input domain.  

} This results in the probability of execution for that path constraint

} Using path constraint probabilities compute the observable 
probabilities 

} From the probabilities, compute the entropy reduction for each 
operation



A case study
• Database contains restricted & unrestricted employee 

information
• Supports SEARCH & INSERT queries

• Question: Is there a side channel in time that a third party can 
determine the value of a single Restricted ID in the database



Code Inspection
• Using code inspection we identified that the SEARCH and 

INSERT operations are implemented in:

class UDPServerHandler

method channelRead0

switch case 1: INSERT

switch case 8: SEARCH



SPF Driver
public class Driver {

public static void main(String[] args){
BTree tree = new BTree(10);
CheckRestrictedID checker = new CheckRestrictedID();
// create two concrete unrestricted ids
int id1 = 64, id2 = 85;
tree.add(id1, null, false);
tree.add(id2, null, false);
// create one symbolic restricted id
int h = Debug.makeSymbolicInteger("h");
Debug.assume(h!=id1 && h!=id2);
tree.add(h, null, false);
checker.add(h);
UDPServerHandler handler = new UDPServerHandler(tree,checker);
int key = Debug.makeSymbolicInteger("key");
handler.channelRead0(8,key);  // send a search query with
}                             // with search range 50 to 100

}



SPF Output

>>>>> There are 5 path conditions and 5 observables 
cost: 9059
(assert (<= h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 15
-----------------------
cost: 8713
(assert (<= h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 20
-----------------------
cost: 7916
(assert (> h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 923
-----------------------

cost: 8701
(assert (>= h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 14
-----------------------
cost: 7951
(assert (< h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 50
-----------------------
**********************************************************
PC equivalance class model counting results.
**********************************************************
Cost: 9059      Count:        15  Probability:  0.014677
Cost: 8713      Count:        20  Probability:  0.019569
Cost: 7916      Count:       923  Probability:  0.903131
Cost: 8701      Count:        14  Probability:  0.013699
Cost: 7951      Count:        50  Probability:  0.048924

Domain Size: 1022
Single Run Leakage: 0.6309758112933285



Observation & Proposed Attack
} SEARCH operation:

takes longer when the secret is within the search range 
(9059, 8713, 8701 byte code instructions) 

as opposed to the case when the secret is out of the search 
range (7916, 7951 byte code instructions)

} Proposed attack:

Measure the time it takes for the search operation to figure out 
if there is a secret within the search range.



Attack
• Binary search on the ranges of the IDs
• Send two search queries at a time and compare their execution 

time. 
• Refine the search range based on the result.

min= 0; max=MAX_ID //assume MAX_ID is a power of 2
while ( min < max )
{
half = (max-min-1)/2;
if (time(search(min.. min+half-1) > time(search(min+half .. max))) 

max = min+half-1;
else

min = min+half;
}



Attack Output
Running [0, 40000000] at 0.
Comparing 467821 vs 612252...
Running [20000000, 40000000] at 2.
Comparing 400377 vs 333665...
Running [20000000, 30000000] at 4.
Comparing 200603 vs 237025...
Running [25000000, 30000000] at 6.
Comparing 163564 vs 115072...
Running [25000000, 27500000] at 8.
Comparing 95736 vs 37388...
Running [25000000, 26250000] at 10.
Comparing 85305 vs 30118...
Running [25000000, 25625000] at 12.
Comparing 22765 vs 72958...
Running [25312500, 25625000] at 14.
Comparing 2147483647 vs 19353...
Running [25312500, 25468750] at 16.
Comparing 517 vs 2147483647...
Running [25390625, 25468750] at 18.
Comparing 317 vs 2147483647...
Running [25429687, 25468750] at 20.
Comparing 2147483647 vs 302...
Running [25429687, 25449218] at 22.
Comparing 2147483647 vs 287...
Running [25429687, 25439452] at 24.
Comparing 336 vs 2147483647...

Running [25434569, 25439452] at 26.
Comparing 300 vs 2147483647...
Running [25437010, 25439452] at 28.
Comparing 2147483647 vs 265...
Running [25437010, 25438231] at 30.
Comparing 2147483647 vs 328...
Running [25437010, 25437620] at 32.
Comparing 280 vs 2147483647...
Running [25437315, 25437620] at 34.
Comparing 293 vs 2147483647...
Running [25437467, 25437620] at 36.
Comparing 2147483647 vs 281...
Running [25437467, 25437543] at 38.
Comparing 2147483647 vs 613...
Running [25437467, 25437505] at 40.
Comparing 2147483647 vs 258...
Running [25437467, 25437486] at 42.
Comparing 2147483647 vs 291...
Running [25437467, 25437476] at 44.
Comparing 362 vs 2147483647...
Running [25437471, 25437476] at 46.
Comparing 311 vs 2147483647...
Running [25437473, 25437476] at 48.
Comparing 2147483647 vs 2147483647...
Checking oracle for: 25437474... true
Checking oracle for: 25437475... false



Multi-Run Analysis
• The side channel analysis I discussed so far is for analyzing a 

single execution of a program

• Can we do model multi-run analysis?

• Adversary runs the program on multiple inputs one after 
another

• Can we determine the amount of information leakage in such 
a scenario? 



Multi-Run Analysis
• For multi-run analysis we need an adversary model

• Adversary behavior influences the analysis

• It would make sense to calculate the leakage for the best 
adversary 

• For a class of side channels called “segmented oracles” we can 
use symbolic execution and entropy calculation from a single 
run to compute the change in the entropy for multiple runs

• This can be used to automatically compute how many tries it 
will take to reveal the secret.  



Results for Password Check
Results for 4 segments with 4 values (8 bits of information)



Results for CRIME
Results for 3 segments with 4 values (6 bits of information)



Noisy Observations
} Entropy computations we have shown so far do not take 

observation noise into account

} One approach we are investigating to handle noise:
• Assume a noise distribution (for example normal distribution)  
• Run fuzzing to observe parameters of the distribution (mean 

and standard deviation)
• Update entropy calculations using the noise model



Noisy Observation Simulation



Noisy Observation Simulation



Entropy vs. Noise
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