Modelling and Verifying
Web Service Orchestration

by means of the
Concurrency Workbench

Mariya Koshkina / Franck van Breugel

IBM, Toronto / York University, Toronto

Concurrency Workbench (CWB)
- -

Verification tool originally developed at North Carolina
State University and currently maintained at SUNY
Stony Brook

Originally intended for verification of CCS (Calculus of
Communicating Systems), but can be extended to
support other languages

#® Supports several verification methods

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.2/1

Supported Verification Methods

fModel checking T
process P]\
/
does P satisfy gb?} Yes E‘O
property ¢]/

Supported Verification Methods

o .

Preorder checking

process]]\
[process S]/

es/no
does]implementS?} Y s

Supported Verification Methods

o .

Equivalence checking

process P]\
y yes/no

[do P and ¢ behave the same’?J

process Q]/

Overview

o .

#® BPE-calculus — small language based on BPEL4WS
(Business Process Execution Language for Web
Services)

® We extend CWB to support BPE-calculus

#® Process Algebra Compiler (PAC) — tool used to extend
CWB

syntax of
BPE-calculus

PAC modules CWB

semantics of
BPE-calculus

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.6/1

BPE-Calculus

o .

Small language that captures the flow of control of
BPEL4WS
#® Abstracts from some of the details:
s Abstracts from data
s Abstracts from compensation/fault handlers
s Does not model time

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.7/1

BPE-Calculus Syntax
-

Models basic constructs of BPEL4WS:

Basic activities:
s External («)
s Internal (7)

Prefixing (a.P)
Choice (P + P)
o Concurrency (P || P)

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.8/1

-

BPE-Calculus Syntax

Synchronization is provided by links

Outgoing link: ¢ 1 b.P

Join condition: ¢ = P

BPE-Calculus Syntax
B o

makeReservation | ‘findRoom |
true true
b1 I2WAY4) b
'bookRoom |

The corresponding BPE-process:

makeReservation./; T true.o ||
findRoom./5 T true.O ||
(1 A f2) = bookRoom.0

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.10/1

BPE-Calculus Semantics
L o

Semantics of BPE-calculus is modeled by means of
structural operational semantics (Plotkin), which
describes the semantics of the process in terms of all
possible transitions that the process can make

action

® Transition: P P’

premises
conclusion

® Rules:

(side conditions)

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.11/1!

BPE-Calculus Semantics

o .

A state is a pair (P, \), where)\ contains the values of the
links (true, false, undefined)

Sample rules:
(AcT) (a.P,\) — (P, \)

<P17 > <P1/7)‘/>
(FLOWY) , ,
(P || P, Xy — (P] || P2, ')
(FLOWT) <P27)\> <P27)\ > / /
(Py || P2, \) = (P1 || P}, \)

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.12/1!

BPE-Calculus Semantics

a1.l1 T true.0 || as.ly T true.0 || 41 A by = as.0

b
N
M
~N

\V]

NAN A

\.
pd

A\

9
- <

Concurrency Workbench (CWB)
- -

#® We use Process Algebra Compiler (PAC) to extend
CWB

#® PAC takes as input:
s Syntax description file (Yacc-like grammar)
» Semantics description file (SOS rules)

#® PAC generates:
» Modules to plug into CWB

Resulting version of CWB supports verification of
BPE-calculus

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.14/1!

-

Model Checking: verify that a process satisfies a given

property

CWSB: Verification

® Deadlock-freedom

#® Other process-specific properties

Example:

53 — a1.€1 1
{1 = ag.ly]

| true.0
| true.0

Vo = ag.l3 "
a4.0 || a5.0 |

| true.(
| CL@.O

=

-

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.15/1!

CWSB: Verification

o .

Preorder Checking: verify that an implementation satisfies
Its specification

Example:
s Implementation:

receive.r./; 1 true.0 + receive.r.ls T true.o ||
1V {9 = reply.0

» Specification: receive.reply.0

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.16/1!

CWSB: Verification

o .

Equivalence Checking: check behavioral equivalence
Can be used to minimize a process

Example:
s Process

receive.r./q T true.0 + receive.r.ly T true.o ||
01V by = reply.()

» IS observationally equivalent to receive.reply.0

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.17/1!

Conclusion

=

f ® Introduced BPE-calculus that models BPEL4WS

Used BPE-calculus syntax and semantics as input to
PAC

#® Extended CWB to support BPE-calculus

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.18/1!

Future Work

o .

#® Extend BPE-calculus to incorporate other features of
BPEL4WS:

s Compensation and fault handlers
s Time
s Data

o -

Modelling and Verifying Web Service Orchestration by means of the Concurrency Workbench — p.19/1!

	Concurrency Workbench (CWB)
	Supported Verification Methods
	Supported Verification Methods
	Supported Verification Methods
	Overview
	BPE-Calculus
	BPE-Calculus Syntax
	BPE-Calculus Syntax
	BPE-Calculus Syntax
	BPE-Calculus Semantics
	BPE-Calculus Semantics
	BPE-Calculus Semantics
	Concurrency Workbench (CWB)
	CWB: Verification
	CWB: Verification
	CWB: Verification
	Conclusion
	Future Work

