CHAPTER 9: REGULAR LANGUAGES *

Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu

- The corresponding textbook chapter should be read before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

^{*}Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.

CLOSURE PROPERTIES

DEFINITION: The language denoted by a regular expression is a **regular language**.

THEOREM: If L_1 and L_2 are regular languages, then $L_1 \cup L_2$, L_1L_2 , and L_1^* are regular languages.

PROOF (by regular expression):

- 1. Since L_1 and L_2 are regular languages, each is denoted by some regular expression, say $\mathbf{r_1}$ and $\mathbf{r_2}$, respectively.
- 2. Given regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$, $\mathbf{r_1} + \mathbf{r_2}$, $\mathbf{r_1r_2}$, and $\mathbf{r_1}^*$ are regular expressions, by the inductive rules for forming regular expressions.
- 3. The languages denoted by these regular expressions are $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively.

3

4. Thus, these languages are regular.

PROOF (by machine):

- 1. Since L_1 and L_2 are regular languages, there exist TGs that accept them, say TG_1 and TG_2 , respectively.
- 2. Assume, without loss of generality, that each has a single initial state and a single final state.
- 3. Given these TGs, it is easy to construct TGs that accept $L_1 \cup L_2$, L_1L_2 , and L_1^* . Produce on blackboard.

4

4. Thus, these languages are regular.

EXAMPLE

Let $\Sigma = \{a, b\}.$

- Let $L_1 = a(a+b)^*a + b(a+b)^*b = \{ \text{ the set of all strings of length} \geq 2 \text{ that begin and end with the same letter. } \}$
- Let $L_2 = (a+b)^* aba(a+b)^* = \{$ the set of all strings that contain "aba" as a substring. $\}$

Then:

•
$$L_1 \cup L_2 = (a(a+b)^*a + b(a+b)^*b) + ((a+b)^*aba(a+b)^*).$$

•
$$L_1L_2 = (a(a+b)^*a + b(a+b)^*b)((a+b)^*aba(a+b)^*).$$

• $L_1^* = (a(a+b)^*a + b(a+b)^*b)^*.$

Produce machine compositions on the blackboard.

COMPLEMENTS AND INTERSECTIONS

THEOREM: If L is a regular language, \overline{L} is regular.

Proof:

- 1. Since L is regular, there is an FA, A, that accepts it.
- 2. Create a new FA, \overline{A} , which is the same as A, except $F_{\overline{A}} = Q_A F_A$.
- 3. Word w is accepted by A if and only if it is rejected by \overline{A} .
- 4. Since \overline{A} is an FA, $L(\overline{A})$ is regular.

Apply the construction on even - odd, the set of strings with an even number of a's and an odd number of b's.

THEOREM: If L_1 and L_2 are a regular languages, $L_1 \cap L_2$ is regular. PROOF: By DeMorgan's law, $L_1 \cap L_2 = \overline{L_1 \cup L_2}$, a regular language. Illustrate DeMorgan's law with a Venn Diagram.

PROOF: (machine-based)

Replicate the FA construction for the union of 2 regular languages, but final states are those where *both* component states are final in the given machines.

Thus, a word is accepted by the constructed FA if and only if it is accepted by both given finite automata.

Illustrate on the set of words that begin with a and end with b.