Chapter 9: Regular Languages *
Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

- The corresponding textbook chapter should be read before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

[^0]
Closure Properties

Definition: The language denoted by a regular expression is a regular language.

Theorem: If L_{1} and L_{2} are regular languages, then $L_{1} \cup L_{2}, L_{1} L_{2}$, and L_{1}^{*} are regular languages.

Proof (by regular expression):

1. Since L_{1} and L_{2} are regular languages, each is denoted by some regular expression, say \mathbf{r}_{1} and \mathbf{r}_{2}, respectively.
2. Given regular expressions \mathbf{r}_{1} and $\mathbf{r}_{2}, \mathbf{r}_{1}+\mathbf{r}_{2}, \mathbf{r}_{1} \mathbf{r}_{\mathbf{2}}$, and $\mathbf{r}_{\mathbf{1}}{ }^{*}$ are regular expressions, by the inductive rules for forming regular expressions.
3. The languages denoted by these regular expressions are $L_{1} \cup L_{2}$, $L_{1} L_{2}$, and L_{1}^{*}, respectively.
4. Thus, these languages are regular.

Proof (by machine):

1. Since L_{1} and L_{2} are regular languages, there exist TGs that accept them, say $T G_{1}$ and $T G_{2}$, respectively.
2. Assume, without loss of generality, that each has a single initial state and a single final state.
3. Given these TGs, it is easy to construct TGs that accept $L_{1} \cup L_{2}$, $L_{1} L_{2}$, and L_{1}^{*}. Produce on blackboard.
4. Thus, these languages are regular.

ExAMPLE

Let $\Sigma=\{a, b\}$.

- Let $L_{1}=a(a+b)^{*} a+b(a+b)^{*} b=\{$ the set of all strings of length ≥ 2 that begin and end with the same letter. $\}$
- Let $L_{2}=(a+b)^{*} a b a(a+b)^{*}=\{$ the set of all strings that contain "aba" as a substring. \}

Then:

- $L_{1} \cup L_{2}=\left(a(a+b)^{*} a+b(a+b)^{*} b\right)+\left((a+b)^{*} a b a(a+b)^{*}\right)$.
- $L_{1} L_{2}=\left(a(a+b)^{*} a+b(a+b)^{*} b\right)\left((a+b)^{*} a b a(a+b)^{*}\right)$.
- $L_{1}^{*}=\left(a(a+b)^{*} a+b(a+b)^{*} b\right)^{*}$.

Produce machine compositions on the blackboard.

Complements and Intersections

Theorem: If L is a regular language, L is regular.

Proof:

1. Since L is regular, there is an FA, A, that accepts it.
2. Create a new FA, \bar{A}, which is the same as A, except $F_{\bar{A}}=Q_{A}-F_{A}$.
3. Word w is accepted by A if and only if it is rejected by \bar{A}.
4. Since \bar{A} is an FA, $L(\bar{A})$ is regular.

Apply the construction on even - odd, the set of strings with an even number of a 's and an odd number of b 's.

Theorem: If L_{1} and L_{2} are a regular languages, $L_{1} \cap L_{2}$ is regular.
Proof: By DeMorgan's law, $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$, a regular language. Illustrate DeMorgan's law with a Venn Diagram.

Proof: (machine-based)

Replicate the FA construction for the union of 2 regular languages, but final states are those where both component states are final in the given machines.
Thus, a word is accepted by the constructed FA if and only if it is accepted by both given finite automata.

Illustrate on the set of words that begin with a and end with b.

[^0]: *Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley \& Sons, Inc.

